
ABSTRACT
Safety and high-quality education are very important in the learning procedure of surgical
trainees before operation on real patients. In the conventional method of education
and evaluation, residents are educated and evaluated through traditional methods that
are cumbersome, qualitative, and subjective. Quantitative surgical skills assessment
and transfer approaches can improve the quality and accuracy of the evaluation and
education in surgical training programs. In this chapter, we propose a comprehensive
review of AI-powered approaches that detect and incorporate the underlying skills-related
features of surgical trajectories to classify and improve the levels of expertise of users in
surgical training platforms. To this end, we investigate the functionality, advantages, and
drawbacks of current skills evaluation and transfer methods with a focus on robot-assisted
surgery applications.
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2.1 INTRODUCTION
Robot-assisted surgery (RAS) is becoming more popular in modern clinical
practice. A surgeon must acquire a variety of skills to conduct RAS safely and
effectively since inadequate preparation may negatively affect clinical outcomes
Birkmeyer et al. (2013). To help surgical trainees, accurate and reliable methods
of assessment and transfer of surgical skills should be available with informative
and instructive feedback.

As a convention, RAS skills assessments are conducted through outcomes-
based analyses, specially designed checklists, and specific scores Ahmidi et al.
(2017). For instance, Martin et al. created “Objective Structured Assessment
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of Technical Skill (OSATS)”, which incorporated operation-specific checklists
for pass/fail judgments of the trainees Martin et al. (1997). Another conven-
tional method for identifying levels of robotic surgery expertise is the “Global
Evaluative Assessment of Robotic Skills (GEARS)”, proposed by Goh et al.
(2012) Variability in the human’s interpretation of similar events makes such
evaluation methods expensive, time-demanding, less efficient, and less reliable.
In addition, such observational methods neglect small but potentially impor-
tant changes in the trainee’s skills, preventing them from providing insights and
targeted feedback into the surgical outcomes.

Autonomous skills evaluation approaches, however, have the potential to
resolve all of the above-mentioned limitations Funke et al. (2019). Surgical
robotics technologies are making surgical procedure data more accessible, al-
lowing artificial intelligence (AI) (e.g., machine learning (ML) and deep learning
(DL) models) to be incorporated in a variety of RAS skills evaluation and transfer
tasks. Recent advances in AI have opened the way for using highly complex sur-
gical recordings to extract meaningful features and build a computerized model
of users based on their performance during operations and use the model to
classify users’ level of expertise. The AI model can identify skills-associated
features and then transfer them to the trainee’s trajectory to better reflect skillful
behavior. A robotic surgery platform may utilize the enhanced trajectory as a
reference to generate a virtual fixture that serves as a skillful guide for the user’s
hand toward a better executive trajectory.

This chapter, in the beginning, will discuss categories of automated methods
that extract salient skills-related features from surgical recordings to use them
to rate the user performance. Additionally, the benefits and drawbacks of the
proposed methods, as well as device regularity and patient safety issues will be
discussed. We will also introduce a variety of haptic cue-based skills transfer
methods to enhance the skillful behavior of less-experienced users using surgical
robot platforms. Finally, in the Conclusions section, we provide several insights
and promising research areas related to surgical skills assessment and transfer.

2.2 SURGICAL SKILLS ASSESSMENT

Inductive learning-based models and domain knowledge-based models are main
AI categories used in autonomous RAS skills assessment Muralidhar et al.
(2018). Inductive learning-based models use data-driven approaches with min-
imal field knowledge to avoid user bias in the learning process. Because the
structure of such methods and even their hyperparameters are mostly deter-
mined by the input data (which is usually big data), they have the advantage of
reduced training effort (see Fig. 2.1).

Conversely, domain knowledge-based models do not rely on statistical models
(e.g., DL or ML models) to discover known features from the system dynamics
or human experiences. Surgical robot platforms are very complex physical
systems, which cannot be accurately modeled using limited training data. Such
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FIGURE 2.1 Different AI model training paradigms according to the strength of prior assumptions
about the data, model structure, and task dynamics. As we incorporate more domain knowledge and
human bias into the training procedure, we achieve better model transparency over fewer training
data samples with the cost of having extra feature engineering effort.

limitations lead us to model uncertainties and unmodeled dynamics. Using field
knowledge as a prior decreases uncertainty and makes it easier to solve modeling
problems with fewer training data points von Rueden et al. (2019). As a result
of incorporating field knowledge in the training stage, the model is often more
transparent (i.e., can be clearly understood and explained in human terms) which
in turn increases the reliability of the final solution in safety-critical applications
such as robotic surgery von Rueden et al. (2019).

