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Abstract

Percutaneous procedures, those involving the insertion of needles into tissue,

encompass a wide array of clinical applications and are used in both therapeu-

tic and diagnostic modalities. In either of these modalities, the needle must

be steered accurately towards a target location to maximize the therapeutic

or diagnostic efficacy. Specific procedures, including biopsy, drug delivery, or

radiotherapy delivery, require the use of long flexible needles to reach a target

location deep inside the body. During insertion, these long flexible needles

will bend, or deflect, away from the desired target location or target insertion

axes. Surgical robotic systems can be used to reduce or eliminate this deflec-

tion during insertion, thus increasing needle placement accuracy. Of particular

clinical and research interest are systems which assist, rather than replace, the

clinician to capitalize on the clinician’s intuition, training, and expertise.

These assistive surgical systems, commonly referred to as surgeon-in-the-

loop systems, can be applied to percutaneous procedures to control some as-

pect of the needle insertion while allowing the clinician to maintain control

over other elements of the insertion. The surgeon-in-the-loop systems focused

on in this work take the form of needle steering systems, whereby a steer-

ing device compensates for any needle deflection while the clinician manually

inserts the needle to the desired target depth.

The primary target therapy in this work is prostate brachytherapy, a pro-

cedure where long flexible needles are loaded with radioactive seeds, with the

needles then being inserted into the patient, to permanently deposit the seeds
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into the prostate in order to treat cancerous tissue. In current clinical prac-

tice, clinicians rely on live ultrasound images to determine the accuracy with

which the needles are being placed during insertion. This work aims to use

technologies which are already incorporated into clinical practice to minimize

the cost and complexity of future clinical integration. The first portion of

this thesis thus focuses on needle-tip tracking in ultrasound images. The first

work proposes a needle-shape predictive framework for the static case where

the needle is fully inserted and thus supported by tissue. The framework uses

a mechanical model and incorporates shape information captured in a single

ultrasound image near the base of the needle, in order to predict the shape

of the entire needle. The second work presents a real-time needle tip-path

predictor, incorporating a particle filter and the well known kinematic bicycle

model so that needle-tip path prediction can be iteratively updated as each

ultrasound image is processed.

The second half of this thesis contains the work related to surgeon-in-the-

loop needle steering systems. Two control frameworks are developed which

both model needle motion using a reduced order 3D kinematic bicycle model.

The first controller implements a switching style regulator using ultrasound

image deflection feedback and is proven to asymptotically, in the sense of

Lyapunov, stabilize the needle deflection to zero. This switching controller uses

direct ultrasound image feedback to measure the deflection of the needle and

modulates the needle bevel angle, thus steering the needle, to bring the needle

tip back to the axis of insertion. The second controller is based on an event

triggered control framework which incorporates needle-tip path prediction to

determine the future needle tip deflection. The event triggering controller

then uses the predicted needle path to optimize the location of various event

points, points of particular needle insertion depth, where the control output is

changed to steer the needle.
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The last portion of the thesis contains an image processing algorithm to au-

tonomously detect the contour and location of the prostate within 2D B-mode

ultrasound images. This prostate contouring, or segmentation, algorithm can

be used to determine the location of the prostate prior to needle insertion to

correct for any change in prostate location between the original seed deposition

plan and the observed prostate during the insertion procedure.
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Chapter 1

Introduction

In percutaneous procedures, a needle is inserted into tissue and is guided by a

clinician towards a desired target location. These procedures have a wide range

of clinical applications, including biopsy, drug delivery, and brachytherapy. In

the case of biopsy, the goal is to gather tissue samples for diagnostic analysis,

and for brachytherapy, the objective is to deposit radioactive seeds for the

treatment of cancerous tissues. The diagnostic and therapeutic efficacy of both

depends upon the accuracy with which the needle tip is positioned with respect

to the target point. The ability of a clinician to accurately position the needle

tip is impacted in various therapeutic and diagnostic modalities when, due

to anatomical constraints, long flexible needles are used. These long flexible

needles will bend during insertion due to needle/tissue interactions resulting

in suboptimal needle tip placement.

The work covered in this thesis looks at measuring this needle deflection

and developing needle steering methodologies implemented in a robotic surgi-

cal assistant that reduce deflection during insertion. The first portion of the

thesis covers work related to needle tracking and needle shape prediction based

on mechanical and kinematic models. The second portion presents two con-

trollers which are designed to steer the needle during insertion based on image

feedback. The controllers are implemented in a surgeon-in-the-loop modality

where the robot assistant steers the needle while a clinician is manually insert-

ing it towards the target. The final work presented in the thesis uses image

processing to locate the target location in images to reduce any error caused

1
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Figure 1.1: Standard clinical brachytherapy setup with Transrectal Ultrasound
(TRUS) probe, needle, and guide template.

by patient placement differences between the planning phase of the procedure

and the intraoperative phase.

1.1 Prostate Brachytherapy

The therapeutic procedure focused on in this thesis is prostate brachytherapy;

a procedure whereby long flexible needles, preloaded with radioactive seeds,

are inserted through the perineum into the prostate to treat prostate cancer.

This procedure is an attractive treatment option used in early-stage locally-

confined prostate cancers [8, 9]. The therapeutic benefit and side-effect profile

of this surgery depend on the accuracy with which the radioactive seeds are

placed within the prostate with respect to planned dosimetric target locations

[10][11][9]. During insertion, however, each needle will bend away from its

target location, requiring continuous observation and correction of the needle

path.

The first stage in the procedure [12] is to develop an intraoperative plan
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which defines the target seed locations based on radiation dosing requirements.

To begin planning, a patient’s prostate is scanned in a series of axial slices,

spaced 5 mm apart, which show a cross-section of the prostate. From this

pre-operative (”pre-scan”) data, a map of the patient’s prostate is generated.

In each of the pre-scan slices, the patient’s prostate is manually segmented by

a clinician and then a dosimetry plan is created. This dosimetry plan maps

out the needle target locations and the number of required needle insertions

for successful treatment of the cancerous tissue.

With the dosimetry plan created from the pre-scan data, the second stage of

the clinical procedure consists of the needle insertion. In standard brachyther-

apy setup, see Fig. 1.1, clinicians will use a guide template to place needles

in line with the target, where each is needle inserted through guide holes in

the template. A transrectal ultrasound (TRUS) probe is used to observe the

needle placement in tissue. During insertion, only a single image plane at a

particular insertion depth is used to verify needle placement, and the clinician

must manually step the ultrasound probe forward and backward to change the

depth of the plane being imaged. Thus, as the needle is sent off course from

its target during insertion, the surgeon is unable to see or predict the needle’s

total deflection. If the needle has deflected substantially away from the target

location after it is fully inserted the needle is removed and reinserted.

Even with the ultrasound images and the clinician manually steering the

needle, experienced clinicians are only able to place seeds with an average

accuracy of 5 mm [13]. This 5 mm error is significant given the 50 mm diameter

of the average prostate. Increasing the efficacy of this procedure is of growing

practical importance; with a projected prostate cancer diagnosis for one in

eight Canadian men in their lifetime [14].

1.2 Dissertation Outline and Contributions

This thesis introduces new methods for needle shape estimation from ultra-

sound images, surgeon-in-the-loop needle steering systems informed by the

needle shape estimation, and prostate segmentation for target planning and
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localization. These methods will be used to develop surgical assistance systems

to aid a clinician during the pre-operative planning and intra-operative needle

insertion stages of a prostate brachytherapy procedure. One such system to

be presented in this thesis is a surgeon-in-the-loop needle steering assistant.

This surgeon-in-the-loop system incorporates a hand-held needle steering de-

vice, originally presented in [6], which rotates the needle at its base to control

needle deflection as the surgeon manually inserts the needle; see Fig. 1.2.

This thesis will also present a fully autonomous prostate segmentation system

which finds the 3D contour of the prostate, captured in TRUS image slices, to

assist a clinician during the surgical planning of the procedure. The prostate

segmentation algorithm can be utilized when creating the dosimetric plan for

a prostate brachytherapy procedure based on these pre-planning TRUS image

slices.

As an overview of the material to be covered in this thesis, a brief literature

review will be presented in Chapter 2 covering needle tracking in ultrasound

images, needle steering and control work, and prostate segmentation in ultra-

sound images. Following this background material will be original work on

needle segmentation in ultrasound images, both in the axial plane and the

sagittal plane. Chapter 3 will propose a method, incorporating material pre-

sented in [1], to estimate the entire shape of a long flexible needle, suitable

Needle
HubHandheld Needle

Steering Device

Guide Template Prostate Bladder

Ultrasound Probe Rectum

Target Seed
Locations

Ultrasound
Imaging
Plane

Figure 1.2: Standard clinical brachytherapy setup with the proposed addition
of the hand held needle steering device.
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for a needle insertion assistant robot. This method bases its prediction on a

small segment of a needle, imaged via ultrasound in the sagittal plane, after

needle insertion. An algorithm will be developed to segment the imaged por-

tion of the needle from the ultrasound images. The segmented needle will then

be used to estimate the parameters of a needle-tissue interaction model that

will predict the entire needle shape, with a proof of concept study done in a

plastisol tissue phantom.

In Chapter 4 a needle tip-path estimator using real-time TRUS axial image

feedback will be demonstrated, based on material presented in [2]. For needle

tip path estimation, an algorithm for tracking the position of the needle tip

in a series of 2D axial TRUS image slices will be developed. The tracked

needle position will then be input into a particle filter to estimate and update

the parameters of a kinematic bicycle model in a robust manner to predict

the shape of the entire needle after it is fully inserted. The performance of

the needle tip-path estimator will be evaluated in both ex-vivo beef tissue

phantoms and in-vivo patient images.

Building on this needle tip tracking and needle shape prediction work the

following three chapters will cover the the major contributions within this

dissertation. The major contributions of this thesis are as follows:

• A 3D needle steering control algorithm using live TRUS im-

age feedback with a Lyapunov based proof of needle deflection

minimization: A 3D needle steering controller incorporating live TRUS

image feedback, originally published in [3], will be developed in Chapter

5 using the axial needle tracking algorithm. A continuous-time control

law is built using a depth-dependent 3D reduced order bicycle model,

which is a nonholonomic model of needle tip motion. An advantage of

this proposed controller over others presented in the literature is that

it is proven to asymptotically stabilize the needle, in the sense of Lya-

punov, to zero deflection requiring only real-time needle-tip deflection

feedback, which can be found from needle-tip tracking in TRUS images.

The control law is shown to remain effective in practice even when the
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magnitude of the needle rotation velocity is limited for practical or pa-

tient safety reasons. A system incorporating a hand-held needle steering

device will be used to test the controller, such that it will be shown to

work in a surgeon-in-the-loop setting, where the needle is inserted man-

ually and the steering controller will minimize deflection. Acceptable

needle deflection control performance of the needle steering system will

be validated using insertions in three distinct tissue phantoms, with an

average needle tip deflection of 0.54 (± 0.27) mm and a maximum nee-

dle tip deflection of 1.04 mm at the target insertion depth of 120 mm.

Both the average and maximum needle tip deflections are better than

the average deflection of 1.22 mm reported in a survey of 26 other 2D

and 3D needle steering algorithms in the literature [7].

• A predictive 3D needle steering controller based on an event-

trigger framework to minimize needle deflection and limit ro-

tational needle steering velocities: In Chapter 6 an improved con-

troller for the surgeon-in-the-loop system, originally published in [4], will

be presented. The controller is based on an event-triggered control sys-

tem where the needle steering output is changed a particular insertion

depths of the needle (the event points). This controller will incorpo-

rate online parameter estimation of the reduced-order kinematic bicycle

model using needle-tip tracking in ultrasound images. The magnitude

and location of the steering changes, the event points, will be optimized

during insertion based on the current estimate of parameters of the bi-

cycle model. For efficient parameter estimation and control, an analytic

solution to the reduced-order bicycle model will be derived. This analytic

solution to the bicycle model offers a large fundamental improvement in

planning speed and parameter estimation over methods previously used

in the literature. In addition, the predictive event-triggered control law

offers an improvement over the continuous-time control law, and many

controllers presented in the literature, in that the needle deflection per-

formance is optimized while obeying user set limits on the maximum

6



needle rotation velocity (and number of total rotations); which may need

to be limited for practical reasons or to minimize tissue damage during

insertion. The controller will also be validated using the hand-held de-

vice within three distinct tissue phantoms. The experimental results will

show the system performing with an average needle tip deflection 0.47

(± 0.21) mm with a maximum needle tip deflection of 0.90 mm at the

insertion target depth of 120 mm, which is a slight improvement over

the performance of the previous continuous-time control law.

• A fully-autonomous prostate segmentation algorithm which finds

the 3D contour of the prostate based on a set of TRUS im-

ages: The goal of the prostate segmentation algorithm is to find the

3D prostate contour in a set of B-mode TRUS images taken before nee-

dle insertion in clinical patients. The contouring algorithm uses a novel

superpixel algorithm to extract relevant TRUS image texture and edge

information which is combined with statistical prostate shape model in-

formation, through a graph-cut based optimization procedure, to seg-

ment out the 3D prostate contour. This contour will be compared to

the pre-planning contour manually created by the clinician for the dosi-

metric planning. One advantage of our proposed prostate segmentation

system, with respect to many systems presented in the literature, is that

the prostate segmentation algorithm is fully-autonomous, requiring no

user input during the segmentation procedure. The algorithm will be

evaluated on 9 TRUS image sets and a mean absolute difference of 2.52

(±1.66) mm, an average maximum absolute difference of 7.19 (±1.22)

mm, and an average Jaccard index accuracy of 0.79 (± 0.07) will be

shown. The difference between the reference clinician segmented con-

tours and the algorithmic prostate contours is of similar magnitude to

that reported in the literature between various clinicians when manually

segmenting the same dataset [15, 16].

The final chapter, Chapter 8, will summarize the material and results con-

tained in this thesis and future research and goals will be discussed.
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Chapter 2

Literature Review

2.1 Needle Tracking in Ultrasound Images

In prostate brachytherapy, the images from a transrectal ultrasound probe

(TRUS) are used by the clinician to monitor the needle insertion. Standard

clinical TRUS probes provide 2D B-mode images in one of two anatomical

planes, either the axial plane or the sagittal plane (see Fig. 2.1). Ultrasound

image based needle segmentation and tracking have been approached in both

2D axial and sagittal image slices, taken along the length of the needle as

it is inserted, as well as in 3D volumes. This thesis will focus on tracking

the needle position in 2D images and 3D image volumes. These 3D volumes

are created from a series of 2D image slices that are mechanically scanned

over a period of time, as due to the small size of the TRUS probe used in

prostate brachytherapy, real-time 3D volume ultrasound probes are not yet

commercially available.

Sagittal images capture the needle lengthwise along the axis of insertion,

see Fig. 2.2(b). In this plane, needle segmentation has been done using a linear

Hough transform [17] or principal components analysis (PCA) in conjunction

with thresholding and morphological operations [18]. A curved formulation of

the 2D Hough transform has also been proposed [19] and has been augmented

in the literature by [20, 21] by using a Gabor filter to enhance needle contrast.

Sagittal image needle segmentation has the disadvantage that a substantial

portion of the needle needs to be captured in the image plane in order for

segmentation to work.
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Axial	Plane

Sagittal	Plane

Coronal	Plane

Figure 2.1: Diagram indicating axial, sagittal, and coronal anatomical planes.
In this work the patient-attached coordinate system is defined with the x,y,z
axes being normal to the sagittal, coronal, and axial planes respectively.

(a) Ultrasound image of needle in axial
plane.

(b) Ultrasound image of needle in sagittal
plane.

Figure 2.2: Ultrasound images in the two planes used for prostate brachyther-
apy.
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In the axial image plane, only a small cross-section of the needle is ob-

served, with a number of imaging artifacts and low contrast between back-

ground tissue and the needle [22, 23, 24] making segmentation in axial images

more challenging. In contrast to the sagittal imaging plane, the curvature of

the needle cannot be observed from a single axial image. Therefore to get an

accurate measurement of needle shape, during or after insertion, the needle

cross-section must be segmented or tracked in multiple axial image slices. A

commonly used approach for needle shape measurement in the literature is to

attach an ultrasound probe to a manually controlled linear stage or robotic

linear actuator system so that the probe can be moved to scan the tissue after

the needle has been inserted. The image slices captured by such a system

can be analyzed as a 3D volume in an offline manner. If a small portion of

the needle is to be tracked, or if the needle is sufficiently rigid so as not to

bend during insertion, line segmenting algorithms such as 3D projection based

methods [25, 26] or the 3D Hough transform [27, 28] may be used to segment

the needle in the 3D volume.

In the presence of significant background noise, enhancing the needle ap-

pearance in the axial image or filtering of the 3D image volume may be re-

quired. Non-traditional TRUS imaging methods may be used to enhance nee-

dle appearance, for instance, the work of [29] used vibration at the base of the

needle to allow for needle segmentation using Doppler ultrasound. When us-

ing conventional imaging methods, the 3D Gabor filter can be used to reduce

noise in the 3D volume [30]. Statistical filtering methods have also been used

to segment a straight needle from a 3D volume with a linear-least squared

based filter being presented in [31] and a phase-grouping approach outlined

in [32]. The work of [33] used a RANSAC filtering to fit an arbitrary 3D

polynomial to segment out a curved needle shape from the 3D volume.

While requiring additional hardware to perform autonomous needle scan-

ning, axial imaging has the advantage of being able to capture the 3D shape

of the needle without requiring any assumption about the in-plane nature of

the needle. If the ultrasound probe is positioned using a robotic or computer

controlled linear actuator, the probe can be moved in synchrony with the nee-

10



dle tip as the needle is inserted. Such systems are controlled so that the tip

of the needle is contained within each axial image slice. In general US image

artifacts hamper needle segmentation; the comet-tail artifact which appears

around a needle in axial images [23, 24], however, can be used for segmentation

of the needle tip in single axial images [34] or to aid in tracking the needle tip

between adjacent image slices [35]. Several real-time methods for needle track-

ing using the comet-tail artifact have been proposed in the literature. With

the comet-tail artifact presenting as a bright line in the US image the Hough

transform may be used for needle detection [36, 37] or Kalman filtering may be

used to track the comet tail between images [38, 39]. By using a robotic probe

holder with both translational and rotational degrees of freedom the angle at

which the US probe images the needle tip can be controlled to improve the

appearance and contrast of the comet-tail artifact [40].

2.2 Needle Modelling and Control

For general percutaneous procedures, a number of different models for estimat-

ing needle deflection have been proposed in the literature. A thorough review

of the various models and control methodologies presented in the literature

is given in a survey by [7]. In general, the needle deflection models can be

categorized as either being kinematic or mechanical in nature.

The most commonly used kinematic model in the literature is the bicycle

model, which was developed by [41] and [42] to describe the motion of a

beveled-tip needle as it is inserted into tissue. This model states that the 3D

trajectory of a beveled needle-tip, during insertion into tissue, is analogous to

the trajectory of a bicycle with its front wheel locked at a single angle. This

“locked wheel” models the needle trajectory as following a 3D path with a

constant radius of curvature (i.e., moving along the edge of a 3D circle) with

the direction of curvature related to the angle of the needle-tip bevel. Research

in [41] developed this model for use as a 3D path planning model for needle

insertion. This model was used by [42] for needle deflection modeling in the

control of a needle directed toward a target in a single 2D plane.
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The bicycle model is typically solved in state-space where the 2D or 3D

position and orientation of the needle tip are the states of the system. The

radius of curvature of the needle tip’s trajectory approximates needle-tissue

interaction forces and is, therefore, a tissue-dependent parameter to be known

a priori [43] or estimated. The work of [44] showed the parameters of a lin-

earized version of the 2D bicycle model can be estimated by a Kalman filter for

control and path-planning. When needle-tip deflection is not controlled, [45]

show that an Unscented Kalman Filter can be used for 3D state and parameter

estimation.

State estimation of the bicycle model is often coupled with a controller.

Using modern control techniques, the researchers in [46] developed a linearizing

transform for a 2D version of the bicycle model and implemented it in an

observer-controller combination. Sliding mode control has also proven very

effective at the combination of state-estimation and control applied to the

bicycle model with [47] implementing 2D and [48, 49] implementing 3D sliding

mode controllers. Trajectory control using the bicycle model in 3D has also

been achieved by using a 2D in-plane needle deflection models [36, 37, 50],

where the orientation of the (2D) plane of deflection is related to the orientation

of the needle-tip bevel and is assumed, or controlled, to be constant over small

insertion lengths. Once the initial 2D plane of needle deflection is estimated

from ultrasound images, the 3D trajectory control is implemented by rotating

the base of the needle, thus changing the orientation of the 2D deflection plane,

to compensate for 3D target motion and account for 3D obstacle motion inside

tissue.

Mechanical models incorporate physical forces and bending moments caused

by needle/tissue interaction and control actions to estimate needle deflection.

Static mechanical models have been used in the literature to describe needle

deflection when the needle is fully inserted, with pseudo-static or dynamic me-

chanical models used for needle deflection calculation during insertion. One

class of mechanical needle model used for prediction and control considers the

needle to be an Euler–Bernoulli beam and was originally presented by [51]

where a constant bending moment along the entire needle due to tissue forces
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was assumed. This class of model has expanded to incorporate needle diame-

ter, tissue stiffness, needle-tip cutting forces, and friction as factors affecting

the needle’s overall deflection [52, 53, 54, 55, 56, 57, 58, 59, 60]. Dynamic

needle-tissue interaction forces, such as mechanical work to insert the needle

[61], needle-tissue interaction force profiles [61, 62], and complex finite element

tissue deformation models [63] have also been incorporated into this model.

Needle deflection control using Euler-Bernoulli beam based models typi-

cally requires that tissue parameters and needle-tissue interaction are known

before insertion. This parameter identification and tissue characterization is a

non-trivial task, especially with regard to in-vivo human tissue, and typically

requires trial insertions observed in US images to determine these parameters

[52, 61, 62, 63]. When using Euler-Bernoulli beam models for online control

of needle deflection, models which contain approximations of the needle-tissue

interaction forces and simplifications of the beam deflection models are often

used. The work of [64] showed that point-force loads to approximating needle-

tissue interaction parameters which were estimated from needle deflection in

ultrasound images. For controlling needle deflection, the effect of tissue on the

needle can be represented by spring elements supporting an Euler–Bernoulli

beam with (rigid) linear [65] or (flexible) nonlinear beam elements [58, 6].

The work of [66] developed a helical spring-beam linearization Euler-Bernoulli

beam model for a needle in free space. The spring-beam model considers the

needle to consist of a series of massless rods interconnected by radial springs.

This model was extended by [67] to incorporate needle tip cutting forces as

the needle is inserted into tissue.
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2.3 Prostate Segmentation

There are several artifacts and limitations inherent in ultrasound images which

much be compensated for in computer-aided tissue segmentation [22]. In the

specific case of prostate segmentation the well-known shadowing and edge en-

hancement artifacts, which obscure the edge of the prostate in US images, has

motivated the use of active-shape, active-contour, texture-based, and other

methods for segmentation. Regardless of segmentation modality, algorith-

mic prostate segmentation can be grouped into two general methods, semi-

autonomous and fully-autonomous systems. Semi-autonomous systems require

some user input for each patient in order to perform prostate segmentation.

Fully-autonomous systems, in contrast, require no such user input. The field

of prostate segmentation in multiple imaging modalities has been well explored

in the literature with [68] and [69] providing comprehensive surveys. A more

recent survey of focusing on automated diagnosis using algorithmic prostate

contouring in ultrasound images was given by [70].

In active contour model segmentation, a simple contour model is deformed

through some forcing function such that the contour will come to rest on

the edge of the prostate. Active contour segmentation is typically semi-

autonomous, requiring user input for the initial contour placement, and can

be particularly sensitive to areas of low contrast or shadowing/enhancement in

US images. One of the first active contour segmentation systems was presented

by [71], wherein an initial user-defined 2D contour model (later extended to

3D by [72, 73]) is fit to the edge of the prostate, with the user editing the

segmented contour in areas affected by US artifacts. To compensate for in-

complete edge information algorithmically, [74] used an active contour model

which incorporates a Kalman filter to probabilistically detect the edge of the

prostate around user input seed points. To avoid the instability caused by

the forcing functions in the active contour model, [75] instead uses non-linear

warping of the axial image to an ellipse based contour model. The work of [76]

represented the contour of the prostate with 2D superellipses. This concept

was futher developed in [77] information from a full series of these 2D axial
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superellipses is refined into a single 3D ellipsoid contour.

To enhance the robustness of contour-based segmentation algorithms in the

presence of shadowing/enhancement and low organ-to-background contrast, a

statistics-based approach known as active shape modeling has been employed.

In active shape segmentation, a large number of manually segmented con-

tours (or feature points) are input into a system to derive the probability

that the contour will take a particular shape (or has particular feature point

locations)[78]. The work of [79] presented a 2D prostate contouring algorithm

using weak membrane that is deformed to segmented the prostate based by

edge information, enhanced by an edge-preserving filter, in TRUS images. A

dyadic wavelet transform was used by [80] to filter input TRUS images before

a spline based discrete dynamic contour is deformed to segment the prostate.

Using the statistical inference from a series of prostate contours, [81] created

a point distribution model and [82] used a spherical harmonics model, which

were fit to a series of user input points and then updated based on the likeli-

hood that nearby prostate edges in the US image correspond to the statistical

model.

By incorporating both contour and image information from manually seg-

mented contours, [83, 84] used non-rigid registration to warp an input US

image to all of the manually segmented US images in a database. A series of

warped manually-segmented images which strongly matched the input image

is then used to calculate the contour statistics, with the mean of this statistic

being used as the contour for segmentation.

To provide a basis of comparison for the performance of the prostate seg-

mentation algorithm presented in Chapter 7, a selection of prostate segmenta-

tion articles closely related to the work presented in this thesis is given in Table

2.1. This table summarizes various aspects of the referenced prostate segmen-

tation works, for instance indicating if the prostate segmentation algorithm

returns 2D prostate contours or 3D prostate volumes and if the algorithm uses

an active contour model or active shape model, or both, for segmentation.

User input for the referenced segmentation methods is also shown, such as ini-

tial point selection and requiring a clinician to manually correct the prostate
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contours produced by the algorithms after image processing. Table 2.1 incor-

porates information presented in [68] (Table III) and [69] (Table 5) along with

the information presented in the cited papers within the table. The various

accuracy and similarity metrics for evaluating the performance of referenced

prostate contouring algorithms is given in Table 2.2 which are based on[69]

(Tables 2 and 3).
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Chapter 3

Needle Shape Prediction from
Partial Observation in Sagittal
US Images

The first step in predicting the needle shape in our method is to acquire ul-

trasound images of a portion of the brachytherapy needle inserted into tissue.

Subsequently, we introduce a novel technique for segmenting bent needle im-

ages by combining edge detection and thresholding techniques with RANdom

SAmple Consensus (RANSAC) filtering[85]. The segmentation algorithm out-

puts a second order polynomial that fits to the portion of the needle seen in

the ultrasound image. An affine transformation is used to convert the poly-

nomial into the real-world frame so that it can be used by the needle-tissue

interaction model, which predicts the shape of the entire length of the needle.

To validate this prediction, we compare the shape output from the model with

the shape of the needle as seen in the camera images, which show the entire

needle; the same technique as used to segment the needle shape in ultrasound

is also used for the camera image. The overall flowchart of the algorithm is

given in Fig. 3.1.

This chapter is organized as follows. In Section 3.1, we introduce the

algorithm to segment a needle in both ultrasound and camera images; this

segmentation results in two second order polynomial equations that follow

the curvature of the needle. Section 3.2 deals with the conversion of the

needle shapes found from the camera and ultrasound images into physical

19



Ultrasound
Image

Camera
Image

Otsu’s Algorithm

RANSAC
to fit Polynomial

Sobel Filter

RANSAC
to fit Polynomial

Angle of
Ultrasound

Probe Calculated

Needle-Tissue
Interaction Model

Predicts
Needle Shape

Validation

Figure 3.1: Needle Prediction and Validation Algorithm
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coordinates, and thus coregistration into a common frame. The polynomial

equations and transform matrices calculated by the coregistration are used

in Section 3.3 as inputs to our needle-tissue interaction based model. This

needle-tissue interaction model is then used to predict the entire needle shape

from the observed portion of the needle seen in the ultrasound image. Finally,

the results of the needle shape prediction are compared to the needle shape as

found in the camera image, which represents the ground truth.

3.1 Camera and Ultrasound Image Processing

In this section we present a technique that is used to find a curved needle in

an ultrasound image, giving an observation of a small portion of the needle,

which will be used to inform the total needle shape prediction. This technique

for segmenting a curved needle in an ultrasound is then extended to a camera

image. The needle segmentation algorithm results in a second order polyno-

mial equation that follows the curvature of the needle in its respective frame

of reference, i.e. either the camera frame or the ultrasound image frame.

The experimental setup consists of a tissue phantom imaged from overhead

by a camera and from the side by an ultrasound scanner. The images show a

needle that is inserted into the tissue and deflects during insertion. Fig. 3.2

shows a schematic representation of the experimental set up in order to define

the different coordinate frames that arise from combining imaging modalities.

It is important to note that points in both the camera and ultrasound images,

are throughout the chapter, defined in their respective pixel domains. In the

convention here, superscripts and subscripts on the left side of a symbol refer

to the frame of reference for the coordinate system. The coordinate frame for

the ultrasound image is denoted by U ; a point UP in the ultrasound image

will have coordinates ( Ux, Uy) defined with respect to the lower left hand

side of the ultrasound image, as shown in Fig. 3.2. The coordinate frame

for the camera image is denoted by C; a point CP in the camera image will

have coordinates ( Cx, Cy), defined with respect to the upper left hand side of

the camera image, as indicated in Fig. 3.2. A third frame is defined not in
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Figure 3.2: Brachytherapy procedure simulation setup including ultrasound
probe, phantom tissue, needle template, and needle. The setup is represented
from the field of view of the camera.

a pixel domain but in physical coordinates and referred to as the real-world

frame, denoted by R. A point RP in the real-world frame consists of ( Rx, Ry)

measured in meters with respect to an origin located where the needle exits

the template; see Fig. 3.2.

In Section II-A and Section II-B, we will introduce methods to process the

ultrasound and camera images, respectively. Section II-C describes how the

points from the image processing are segmented, i.e. converted into polynomial

curves.

3.1.1 Ultrasound Image Processing

Needle segmentation in 2D ultrasound images has previously been done via

Gabor Filtering [20] and the Hough Transform for straight needles [17] or

curved needles [19]. Additionally, needles have been segmented in 3D ultra-

sound images using projection methods [86, 25] or RANSAC [87]. In this

chapter, we combine RANSAC filtering with Otsu’s Algorithm [88] and Sobel

edge detection [89].

Ultrasound images along the length of the needle are taken near the needle’s
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(a) Input Ultrasound Image

(b) Ultrasound Image after Image Processing

Figure 3.3: Image Processing for Ultrasound

entry point into tissue, as this represents the most challenging scenario for

prediction. The probe used to capture the images is a linear transducer and as

such shows a limited field of view, in this case a linear 40 mm wide image that

does not widen with depth. These images are captured at arbitrary distances

from 2 to 66 mm away from the needle’s entry point into the tissue. When

the needle is imaged under ultrasound while in tissue, the needle is quite

distinct from the background. The ultrasound image of the needle is shown

in Fig. 3.3(a). The routine for segmenting the needle in an ultrasound image

involves thresholding using Otsu’s algorithm [88]. This converts the grayscale

ultrasound image into a segmented binary (black and white) image, as shown

in Fig. 3.3(b). The white values in the binary image are converted into a list of

points UP , which is the input for the RANSAC algorithm. Image processing is

implemented in Matlab using the functions from the image processing toolbox.

3.1.2 Camera Image Processing

In contrast to the ultrasound image, the needle in the camera image is not

readily segmentable based on a grayscale threshold. As seen in Fig. 3.4(a),

the camera image suffers from variations in lighting intensity and a global

threshold that can segment the needle in all portions of the image cannot be
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(a) Input Camera Image

(b) Camera Image after Sobel Filtering

Figure 3.4: Image Processing for Camera Image

found. Therefore, segmenting the needle from the camera image is performed

using the Sobel edge detection filter. The Sobel edge detector is a 3x3 gradient

filter that approximates the 2D derivative of the image with respect to image

intensity [89]. From this, a threshold is applied to the filtered image (i.e., the

2D derivative) and only those edges exceeding the threshold are accepted, thus

creating a binary image. The output of the camera image processing is shown

in Fig. 3.4(b). After the Sobel filter is applied to the image, the white values

are converted to a list of points CP to be input to perform RANSAC filtering

on the image (Section 3.1.3).

3.1.3 Processed Image Conversion to Polynomial via
RANSAC

Given that the image processing routines output binary images, the next step

in the algorithm is to convert a list of segmented points from those images into

polynomial curves. Typically, a method such as a linear least squares can be

used to fit data to a polynomial, however the output of a simple linear least

squares fit will consider all points to be inliers in the data set and as such

can be skewed by outliers or noise. Instead, RANSAC or RANdom SAmple

Consensus [85] is the algorithm that we will use to fit polynomials to the noisy

datasets as RANASC rejects outliers from a dataset.
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The input to the RANSAC algorithm is a collection of points from either

the camera CP or ultrasound UP , in their respective frames, that represent

possible points along the needle. We want to convert the points from CP and

UP into second order polynomials

Cy = α2(
Cx)2 + α1(

Cx) + α0 (3.1)

Uy = β2(
Ux)2 + β1(

Ux) + β0 (3.2)

where the α and β terms are the coefficients of the desired polynomials that

best describe the needle.

The RANSAC algorithm, illustrated in Fig. 3.5, takes 3 random points

from the sets CP or UP and uses linear least squares to calculate the polyno-

mial coefficients in (3.1) and (3.2) respectively. Outliers are defined as points

that are further than a given distance from the curves (3.1) and (3.2). The

ratio of inliers to outliers is then calculated and if this ratio is greater than

a threshold the algorithm calculates the coefficients for polynomials (3.1) and

(3.2) considering the entire set of inlier points. If the ratio is less than the

threshold, then three different points from CP or UP are chosen and the algo-

rithm restarts. For our implementation we use maximum distance values of 3

pixels for the camera image and 7 pixels for ultrasound image. For the inlier to

outlier ratio we use 70% and 80% for the camera image and ultrasound image

respectively. These pixel distance values were found empirically by reviewing

the results of several trials; in the future we intend to automate the process of

finding these values. After the RANSAC routine has successfully been run on

the two sets of points CP and UP , the resulting polynomials follow the curve

of the needle in either image. The results after RANSAC polynomial curve

fitting are shown in Fig. 3.6.

3.2 Camera and US image coregistration

In order to have both polynomials (3.1) and (3.2) referred to the same frame, or

coregistered, three transformation matrices are needed for both camera image

and ultrasound image conversion. For the transformation matrix from the

25
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Points

Choose Three Points
at Random

Fit Polynomial to
Chosen Points
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Figure 3.5: RANSAC Algorithm

(a) Polynomial Curve Fit to Needle in Ultrasound Image

(b) Polynomial Curve Fit to Needle in Camera Image

Figure 3.6: Polynomial Curves Following Segmented Needle Shape
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ultrasound image’s pixel domain to the real-world frame, we assume that a

simple affine transformation matrix, R
UT , will suffice as the linear transducer

on the ultrasound machine results in a rectangular image that does not widen

with depth. Likewise for the camera, since it is located above the center of

the setup and is adjusted so that its focal plane coincides with that of the

experiment we assume another affine transform matrix, denoted by R
CT , will

suffice. The general forms for the affine transformation matrices to be used in

this chapter are given by

R
UT = R

UA · RUB · RUC (3.3)

R
CT = R

CA · RCB · RCC (3.4)

where A is a translation matrix from the origin of one frame to another, B is

a rotation matrix that corresponds to the angles between the frames, and C

is a scaling matrix that converts from the units of one frame to another.

3.2.1 Ultrasound Image Transformation Matrix

The matrix R
UA that translates the origin of the ultrasound frame to the origin

of the real-world frame is of the form

R
UA =

 1 0 R
U tx

0 1 R
U ty

0 0 1

 (3.5)

where R
U tx and R

U ty are the x and y offset, in meters, of the leftmost point of

the transducer element from the base of the needle, see Fig. 3.2. Since the

ultrasound probe is deliberately rotated from experiment to experiment, we

require a matrix R
UB given as

R
UB =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 (3.6)

where φ is defined as the angle of the ultrasound probe relative to the closest

edge of the tissue, as shown in Fig. 3.2. Finally, conversion from the ultrasound
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image’s pixel domain to real-world coordinates is done by the scaling matrix

R
UC given by

R
UC =

 R
USx 0 0
0 R

USy 0
0 0 1

 (3.7)

where R
USx is the pixel domain width scaling factor and R

USy is the height

scaling factor. The total transformation matrix is given by

R
UT = R

UA · RUB · RUC =

 R
USx cosφ − R

USx sinφ R
U tx

R
USy sinφ R

USy cosφ R
U ty

0 0 1

 (3.8)

which describes the affine transform between the ultrasound frame and the

real-world frame, with the components of R
UT coming from the translation,

scaling, and rotation values in matrices R
CA, R

CB, and R
CC respectively.

The elements of the matrices R
UA and R

UC can be found by using the coor-

dinates of landmarks common to the two coordinate frames. R
UB, on the other

hand, requires the value of φ. This value, while relating to a physical quantity,

is difficult to measure with enough accuracy for our purposes. We will discuss

how we find the value of φ in Section 3.2.3 as this requires having the matrix

R
CT .