2.2.1 Inductive learning-based models
Traditional machine learning methods were used to build the first autonomous
surgical skills assessment systems. As surgical trials are composed of a sequence
of several predefined subtasks, Rosen et al. proposed the Markov structure of
a given surgical task to reveal the user’s skills level Rosen et al. (2001, 2002);
MacKenzie et al. (2001). Various methods were later used to extend basic hidden
Markov models (HMMs) by training a unique HMM for each skill level Reiley
and Hager (2009); Tao et al. (2012). Specifically, these studies train separate
HMMs for each user and assess their distance from an ideal HMM trained over the
data of an expert user. A user’s performance is measured by the distance between
his or her model and the expert’s model. Besides HMMs limited recognition
rate and challenge for determining the true number of hidden states, they need
manual annotations over trajectories, which is time-consuming. Furthermore,
HMMs map a given trajectory to static descriptor space which makes it possible
to lose important time-related information within the trajectory. Skills-related
temporal features will be discussed in more depth in the following sections.

In recent years, deep learning models have become increasingly popular
for RAS surgical skill evaluation applications. In some approaches, kinematic
data (the translational and/or rotational trajectories of the robot end-effector) is
fed into the convolutional neural networks (CNNs) and used to learn desired
patterns for skill assessment on surgical training platforms Jian et al. (2020).
Wang and Fey (2018) utilized a deep CNN to highlight the skills levels of
individual users using the motion kinematics data of a given surgical operation.
Moreover, Fawaz et al. developed a CNN architecture for identifying the surgical
skills level of the user via latent pattern extraction of kinematics data of surgical
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FIGURE 2.2 Inductive learning-based AI models for surgical skills assessment applications. In
this paradigm, raw surgical data which can be in the form of video and/or kinematics data (i.e.,
translational and rotational trajectories of the end effector of the robotic platform) will be fed into
the input of the model (mostly deep model). The model’s depth, hyperparameters, and the structure
of the network will be adjusted according to the complexity and expressiveness of the input data.

trainees performing basic robotic surgery tasks Fawaz et al. (2019). Nguyen et al.
developed a classifier network via CNN and long short-term memory (LSTM)
models with inertial measurement units (IMU) sensors to highlight user’s skills
level in a given surgical training data Nguyen et al. (2019).

There is ongoing extensive research on using easy-to-capture video data as
the input for AI models which provides rich contextual details compared to
previously-mentioned kinematic data. For instance, Kim et al. proposed a
temporal CNN to evaluate the intraoperative skills level of capsulorhexis video
trials Kim et al. (2019). Funke et al. proposed a DL model using a pre-trained
3D CNN as a temporal segmentation network on the sequence of video frames
and optical flow fields for technical surgical skills evaluation tasks Funke et al.
(2019). Liu et al. incorporated a supervised regression loss for video input as
well as an unsupervised rank loss to train a DL model for RAS skills assessment
Liu et al. (2019).

Recent techniques identify the relative variation in skills between pairs of
surgeries by creating a pairwise ranking problem Jian et al. (2020). For instance,
Doughty et al. incorporated an approach for predicting skills ranking based
on video data sets. Using a novel loss function, they utilized both spatial and
temporal features (i.e., visual features within each video frame and time-related
features along the sequence of consecutive frames) to assess and rate skills
Doughty et al. (2018). Doughty et al. (2019) introduced a novel model for long
videos that determines relative skills level by learnable time-related attention
modules. Li et al. introduced a spatial attention-based approach for skills
assessment of video data. Authors introduced a new recurrent neural network
(RNN) that incorporates high-level progress information of an ongoing task in
addition to the stacked attention states from past frames Li et al. (2019).
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Inductive methods discussed so far yield a global performance measure of
the user for the entire task (i.e., expert, intermediate, or novice labels as illus-
trated in Fig. 2.2). To provide a more tailored and informative feedback to the
users about their surgical performance and skills level (e.g., their mistakes and
parts of the task they need to improve their skills), one effective and common
approach is to decompose user’s movements into blocks called surgemes (van
Amsterdam et al. (2021)) and apply state of the art RAS skills evaluation ap-
proaches at the sub-task level of the operation. By using this approach, instead of
having a global performance metric, a high-resolution surgical workflow will be
analyzed, which returns more elaborate feedback about the performance of the
different parts of the entire surgical task. Many publications have attempted to
perform autonomous analysis of surgical activities in a fine-grained manner Lea
et al. (2016); Menegozzo et al. (2019); DiPietro et al. (2016, 2019); Itzkovich
et al. (2019); van Amsterdam et al. (2020) and reinforcement learning (RL) Liu
and Jiang (2018). These approaches in addition to having the same limitations
caused by their black-box nature also suffer from the over-segmentation problem
(i.e., producing a large number of false action boundaries) and a poor predic-
tion accuracy that prevents them from making accurate predictions, particularly
for unpredicted events (e.g., sudden failures and restarts) van Amsterdam et al.
(2021). The over-segmentation problem may arise since high-capacity inductive
models (capacity refers to the model’s ability to accommodate variations in input
data, which is largely dependent upon how many parameters it can learn) mainly
focus on the local variations of the data (i.e., small and unimportant details),
instead of the global structure of the input trajectory. Furthermore, these meth-
ods heavily rely on hand-crafted gesture annotations to evaluate segmentation
accuracy, which can take a long time and be subject to human bias. In addi-
tion, these approaches segment trajectories without providing any meaningful
interpretation about the user’s dexterity level and behavior at the sub-task level.

Inspired by the above mentioned limitations, Soleymani et al. proposed an
intuitive, explainable, and unsupervised ML-based approach for approximate
decomposition of structured surgical trajectories such in retrospective studies
Soleymani et al. (2022b). The introduced dual-sparse dictionary learning algo-
rithm decomposes each trajectory into dictionary atoms that captures the main
variations of the data which are one general trend and several seasonal patterns.
The proposed floating atoms concept is further utilized to accommodate tempo-
ral structures within trajectories and preserves information within the trajectory
while mapping the data to embedding space. By reconstructing each trajectory
according to the generated atoms of the training set (mainly expert trajectories
as a benchmark), a vector of codes will be generated that is representative of the
data in the low-dimentional embedding space. The code vector conveys impor-
tant information about the skills level of the user and his/her abnormal behaviors
within the task. The propsed approach does not need manual annotation and
medicates oversegmentation problem since it captures main variations within
the input trajectory and neglects local contents. On the other hand, segmentation
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borders in the proposed method is not as accurate as other related work with
delicate annotated training data sets.

2.2.2 Domain knowledge-based models

While the end-to-end learning approaches presented in Section 2.2.1 have shown
acceptable classification accuracies, they are black-box models with opaque
decision-making procedures that are incomprehensible even for human experts.
As a consequence, it is hard to provide meaningful feedback to the user’s surgical
performance or intuition about the contributing factors to the surgical outcome
(here, intuitiveness and explainability mean how much the function or decision
of a model are intuitive and explainable from the perspective of human logic,
respectively). Moreover, DL models with large capacity require big data to
prevent the final model to become overfitted. Since in the field of robotic
surgery reliable, clean , and large data sets are very scarce, DL models have
a tendency to overfit. This damages the model’s generalization and results in
models with poor performance in unpredictable situations (e.g., aborting and
restarting a task).

Additionally, for safety-critical applications such as robotic surgery, the hu-
man user must understand whether the model is developed based on meaningful
features or irrelevant clues and biases in the training set. Therefore, it is crucial
to enhance the explainability and interpretability of the model to meet the ethical
requirements of skills assessment methods for robotic surgery Molnar (2020).
AI models that incorporate domain knowledge not only enhance interpretability
and explainability, but they also improve learning performance especially when
training data is not large Islam et al. (2021). Utilizing domain knowledge as a
prior in data-scarce surgical tasks not only reduces uncertainty about the success
of the operation but also makes the model easy-to-learn and more generalizable
with smaller training data sets von Rueden et al. (2019). The final skills assess-
ment model that integrates extracted manually engineered features, as shown in
Fig. 2.3, provides further clarity to the explanation and interpretation of the cal-
culations since the effect of each extracted feature to the final generated outcome
is more transparent.