3.2.2 Camera Image Transformation Matrix

The matrix R
CA that translates the origin of the camera frame to the origin of

the real-world frame is given by

R
CA =

 1 0 R
Ctx

0 1 R
Cty

0 0 1

 (3.9)

where R
Ctx and R

Cty are the x and y offset, in meters, of the upper leftmost

point of the camera image to the base of the needle, see Fig. 3.2. Since the

camera frame is purposely aligned to the real-world frame, this implies

R
CB =

 1 0 0
0 1 0
0 0 1

 (3.10)
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Finally, conversion from the camera image’s pixel domain to meters is done

by the scaling matrix R
CC which is

R
CC =

 R
CS0 0 0
0 R

CS0 0
0 0 1

 (3.11)

where R
CS0 is the pixel domain scaling factor for both the x and y axes, since

the experiment is centered in the camera field of view. As with the ultra-

sound matrices, the camera transformation matrices R
CA and R

CC can be found

by converting measured landmark points between the two coordinate frames.

Again, the total transformation matrix can be found through

R
CT = R

CA · RCB · RCC =

 R
CSx cosφ − R

CSx sinφ R
Ctx

R
CSy sinφ R

CSy cosφ R
Cty

0 0 1

 (3.12)

with the elements of R
CT being derived from matrices R

CA, R
CB, and R

CC.

3.2.3 Solving for the Ultrasound Image Rotation

In order to use R
UB, the rotation matrix for conversion between the ultrasound

image’s coordinate frame and the real-world coordinate frame, the value of φ

is required. For our research group’s future goal of a robotic needle insertion

assistant robot, or alternatively in a traditional clinical setting, φ can be di-

rectly and accurately measured via position senors. For this experiment, we

do not have access to such sensors and instead will be solving for the angle

φ using an iterative technique. This angle is found by comparing the results

of applying the ultrasound transformation matrix R
UT to the polynomial UP

(found in Section 3.1.3), using an initial value of φ, to the results of the trans-

formation matrix R
CT applied to the polynomial CP (found in Section 3.1.3).

The value of φ is iterated in steps of 0.1◦ and the value that results in the best

fit between both curves is chosen. Fig. 3.7 shows the results after the ma-

trices R
UT and R

CT have been found1. The two matrices allow for the portion

1After coregistration, the scaling elements of the transform matricies R
UT and R

CT were
found to be R

USx = 0.21 ·10−3, R
USy = 0.17 ·10−3, R

CSx = 0.25 ·10−3, and R
CSy = 0.25 ·10−3.

The values R
USx and R

USy are the x and y pixel-to-millimeter ratios for the ultrasound image
and R

CSx and R
CSy are the pixel-to-millimeter ratios for the camera image.
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Figure 3.7: Polynomial curve corregistration and error for a single prediction
trial.

of the needle seen in the ultrasound image to be converted to the real-world

coordinate frame and used as an input for the needle-tissue interaction model.

3.3 Needle-Tissue Interaction Model

In order to predict the curvature of the needle based on observing only a

portion of the needle we will use a physical model that incorporates character-

istics of both the needle and the phantom tissue. This model is an extension

of [66] and is fully presented in [67]. The model is a non-linear needle deflec-

tion estimator using only the portion of the needle imaged by ultrasound and

converted into the real-world coordinate frame, needle insertion length, and

the needle mechanical properties as its inputs. The total inserted length of

the needle L is discretized into n non-deformable weightless bars of length `

such that ` = L/n, as shown in Fig. 3.8. Let us define θi as the relative angle

between a bar segment of the needle i− 1 and the subsequent bar segment i.
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tissue

Figure 3.8: Needle-tissue interaction lumped model. The length of the needle
is represented by discrete weightless bars `

Two neighboring bar segments i− 1 and i are considered to be connected by

helical springs, all of which have the stiffness K, given by

K =
EI

L
n (3.13)

where E and I are the needle Young’s modulus of elasticity and its second

moment of inertia. As the needle is inserted into the tissue, a force Q is

applied to the tip of the needle perpendicular to last segment, such that the

needle bends. As the needle bends during insertion it increasingly compresses

the tissue located under the needle, this in turn causes the tissue to apply a

reaction force back onto the needle. The actions of these forces are modeled

as helical springs of stiffness Ti, which is added to the original spring stiffness

of K. Together, these two stiffnesses resist the deflection of the needle. This

results in the helical springs inside the tissue having a stiffness of K + Ti;

conversely for the springs joining the needle segments outside of the tissue

Ti = 0. The stiffness Ti is modeled as

Ti = k0[`(n− i+ 1)]k1 (3.14)

where k0 and k1 are variables that depend on tissue parameters. Together

k0, k1, and Q represent the model parameters that will be found interactively

using a pattern search algorithm implemented in Matlab.

To obtain the needle deflection we consider the torque τi generated on each
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joint i. The torque τi is a result of the effect of the needle tip force Q, and

its influence at each joint is τi = QGi, where 1 ≤ i ≤ n and Gi is a Jacobian

transformation. The components Gi of the Jacobian matrix relating the force

Q to the relative angles τi as τi = GiFt are

Gi = `

(
1 +

n∑
p=i

cos θp − cos θi

)
cos

(
n∑
p=i

θp − θi

)
(3.15)

Thus, the relative angular displacement for each of the segments can be cal-

culated as θi = τi/Ki. Finally, we can calculate the Cartesian position of each

helical spring in the transverse (vi) and axial (ui) directions (with respect to

the unbent needle) as

vi = vi−1 + ` sin

(
i∑

p=1

θp

)
(3.16)

ui = ui−1 + ` cos

(
i∑

p=1

θp

)
(3.17)

Solving for the needle’s total deflection requires knowledge of the needle

tip force Q and the tissue reaction force as modeled by k0 and k1, from (3.14).

Since these equations cannot be solved analytically, we need to use an iterative

method to find a solution. In order to do that the polynomial coefficients of

the needle from the ultrasound image are used to generate a series of points

in the real-world frame, originally from CP , that represent a portion of the

needle. The points in the real-world frame will be known as RPU having

coordinates ( RxU ,
RyU) in the axial and transverse direction and are found by

taking points from the polynomial (3.2) and transforming them through R
UT

such that a new polynomial is created that describes the deflection seen by

the ultrasound probe in the real frame, given by

RyU = γ2(
RxU)2 + γ1(

RxU) + γ0 (3.18)

where the parameters γ2, γ1, γ0 are fit to the transformed points by linear least

squares, as after RANSAC this polynomial is now noise free.
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The values of Q, k0, and k1 are found through minimizing the following

multivariate cost function using a pattern search algorithm

C(Q, k0, k1) =

j2∑
i=j1

∣∣vi(Q, k0, k1)− RyUi
∣∣ (3.19)

where RyUi are discrete sample points taken from (3.18), such that RxUi = ui

for every element i that is in the portion of the needle simulation corresponding

to the same portion of the needle imaged under ultrasound; thus j1 ≤ i ≤ j2,

with j1 and j2 being the boundaries on the left and right side of the needle

portion respectively. vi(Q, k0, k1) is the simulated needle deflection at the

corresponding axial position ui for a given set of Q, k0, and k1. The values of

Q, k0, and k1 are iteratively changed to minimize the cost function and thus

find the model parameters. With these parameters found, the equations of the

system can be used to predict the total needle shape.

3.4 Experimental Results

The setup for the experiment to simulate a prostate brachytherapy procedure

is shown in Fig. 3.9. An 18-gauge by 200 mm prostate seeding needle (Eckert

& Zielger BEBIG GmbH, Berlin, Germany) is inserted through a brachyther-

apy template (Model D0240018BK, C. R. Bard, Inc., Covington, USA) into

a tissue phantom. The tissue phantom is a plastisol gel, consisting of a one

to four ratio of liquid plastic to plastic softener from M-F Manufacturing Co,

Fort Worth, USA. The physical characteristics of the plastisol gel mimic hu-

man tissue with the added benefit that the phantom tissue transmits both

visible light and ultrasound waves, allowing simultaneous capturing of images

in both modalities. A portion of the needle is imaged by a 4DL14-5/38 Linear

4D transducer (different from the transrectal ultrasound probe shown in Fig.

1.1) which is connected to an SonixTouch ultrasound machine (Ultrasonix,

Richmond, Canada). For this experiment, we only use the 2D functionality

of the ultrasound probe, as very few clinics have access to a 3D ultrasound

probe. The entire needle is imaged from above by a XCD-SX90CR video cam-

era (Sony Corporation of America, New York, USA). The prostate seeding
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Figure 3.9: Brachytherapy procedure simulation setup, as seen in the camera
frame, including ultrasound probe, phantom tissue, needle template, needle,
and markers.

needle is inserted such that it deflects in the plane imaged simultaneously by

the camera and the ultrasound probe. Due to the process by which ultrasound

and camera images are captured, the ultrasound probe does not interfere with

the camera’s field of view even while they both image the same plane.

Two different tissue phantoms are used, so called Tissue 1 and Tissue 2,

where Tissue 2 is considerably stiffer than Tissue 1. Tissue 1 was created using

a four to one ratio of liquid plastic to softener while Tissue 2 was created using

a five to one ratio. With the needle inserted into the tissue phantom, at an

insertion depth of 140 mm, 5 images from the camera and ultrasound are taken

simultaneously. Between images. the orientation of the ultrasound probe φ

is changed. The images are input into the aforementioned image processing

algorithms (Section 3.1) in order to calculate the needle shape polynomials.

The ultrasound polynomial equation that contains the partial observation of

the needle is subsequently inserted into the needle-tissue interaction model

in order to predict the entire needle shape. The predicted needle shape is
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Table 3.1: Plastisol A Results

Exp
#

Probe
Distance

from Guide

Probe
Orienta-

tion

Mea-
sured

Deflec-
tion

Model-
Prediction
Deflection

Absolute
Deflection

Error

1 40 mm 2.1◦ 9.6 mm 9.7 mm 0.1 mm
2 17 mm 1.4◦ 10.1 mm 11.4 mm 1.3 mm
3 28 mm 4.1◦ 10.0 mm 12.2 mm 2.2 mm
4 66 mm 1.5◦ 9.0 mm 13.4 mm 4.4 mm
5 66 mm 1.7◦ 8.7 mm 10.2 mm 1.5 mm

Avg 9.5 mm 11.4 mm 1.9 mm

Table 3.2: Plastisol B Results

Exp
#

Probe
Distance

from Guide

Probe
Orienta-

tion

Mea-
sured

Deflec-
tion

Model-
Prediction
Deflection

Absolute
Deflection

Error

1 14 mm 1.8◦ 17.6 mm 12.5 mm 5.1 mm
2 19 mm 4.5◦ 17.3 mm 18.9 mm 1.6 mm
3 36 mm 0.3◦ 17.5 mm 23.0 mm 5.6 mm
4 15 mm -0.8◦ 17.3 mm 17.8 mm 0.5mm
5 2 mm 11.9◦ 17.2 mm 21.0 mm 3.8 mm

Avg 17.4 mm 18.5 mm 3.32 mm
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Figure 3.10: Sample Needle Shape Prediction with Errors

compared with the measured needle shape as found by the camera in Fig. 3.10.

Table 3.1 and Table 3.2 summarize the needle shape prediction results for each

of the 5 trials in both of the tissue phantoms, through comparing needle tip

deflection. Of note in these results, is that neither the offset location of the

ultrasound probe nor the probe orientation affects the needle shape prediction

results. When one compares the average measured deflection to the average

deflection error both tissues have a prediction error of about 17%, validating

that the model is tissue independent.

3.5 Conclusion

In this chapter we have shown the feasibility of predicting the shape of an

entire needle when only a portion of it has been imaged via ultrasound. Our

method is based on combining image processing, coregistration of different

image sources, and a needle-tissue interaction model. The routines described

for image processing allow for a needle shape to be found in either ultrasound or
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camera imaging modalities. We have developed a new method for ultrasound

image segmentation that combines thresholding, using Otsu’s algorithm, and

RANSAC. This combination allows for the ultrasound imaged needle segment

to be succinctly described as a polynomial. In addition we have extended this

technique to be able to segment a needle inserted into semi-transparent tissue

imaged by a camera.

As a general tool to help validate a needle-tissue interaction model, we

have devised a method for coregistering ultrasound and camera images using

affine transformations. To the best of the authors’ knowledge, such a tech-

nique has not been presented in the literature. It has the advantage that it is

both mathematically straightforward and computationally efficient. Potential

applications of our method to medical robotics include needle pose estimation

and simultaneous camera and ultrasound visual servoing.

The needle-tissue interaction model outlined here is used to predict the

entire shape of the needle based on partial observation. This model only

requires simple mechanical characteristics of the needle and is independent of

tissue characteristics and needle-tissue force interactions. Furthermore, the

input to this model can be provided by either an ultrasound or camera image.

The algorithm as outlined by this chapter has been validated in phantom

tissue. The experimental results have shown that the needle shape can be

estimated with an average accuracy of 2.6 mm, and an maximum accuracy of

under 5.6 mm. These preliminary results show the soundness of the underlying

partial prediction concept, however further work to reduce experimental errors

and increase the robustness of the frame coregistration would need to be done

before this work can be translated into a clinical environment.
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Chapter 4

Needle Tip-path Prediction
from TRUS Axial Image Slices

Building on the needle segmentation and model fitting algorithm presented

in the last chapter, the primary goal of this chapter is to combine a kine-

matic model of the brachytherapy needle with an image processing routine

that tracks the needle tip during insertion to build a robust needle shape esti-

mation system. Our proposed algorithm predicts the shape of the entire needle

based on the observation of only a portion of the needle with the assumption

that the needle shape can be described in a single 2D plane. Using the needle

shape information a clinician will then be able to determine if the needle tip

position, and subsequently the deposited seed position, will be placed at a

satisfactory location. This allows corrective action to be taken without with-

drawing and fully reinserting the needle and thereby reducing tissue damage.

Additionally, by predicting the needle shape and tip position, the TRUS ul-

trasound probe can remain stationary after a pre-defined stopping point, thus

minimizing the effect of TRUS probe movement on needle shape and final tip

displacement. In the future, this needle tracking and estimation routine will

be used to inform a needle steering control system.

For tracking and prediction the position of the needle cross-section is seg-

mented out of each of the 2D axial slices, taken normal to the insertion di-

rection of the of the needle. The tracked needle cross section and the dis-

tance between consecutive axial slices is incorporated by a particle filter to

update the parameters of a non-holonomic kinematic bicycle model for each
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Figure 4.1: Standard brachytherapy setup with TRUS probe and template.
Figure modified from original courtesy of Cancer Research UK/Wikimedia
Commons.

image slice. Particle filters are widely used in signal processing [90] and image

processing [91] [92] to fit parameters and characterize noise in model based

systems. As the kinematic parameters are being updated the predicted needle

shape is used to augment the needle tracking routine by determining a likely

location for the position of the needle cross-section in the current and future

axial slices. The error in the predicted needle cross section location is the

primary method through which the particle filter updates the parameters of

the kinematic model. The kinematic model parameters are updated until a

pre-specified insertion depth and then the kinematic model is used to predict

the final shape of the fully inserted needle.

This chapter will be organized as follows, Section 4.1 will go over the needle

segmentation and tracking routine. Section 4.2 will cover the kinematic bicycle

model of a needle, which will be used for needle shape prediction. Section

4.3 contains the implementation of the particle filter that is used to update

parameters of the kinematic model of the needle in real time. Section 4.4 gives
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Figure 4.2: Original patient image

the experimental setup to be used for phantom tissue and clinical1 images,

and outlines the results of the algorithm.

4.1 Image Processing

During the clinical and experimental procedures, ultrasound images are taken

normal to the needle’s insertion direction; see Fig 4.1. The method chosen to

process the images is based on the Lucas-Kanade tracking method [93]. Using

the results of [94] and [95], an active tracking method was devised in order

to incorporate both the current imaging data as well as information from the

model prediction.

The clinical axial images, Fig. 4.2, are taken exactly 5 mm apart and

the entire image set was captured after the needle was fully inserted into the

prostate. For the experimental images, the probe was translated along the

direction of needle insertion in order to capture the needle tip cross section at

0.5 mm intervals. Given the assumptions in [42] that the needle path perfectly

follows the tip position as it is inserted, the two imaging cases return the same

information about needle shape or equivalently needle tip location.

1Approval for study granted from Alberta Cancer Research Ethics Committee under
reference 25837
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Figure 4.3: Variance image with selected template patch

Our algorithm divides the image processing into a pre-processing phase and

a tracking phase. In the pre-processing phase, the entire image is enhanced in

order to increase the signal-to-noise ratio. The desired signal is the brightness

of the image pixels corresponding to the needle cross section and the noise is

the brightness of the background pixels representing the surrounding tissue.

After pre-processing the filtered image goes on to the tracking phase. The

tracking phase uses a template patch of pixels around the needle cross section

in the current image slice to determine the location of the needle cross section

in the subsequent image slice. The region of interest that is searched to find

the needle cross section is informed by the predicted location of the needle to

limit the template matching search area.

Each image Ik is captured at a discrete time step k. Here we will define

the pixel brightness, or intensity, to be Ik(px, py) at each point px, py in the

image. The pre-processing stage calculates the variance image Vk in order to

increase the brightness of the needle cross section pixels with respect to the

average background pixel brightness. The formula for intensity of the variance

image pixels Vk(px, py) is given as follows,

Vk(px, py) =
(
Ik(px, py)− Ik

)2
(4.1)

where Ik is the average pixel intensity of the image. The intensity of the
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variance image was normalized to be within the range from 0 to 1 in our

implementation by dividing each of the variance pixels Vk(px, py) by largest

value of Vk(px, py) in the variance image. The result of this operation on Fig

4.2 is shown in Fig 4.3.

The next phase of the image processing routine is to localize the needle

in each variance image. The center point of the needle cross section will be

used as the needle location in the axial image slice and is referred to as Ick.

For the first axial image slice, at time step k0, a user will manually select a

point Ic0 that corresponds to the center of the needle cross section in that

slice. A template patch of pixels It0 is created around the needle cross section

with height h and width w; see Fig. 4.3. This template It is compared to the

variance image of the subsequent axial slice using normalized cross correlation

(NCC) [95]. The best match, with respect to NCC value, is used to localize

the center of the needle cross section, Ick, in that image. Due to the variation

in needle cross section intensity and appearance across all of the axial slices

the template patch It is updated for each frame and consists of the values of

the variance image around the center of the needle cross section.

In order to speed up template matching we restrict the NCC calculations

to be within a region of interest of height 2h and width 2w. Nominally the

region of interest is centred around the kinematic model prediction of the

needle cross section location. For the first 10 mm of the needle insertion,

however, the region of interest is centred around the previous needle cross

section center Ick−1. After the needle is inserted past the 10 mm depth the

mean value from the particle filter is used in the kinematic bicycle model to

predict the needle shape. The predicted location of the needle cross section

in the current axial slice is used as the center of the region of interest. Note

that the position of Ick in px, py is scaled using a predetermined pixel
mm

ratio for

the x and y axis before being input into the particle filtering routine, to be

described in the Sec 4.3.
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Figure 4.4: Nonholonmic bicycle model of needle motion in 3D

4.2 Kinematic Model

The model to be used in this chapter is the kinematic bicycle model presented

in the context of needle modeling in [42] and [46]. This model approximates

the motion of a needle cutting through tissue as a constant curvature motion

that is dependent on the angle of the bicycles’ front wheel β and the distance

` between the two bicycle wheels, see Fig 4.4. For use in this chapter, the

parameters of the bicycle model will be initialized and updated as described

in Section 4.3. Using the state space formulation of the kinematic bicycle

model, the states of the system are given by Xk|k = [x, y, z, θ, φ]T , where x, y

and z are the coordinates of the needle tip at time step k, θ is the angle of

the needle tip at time k, and φ is the rotation angle about the z axis for the

plane that contains the needle deflection. The value of φ will be considered

to be constant throughout the insertion procedure. The control inputs to the

state space system are given by Uk|k = [α, β]T , where α is the needle insertion

distance along the z direction per time step. The value of β is the rate of

change of needle tip angle θ per time step. We consider the needle bevel angle

β to be alternating between a positive and negative constant, corresponding

to a rotation of the needle bevel of 180◦ about the z axis.

The state-space equation of the non-holonomic bicycle model in 3D is given
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as

Xk+1|k = I5Xk|k +


sin(θ) sin(φ) 0
sin(θ) cos(φ) 0

cos(θ) 0
0 1
0 0

Uk|k (4.2)

where I5 is the five-by-five identity matrix. The values of ` and β can be

used to determine a radius of curvature R about a center of motion defined

in general as xc, yc, zc in 3D space, where R = `
sin(β)

. Given the value of φ,

we are able to define a new 2D coordinate system u, v, Fig 4.5, that will be

used to represent the in-plane motion of the needle tip. Here u will be the

coordinate that represents the in-plane deflection of the needle shape and v

will be parallel to the insertion direction of the needle, making it equivalent

to z in the general coordinate system.

The particle filter, outlined in Sec 4.3, requires that the needle shape from

the bicycle model be simulated many times per frame. In order to reduce the

state-space model into a form that is more computationally efficient we derive

a piece-wise solution to the state space equation. This piece-wise solution

allows us to predict the needle shape based on the parameters of the bicycle

model. The needle shape is given by tracing the path of the needle tip point

P as the needle is inserted into tissue. The piece-wise nature of the solution is

used to allow simulation of the needle path for an arbitrary number of needle

rotations. The equation of motion of the needle tip point P is given by

u = uc(i)±
√
R2 − (v − vc(i))2 (4.3)

in the u, v coordinate system. Where the values of uc(i) and vc(i) are the

center of rotation for the circular needle motion. The value i is used to allow

for multiple centers of rotation that correspond to rotating the needle by 180◦

about the v, or equivalently z axis. The values of uc(i) and vc(i) can be found

through the following formula

uc(i) = ±R× cos(θ) + uturn(i)

vc(i) = ±R× sin(θ) + vturn(i)
(4.4)
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Figure 4.5: Needle Motion around Center of Rotation in u, v Plane

where uturn(i) and vturn(i) are the values of u and v at the moment when

the needle is rotated 180◦. For uc(0) and vc(0) corresponding to center of

rotation at needle insertion, and before rotation, the values of uturn(0) = 0 and

vturn(0) = 0. Note that only a singular value of ±R is used in the formulation,

i.e. either a positive or negative R, and that this corresponds to an convex or

concave curvature of the needle which will be solved for in the subsection 4.3.

The position of the needle tip in the x, y, z coordinate system is

x = cos(φ)× u

y = sin(φ)× u

z = v

(4.5)

Using this equation we can simplify solving for all of the model parameters

into solving for the center of rotation for each time step k, which will be done

through the use of the previous described image based needle tracking routine

and the particle filter, as will be described in the next section.

4.3 Particle Filtering

A particle filter will be used to solve for the model parameters in Sec. 4.2.

Given the low needle-to-speckle contrast inherent in axial TRUS ultrasound

imaging, primarily due to poor spatial resolution, the data returned from the

image processing algorithm (see Sec 4.1) contains significant noise in the mea-

sured values of x and y in each image plane. This noise, or jitter, affects the
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ability to predict the values of β and θ in the state-space bicycle model and

has a large impact on the predicted needle shape. The particle filter uses the

piece-wise linear solution of the bicycle model to compare multiple predictions

of the needle shape to noisy observations of the needle shape from the image

processing routine. The mean value of all of the particle filter predictions is

then used to predict the entire shape of the needle at each time step k.

The goal of our estimator is to find the parameters of the model before

needle rotation at a specified depth D in the z axis (or equivalently the v

axis). From (4.5), it is clear that once we have the value of φ, which we solve

for using principal component analysis, we are able to formulate a method

to fit those parameters on the 2D plane (u, v). We will define the first point

the needle passes through as the origin of the coordinate system for the (u, v)

plane, and therefore u0 = 0 and v0 = 0. Given that the depth of needle

rotation is known, we are able to use (4.3) and (4.4) to formulate the following

stochastic model of motion for the path of the needle

u = uc(0)±
√
R2 − (v − vc(0))2 (4.6)

where
R =

√
(uc(0)2 + vc(0)2) + ω1

θ0 = tan−1
(
vc(0)

uc(0)

)
+ ω2

ω1 = N (0, σ1)

ω2 = N (0, σ2)

(4.7)

The values of u and v describe the motion of the needle tip point P in the

(u, v) plane. Note that v ≤ D is the depth of needle rotation, R is the center

of circular motion of the needle, θ0 is the initial value of θ when the needle is

first inserted and ω1 and ω2 are Gaussian noise with zero mean and standard

deviations σ1 and σ2 respectively.

The idea behind particle filtering is to use a large number of particles, n, in

order to estimate the probability density function of a noise source. A weight

is applied to each of the particles w(n) in order to estimate the output of

a function at a time k in the presence of noise. Thus here we used particle

filtering to find the values of R and θ0 based on the noisy observations along
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the needle path at time k. The mean values of R and θ0 for all of the particles

are used to perform needle path prediction.

As before, k is defined as the time that an image is taken and we will

consider all points k0, corresponding to the first image in our set, to kD, the

point in time at which the needle is rotated. The particle filter is updated with

every image that is processed (refer to Sec. 4.1) which defines a nominal sample

frequency of 20 Hz. Given that the goal of the filtering is to determine the

parameters for the needle shape we allow the needle to be inserted by 10 mm,

denoted by time k10mm before updating the particle weights so that the initial

curvature can be detected. This 10 mm section of points also allows for the

value of φ to be calculated through PCA so that the all of the observed points

in (x, y, z) can be transformed into points p in (u, v). The implementation of

our particle filter is as follows:

1. Initialize n particles randomly with each particle containing a pair of

values R(n) and θ0(n). A Gaussian random distribution for the particles

shall be used where R(n) ∼ N (µR, σR) and θ0(n) ∼ N (µθ0 , σθ0), for user

defined values of µR, σR, µθ0 , and σθ0

2. At time step k10mm, choose p equidistant points, with respect to their

insertion depth v, that are in the set {k0 : k10mm}

3. For each of the n particles determine the predicted value of u, denoted

by û, for the corresponding depth v for all of the points p

4. For each particle n determine the L1 normed distance between the pre-

dicted value and the actual value, L1(u) = |u− û|

5. Find the values of R(n) and θ0(n) that have the minimum L1 norm for

each point p

6. Take the mean value of those minimum R(p) and θ0(p)

7. Using a gain factor γ, update all other particles

R(n) = R(n)− γ(R(n)−R(p))

θ0(n) = θ0(n)− γ(θ0(n)− θ0(p))
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Figure 4.6: Inital distribution of R and θ0 particles and particle convergence
after 5 iterations.

8. Calculate the mean and standard deviation of R(n) and θ0(n),these are

the new values of values of µR, σR, µθ0 , and σθ0

9. Remove c particles and replace them with c new particles distributed

according to the new mean and standard deviation of R(n) and θ0(n)

10. Take the data from the next step k when it is available and from the set

{k0 : k} choose p equidistant points and return to line 3; if k = kD then

terminate returning the mean values, µR and µθ0

For both the experimental and clinical image sets the values of n = 500,

p = 5, and c = 3 were used. The Gaussian distributions for the intial

randomization of the particles were chosen to be R(n) ∼ N (1500, 600) and

θ0(n) ∼ N (0, 5). For this algorithm, we have based our weighting updating

methodology on the work of [92] such that we avoid calculating the a priori

and a posteriori probability distributions of ω1 and ω2 in order to update the

particle weights. Instead, we modify the distributions of R(n) ∼ N (µR, σR)

and θ0(n) ∼ N (µθ0 , σθ0) directly from needle shape observation. One of the

particular advantages to this method is that by calculating the means, µR and

µθ0 , and standard deviations, σR and σθ0 , of our particle set we can evaluate

a confidence in our prediction in that the smaller the standard deviation the

closer to an ideal value the mean is. Figure 4.6 shows the convergence of the

filter particles at 5 iterations after k10mm, Fig 4.7 shows the decreasing error

of the tip prediction as the filter is iterated from k10mm to the rotation depth

kD = 80mm.
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Figure 4.7: Tip prediction error decreases as needle is inserted into tissue.

4.4 Results

The ultrasound used for phantom tissue was an Ultrasonix Touch with a

4DL14-5/38 Linear 4D transducer (Ultrasonix Corp, Richmond, BC, Canada).

The clinical ultrasound used for the intra-procedure scans is a Sonoline Adara

TRUS scanner with an Endo PII probe (Siemens Medical Solutions USA Inc.,

Malvern, PA, USA). For both the clinical procedure and the phantom tissue

insertions the needles used were 18-gauge 200 mm prostate seeding needles.

(Eckert & Zielger BEBIG GmbH, Berlin, Germany).

The ex-vivo tissue phantom was created using beef chuck encased in gelatin.

Beef was used to create a non-homogeneous tissue phantom that more closely

represents the in-vivo human tissue in both mechanical properties as well as

ultrasound imaging characteristics.

The first set of results corresponds to the validation of the particle filtering

routine and model after a pre-defined rotation depth (which was not captured

in the clinical data); to this end, the needle was inserted into the phantom

tissue and rotated at a specified depth. Fig 4.8 shows the measured needle

points and needle shape prediction for 6 needles, which were rotated at a

depths of 60 mm and 80 mm.

The second set of results, shown in Fig. 4.9, corresponds to the validation

of the image processing routine along with particle filtering in clinical data.

6 insertions were used to test that the image processing in particular was

successful in tracking the needle position in TRUS images as well as to test

the ability for the model to perform successful prediction in real human tissue.

The same number of particles and noise parameters for particle initialization
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Figure 4.8: Needle shape prediction vs. acutal needle shape for needles rotated
at 60 mm and 80 mm in beef phantom.

were used for both set of results. Being as there was no rotation in the clinical

data set the first 35 mm on insertion data was used to predict the entire needle

shape.

Two metrics were used to compare the accuracy of the prediction. The first

metric was tip error, the difference between the final predicted tip displacement

û and the measured tip displacement in u, where TipError = |u − û|. The

second metric to evaluate the shape prediction accuracy is the shape error that

compares the absolute areas of the measured and predicted needle shapes in

mm 2. The shape error is calculated using the following formula

ShapeError =

∫
|u− û|dv (4.8)

Using our two metrics of prediction accuracy, in Table 4.1 we can see that

the more axial image information the particle filter incorporates, corresponding

to a larger rotation depth, the more accurate the needle shape prediction.

The needle shape errors in the clinical data show that the kinematic model
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Figure 4.9: Needle shape prediction vs. acutal needle shape for clinical image
dataset.

Table 4.1: Needle Path Prediction Accuracy

Data Set Tip Prediction Error
(mm)

Shape Prediction Error
(mm‘2)

Beef D60 0.497 ± 0.38 105.0 ± 15.1
Beef D80 0.125 ± 0.02 18.4 ± 5.0
Patient Data 0.44 ± 0.15 19.1 ± 9.6

Table 4.2: Image segmentation and particle filtering update time

Data Set Image Processing
Time (ms/frame)

Particle Filter
Update Time
(ms/frame)

Total Time
(ms/frame)

Beef D60 3.1 ± 0.2 2.8 ± 0.3 5.9 ± 0.4
Beef D80 3.1 ± 0.2 2.6 ± 0.4 5.7 ± 0.4

Patient Data 4.1 ± 0.3 2.4 ± 0.3 6.5 ± 0.3
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and particle filtering routine work as well on real human tissue as they do on

phantom tissue.

The image processing and prediction routines were both coded in Matlab

2015b (The Mathworks Inc, Natwick, MA, USA) and ran on a single core of a

Intel Core i7-3930K running at 3.20 GHz (Intel Corporation, Santa Clara, CA,

USA). The values of Table 4.2 show that the image segmentation and particle

filter update routines run in real-time in both the ex-vivo and in-vivo datasets.

The peak total processing time, which corresponded to the clinical image set2,

was 9.5 ms. This peak value is well under the 50 ms total time available

for image processing and particle filtering, corresponding to the 20 Hz image

update frequency. As can be seen from the combined results, our proposed

image guided particle filtering routine was able to successfully predict needle

shape of a needle inserted into either phantom or ex-vivo tissue in real-time

with average accuracies of 0.31 (±0.27) mm and 0.44 (±0.15) mm respectively.

4.5 Conclusion

In this chapter, we have shown that combining a needle-segmentation routine

with a kinematic bicycle model allows for the entire needle shape prediction

based only on the observation of a portion of the needle as it is inserted. This

routine works equally well on ex-vivo beef based phantom tissue and in-vivo

clinical images. Normalized cross correlation is used in a template matching

route to capture needle position information in axial image slices. This needle

position information is input into a particle filtering routine in order to extract

the parameters needed to predict the needle shape with a kinematic bicycle

model. Both the final needle tip position and needle shape are compared with

the measured needle shape to validate the prediction. In general the needle

tip position can be predicted with an average error of less than 0.5 mm in

both phantom and ex-vivo tissue. This needle shape prediction is also used

on-line to augment the needle segmentation process by defining the center of

a region of interest for the template matching routine. In the next chapter

2The input US images used for the results were 444 x 512 pixels in size
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this work will be used to inform a needle steering control routine in order to

reduce needle tip deflection as the needle is inserted.
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Chapter 5

Needle Deflection Control in
Surgeon-in-the-loop Paradigm
based on real-time Ultrasound
Image Feedback

Incorporating the needle-tip tracking algorithm given in the previous chapter,

the next step focuses on reducing the deflection of the needle tip during the

entire insertion; this is often referred to as needle deflection regulation in the

literature [7]. Incorporating a 3D version of the bicycle model and by using a

handheld motorized needle steering device [6] that acts as a robotic assistant

to the surgeon, the base of the needle is automatically rotated during insertion

to correct for needle deflection. This rotation changes the orientation of the

needle bevel and thus the direction of needle deflection. In the context of this

chapter, regulation of needle tip deflection to zero across the entire length of

needle insertion is desirable. Eliminating deflection during the entire insertion

length is ideal for procedures such as prostate brachytherapy because it ensures

both that the needle tip will accurately reach the desired target location and

that all seeds loaded into each needle are deposited on or near the desired

straight line.

In this chapter, we will propose and evaluate this needle deflection con-

troller designed using a reduced-order 3D nonholonomic bicycle model; see

Fig. 5.1. The controller is based on a switching continuous-time control law

and is shown to asymptotically reduce the needle tip deflection to zero. This
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Figure 5.1: Control loop diagram showing the controller outlined in this chap-
ter. Note that the value of φ̇ is tested to see if it is above the saturation limit;
if it is beneath this limit, then the value of φ is sent directly to the handheld
device to avoid differentiation noise

controller is designed within the context of surgeon-in-the-loop needle inser-

tion, where the clinician manually inserts the needle and the controller reduces

the needle deflection away from the target in 3D. The performance of the con-

troller is evaluated with a constraint on the maximum output needle rotation

velocity to show that acceptable performance is achieved under practical con-

siderations of patient safety which would otherwise force a clinician to slow

down the insertion.

The rest of this chapter is organized as follows. Related work and an

overview of the reduced nonholonomic bicycle model is outlined in Sec. 5.1.

The controller is developed in Sec. 5.2. The experimental setup for evaluating

the controller is presented in Sec. 5.3 with the results of the ex-vivo tissue

trials using the handheld device given in Sec. 5.4. The conclusions and future

work are summarized in Sec. 5.5.
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5.1 Background

The bicycle model is typically applied to the control of mobile robots. However,

[41] and [42] modified it to describe the motion of a beveled-tip needle as it

is inserted into tissue. This model has been used quite often in the literature

for needle trajectory control. Research in [42] applied this needle deflection

model to control a needle directed toward a target in a single 2D plane. One

complication of using the bicycle model is that it is non-trivial to estimate

the system states in real-time control. Our previous work [2] developed a

particle filter based technique for state estimation of a 2D variable plane bicycle

model from clinical ultrasound images in real-time and [45] showed that an

Unscented Kalman Filter may be used for 3D state estimation. Using modern

control techniques, the researchers in [46] developed a linearizing transform

for a 2D version of the bicycle model and implemented it in an observer-

controller combination. Sliding mode control has also proven very effective at

the combination of state-estimation and control applied to the bicycle model

with [48] implementing 2D and [49] implementing 3D sliding mode controllers.

One contribution of the controller presented in this chapter is that it is proved

to asymptotically converge based only on needle deflection measurements and

does not require any state estimation.

The bicycle model has also been used for trajectory control in 3D by mod-

eling the needle deflection over small insertion lengths as being contained in

a number of 2D planes with [37] and [50] developing trajectory controllers to

compensate for 3D target motion and account for 3D obstacle motion inside

tissue. This is similar to the work of [96] where ultrasound image tracking was

used along with the bicycle model for needle steering in the presence of tissue

motion. The constant curvature model has also been augmented with me-

chanical needle characteristics in [97] for control of the needle trajectory. This

work was extended to consider the interaction of needle and tissue mechanics

by [61] and [44]. While not unique to this work, the controller presented here

is capable of 3D needle control without constraining the needle motion to be

in planar segments and with negligible computational time to calculate the

56



{0}

{T}

Ultrasound 
Probe

Guide 
Template

Ultrasound
Imaging

Plane
Needle 
Base

Figure 5.2: Coordinate system used for kinematic model of needle motion,
showing TRUS probe, axial imaging plane, control inputs and needle base,
and guide template.

control output when compared to mechanical model-based control.

This chapter will use a reduced-order nonholonomic model originally pre-

sented in [5] for control of a needle in 3D by feedback-linearization in a Frenet-

Serret frame. This work will build on this model and use it for feedback control

of the needle tip deflection in a general 3D frame. This model assumes that

the needle is stiff in both torsional and compressional directions such that

insertion and rotation at the base of the needle are conveyed directly to the

needle tip.