The domain knowledge-based approach to skills classification incorporates
meaningful features as evaluation metrics including execution time (Judkins
et al. (2009); Liang et al. (2018)), motion jerk (Liang et al. (2018)), total path
length Judkins et al. (2009), etc., and run comparative statistical analysis on
a single metric between different participants. Due to the statistical variations
between and within participating users, there are significant overlaps between the
extracted metrics. As a result, there is no reliable statistical difference amongt
participants in terms of sugical skills level. It is primarily because some domain
knowledge-based features including but not limited to motion jerk are very noisy
for surgical tasks. Other features such as the total path length or task execution
time are not informative enough to indicate the true level of skill of the user
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FIGURE 2.3 Domain knowledge-based AI models for surgical skills assessment applications. In
this paradigm, the surgical raw data which can be in the format of video and/or kinematics data will
be fed into the several manually engineered feature extraction blocks to extract clinically meaningful
features 𝑓𝑖 that reflect the skills level of a surgeon (e.g., total path length, smoothness, fluidity of
the motion, etc.). The number of features (i.e., the value of 𝑛) and the structure of feature extraction
functions totally depends on the task and the amount of available knowledge in that particular field.

as a single factor. As a result, the methods presented in the aforementioned
papers remain case-specific and ungeneralizable for new tasks as they ignore
time-related patterns and do not create a universal model for a variety of RAS
skills assessment.

Furthermore, domain knowledge-based approaches do not consider detailed
events within a given task of an operation; they mostly take into account gen-
eral metrics over the whole process. Such domain knowledge-based studies, for
example, ignore critical time-related features such as trajectory non-smoothness
(i.e., presence of random movements including hand tremors or uncontrolled
rapid motions) as an important factor to the skills assessment of a given tra-
jectory. The smoothness of a trajectory appears to be one of the key features
that can be extracted and utilized for skills assessment purposes. Smoothness
evaluation is challenging because non-smoothness is a temporal characteristic
that occurs frequently within all trajectories. The result is that the non-structured
pattern of smoothness often gets indetectable by other dominant time-domain
characteristics including general trend and seasonal patterns. In addition, there
is no general and accurate domain knowledge-based approach for searching,
detecting, and quantifying snoothness across the entire time series.

Various domain knowledge-based features can be concatenated to create a
rich high-dimensional feature space to discover a more expressive and performant
representation of RAS trajectories for the sake of skills assessment. Ensembling
all of the above-mentioned clinically meaningful features returns an informative
long feature vector that meaningfully highlights the skills level of the participant
and shows subtle but important information within the surgical trajectory. As
depicted in Fig. 2.3, all of these concatenated metrics can be fed into a down-
stream ML classifier (e.g., support vector machines (SVM) model (Cortes and
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Vapnik (1995)), which is much simpler than the sophisticated classifier model
introduced in Fig. 2.2. These features can also be fed into dimensionality reduc-
tion models (e.g., t-distributed stochastic neighbor embedding (tSNE) Van der
Maaten and Hinton (2008)) to visualize the high-dimensional features in a two
or three-dimensional map to let the user investigate the internal mechanism of
the proposed model.

2.2.3 Domain adapted models

In the aforementioned papers, authors trained a network using an end-to-end
learning paradigm or pure field knowledge-based approaches based on a popular
dataset (e.g., JIGSAWS data set Gao et al. (2014)). A good approach is to
combine inductive and knowledge-based models to develop a domain-adapted
model that jointly incorporates both manually engineered metrics and data-driven
end-to-end models for more efficient skills assessment purposes (see Fig. 2.4).
In this way, thanks to informative features generated from domain knowledge, the
end-to-end model does not need to be very complicated compared to inductive
learning approaches (i.e., 𝑁𝑒𝑡2 in Fig. 2.4 is lighter than 𝑁𝑒𝑡1 in Fig. 2.3).
Moreover, since a substantial number of informative features are extracted by
end-to-end model, there is no need to expend too much time and effort for
engineering informative domain knowledge-based features (i.e., the number of
𝑓𝑖 in Fig. 2.4 in less than that of Fig. 2.3, or in other words 𝑚 < 𝑛).

For example, Soleymani et al. extracted spatio-temporal features in the se-
quence of RAS video data by incorporating a pre-trained ResNet50 model He
et al. (2016). Since the feature extraction network is not trained on the specific
data set of surgical trials, it can extract the key features related to the skills level
and surgical behaviors of the users. This approach at the crucial and prone-to-
bias stage of feature extraction makes the model robust as well as generalizable
to unseen test data. Moreover, fast Fourier transforms (FFTs) were used in the
proposed method as an extra feature extraction layer to decompose the entire
representation learning procedure into two phases: spatial-feature learning and
temporal-feature extraction. This model uses FFT to represent a commonly
accepted piece of domain knowledge that experts have dominant low-frequency
components and negligible high-frequency activities (i.e., they have smooth
movements). Compared with experts and intermediate users, novice users have
smaller low-frequency coefficients (i.e., they show more hand tremors and un-
wanted random actions). The intermediate group falls somewhere in between
expert and novice behavior. Extracted and manually manipulated features were
fed into a downstream CNN to extract and learn features in an inductive learn-
ing paradigm to classify the skills level of each input trajectory. Due to their
method’s two-stage learning, they achieved a less complex model than other arts
with sophisticated 3-D CNNs or complicated CNN+RNN models.