5.1.1 Reduced Order Bicycle Model

From the work of [5], the derivation of the reduced-order model uses an inertial

frame {0} anchored at the point of needle insertion into tissue and a frame
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{T} that is rigidly attached to the tip of the needle as shown in Fig. 5.2. At

the beginning of insertion, the two frames coincide. The needle base velocity

along the direction of insertion is denoted as v, and rotational velocity on the

needle base is indicated by w, where v, w ∈ R. The axes of the inertial frame,

labeled [ 0x′, 0y′, 0z′], are stationary at the point of needle exit out of the guide

template and define the coordinates of the 3D space. The tip-attached frame

{T} is placed such that the origin of the frame is at the needle tip, with the axes

of this frame denoted by [ Tx′, Ty′, T z′]. During insertion, the insertion base

velocity v will translate the needle tip along the Tx′ axis. The position of the

needle tip (and equivalently the origin of frame {T}), with respect to the base

frame {0}, is given by p = [x, y, z] ∈ R3. The Tait-Bryan angle definition of

rotation about the Z-Y-X axes, involving the angles ψ, θ, φ, is used to represent

the rotational orientation of frame {T} with respect to frame {0}.

In this model, we assume that the needle is torsionally stiff such that

rotation of the needle base is conveyed directly to the needle tip. From this

torsional stiffness, a rotation at the base of the needle with an input rotational

velocity of w, about the 0x′ axis, is the same as directly rotating the needle

bevel implying the tip-attached frame rotates about Tx′ with the same input

w velocity. The angle of rotation about Tx′, with respect to the orientation of

{0}, is defined as φ where {φ ∈ R : −π ≤ φ < π}.

The angle φ is related to the physical orientation of the asymmetric bevel

on the needle-tip and, in an analogous manner to the work of [41] and [42], we

model the needle-tissue interaction as causing a constant “turning” action of

the needle tip frame. Here, we define {T} to be attached such that the needle

bending is modeled as a rotation of the frame {T} about the axis Ty′. The

angle θ, where {θ ∈ R : 0 ≤ θ < π}, represents the angle of this rotation. The

rate of change in the angle θ is defined as the variable κ, where κ represents

the inverse of the radius of curvature of the needle and is constant during

insertion (κ = 1
R

). Thus controlling the angle of φ changes the orientation of

the Ty′ axis and steers the needle.

With the torsional stiffness assumption implying direct control of the needle

bevel about Tx′ and by defining needle bending as a rotation about Ty′ it
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follows that there is no action which will cause the needle tip to be rotated

about the T z′ axis. This stiffness assumption is valid, as shown in [5], for

the 18-gauge stainless steel needles used in this work as well as in clinical

brachytherapy. This assumption may not hold for substantially thinner or

more flexible needles such as those made out of nitinol (where effects such

as torsional windup can be modeled as causing a rotation about T z′). We

thus consider the angle of rotation about the T z′ axis to be zero in this model,

therefore ψ = 0, and so the system reduces to 5-DoF. The states of the reduced-

order system are then given as X = [x, y, z, θ, φ].

A full derivation of the model is given in [5] along with proofs of accessibility

and controllability. As the goal is to use a handheld device for surgeon-in-the-

loop cooperative needle insertion, we would prefer to have our model, and

therefore the control action, written as a function of the inserted length of the

needle ` rather than insertion time. To do this, motivated by [46], a division

of the entire system by the needle base velocity v is performed, noting that

v = d`
dt

. The result is a depth-dependent nonholonomic system described by

Ẋ =


ẋ
ẏ
ż

θ̇

φ̇

 =


cos(θ)

sin(θ) cos(φ)
sin(θ) sin(φ)

κ
0

+


0
0
0
0
1

w (5.1)

Here, in a slight abuse of notation which we shall use throughout the rest of

this chapter, we use the dot operator to denote the derivative with respect

to inserted needle length rather than time, such that Ẋ = dX
d`

. Using this

depth-dependent model, we will design a controller to minimize the needle tip

deflection during insertion.

5.2 Switching Controller

With the depth-dependent kinematic needle model outlined in Sec. 5.1, we

will design a switching control law to regulate the needle deflection away from

the target 0x′ axis to zero, thus minimizing e(`) at all depths during insertion
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Needle
Tip

Figure 5.3: Axial view (along x-axis viewed from the needle tip) of needle
deflection with switching control action.

where

e(`) =
√
y(`)2 + z(`)2 (5.2)

Here, y(`) and z(`) are the needle tip deflections along the 0y′ and 0z′ axes

respectively. This deflection measure will be used to design and evaluate the

controller performance in the system. Here, the surgeon is manually inserting

the needle and therefore directly controlling `. With reference to Sec. 5.1.1,

as the needle is being inserted it translates the needle tip-attached frame {T}

forward along the T z′ axis. The surgeon will stop the insertion when the

needle tip has reached the desired target depth on the 0x′ axis, thus completely

controlling the position of the needle tip p in 3D space.

From (5.1), it is clear that one of the major advantages of this model

over the standard 6-DoF model presented in the literature is that we have the

ability to directly design the value of φ(`) (as the control action) at a particular

insertion depth, rather than having to design its derivative φ̇(`). Consider the

control law

φ(`) = atan2(−z(`),−y(`)) (5.3)

where atan2 is the four-quadrant inverse tangent function. One important
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note is that the reduced-order model, like the general 6-DoF model, violates

Brockett’s condition [98] and so cannot be stabilized with a smooth continu-

ous controller. Thus, the atan2 function acts in this context as a switching

controller. With the goal of bringing the needle tip deflection in the 0y′ 0z′-

plane to zero, we shall look at a positive-definite Lyapunov function candidate

V (y, z) given as

V (y, z) =
1

2
y(`)2 +

1

2
z(`)2 (5.4)

The derivative of this function is

V̇ (y, z) = ẏ(`)y(`) + ż(`)z(`) (5.5)

Which, with the control law given in (5.3), will be shown to be negative-

definite, i.e., V̇ (0, 0) = 0 and V̇ (x, y) < 0, ∀y, z ∈ R. By substituting our

control law φ into the above, we have

V̇ (y, z) = sin(θ(`)) cos(φ(`))y(`) + sin(θ(`)) sin(φ(`))z(`) (5.6)

Here sin(θ(`)) is a positive number during insertion as 0 6 θ(`) < π from the

coordinate system definition and with θ̇ = κ, where κ is a positive number.

Taking the current needle tip deflection as e(`) =
√
y(`)2 + z(`)2 we can use

the trigonometric definitions

cos(φ(`)) =
−y(`)

e(`)
(5.7)

sin(φ(`)) =
−z(`)

e(`)
(5.8)

and substitute these into (5.6) resulting in

V̇ (y, z) = sin(θ(`))

(
−y(`)2

e(`)
+
−z(`)2

e(`)

)
= sin(θ(`))

(
−y(`)2 + z(`)2

e(`)

)
= −sin(θ(`))

√
y(`)2 + z(`)2

(5.9)

which is a negative definite function. Therefore, using this controller, the tip

needle deflection asymptotically converges to zero. As shown in the experimen-

tal results, Sec. 5.4, this proof of convergence is conservative as in practice the

system can reduce and regulate needle deflection over short needle insertion

distances.
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5.2.1 Practical Switching Controller

It is clear from the formulation of the switching controller that the control

output φ(`) instantaneously turns the needle bevel 180 degrees. Implementing

the controller would then require a sufficiently high rotational velocity φ̇(`) to

achieve near-ideal performance. The handheld needle steering device, or any

other device used to implement the control action, will have some maximum

rotation speed limit. Here, and throughout this section when referring to

rotation we use speed to imply rotation in the time domain ( rad
s

) and velocity

to refer to rotation in the insertion-depth domain ( rad
mm

). To implement large

rotation velocities required by the ideal controller the needle insertion can

be stopped or slowed during the rotation action. Thus the rotation speed of

the system with respect to change in insertion depth will result in a large,

or infinite, rotation velocity φ̇(`). For this, the surgeon could be signaled to

temporarily stop or slow insertion to meet the rotational velocity requirements.

This would have the effect of lengthening the procedure time and would be

relativity impractical.

Instead of relying on the surgeon to control insertion speed, we will mod-

ify the controller to limit the required rotation velocity. This is beneficial for

practical implementation of the system as the reduced rotational velocity re-

quirement will allow for much higher insertion velocities without being limited

by the rotation speed of the needle steering device. More importantly, we want

to limit the rotation velocity for patient safety. This is to prevent the controller

from performing high velocity rotations, corresponding to a large φ̇(`), over the

entire insertion length. This would result in a “drilling motion”, which would

induce unnecessary tissue trauma. Thus we will modify the controller to limit

the rotation velocity. In an attempt to bound φ̇(`), we shall incorporate the

following control limiting rule where vmax is the maximum admissible rotation

velocity:

φ̇(`) = sat(vmax,
d

dl
atan2(−z(`),−y(`)))

= sat(vmax,
ż(`)y(`)− ẏ(`)z(`)

y(`)2 + z(`)2
)

(5.10)

with the definition of the sat function given by sat(x, y) = sign(y) min(x, abs(y)).
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Integrating φ̇(`) will give the actual control input to be applied to the sys-

tem. Note that in the case that |φ̇(`)| < vmax then control signal φ(`) =

atan2(−z(`),−y(`)) will be feed directly into the handheld controller to avoid

differentiation noise.

To confirm that the controller performance is still acceptable even when

φ̇(`) is saturated (the “practical controller”), the closed-loop system was sim-

ulated in 3D for various values of vmax. One performance measure that was

evaluated is the additional insertion length required for the controller to bring

the deflection to zero when compared to the insertion length required by the

controller in which φ̇(`) was not saturated (the “ideal controller”); this measure

is denoted by ∆l. The other metric used was the increase in total needle deflec-

tion, e(`) =
√
y(`)2 + z(`)2, when compared to the ideal controller, denoted

by ∆emax. Both of these metrics are illustrated in Fig. 5.4 for a simulated

needle insertion.

To test the performance of the saturated controller, needle insertion was

simulated 10,000 times while varying the values of both vmax and θ0. Here

we define the variable θ0 to be the initial value of θ when the needle is first

inserted into tissue, i.e. ` = 0, such that θ0 ≡ θ(0). The value of vmax was

varied from 0.1 rad
mm

to 0.9 rad
mm

and θ0 was varied from 0◦ to 10◦. Note that

the unit of rotational velocity, rad
mm

, refers to the amount of needle rotation

per mm of inserted needle length as the system model, (5.1), was derived to

depend only on insertion depth. For the simulations, the value of κ was kept

constant at κ = 1
1000

. Previously and during experiments, we had found the

values of θ0 and κ to be inside the above-reported ranges used in simulations.

The results of these simulations, shown in Fig. 5.5, indicate that the practical

controller performance approaches the performance of the ideal controller as

vmax is increased. The results also show that the relative performance of the

practical controller is not sensitive to the changing values of θ0. Addition-

ally, this modified controller offers acceptable performance while being limited

to low rotation velocities. This implies a manner of insertion-velocity inde-

pendence where a practical needle steering system, with a finite maximum

rotation speed, can provide the necessary rotation velocity for control over a
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Figure 5.4: Diagram of two performance measures used to evaluate the satu-
rated controller.
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Figure 5.5: Performance of controller when rotational velocity is limited.

broad range of insertion velocities.

5.3 Experimental Setup and Ultrasound Im-

age Processing

Needle insertions into phantom tissue were used to experimentally validate the

saturated controller performance. The experimental setup, shown in Fig. 5.6,

consisted of an ultrasound probe, prostate brachytherapy needles, three phan-

tom tissues, and the handheld needle steering device originally presented in [6].

For the needles in the experiments, standard 200 mm long prostate brachyther-

apy 18-gauge seeding needles (Eckert & Zielger BEBIG GmbH, Berlin, Ger-
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Figure 5.6: Photo of experimental setup showing phantom tissue, handheld
needle steering device with motion tracker markers, and ultrasound probe on
motorized linear stage.

many) were used.

The ultrasound machine used was an Ultrasonix Touch with a 4DL14-5/38

Linear 4D transducer (Ultrasonix Corp, Richmond, BC, Canada). Measuring

the inserted length of the needle is done by using a Micron Tracker (HX60 from

Claron Technology Inc., Toronto, ON, Canada) via optical tracking markers

placed on the handheld device. The needle base was rotated during insertion

by the use of the handheld steering device.

For the ex-vivo tissue, phantoms incorporating three different materials

were used. Two biological tissue phantoms contained bovine rump tissue and

porcine loin tissue embedded in gelatin (Knox from Kraft Inc., Northfield,

IL, USA) to represent non-homogeneous tissue that closely resembles in-vivo

human tissue in both mechanical properties as well as ultrasound imaging

characteristics. The other tissue phantom is made from a plastisol gel (M-F

Manufacturing Co, Fort Worth, USA) that was created to test the response

of the controller in materials that are stiffer and have more friction than hu-

man tissues (which makes the needle steering more challenging). The image

processing and needle control routines were both coded in Matlab 2016a (The
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(a) (b)

Figure 5.7: Ultrasound image processing showing original input image and
variance image with tracking area.

Mathworks Inc, Natwick, MA, USA) and were run on a single core of an Intel

Core i7-3930K processor running at 3.20 GHz (Intel Corporation, Santa Clara,

CA, USA).

For these experiments, 2D ultrasound images were used to track the needle

tip during insertion. The needle tracking was done using a slightly modified

version of the needle tracking algorithm presented in [1]. During insertion,

ultrasound images are captured and processed in real-time (see Fig. 5.7(a))

at a frame rate of 20 Hz. Each ultrasound image is enhanced to increase the

brightness of the image pixels corresponding to the needle cross section and

to reduce the intensity of the background pixels representing the surrounding

tissue.

In the first frame of the live ultrasound image sequence, corresponding

to when the needle is just inserted, a user clicks on the center of the needle

cross-section in the ultrasound image. The needle cross-section, in this work

capturing the needle tip, is tracked using a template patch of pixels around it.

Based on concepts from video tracking the cross-section location in the next

ultrasound image frame is calculated by using normalized cross correlation

(NCC) along with the assumption that the needle tip motion between frames

is small. The result of the image processing and needle tip tracking patch is

seen in Fig. 5.7(b). During insertion, the ultrasound imaging probe translates
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forward along the axis of needle insertion 0x′, using the motion tracker mea-

surement of `, so that the needle tip is always captured in the image plane.

The pixel coordinate output of the tracking routine is then converted to the

needle tip location in the 0y′ 0z′-plane in real-world mm coordinates. The ul-

trasound image pixel coordinates are calibrated to provide accurate real-world

measurements throughout the entire insertion. The calibration is performed

by taking four image points with measured real-world coordinates, manually

selected in two ultrasound image slices at insertion depths of 10 mm and 100

mm respectively. This image-metric calibration is done individually for each

of the three tissues to compensate for speed of sound differences.

For the controller, only information about the current needle tip coordi-

nates y(`) and z(`) is required. One complication, however, is that the needle

tip position as returned from the ultrasound images will contain a large amount

of positional noise (or jitter) due to the low spatial resolution of ultrasound

images and signal-to-noise similarities between the needle and background tis-

sue. In order to combat this, we employ a simple noise filtering routine using a

linear Kalman filter on the positional data to estimate the true needle position

in the current frame.

5.4 Results

For each of the three previously described tissue phantoms, ten insertion trials

were completed, and the efficacy of the controller was evaluated by looking at

two metrics. For each trial the target location was chosen to correspond to real-

world 0y′ 0z′-plane coordinates of the center of a hole in the guide template,

see Fig. 5.2, at a depth of 120 mm. The needle was allowed to deflect in an

uncontrolled manner for the first 20 mm of insertion to evaluate the efficacy

of the controller at regulating needle deflection in the presence of some initial

deflection from the target axis. Additionally, the results presented here show

the real-world deflection in mm, measured via calibrated ultrasound images.

The needle deflection is shown relative to the target axis and any initial needle

tip offset from the target axis, caused by tissue motion during insertion, was
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(a) Needle tip path, total deflection, and steering control signal in porcine tissue.
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(b) Needle tip path, total deflection, and steering control signal in bovine tissue.
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(c) Needle tip path, total deflection, and steering control signal in plastisol tissue.

Figure 5.8: Results of needle insertion experiments in the three phantom tis-
sues.
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not compensated for to provide a fair comparison with the insertion errors

seen in current clinical practice.

Once the needle had been inserted to a depth of 20 mm the control output

was applied and the handheld device rotated the needle during the remaining

100 mm of insertion. For these results, the rotational velocity of the system

was constrained to be under ±0.65 rad/mm using the methodology developed

in Sec. 5.2.1. A buzzer was used to indicate to the user that the target depth

had been reached. The insertion speed of the needle was not controlled and

the insertion depth was captured in real-time using the Micron Tracker.

The needle tip position in the 0y′ 0z′-plane, measured in ultrasound images,

was used as the feedback to the controller. The two metrics used to evaluate

the efficacy of the controller are based on the Euclidean distance of the needle

tip away from the target 0x′-axis. The first metric is based on the definition

of e(`), given in (5.2), and evaluated the deflection of the needle tip when fully

inserted into tissue, given by

Final Tip Deflection =
√
y(L)2 + z(L)2 (5.11)

where L is the depth of the needle tip at the end of the insertion. Given that

the goal of the controller is to limit needle tip deflection during the entire

insertion length, the second measure is defined as

Mean Tip Deflection =
L∑
i=0

√
y(`i)2 + z(`i)2

n
(5.12)

where y(i) and z(i) denote the needle tip deflection measured in an ultrasound

image frame at a discrete depth `i during insertion and n is the total number of

discrete depth points captured during insertion. For the Mean Tip Deflection

results given in Table 5.1 the y(`i) and z(`i) points found in the ultrasound

image slice nearest to 100 equally spaced points along the 0x′-axis (from 0

mm to final insertion depth) were used, such that n = 100. The result of

the needle insertion experiments is given in Table 5.1, with the values in each

row corresponding to the averaged final tip deflection and averaged mean tip

deflection, along with respective standard deviations for the ten trials in each
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Table 5.1: Experimental Results

Tissue
Phantom

Final Tip
Deflection

(mm)

Mean Tip
Deflection

(mm)

Maximum Final
Tip Deflection

(mm)

Maximum
Mean Tip
Deflection

(mm)

Porcine 0.47 (±0.29) 0.35 (±0.10) 0.90 0.55
Bovine 0.64 (±0.25) 0.51 (±0.19) 0.93 0.52
Plastisol 0.51 (±0.27) 0.39 (±0.15) 1.04 0.57

tissue. The largest values across the 10 trials are given as the maximum

final tip deflection and maximum mean insertion tip deflection. The measured

needle deflection for each of the insertions was plotted with respect to insertion

depth. The experimental data was smoothed by fitting the measured deflection

for the entire insertion to a 3rd order polynomial which was constrained such

that the polynomial curve exactly matched experimental deflection measured

at the initial insertion depth (0 mm) and the final insertion depth. The results

for the porcine tissue phantom are given in Fig. 5.8(a), the bovine tissue

phantom in Fig. 5.8(b), and the plastisol tissue phantom in Fig. 5.8(c).

In the context of surgeon-in-the-loop needle steering, an important crite-

rion is that the controller is robust to changes in insertion speed. To this

end, insertion speed was not controlled during the experimental trials but was

measured for each trail. For the porcine tissue insertion the maximum inser-

tion velocity measured was 41 mm/s with an average insertion velocity of 9.5

mm/s, for the bovine tissue the maximum insertion velocity measured was

52 mm/s with an average insertion velocity of 9.4 mm/s, and for the plastisol

tissue the maximum insertion velocity measured was 35 mm/s with an average

insertion velocity of 8.5 mm/s.

From results in Table 5.1, we can see that the performance of the controller

is relatively insensitive to the tissue characteristics with all 30 insertions hav-

ing an average final tip deflection of 0.54 ± 0.27 mm and an average mean

tip deflection of 0.42 ± 0.15 mm. Of note is the modestly higher mean tip

deflection and maximum final tip deflection in plastisol, which is primarily due
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to the unrealistically high values of needle-tissue friction and stiffness in this

tissue that increases the needle deflection during insertion. The maximum tar-

get error of 1.04 mm is still below the average targeting error of 1.22 reported

in a survery of 26 other 2D and 3D needle steering algorithms in the literature

[7].

5.5 Conclusion

In this chapter, we have presented a surgeon-in-the-loop needle steering con-

troller for percutaneous procedures that is designed to regulate to zero the

needle tip deflection. The controller was based on a reduced-order kinematic

bicycle model and has been modified to depend only on the inserted depth of

the needle, which can readily be measured externally, using needle tip position

feedback from an ultrasound imaging device that will not requiring significant

changes to the current clinical operating procedure. The rotation of the needle

tip, corresponding to the model control input, was done using a light-weight

and clinician-friendly handheld device that allows the surgeon to fully carry

out the needle insertion and decide the final insertion depth.

The controller has been shown to asymptotically bring the needle deflec-

tion error to zero in the ideal case. A practical variant of the controller that

limits the needle rotation speed for both mechanical and tissue damage reduc-

tion effects was implemented. The stability and performance of the practical

controller was evaluated both in simulation as well as experimentally in ex-

vivo tissue phantoms. The experimental results from the ex-vivo phantoms,

created from bovine, porcine, and plastisol tissues, show that the controller is

robust with respect to both non-homogeneous tissue as well as varying tissue

types. The average targeting error in across all of the needle insertion exper-

iments in the three tissues resulted in an average final needle tip deflection

of 0.54 ± 0.27 mm and an average total tip deflection of 0.42 ± 0.15 mm

throughout the entire insertion. While this work was presented in the context

of prostate brachytherapy, it could be useful for any percutaneous procedure

that requires precise needle placement with ultrasound image-guided feedback.
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The concepts covered in this chapter will be expanded on in the next chapter,

with the development of an improved needle steering controller.
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Chapter 6

Surgeon-in-the-loop Needle
Steering using a Predictive
Event-triggered Controller

This chapter presents a semi-autonomous (surgeon-in-the-loop) ultrasound-

image-guided system, which can steer the needle during insertion to increase

targeting accuracy. The system is designed such that the clinician directly

controls the insertion velocity and depth, in this case by inserting the needle

attached to a hand-held device (shown in Fig. 6.1) originally presented in

[6]. Real-time ultrasound-image based needle tracking is used to estimate the

parameters of a reduced-order nonholonomic kinematic bicycle model. The

needle deflection is minimized through the use of an event-triggered control

system which optimizes needle rotation during insertion, thus steering the

needle. The control system is designed such that, with the addition of the

hand-held steering device, it can be incorporated into a standard clinical setup

used during prostate brachytherapy without requiring additional sensors or

changes to the clinical setup.

The main contribution of this chapter is an analytic solution to the reduced-

order bicycle model which allows for calculation of the needle-tip trajectory,

for the entire needle insertion, without requiring numerical integration. This

analytic solution is shown to be more computationally efficient than traditional

discrete-step numerical integration methods for needle-tip trajectory calcula-

tion and allows the proposed event-triggered control system to reduce needle

73



Needle
HubHandheld Needle

Steering Device

Guide Template Prostate Bladder

Ultrasound Probe Rectum

Target Seed
Locations

Ultrasound
Imaging
Plane

Figure 6.1: Our proposed hand-held device being used in conjunction with
a standard clinical brachytherapy setup with transrectal ultrasound (TRUS)
probe, axial imaging plane, and guide template.

deflection in real-time.

An overview of related work on ultrasound-image-based needle tracking

and control is given in Sec. 6.1. The event-triggered controller utilizing the

analytic solution to the reduced-order kinematic bicycle model along with a

detailed comparison of the computational speed of the solution are shown in

Sec. 6.2. In Sec. 6.3 the setup used to validate the controller, including the

hand-held device, along with results of needle insertion trials in three different

tissue phantoms is presented. Sec. 6.4 covers the algorithm for needle tracking

in axial ultrasound images along with the model parameter fitting. The last

Sec. 6.5 gives a discussion of the results obtained along with future challenges

to be solved.

6.1 Background

From the last chapter, the reduced order kinematic bicycle model was shown

to be capable of reducing needle deflection during insertion in a surgeon-in-

the-loop system. This chapter will improve on the control design and will

incorporate a predictive needle-tip path component simliar to the ones pre-

sented in Chapters 3 and 4.

Several different control paradigms have been devised within the context

of needle steering for percutaneous procedures, with a thorough review of
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Figure 6.2: Comparison of the regulation and weak regulation control
paradigms seen in needle steering control, as described in [7].

the control paradigms and their applications given in[7]. One such control

paradigm is referred to in the literature as regulation. For regulation, the

controller is designed to eliminate needle-tip deflection away from a target axis

throughout the entire insertion and is ideal for procedures such as prostate

brachytherapy. Another control paradigm is weak regulation, whereby the

needle-tip is only controlled to pass through a desired target point, allowing for

larger needle-tip deflection away from the target axis during insertion. Weak

regulation is primarily used for procedures such as biopsy but also applicable to

brachytherapy. For brachytherapy, weak regulating controllers can be designed

to reduce the required number of total needle rotations, and therefore tissue

trauma, while maintaining acceptable needle deflection around the target axis.

Figure 6.2 illustrates the difference in deflection minimization between weak

regulation and regulation.

Event-triggering is a modern control technique, initially used for distributed

control systems, that uses discrete events as a trigger to initiate a control ac-

tion for both continuous-time and discrete-time systems[99]. Event-triggered

control theory presents a cohesive framework to design, and analyze the per-

formance of, aperiodic controllers, where stability of a distributed system can
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be proven using only knowledge of previous control actions and an estimate

of the system state[100]. Using the ideas presented in event-triggered control

theory, we will derive an analytic solution to a reduced order bicycle model

incorporating discrete changes to the needle rotation velocity (the control out-

put) that are triggered based on inserted needle length (during manual needle

insertion by a clinician). One contribution of the controller presented in this

chapter is that deflection minimization performance can be tuned, through

increasing or decreasing the number of event-trigger points, between the weak

regulation and regulation paradigms. The number of event-trigger points is

directly related to the total number of needle rotations performed by the con-

troller. Thus, by tuning the number of event-trigger points, tissue trauma can

be reduced while keeping the needle-tip deflection during insertion at an ac-

ceptable level. The event-triggered controller presented in this chapter can be

tuned between regulation type performance, for a procedure such as prostate

brachytherapy, or weak-regulation performance, for biopsy procedures.

To minimize the needle-tip deflection during insertion, the event-triggered

controller requires an estimate of the initial state of the reduced-order bicycle

model. This state estimate will be found by tracking the needle-tip path in

ultrasound images. Needle tracking, or segmentation, has been performed in

the literature on 3D ultrasound volumes but this chapter focuses strictly on

needle tracking in a series of 2D images to be more representative of current

clinical practice. In 2D ultrasound images, the needle is typically imaged either

in the axial plane, a plane orthogonal to the direction of needle insertion (see

Fig. 5.2), or the sagittal plane, a plane containing the needle and parallel

to the direction of needle insertion. In sagittal plane ultrasound images, the

needle appears as a distinct white blob or thick curved line, and segmentation

can be performed through the use of Gabor Filtering [20] along with the Hough

Transform for straight needles [17] and curved needles [19].
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Figure 6.3: Control diagram showing semi-autonomous insertion, needle tip
tracking in ultrasound images, model fitting, and event-triggered controller.
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6.2 Event-triggered Control

Needle steering in a surgeon-in-the-loop context requires a control algorithm

that is both real-time and robust to changes in the needle insertion veloc-

ity. This section will present an analytic solution to the 5-DoF reduced order

bicycle model and the implementation of an event-triggered controller for nee-

dle steering. The control loop for the system is diagrammed in Fig. 6.3. The

derived analytic solution of the 5-DoF reduced-order model allows for fast sim-

ulation of needle insertion and is ideal in the sense that it does not require a

trade-off between numerical accuracy and computational time, as PDE solvers

or discrete time-step variants of the kinematic bicycle model typically do.

To implement the 5-DoF bicycle model in a practical control system, while

attempting to limit tissue damage, the controller will be designed to reduce

needle deflection through slowly varying the needle bevel angle φ. Here, in a

manner analogous to standard clinical practice, the target location is defined

to lie at a specified depth on the 0x′-axis, in line with the direction of insertion.

Thus the needle model gives the needle-tip deflection in both the 0y′ and 0z′

axes. To solve the closed-loop system equations, based on event-trigger theory,

we constrain the output of the controller, ω, such that it only changes once

the insertion length of the needle passes an event-trigger point. The method

to optimize the locations of the event-trigger points, with respect to insertion

length, is given in Sec. 6.2.2. For this controller, the number of event-trigger

points can be chosen empirically to provide the desired controller performance.

Using a small number of event-trigger points will minimize needle rotation

velocity at the cost of greater needle-tip deflection away from the 0x′-axis

during insertion. Using more event-trigger points will minimize needle-tip

deflection during insertion but will require larger needle rotation velocities.

From the state-space representation of the model, in (5.1), we start by

evaluating the differential state equation θ̇ to derive θ(`), noting that this

state is independent of the control input φ̇ = ω. The needle insertion depth is

denoted by `, with the needle being inserted through the guide template along

the 0x′-axis. The initial insertion length is then given as ` = 0 with a desired
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final insertion length defined as ` = `f , where `f > 0. From (5.1) we can see

that κ̇ = 0, thus the solution to this first-order differential equation is

θ(`) =

∫ `

0

θ̇(`) d` =

∫ `

0

κ = κ`
∣∣∣`
0

+ θ0 (6.1)

where θ0 is the initial value of θ(`) at the point of insertion, i.e. θ0 = θ(0).

With the use of the ultrasound image processing the value of θ0 can be found.

Thus, using this, we can find the state of the system θ(`) to be

θ(`) = κ`+ θ0 (6.2)

where {` ∈ R : 0 ≤ ` ≤ `f}. With the solution to θ(`) known, the system

state x(`) can then be found, such that

x(`) =

∫ `

0

cos(θ) d` =

∫ `

0

cos(κ`) d`

x(`) =
sin(κ`+ θ0)

κ

∣∣∣`
0

+ x0

(6.3)

where, in an identical manner to (6.2), the limit of integration is the current

insertion depth `. From the definition of the base frame {0}, i.e. that it is

located at the initial point of insertion, we have x(0) ≡ 0, thus x0 = 0 and

x(`) is then given as

x(`) =
sin(κ`+ θ0)

κ
− sin(θ0)

κ
(6.4)

throughout the insertion interval 0 ≤ ` ≤ `f .

With solutions to both θ(`) and x(`) derived, the next step is to solve for

y(`) and z(`). Unlike θ(`) and x(`), our control input φ̇(`) clearly affects the

response of y(`) and z(`). To formulate the response of the system using event-

trigger control points we consider the total insertion length to be divided into

n sections of arbitrary length where, through controller design, φ̇(`) is constant

in each section (i.e. use of zero-order hold). Using subscript notation, we will

define the space of l = {`0 : `1, `1 : `2, ..., `n−1 : `n}. Here `0 = 0, and `n is our

target insertion length `f . We will allow the value of φ̇i to change by some

finite amount at the event points `i between each segment. This then defines

our event-triggers as these insertion depth points `i with corresponding control

outputs after the trigger as ω = φ̇i; see Fig. 6.4.
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Figure 6.4: Event-trigger points partitioning space into sections and zero-order
hold on control signal between adjacent points.

The notation used here and throughout the following sections assigns par-

ticular meaning to the subscripts used; when used in a function such as x(`) it

is implied that ` can be any value, such that ` ∈ R : 0 ≤ ` ≤ `f . In contrast,

when a subscript appears explicitly, such as φ(`i), this indicates the value of

φ() at the specific depth `i, with corresponding event-trigger point i. The sub-

script notion φ̇i is used to indicate a control signal value that remains constant

after the event point i up until the next event point i+ 1.

With these definitions, we can evaluate the value of φ(`) for the entire

insertion through summation of piece-wise integrals over each section, such

that

φ(`) =
n−1∑
i=0

f iφ(`i, `) + φ0 (6.5)

where

f iφ(`i, `) =


∫ `
`i
φ̇(`i) d` if `i 6 ` < `i+1∫ `i+1

`i
φ̇(`i) d` if `i+1 6 `

0 if ` < `i

=


φ̇(`i) · (`− `i) if `i 6 l < `i+1

φ̇(`i) · (`i+1 − `i) if `i+1 6 `

0 if ` < `i

(6.6)

given the initial needle bevel angle of φ(0) ≡ φ0.
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The solution to y(`) is given by

y(`) =
n−1∑
i=0

f iy(`i, φ(`), `) (6.7)

where the piece-wise solution for the needle deflection during each interval,

f iy(`i, φ(`), `), is solved using equation (6.6) for φ(`) in (6.9). From the initial

placement of frame {T} the deflection of the needle at ` = 0 is defined to be

zero, such that y(0) = 0.

Similarly the corresponding solution to z(`) is then

z(`) =
n−1∑
i=0

f iz(`i, φ(`), `) (6.8)

where the piece-wise solution for the needle deflection during each interval,

f iz(`i, φ(`), `), is given in (6.10) where z(0) = 0. Thus, we now have analytic

solutions for y(`) and z(`) giving the deflection of the needle tip over the entire

insertion without any need for numerical integration. Using these equations

to calculate the needle deflection, the controller will be implemented by op-

timizing the location of the event-trigger points, i.e. their respective depths,

and the value of the zero-order hold rotation velocity after each trigger.
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f iy(`i, φ(`), `) =



∫ `

`i

sin(θ(`)) cos(φ(`)) d` if `i 6 ` < `i+1∫ `i+1

`i

sin(θ(`)) cos(φ(`)) d` if `i+1 6 `

0 if ` < `i

=



∫ `

`i

sin(θ(`) + φ(`)) + sin(θ(`)− φ(`))

2
d` if `i 6 ` < `i+1∫ `i+1

`i

sin(θ(`) + φ(`)) + sin(θ(`)− φ(`))

2
d` if `i+1 6 `

0 if ` < `i

=



−1

2

(
cos(κ`+ θ0 + φ(`))

κ+ φ̇(`i)
+

cos(κ`+ θ0 − φ(`))

κ− φ̇(`i)

)∣∣∣∣∣
`

`i

if `i 6 ` < `i+1

−1

2

(
cos(κ`+ θ0 + φ(`))

κ+ φ̇(`i)
+

cos(κ`+ θ0 − φ(`))

κ− φ̇(`i)

)∣∣∣∣∣
`i+1

`i

if `i+1 6 `

0 if ` < `i
(6.9)

f iz(`i, φ(`), `) =



∫ `

`i

sin(θ(`)) sin(φ(`)) d` if `i 6 ` < `i+1∫ `i+1

`i

sin(θ(`)) sin(φ(`)) d` if `i+1 6 `

0 if ` < `i

=



∫ `

`i

cos(θ(`) + φ(`))− cos(θ(`)− φ(`))

2
d` if `i 6 ` < `i+1∫ `i+1

`i

cos(θ(`) + φ(`))− cos(θ(`)− φ(`))

2
d` if `i+1 6 `

0 if ` < `i

=



1

2

(
sin(κ`+ θ0 + φ(`))

κ+ φ̇(`i)
− sin(κ`+ θ0 − φ(`))

κ− φ̇(`i)

)∣∣∣∣∣
`

`i

if `i 6 ` < `i+1

1

2

(
sin(κ`+ θ0 − φ(`))

κ+ φ̇(`i)
− sin(κ`+ θ0 − φ(`))

κ− φ̇(`i)

)∣∣∣∣∣
`i+1

`i

if `i+1 6 `

0 if ` < `i
(6.10)
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Note in (6.9) and (6.10) if ˙φ(`i) = ±κ, from the definition in (6.6), it indicates

that φ(`) = κ` + φ(`i) in the region `i 6 ` < `i+1 such that one of the terms

κ`+ θ0 ± φ(`) will reduce to θ0 ± φ(`i). Thus the corresponding sin() or cos()

function will be a constant over that interval. Being as φ̇i is the control output

the optimization routine can also be constrained such that φ̇(`i) 6= ±κ.

6.2.1 Insertion simulation computational performance

As stated, one of the advantages of the analytic solution is its reduced com-

putational complexity when compared to the discrete step simulation of the

reduced-order kinematic bicycle model. Due to the nonholonomic constraints

in the system and the single control input ω, the needle-tip cannot move in an

arbitrary direction. If given a set of control actions, for instance, the event-

triggering points and rotation values, then the needle-tip position throughout

insertion can be found through simulation. The inverse operation, finding the

control actions that will lead to the needle tip passing through a desired point

or set of points, is not straightforward and requires the use of an optimiza-

tion routine, like the one covered in Sec. 6.2.2. In general, these optimization

routines simulate the insertion process many times while modifying the con-

trol actions taken during insertion to find a set of control actions which result

in a needle-tip path that passes through the target point(s). In the context

of needle steering, where the target location is located at the final insertion

depth, then the entire insertion must then be simulated which can have a sig-

nificant computational cost. This section will give a brief overview of how the

reduced-order model can be simulated versus the event-triggered model. For

both of these methods, the number of computational steps will be shown and

a theoretical performance comparison will be made.