The core limitation of the mentioned approaches in this chapter is that the
trajectory of each hand is treated as an independent set of data with no considera-
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FIGURE 2.4 Domain adapted AI models for surgical skills assessment applications. In this
paradigm, the surgical raw data which can be in the format of video and/or kinematics data will
be simultaneously fed into a stack of manually engineered feature extraction blocks and inductive
learning-based model 𝑁𝑒𝑡2 to extract clinically meaningful and data driven features that reflect the
skills level of a surgeon. The advantages of such modelling approach are the reduced number of
manually made features (i.e., 𝑚 < 𝑛) compared to domain knowledge-based model presented in
Section 2.2.2 which means less feature engineering effort and light-weighted structure of 𝑁𝑒𝑡2 rela-
tive to presented 𝑁𝑒𝑡1 in Section 2.2.1 which yields less training and implementation complications
and low chance of overfitting.

tion given to possible collaboration between two hands (i.e., interaction between
different data channels such as roll rotation of the right hand and yaw rotation
of the left hand in knot tying task). However, when a surgeon performs sophis-
ticated bimanual tasks (i.e., collaborative tasks requiring delicate coordination
of both hands) what defines him/her as an expert is not just the independent
performance of each hand but how he/she manages to synchronize the motions
and rotations of both hands Vedula et al. (2016). The two hands pulling apart
the two ends of the suture to tie a knot is a good example of hands collaboration
in surgical operations. It seems considering and measuring the collaboration
quality between two hands is a promising area in the field of surgical skills
assessment for future work.

Another work which utilizes both data-driven and field knowledge-based
models is Soleymani et al. (2022a). In the proposed approach, a data-driven
learning process extracts smoothness features from the input data, and clinically
approved features such as fluidity and economy of motion are used as well-
known domain knowledge-based features to detect the true skill level of the
given executive trajectory. The fluidity of movement quantifies how quickly and
accurately a RAS task trajectory is executed in transnational or rotational space.
Following is a method for calculating this metric which incorporates the time
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derivative of the input trajectory

𝑓fluid =

(
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)−1
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𝑁
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(2.1)

where 𝑇 is the trajectory execution time of the time series 𝑢(𝑡), dot specifies
the time derivative, and 𝑁 is the number of time stamps of discrete trajectory
𝑢[𝑡]. High values of this metric are returned for quick and accurate trajectories,
while low values will be generated for slow, non-accurate, and faulty trajectories
and paths with abrupt temporal changes (i.e., task failures and human mistakes).
It is generally accepted that the economy of motion contributes to the skills
assessment of various activities by reflecting the total energy demand. It is also
critical to note that human mistakes such as unintentional motions often have high
velocity and large energy injection into the patient-side robot in surgical robotic
applications, both of which can lead to dangerous and traumatizing outcomes. It
was shown that the kinetic energy of a given trajectory approximates the critical
factor of economy of motion. In different configurations of robotic platform in
RAS, the total inertia of the patient-side robot remains quite the same, so the
economy of motion metric will be calculated as follows:

𝑓econo =

(
1
2
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2
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¤𝑢2 [𝑡]
)−1

. (2.2)

Smoothness is the most challenging metric. The reason for this is that non-
smooth behaviors can occur at any moment in the trajectory and are relatively
insignificant compared to the main variations of the data (e.g., general trends
and seasonal patterns). The method that Soleymani et al. used in this paper
is contrastive principal component analysis or cPCA in short. They created
two fabricated data sets: one with smooth trajectories (background data set)
and another with non-smooth trajectories (target data set). This study aims to
uncover the most notable differences between these sets related to the smoothness
of trajectories. At first, the covariance matrices of the target and background
data sets are calculated as follows:

𝑪𝑡 = X𝑛X
⊤
𝑛 , 𝑪𝑏 = X𝑠X

⊤
𝑠 . (2.3)

To highlight the non-smooth behaviors within the target set relative to the
background set, the contrastive covariance matrix 𝑪𝑐 and its singular value
decomposition were calculated as follows