Normally, to simulate a needle insertion using the reduced-order formula-

tion of the bicycle model, given in (5.1), the Euler method is used to solve the

state-space differential equation at each time step via the discrete-step form

of the equation XK+1 = XK + ∂
∂x
f(XK)∆` + ωK . Here K is the discrete-

step depth during the simulation and wK is the control action per step, where
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ωK = ω∆`. This expansion results in the following discrete system

XK+1 =


xK
yK
zK
θK
φK

+


cos(θK)

sin(θK) cos(φK)
sin(θK) sin(φK)

κ
0

∆`+


0
0
0
0
1

wK (6.11)

where the state within the system XK consists of the values of

XK = [xK , yK , zK , θK , φK ] at the discrete insertion depth K. To evaluate

the computational cost of both the discrete-time reduced-order model and the

analytic solution used for the event-triggered model the cost of each simu-

lation step will be found. For both algorithms, the step-wise computational

cost is defined to be the number of mathematical operations required, defined

as ncalc. These algorithms will calculate the needle tip deflection at a de-

sired final insertion depth. Here, we define mathematical operations to be the

functions cos(), sin(), add(), sub(), mul(), div() and will ignore any compu-

tations with respect to the loop counters. As an example, in line 4 of Alg.

6.1, the calculation yK+1 ← sin(θK) · cos(φK) ·∆`+ yK would be computed as

yK+1 = add(yK ,mul(∆`,mul(sin(θK), cos(φK)))) requiring 5 calculations, thus

ncalc = 5 as indicated.

For the discrete-step reduced-order model, each step updates the states of

the system model using the Euler method above (6.11). Starting at the initial

simulation step, K = 0, the initial state of the system is defined as X0 =

[x0, y0, z0, θ0, φ0]. The simulation proceeds until the desired final insertion step

calculated, defining the last time simulation step to be Kend. The algorithm for

simulating the discrete-time needle can then be described as follows, with the

symbols ‘ · ’ and ‘ / ’ used to indicate multiplication and division respectively.

As shown in Algorithm 6.1, the computation cost of each simulation step K

is ncalc = 17. Assuming the simulation consists of d simulation steps discretized

along the insertion depth a total computational complexity of ncalc = 17d will

result, which grows linearly with the number of insertion steps to be simulated.

The analytic solution for the event-triggered needle model allows for a

computational speed increase for insertion simulation. Using the results of

equations (6.9) and (6.10) we can simulate the entire needle insertion in a more
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Algorithm 6.1 Discrete-time step simulation

Require: X0,∆`, ωk, κ
1: K = 0
2: while K < Kend

3: xK+1 ← cos(θK) ·∆`+ xK . ncalc = 3
4: yK+1 ← sin(θK) · cos(φK) ·∆`+ yK . ncalc = 5
5: zK+1 ← sin(θK) · sin(φK) ·∆`+ zK . ncalc = 5
6: θK+1 ← κ ·∆`+ θK . ncalc = 2
7: φK+1 ← φK + ωK . ncalc = 2
8: K ← K + 1

efficient manner. The model can be evaluated by calculating the changes to

the needle state at the insertion depths corresponding to the chosen number

of event points, n, including the initial and final insertion depths, defined

above as l0 and ln. As above, our control signal ω is held constant between

event-trigger points giving a zero-order hold for φ̇(`i).

For brevity, we will define the state of the needle to be Xi = [xi, yi, zi, θi, φi]

at a depth `i corresponding to the event-trigger point i. At the depth of

each event-trigger point, `i, the rotation speed and direction of the needle are

changed; here we indicate the velocity after the event point as φ̇i. Again we

used subscript notation from Sec 6.2, where we defined our space ` to be broken

into sections, such that ` = {`0 : `1, `1 : `2, ..., `n−1 : `n}. The initial state of

the needle, at the point of insertion, is then defined as X0 = [x0, y0, z0, θ0, φ0].

The final insertion state of the needle is denoted as Xn = [xn, yn, zn, θn, φn].

The algorithm for simulating the needle is then the following.

For each event point, we have a computational cost of ncalc = 49 for cal-

culating the deflection in both the y and z axis, as shown in Algorithm 6.2.

For an insertion to a length `n, where there are n − 1 control actions taken,

there will be a total of n steps to calculate, thus the computational complexity

is ncalc = 49(n) which also grows linearly, but with respect to the number of

rotations only. Even though the per-event computation cost is higher, simu-

lating a small number of rotations during the insertion will be less costly than

simulating the discrete-time system.

One of the primary disadvantages is that the discrete-time simulation ac-
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Algorithm 6.2 Event-triggered needle simulation

Require: X0, φ̇i, κ
1: i = 0
2: while i < n
3: θi+1 ← κ · `i+1 + θi . ncalc = 2
4: φi+1 ← φi + φ̇i · (li+1 − li) . ncalc = 3
5: xi+1 ← (sin(θi+1)− sin(θ0))/κ . ncalc = 4

Steps to calculate y`i+1

6: yp1 ← cos(θi + φi)/(κ+ φ̇i) . ncalc = 4
7: yp2 ← cos(θi − φi)/(κ− φ̇i) . ncalc = 4
8: yp3 ← cos(θi+1 + φi+1)/(κ+ φ̇i+1) . ncalc = 4
9: yp4 ← cos(θi+1 − φi+1)/(κ− φ̇i+1) . ncalc = 4

10: yi+1 ← (−yp3 − yp4 + yp1 + yp2)/2 . ncalc = 4

Steps to calculate z`i+1

11: zp1 ← sin(θi + φi)/(κ+ φ̇i) . ncalc = 4
12: zp2 ← sin(θi − φi)/(κ− φ̇i) . ncalc = 4
13: zp3 ← sin(θi+1 + φi+1)/(κ+ φ̇i+1) . ncalc = 4
14: zp4 ← sin(θi+1 − φi+1)/(κ− φ̇i+1) . ncalc = 4
15: zi+1 ← (zp3 + zp4 − zp1 − zp2)/2 . ncalc = 4
16: `← `+ 1

86



curacy is dependent on the number of steps used, with accuracy increasing

with the number of steps. Empirically, the insertion depth must be discretized

into steps of 0.5 mm or smaller to result in a reasonable simulation accuracy

at the final insertion depth, such that the 120 mm insertion depth used in

this chapter requires 241 or more simulation steps. For the implementation

of the controller used in Sec. 6.4.2, for 3 event-triggered rotations, the ana-

lytic solution has an absolute cost of 196 operations whereas the discrete-time

step solution would require 4097 math operations to fully simulate each in-

sertion. The analytic event-mode algorithm allows a full 17 simulations to be

run in the same amount of time as a single insertion simulation through the

discrete-time step method. This computational speed-up implies that the con-

trol algorithms built on this analytic solution can be implemented in real-time

even in low-end hardware. In addition, the analytic solution does not use any

approximation of the underlying differential equations and therefore, offers op-

timal accuracy without requiring additional simulation points, providing one

of the contributions of this chapter.

6.2.2 Event-triggered control optimization

The analytic solution of the reduced-order kinematic model facilitates the de-

velopment of an online optimization routine for the event-triggered controller.

This routine will be designed to achieve the stated goal of minimizing both

needle deflection and the total number of needle rotations. Minimizing needle

deflection will be achieved through optimizing the location of event-trigger

points, along φ̇(`), and the associated changes in needle rotation velocity at

those points. With the target location defined to be on the 0x′-axis, parallel

to the direction of needle insertion, needle deflection will be defined as the

Euclidean distance

e(`) =
√
y(`)2 + z(`)2 (6.12)

for a particular insertion depth `. With this definition of needle deflection, a

cost function used for minimizing needle deflection can be given as

L = min
(
α
√
y(`f )2 + z(`f )2 + β max

(√
y(`)2 + z(`)2

))
(6.13)

87



where α and β are weighting constants and max(
√
y(`)2 + z(`)2) represents the

maximum deflection during insertion, ` ∈ {0 : `f}. This allows the controller

to be tuned from weak regulation, where α > 0 and β = 0, towards the

deflection minimization performance of a regulating controller when α = 0

and β > 0. The controller can also implement a weighted minimization of

both objectives when α, β > 0.

With the needle steering control actions being performed through event-

triggering, the online optimization is implemented through finding event points,

`i, along with the required change in needle rotation velocity, ∆φ̇i, at those

points which minimize the cost. For this controller implementation, the num-

ber of event points must be chosen before the insertion. This results in a

segmentation of the insertion space ` = {`0 : `1, `1 : `2, ..., `n−1 : `n} with

each segment having a desired needle base rotation velocity ω = φ̇(`i), where

{i ∈ 0, 1, ..., n− 1}. As a first step in optimization, the result given in (6.6) is

rearranged to limit the total change of the value of φ(`) in each segment. This

change in φ(`) in each segment is limited by a constant ∆φ̇i, and is used in∣∣∣ ˙φ(`i)
∣∣∣ 6 (`i+1 − `i)

∆φ̇i
where `i 6 ` < `i+1 (6.14)

so that the value of φ̇i for each segment can be limited.

Using (6.14) allows tissue trauma to be limited by a choice of ∆φ̇i inde-

pendently of the needle deflection cost function. For this chapter, the value of

∆φ̇i was empirically chosen to be π, such that the total number of rotations

is directly limited to be equal or less than half of the number of event points

chosen. Using this limit, the cost function minimization now is independent

of any tissue effects for a given number of event-trigger points.

The minimization of the cost function is done by a genetic algorithm[101].

Here a traditional genetic algorithm was modified to have performance closer

to simulated annealing by implementing a large number of cross-overs and large

uniform random distribution used to seed each generation. The algorithm was

“greedy” in that it returned only the single best-performing individual which

was then propagated and compared and crossed-over with new individuals

created from the uniform distribution. The two needle model parameters,

88



found through ultrasound imaging, θ0 and κ, were updated at the beginning

of each iteration. The number of individuals tested at each iteration was held

constant, and the number of cross-over individuals created was chosen to be

equal to the number of regular individuals.

Each individual consisted of Ci coupled event-trigger points and control

signal values < `i, φ̇i >, where i = 1, 2...Ci; to describe the control actions for a

complete insertion, the cross-overs were made by swapping a random number of

coupled values between two individuals. The cross-over and random individual

generator were constrained such that the algorithm only optimized control

actions which could be taken in the future as the needle is inserted deeper

into tissue. To do this, the values of < `i, φ̇i > from the best individual of the

previous generation were used for any point i where the current insertion depth

was greater than `i. The result from the simulation of each individual was

multiplied by α and stored, as the simulation returns the needle-tip deflection

at the target insertion depth,
√
y(`f )2 + z(`f )2, and incorporates the minimal

rotation constraint.

To calculate the second component of the cost function

βmax
(√

y(`)2 + z(`)2
)

, each pair of adjacent trigger-points in the individual

were used to check if the values of ẏ(`) or ż(`), defined in (5.1), had crossed

zero in that section. This zero crossing implies the needle deflection was at

a maximum or minimum. The values of y(`) and z(`) at the points where

ẏ(`) or ż(`) are equal to zero were evaluated by inserting the depth, `, where

the derivatives are zero into equations (6.9) and (6.10). The largest result

of
√
y(`)2 + z(`)2 across all of the zero-crossing points was multiplied by β

and used to calculate that individual’s score with respect to the cost func-

tion; if there was no zero-crossing in ẏ(`) or ż(`) then the largest deflection is

the final-tip deflection, and this was multiplied by β and used instead. The

average computation time of the controller optimization routine during the

insertion experiments is given in Table 6.4.2 where each generation of the ge-

netic algorithm consisted of 60 individuals, 30 of which were created through

cross-overs.
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Figure 6.5: Experimental setup with ultrasound probe, hand-held needle in-
sertion device, and tissue phantom.

6.3 Experimental Setup

During the experiments, ultrasound images are captured and processed in real-

time to return the needle deflection. The ultrasound transducer, see Fig. 6.5,

was mounted on a motorized linear rail which moved the transducer such that

the needle-tip was always contained in the imaging plane. The ultrasound ma-

chine used for the experiments was an Ultrasonix Touch with a 4DL14-5/38

Linear 4D transducer (Ultrasonix Corp, Richmond, BC, Canada). For these

experiments, only the 2D imaging functionality of the ultrasound probe was

used. The needle was controlled during insertion using a hand-held steering

device, Fig 6.5, originally developed in [6]. Optical tracking markers were

placed on the hand-held device and a Micron Tracker (HX60 from Claron

Technology Inc., Toronto, ON, Canada) was used to measure the length of

the needle inserted into tissue. For the phantom tissue insertions, the nee-

dles used were standard 18-gauge 200 mm prostate seeding needles (Eckert &

Ziegler BEBIG GmbH, Berlin, Germany). The image processing, controller

optimization, and event-triggered controller were all programmed in Matlab
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2016a (The Mathworks Inc, Natwick, MA, USA) and ran using the Simulink

Real-Time environment, on an Intel Core i7-3930K running at 3.20 GHz (Intel

Corporation, Santa Clara, CA, USA).

6.4 Ultrasound Image Processing

For each of the insertion experiments, 2D ultrasound image slices are processed

in real-time at a frame-rate of 20 Hz. The 2D functionality of the probe, rather

than 3D/4D functionality, was used to replicate the imaging capabilities of the

transrectal ultrasound (TRUS) probes used clinically. As shown in Fig. 6.5,

during needle insertion the ultrasound probe is translated along the direction

of needle insertion, the 0x′-axis, such that the needle tip is always captured in

the ultrasound image slice. These ultrasound images are processed in real-time

using an altered version of the algorithm presented in [2] to track the needle-tip

deflection. The images are captured at discrete time intervals, corresponding

to the 20 Hz frame rate of the ultrasound machine, with the imaging time

step denoted by kUS. With the ultrasound probe moving along the 0x′-axis,

the image frame, corresponding to the 0y′ and 0z′ axes, captures the needle

tip deflection (with respect to the target 0x′-axis). The pixel coordinates of

the image are indicated by py and pz and the pixel intensity of the image, at

time step kUS, is defined as IkUS(py, pz). The insertion depth of the needle

is also measured for each of the ultrasound images, defined as `kUS , and this

information is used along with the tracked needle-tip location to fit parameters

of the reduced-order bicycle model, to be covered in Sec. 6.4.1. The image

processing routine for each frame consists of two stages which are shown in

Fig. 6.6. The first stage is a preprocessing stage that enhances the visibility

of the needle tip to make it more distinct from the tissue background in the

image and to make the tracking invariant to changes in the needle tip pixel

intensity. The second stage uses template matching to perform the needle tip

tracking. At the beginning of insertion, a user clicks on the needle tip in the

first frame of the ultrasound image and the image enhancement and tracking

are done using a region-of-interest (ROI) around this point. For preprocessing,
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Figure 6.6: Ultrasound image processing showing original input image, vari-
ance image, template patch, and resulting needle-tip location (indicated by
red dot).
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the needle-tip visibility is improved by the creation of a variance image of the

ROI. This variance image, when used for tracking, is similar in theory to

the sum of conditional variance method presented in [102]. To calculate the

variance image, statistics of the pixel intensity in the ROI are used, given

µkUS =
1

npx

npx∑
j=1

IkUS(pyj, pzj)

σkUS =
1

npx

√√√√ npx∑
j=1

(IkUS(pyj, pzj)− µkUS)2

(6.15)

where npx is the number of pixels in the ROI, pyj and pzj are the pixel locations

within the ROI, µkUS and σkUS are the resulting mean and standard deviation

of the pixel intensities. The variance image is then calculated as

VkUS(pyj, pzj) =
‖IkUS(pyj, pzj)− µkUS‖

σkUS
(6.16)

where VkUS is the resulting variance image intensity for each pixel pyj, pzj in

the ROI. This results in an increase of contrast between the needle and the

background tissue.

To perform the needle tip tracking, a method similar to [93] is used, under

the assumption that the needle-tip location only changes by a small amount

between subsequent ultrasound images due to the mechanical characteristics

of the needle. Needle tip tracking is done using sum-absolute-difference tem-

plate matching between a small patch of the variance image in the previous

frame, Pk−1US ⊂ Vk−1US(pyj, pzj), centered around the needle tip, pyTIP and

pzTIP , and the region of interest in the current frame VkUS(pyj, pzj). Due to

the use of variance images, this sum-absolute-difference template matching is

equivalent to performing normalized cross-correlation based template match-

ing. The center position of the best template match is the needle-tip position,

pyTIP |kUS and pzTIP |kUS , which is converted into a metric deflection, in mm, in

the 0y′ and 0z′ axes. The metric needle tip deflections for each image frame

are denoted by yUS(`kUS) and zUS(`kUS), where the pixel-to-millimeter ratios

were measured experimentally with a ratio 0.10 mm
px

for the 0y′-axis and 0.12

mm
px

for the 0z′-axis. The tracked needle tip is then used for estimation of θ0
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and κ during the needle insertion. For the experimental results, presented in

Sec. 6.4.2 with the image processing time given in Table. 6.4.2, the size of

the region-of-interest was a 129px×129px square and the size of the needle-tip

template was 65px×65px.

6.4.1 Image based parameter fitting

Two of the parameters of the reduced-order bicycle model, θ0 and κ are re-

quired for the event-triggered control optimization. These parameters cor-

respond to the initial angle of needle insertion and the (inverse of) the ra-

dius of curvature. The ultrasound processing algorithm returns the loca-

tion of the needle tip and the corresponding insertion depth, resulting in

`kUS , yUS(`kUS), zUS(`kUS) in metric coordinates. During insertion, the loca-

tion of the needle tip is recorded for every frame, and once the needle has been

inserted past a depth of 10 mm, the values of θ0 and κ are estimated, with an

updated estimate returned with every frame. Here the value of 10 mm was

chosen empirically to allow for a small amount of needle deflection to occur

before estimation such that the value of κ can be measured. Note that the

values of θ0 and κ are defined to remain constant for a single insertion but

may change from insertion to insertion. During insertion, as the parameter

estimates are updated, the current best estimate is used in the controller op-

timization routine. The controller optimization routine simulates the needle

insertion using previous control actions (if any event-trigger depths have been

passed) on the current system estimate, thus keeping θ0 and κ constant for

that insertion simulation. The simulation of the needle parameter fitting al-

gorithm, given at the end of this section, shows that the estimate settles to

the correct values very quickly, within 40 mm of the needle entry point, so

in practice, the model parameters being used for control optimization remain

essentially constant after that depth.