𝑪𝑐 = 𝑪𝑡 − 𝛼𝑪𝑏 = 𝑾𝑐𝚲𝑾
⊤
𝑐 (2.4)

where hyperparameter 𝛼 denotes the contrastive strength parameter which rep-
resents the importance of target variances versus the irrelevant background vari-
ance. Now, the normal PCA can be applied on the projected data. This data-
driven approach fully separates smooth and non-smooth trajectories and can



Artificial Intelligence in Robot-Assisted Surgery: Applications to Surgical Skills Assessment and Transfer Chapter | 2 13

be used together with two other knowledge-based methods for skills evaluation
purposes. As highlighted in Soleymani et al. (2022a), such approach reveals
label-free information within RAS trajectories and provides more reliable and
tangible correction hints to the users. Unfortunately, such hints in inductive
models even with high accuracies cannot be fully trusted due to lack of explain-
ability of extracted features. One elegant instance of label-free information in
this paper is classifying one intermediate surgeon close to expert surgeons in
JIGSAWS data set. The high global rating score assigned to this surgeon proves
the fact that this surgeon performs expertly compared to other participants.

2.3 SURGICAL SKILLS TRANSFER

Modern robotic surgery systems allow the application of haptic guidance forces
to a trainee’s hands in order to correct their motion with the aim of improving
performance. In haptics and telerobotics, there is a rich literature dealing with
therelationship between surgical mentor and the trainee from the perspective of
expert-in-the-loop and haptics-enabled training Shahbazi et al. (2016); Sharifi
et al. (2017); Tao et al. (2020); Rossa et al. (2021); Najafi et al. (2020); Zak-
erimanesh et al. (2019); Sharifi et al. (2020); Shahbazi et al. (2016); Atashzar
et al. (2018). As an example, Shamaei et al. incorporated a trilateral shared
control architecture between two users (one mentor and one trainee) for RAS
skills training Shamaei et al. (2015). The platform is composed of one robot
located at the patient-side that is simultaneously manipulated by two different
user-side robots, one guided by the surgical mentor and one is used by the trainee.
The authority level of the surgical mentor over the actions of the RAS trainee
is determined by the dominance factor hyperparameter. This training program
requires continuous supervision by an expert surgeon. Using a smart DL-based
approach for RAS training can provide more opportunities and peace of mind to
enable surgical trainees to practice surgery in a safe environment while receiving
haptic feedback from a mentor.

In previous sections, it was discussed how incorporating rich skills-related
knowledge into RAS training platforms enhances the training quality and reduces
the need for the intervention of an expert surgical mentor throughout the entire
process. AI can be used to overcome the challenges of human-robot interaction
(HRI) and transfer mentorship experiences to trainees by engaging them in a
collaborative action with the robot. This intelligent mentorship is even more
crucial in complicated tasks which require long training procedure (more than
one session) to become skillful Sigrist et al. (2013). A framework designed by
Ershad et al., with inspiration from AI-powered surgical training technologies,
detects trainees’ flawful stylistic behaviors and provides haptic feedback for
translational errors in a near-real-time manner Ershad et al. (2021). However,
the study offers no suggestions for improving an individual user’s performance.

Tan et al. (2019) proposed a laparoscopic robotic platform that utilizes both
human demonstrations and reinforcement learning to teach surgical trainees to
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better manipulate the robotic tool. Tan et al. locally stored expert trajectories in
a field-programmable gate array (FPGA) to replay and regenerate an agent for
generative adversarial imitation learning. During the training stage, the novice
trainee holds the surgical handle and feels the velocity and force patterns and
memorizes the skillful translational and rotational trends for better performing
the task in the future executions. The limitation of the proposed method is its
lack of generalization to new trajectories that the user may want to execute in
future applications.

The method presented by Zahedi et al. (2020) for a virtual kinesthetic teaching
environment uses machine learning to aim the transfer of skills between mentor
and trainee. In the training phase, mentor’s demonstrations produce a map
specifying the stiffness variations of various bone layers. An estimator model
of motion similarity measures how similar a trainee’s drilling motion pattern
is to a mentor’s pattern at different layers of the bone. Trainees are provided
with a set of assisting and resisting forces to correct their deficient stylistic
behavior while performing operational motions. The generated corrective force
is proportional to the similarity of the novice trajectory and the recorded expert
demonstration. It is beyond dispute that the resultant model for the given task
cannot be generalized to other RAS tasks. Similar to Zahedi et al. (2020),
another platform was developed by Fekri et al. (2021) to train novice users for
orthopedic surgical drilling task. In Fekri et al. (2021), an ordinary RNN with
a LSTM architecture was incorporated to create the model of an expert surgeon
which generates a reference trajectory based on the captured demonstrations for
guiding a novice trainee towards a better stylistic behavior.

Reinforcement learning, learning from demonstration, and imitation learning
are commonly used approaches for transferring expert mentor skills to a robot.
As an example, Chi et al. (2020) and Tan et al. (2019) used a model-free
generative adversarial imitation learning approach in conjunction with a deep
reinforcement learning model to learn and imitate the skillful behavior within
a minimally invasive surgery task with unfamiliar dynamics. Some studies
incorporate learning from demonstration (LfD) to adaptively mimic complicated
surgical trajectories in various circumstances and then, plan a new online path
for tracking in an environment with uncertain and unpredictable factors Osa
et al. (2014). The goal of reinforcement learning is to capture the contributing
skills-related features of a trajectory by using task-specific reward and/or regret
functions. As a result, the implementation of these methods becomes difficult
or even impossible for similar tasks. In addition, some reward functions such
as the completion of a task are based on the completion of the whole process,
making it impossible to provide the user with online and fine-grained feedback
while the operation is being performed. In addition, it is difficult to design
comprehensive, relevant, and meaningful reward/regret functions in complex
tasks. Finally, there is always a risk of a distribution mismatch happening due
to multimodal behaviors of the user’s demonstrations since there are tons of
possibilities involved in surgical tasks.
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FIGURE 2.5 The schematic procedure of skills transfer algorithm presented in Soleymani et al.
(2021) . First of all, the SkillNet extracts 𝑓𝑁 and 𝑓𝐸 that is sampled from novice and expert
probability distributions 𝜌𝑁 and 𝜌𝐸 , respectively. After calculating intension and skill losses, the
error is backpropagated through SkillNet to update the novice trajectory ®𝑁 to generate optimized
trajectory ®𝐶 sampled from the probability distribution 𝜌★ which is similar to 𝜌𝐸 than 𝜌𝑁 . The
generated enhanced combined trajectory ®𝐶 will be used as a reference for collaborative robots to
apply corrective haptic forces to the trainee’s hands. Used with permission of authors of Soleymani
et al. (2021).

Taking into account the limitations outlined in the aforementioned papers
and thanks to recent advances in DL, Soleymani et al. (2021) utilized artificial
intelligence to detect the skillful behaviors of surgical experts and inject them
into surgical trainees’ activities. As a result of this, the human-robot collabora-
tion will be controlled in a more skillful and dexterous manner (i.e., the novice
user is performing the surgical operation on his/her own). The authors proposed
a deep model named SkillNet to extract skills-related attributes from raw da
Vinci kinematics data within each 20 seconds interval which allows SkillNet
to operate in real-time skills evaluation and transfer tasks. The skills transfer
algorithm constantly references the mentor’s skillful features to generate the
desired trajectory which the trainee user’s trajectory should follow for the sake
of better performance. This architecture design is partially inspired by image
style transfer work in the field of computer vision Gatys et al. (2016). The final
objective of the surgical skills transfer algorithm is constructing an optimized
trajectory ®𝐶 initialized by the novice demonstration ®𝑁 such that ®𝐶 represents
mentor’s skillful behaviors with the lowest divergence compared to the initial-
ization ®𝑁 . In this way, the probability distribution of the novice trajectory will
approach to that of the expert trajectory in feature space (see Fig. 2.5). In order
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FIGURE 2.6 The architecture of RAS skill transfer. The participant’s hand (or RAS tooltip) is
virtually connected to one end of the spring and SkillNet exerts a corrective force on the other end
to guide it to the enhanced trajectory (green solid line). With this method, the initialized trajectory
(red solid line) is guided toward more dexterous stylistic behavior by providing mild and compliant
guidance forces. The strength of the correction force 𝐹𝑐𝑜 will be determined via the control gain 𝐾
and the performance of the trainee in the past. Used with permission of authors of Soleymani et al.
(2021).

to achieve this goal, the following losses need to be minimized: the skill loss
(i.e., the norm-2 difference between the latent feature distributions of experts
and given novice trajectory) and the intention loss (i.e., the reconstruction loss
between initialization and final optimized trajectory) defined as below:

Lskill ( ®𝐸, ®𝐶) = | |G 𝒇𝑬 − G 𝒇𝑪 | |2. (2.5)

Lintention ( ®𝐶, ®𝑁) = | | ®𝐶 − ®𝑁 | |2. (2.6)
where for instance G𝑭 is the Gram matrix of the feature vector 𝐹. In this
paradigm, skills transformation from an expert trajectory into that of novice
trainee simply means generating an optimized trajectory based on minimizing
the weighted linear combination of intention and skill losses, i.e., minimizing
total loss

Ltotal = 𝛼Lintention ( ®𝐶, ®𝑁) + 𝛽Lskill ( ®𝐸, ®𝐶) (2.7)
via gradient descent method where 𝛼 and 𝛽 are hyperparameters indicating
relative importance of the intention loss versus skill loss in the optimization
process.

The presented approach does not impose any restrictions on trainee activities
or require field knowledge about the human user, robotic setup, or task. Due
to the mentioned properties, the approach can be applied to a variety of robotic
platforms and applications. SkillNet transfers skillful attributes to the novice
demonstration ®𝑁 in real-time and returns ®𝐶 as well as the trainee’s current
performance, Y (see Fig. 2.6). 𝐶 [𝑡] and 𝐶 [𝑡 − 1] represent the last two points of
®𝐶 that are used to predict the next point

𝑪 [𝑡 + 1] ≈ 2𝑪 [𝑡] − 𝑪 [𝑡 − 1] = 𝑪 [𝑡] + Δ𝑇 (𝑪 [𝑡] − 𝑪 [𝑡 − 1])
Δ𝑇

. (2.8)
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Lastly, as shown in Fig. 2.6, the collaborative robot generates a mild correction
force 𝐹𝑐𝑜 to user’s hand to control him/her towards �̂� [𝑡 + 1] point using variable
impedance control method

®𝐹𝑐𝑜 = Y𝑲 (𝑪 [𝑡 + 1] − 𝑵 [𝑡]) (2.9)

where 𝑲 = diag(𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧) is the virtual compliance coefficients matrix in the
Cartesian coordinate system. The skill transfer algorithm presented in Soleymani
et al. (2021) makes significant improvements over novice trajectories, makes
them more predictable, reduces hand tremors, and cancels signal noise which
are all clinically proven factors for RAS skills assessment.

2.4 FUTURE DIRECTIONS
The core limitation of the mentioned approaches in both skills assessment and
transfer is that the trajectory of each hand is viewed as a set of independent data
without taking into account potential collaboration between hands (i.e., interac-
tion between different data channels such as vertical displacement of the right
hand and that of the left hand in a bimanual lifting task). The true expert in
executing complicated bimanual tasks (tasks that require delicate collaboration
between both hands), such as surgical operations, is not the one who performs
operations with each hand expertly, but the one who plans for future steps and
executes a complicated series of correlated movements by using both hands
together. The clinically proven relationship between hand coordination (cooper-
ative relationship) and correspondence (lead-follower relationship) in bimanual
task performance has not yet been quantitatively assessed in the evaluation of
surgical skills. The topic seems to be an excellent direction for future research.

Another direction that still remains open is dexterous autonomous robotic
surgery. The results of all mentioned surgical skills assessment and transfer
methods can be incorporated into the reward-shaping procedure of training a
smart agent developed by reinforcement learning methods or learning from
demonstration paradigm for performing skillful surgical robotics tasks. Beyond
ethics and regulatory problems, several issues including but not limited to the
high dimensionality of demonstrated trajectories, inconsistency, and minor hu-
man error even in expert demonstrations are potential challenges that need to
be addressed. It is beyond dispute that a proper trajectory encoding method
benefits the tractability of the exploration-exploitation procedure of training a
skillful agent.

2.5 CONCLUSIONS
In this chapter, a variety of approaches, their advantages, and limitations for
extracting the skills-related features of a participant operating on RAS systems
were presented. It also explained how one can use these features to classify
the level of expertise of the participant and transfer them to a less skillful
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trajectory to help and teach less-experienced users to perform better in surgical
operations. It also explained how to create an optimized trajectory with minimal
reconstruction loss compared to the initialized novice trajectory while having
more skillful features. The optimized trajectory can be used as a control reference
command to generate a virtual corrective force on the RAS platform and guide the
participant’s hand toward more dexterous stylistic behavior. The enhancement
metrics over the trainee’s trajectory were introduced to measure the functionality
and performance of the skills assessment algorithm. These metrics are including
but are not limited to the motion predictability, reduction in hand tremor, and
noise cancellation.
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