As with the optimization for the event triggered controller, the parameter

fitting for the model was done using a modified genetic algorithm. The same

percentage of cross-overs and generation of random individuals to refill the

population per iteration were used. In contrast to the control optimization
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algorithm, for this algorithm the best 30% of the population was propagated

forward at each iteration. Another difference was the way that the individuals

were constructed; each individual consisted of only a single set of coupled

values < θ̃0, κ̃ >. Due the limit on θ(`) in the model, {θ ∈ R : 0 ≤ θ < π},

and the use of the guide template which mechanically constrains the needle

during insertion into tissue such that θ0 is small, the value of θ̃0 was limited

in the algorithm to the range 0 rad ≤ θ̃0 ≤ 0.174 rad (0.174 rad ≈ 10◦). The

value of κ̃ was also constrained to the range 1
10000

≤ κ̃ ≤ 1
500

which is larger

than required from data gathered from previous insertion experiments and the

literature. To solve for these parameters, the needle path is simulated for a

the set of initial values < θ̃0, κ̃ > resulting in deflections ỹ(`) and z̃(`). The

best individual is chosen such that it minimizes the following cost function

LFit = min
<θ̃0,κ̃>

n∑
j=1

√
[ỹ(`j)− yUS(`j)]

2 + [z̃(`j)− zUS(`j)]
2

n
(6.17)

where the score LFit is the minimized simulated needle tip path closest to the

observed tip path at measurement test points j = 1, 2, ..., n. Multiple mea-

surement points j are used, rather than just the current needle-tip location,

to make the parameter estimation routine more robust to image noise and

occlusion-based needle-tip localization errors, which occur intermittently dur-

ing needle-tip tracking. For this implementation, these points were chosen to

measure the needle location a equidistant insertion depths spanning from the

insertion point, ` = 0, to the current needle-tip point, `Img. For the experi-

mental results 11 test points were empirically determined to be sufficient for

parameter fitting. To convert from `kUS to x(`kUS), (6.3) was inverted using

each individual’s κ̃. Finally, for each incoming frame an iteration of the genetic

algorithm was run, where the system was simulated using the analytic solution

given in Sec. 6.2, incorporating the control actions that had been taken up to

the current insertion depth. LFit was evaluated using the resulting needle-tip

path from simulation and the measured needle-tip locations from the frames

closest to each j test point depth. The < θ̃0, κ̃ > of the best performing indi-

vidual was returned as the values θ0 and κ used for the control optimization.
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Figure 6.7: Needle parameter estimitation score with respect to insertion
depth.

The computation time of the parameter estimation routine is given in Table.

6.4.2 where 50 individuals were used for each generation.

The needle parameter optimization was validated in simulation by compar-

ing the needle-tip path of a simulated insertion with known < θ0, κ > values

to the needle-tip path predicted with the estimated parameters < θ̃0, κ̃ > from

the genetic algorithm. For the validation, 10000 insertions were simulated with

uniformly random selections of θ0 and κ0, where the value of θ0 was tested in

the range 0 ≤ θ0 ≤ π
4

and κ was tested in the range 1
10000

≤ κ ≤ 1
500

. To

simulate a “measured” needle-tip path, zero-mean Gaussian noise was added

to the simulated needle deflection (derived from equations (6.9) and (6.10),

such that yUS(`) = y(`) + N and zUS(`) = z(`) + N with N ∼ N (0, 0.5)).

The parameters < θ̃0, κ̃ > were estimated using simulated values with ` being

incremented in 1.0 mm steps. The plot of the average estimator score, LFit,

is given in Fig. 6.7 with the error bars showing the standard deviation of

the estimator score across the 10000 simulations. These results show that the

parameter fitting is able to estimate the needle shape with a mean-squared

error of 0.1 mm after the needle has been inserted to a depth of 40 mm.

6.4.2 Experimental Results

Three different tissue phantoms were fabricated to evaluate the performance

of the needle steering system. Two non-homogeneous tissue phantoms were

made from bovine and porcine tissue embedded in gelatin (Knox from Kraft

Inc., Northfield, IL, USA). These bovine and porcine phantoms were created to
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closely resemble the ultrasound imaging and mechanical properties of human

tissue. The gelatin was used to hold the tissue in the experimental setup

and to provide a flat surface for the ultrasound probe to scan along, such

that there was sufficient contact between the probe and the tissue phantom to

maintain ultrasound image quality throughout the insertion (see Fig. 6.5). A

third tissue phantom was made entirely from plastisol (M-F Manufacturing Co,

Fort Worth, USA) which has friction and stiffness properties higher than seen

in human tissue. The elevated friction and stiffness create a more challenging

scenario for the controller as the needle deflection during insertion is increased.

A total of 10 insertion trials was performed for each of the three phantom

tissues, with each insertion having a desired target depth of 120 mm. The

needle base rotation was performed by the hand-held device using the optimal

event-trigger points and rotation values found by the genetic algorithm. The

optimization parameters, α and β, were chosen to be 10 and 1 respectively.

For these results, only three event-trigger points were used and the number

of total needle rotations was limited to be less than 3. For most of the trials,

the optimized event-triggered control output resulted in fewer than two full

rotations. The needle insertion length, `, required for the controller and ul-

trasound image processing was measured in real time using the micron device;

see Fig. 6.5.

The deflection of the needle tip away from the 0x′-axis was measured

through ultrasound imaging. The needle tip location at the target insertion

depth was used to evaluate the performance of the controller. The Final Tip

Deflection is calculated as

Final Tip Deflection =
√
y(`f )2 + z(`f )2 (6.18)

where `f represents the target insertion depth. The controller was tuned to

minimize deflection over the entire insertion. To evaluate this, the other per-

formance measure that was used was the Mean Tip Deflection, given by

Mean Tip Deflection =

∫ `f

`=0

√
y(`)2 + z(`)2

`f
d` (6.19)

which calculates the average needle tip deflection away from the 0x′-axis
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(a) Needle tip path and control signal in porcine tissue.
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(b) Needle tip path and control signal in bovine tissue.
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(c) Needle tip path and control signal in plastisol tissue.

Figure 6.8: Experimental results for three different tissue phantoms.
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Table 6.1: Average Needle Insertion Results

Phantom
Tissue

Final Tip
Deflection Average

(mm)

Mean Tip
Deflection Average

(mm)

Total Rotation
Amount (degrees)

Porcine 0.40± 0.24 0.25± 0.06 174± 86
Bovine 0.51± 0.14 0.31± 0.08 177± 84

Plastisol 0.48± 0.25 0.30± 0.12 137± 68

Table 6.2: Maximum Needle Insertion Results

Phantom
Tissue

Max Final Tip Deflection
(mm)

Max Total Rotation Amount
(degrees)

Porcine 0.86 306
Bovine 0.69 306

Plastisol 0.90 242

throughout the insertion. The last metric that was evaluated was the total

rotation amount that the needle made. To calculate this, the absolute value

of each control action φ̇i was taken and the resulting value of φ(`) evaluated,

where the initial bevel angle, φ0, is neglected. This simplified to the following

Total Rotation = |φ(`f )| =
n−1∑
i=0

∣∣f iφ(`i, `f )
∣∣ (6.20)

where f iφ(`i, `) is evaluated using the method in (6.6). The values for the

Final Tip Deflection and Mean Tip Deflection, and Total Rotation were aver-

aged over the results for the 10 insertions per tissue phantom in Table 6.4.2.

Maxiumum Total Rotation and maximum Tip Deflection at any length during

insertion are given in Table 6.4.2. The needle tip path captured for the porcine,

bovine, and plastisol phantoms are displayed in Fig. 6.8(a), Fig. 6.8(b), Fig.

6.8(c) respectively. The computational time of the image processing algorithm,

the parameter estimation algorithm, and the control optimization algorithm

are presented in Table 6.4.2 with the template patch sizes and number of indi-

viduals per generation given in Sec. 6.4, Sec. 6.4.1, and Sec. 6.2.1 respectively.

From the tabular data, the controller is shown to perform approximately

the same across the three tissue types. The Final Tip Defection average across
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Table 6.3: Processing Time per Image Frame

Procedure Average Time (ms) Max Time (ms)

Image Processing 36.0± 0.4 40.0
Parameter Estimation 1.6± 0.7 6.3
Control Optimization 4.6± 1.9 8.16

all 30 trials was 0.47(±0.21) mm with an averaged Mean Tip Deflection of

0.29(±0.09) mm. The maximum needle tip deflection at the target was 0.90

mm, which compares favorably to the literature surveyed in [7], improved on

the results of the previous chapter, and greatly exceeds the current clinical

accuracy demonstrated in [13].

6.5 Conclusion

We have demonstrated a system designed for use in either biopsy or brachyther-

apy percutaneous procedures. This system steers the needle using a hand-held

device driven by an event-triggered controller designed to reduce needle de-

flection during insertion. The controller incorporates a nonholonomic reduced-

order bicycle model with required model parameters being estimated online

from ultrasound images. The parameter estimation and control signal plan-

ning use the presented solution to the kinematic bicycle model which is shown

to increase model simulation performance by 21x when compared to a discrete-

time step implementation of the model. From insertion trials in ex-vivo tissue

phantoms, the controller is shown to decrease Final Tip Deflection to an aver-

age of 0.47(±0.21) mm and Mean Tip Deflection to an average of 0.29(±0.09)

mm, significantly better than seen clinically at present. The total amount

of needle rotation was constrained during insertion with the maximum total

needle rotation measured to be 306o across all trials. The next chapter will

move on to develop a prostate segmentation routine which can localize the tar-

get position, such that the controller presented here is able to steer a needle

towards it.
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Chapter 7

Autonomous Prostate
Segmentation in 2D B-Mode
Ultrasound Images

In current practice, prostate brachytherapy requires a planning stage where

the entire volume of the prostate is imaged and the 3D contour of the prostate

is created. The 3D prostate contour is used for dosimetric calculation and,

traditionally, is manually segmented by a clinician in software. While either

MR or CT imaging modalities can be used for the dosimetric planning, the

typical imaging modality used is ultrasound, both for cost-effectiveness and

to match the imaging modality used by the clinician during the insertion pro-

cedure. This manual segmentation of the prostate from axial image slices is

time-consuming, and thus algorithmic prostate segmentation poses an attrac-

tive option to reduce the amount of time where a clinician is required during

prostate brachytherapy pre-planning. In addition to therapeutic intervention

planning, prostate gland contours can also be used for medical diagnostics,

through measuring parameters such as gland asymmetry [103] or gland image

appearance [104].

The prostate contouring system presented here is based on the use of

“superpixels”[105], consisting of individual B-mode ultrasound image pixels

that have been optimized into large clusters. This work presents a novel ex-

tension of the superpixel method, whereby the superpixel regions are opti-

mized based on statistical similarity measures such that the various structures
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Figure 7.1: Ultrasound axial image slices being taken during the pre-planning
phase of prostate brachytherapy. Each axial slice is taken 5 mm apart as the
probe is translated along the z-axis.
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Figure 7.2: Overview of prostate segmentation algorithm.

within the ultrasound image can be differentiated. A statistical-shape (or

active-shape) prostate contour model is then used to delineate the prostate

within the image based on the superpixel regions. Before segmentation, the

model is fit to a series of point-based clinician-segmented prostate contours

exported from conventional prostate brachytherapy planning software. The

algorithm is fully-autonomous, incorporating only the a priori knowledge from

the statistical shape model for segmentation of the prostate within B-mode

images.

Within the context of this thesis, algorithmic prostate segmentation repre-

sents another step towards full computer integration and assistance throughout

the pre-operative planning and intra-operative needle insertion stages compris-

ing prostate brachytherapy procedures. This chapter is organized as follows.

The prostate contour model and statistical prostate shape model are presented

in Sec.7.2. The proposed superpixel algorithm for the ultrasound image pro-

cessing step is covered in Sec. 7.3. The experimental setup and evaluation of

the proposed algorithm as applied to in-vivo patient images are given in Sec.

7.4. The conclusions and results are summarized in Sec. 7.5.
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7.1 Prostate Segmentation Overview

Our proposed prostate segmentation algorithm, shown in Fig. 7.2, consists of

three main parts: a statistics-based active shape model, superpixel image clus-

tering, and graph-cut based segmentation. In Sec. 7.2, a 3D prostate contour

model is proposed, and, in the active shape paradigm, this contour model is

fit to a series of 3D clinician-segmented prostate contours. After fitting, the

a-posteriori statistics of a Gaussian distribution based model are found. This

Gaussian distribution model thus forms the active shape prostate model and is

used to estimate the range of values (and corresponding probability) for each

parameter in the model.

With the active shape model found, the next step in the prostate segmen-

tation algorithm involves the image processing of a full set of axial images for

a patient (capturing the 3D shape of the prostate). As a preprocessing step,

outlined in Sec 7.1.2, the input images are warped to compensate for the high

radial curvature caused by the TRUS probe. Then a novel superpixel algo-

rithm, given in Sec. 7.3, is used on each image in the set to cluster contiguous

pixels together, based on statistical similarity, into large regions of superpix-

els. By utilizing the statistical dissimilarity between neighboring superpixel

regions after processing the edges of the prostate in each axial image can be

found.

Conceptually, measuring the statistical dissimilarity between superpixel

regions is a form of texture discrimination and edge feature extraction. In

[106], a model incorporating pixel cluster covariance was used to create a line

and edge feature extractor for generic images. This concept was incorporated

in the work of [107], where a line/edge detector was formulated based only

on the gradient of the pixel region covariance (change between covariance in

neighboring pixel regions). Expanding on the use of covariance for edge extrac-

tion, [108] showed that a statistical distance measurement, the Bhattacharyya

space, allowed for the discrimination of various textures within an image. The

Bhattacharyya space was applied to large-scale region-of-interest (ROI) find-

ing and feature segmentation in [109]. [110, 111] demonstrate that comparable
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ROI and feature segmentation can be performed on ultrasound images using

speckle and image statistics.

For the final 3D prostate contour segmentation, a graph-cut based method

is used to find the most likely prostate contour, based on the active shape

model and informed by edge features detected by the superpixel algorithm.

This algorithm is thus a hybrid method which incorporates information from

an active shape model into a graph-cut based segmentation system. The work

of [112] proposed a similar style of hybrid system, where an active contour

model is progressively moved and deformed through graph-cut based opti-

mization. This hybrid method was shown to be robust to image noise and

large edge discontinuities. This robustness to edge discontinuities is of partic-

ular interest in medical imaging, where [113] applied a similar hybrid active

contour graph-cut model, and used a series of graph-cut based expansion and

contraction steps to move the contour and segment out a kidney in CT image

slices. In a similar vein to our proposed method, [114] proposed augmenting

an active shape - active appearance model (incorporating both contour and

image statistics for the organ of interest) with a graph-cut based optimization

to delineate 3D contours of livers, kidneys, and spleens in CT image volumes.

7.1.1 Patient-Attached Coordinate System

For planning in a clinical prostate brachytherapy procedure, a series of ultra-

sound images are taken as a transrectal ultrasound (TRUS) probe is translated

forward along the z-axis (towards the head of the patient)1; see Fig. 7.1 and

Fig. 7.3. The prostate images are taken at regular distances apart to obtain a

3D volume and shape of the prostate. In standard clinical practice, a clinician

manually outlines the contour of the prostate in each image slice in order to

delineate the 3D contour of the prostate when the contours across all of the

image slices are used together. This contour is then used in dosimetry calcula-

tions and a surgical plan, consisting of needle insertion trajectories and target

1Please note that, in order to match the terminology and coordinate systems typically
seen in the literature, the coordinate axes used here differ from the coordinate systems used
in preceding chapters of this thesis.
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Figure 7.3: Diagram indicating axial, sagittal, and coronal anatomical planes.
In this work the patient-attached coordinate system is defined with the x,y,z
axes being normal to the sagittal, coronal, and axial planes respectively.

locations for the placement of radioactive seeds within the prostate, is created.

The goal of this work is to automate the 3D prostate contouring process

through segmentation of the prostate in all of the TRUS image slices, P I, for

a particular patient. Each TRUS image, denoted by PIi, within the image set

captures an axial slice of the prostate (in the Px- Py plane). The image set

is being described in terms of its placement and size in the patient attached

frame, {P}, with distances measured using millimetres. Each axial image slice

is taken at a depth P zi, where, for the patient image sets used in this work, the

slices are spaced at 5 mm intervals. The placement of the patient-attached

coordinate frame {P} is chosen such that the first image in the set PI0 is

located at P z0 = 0. The full set of image slices taken for a particular patient

is given by UI =
{
UI0, UI1, ..., UInImg

}
, and consists of a number, nImg, of

image slices taken at depths Pd = {0 mm, 5 mm, ..., nImg · 5 mm}, where P zi

is the i-th element of Pd.
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7.1.2 Ultrasound Image Preprocessing

For convenience, a second frame, {U}, will be defined for the patient axial

TRUS image set, where the measurement units for {U} are based on the

individual pixel positions in the axial Ux- Uy plane for the ultrasound image;

See Fig. 7.4(c). The depth of an image in the ultrasound frame, Uzi, is given

in millimetres and is equivalent to the depth P zi. A point within the patient

attached frame, P~p = [ Px, Py, P z, 1]>, can be transformed by a matrix, U
PT ,

to a point in the the ultrasound frame, U~p, given by

U~p = U
PT

P~p
Upx
Upy
Uzi
1

 =


spx 0 0 tpx
0 spy 0 tpy
0 0 1 0
0 0 0 1



Px
Py
P zi
1

 , (7.1)

with the pixel-to-millimetre scaling of the US image2 given by spx and spx and

a translational offset between the origin of {U} with respect to the origin of

{P} expressed as tpx and tpy.

Being as the frame {U} is used to describe the coordinates of a pixel

within an image, the position vector U~p of the pixel will instead be de-

noted by ( Upx, Upy). The Uzi coordinate in this notation is omitted for

brevity as the image warp, and subsequent superpixel image processing, work

on a single 2D image slice at a time. Since the Upx and Upy coordinates

describe image pixel locations, for an image UIi, the values of Upx and

Upy will be restricted to being positive whole numbers and limited by the

height, UIheight, and width, UIwidth, of the image, such that { Upx ∈ N :

1 ≤ Upx ≤ UIwidth} and { Upy ∈ N : 1 ≤ Rpy ≤ UIheight}. A func-

tion ( Upx, Upy) = Trunc( Upx, Upy, UIheight, UIwidth) will first limit and then

round any input position value such that it is returned as a valid ( Upx, Upy)

pixel position. The grayscale intensity (brightness) of an individual pixel in

the TRUS image at the location ( Upx, Upy) is denoted as UIi( Upx, Upy).

2For the ultrasound images used in this work, the pixel-to-millimetre scaling values are
spx = 5.5769 px

mm and spy = −5.5769 px
mm . The origin of {P} was defined to be the origin of

the ROI coordinate frame, ( Upxc,
Upyc), giving a translation offset from the origin of {U}

to {P} of tpx = 33.4615 and tpy = 441.1758.
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For computational efficiency, we will use an image warp as a preprocessing

step on all of the ultrasound images. This preprocessing step is done to limit

the prostate segmentation algorithm to operate within in a region-of-interest

(ROI) in the TRUS image. The ROI includes only the actual US image (and

excludes any background pixels outside of the ultrasound image field-of-view).

The superpixel algorithm, described in Sec. 7.3, will then operate only on

pixels within this ROI. Due to the small diameter of the TRUS probe, the

ultrasound transducer elements have significant curvature, and the desired

ROI consists of a large arc of pixels in the TRUS image; see Fig. 7.4(a).

To isolate the ROI, the input B-mode TRUS image is warped through

the use of a modified 2D Cartesian-coordinate to polar-coordinate transform.

The resulting image, RId, will be referred to as the ROI image throughout this

chapter. The pixels of the ROI image are referred to by RId( Rpx, Rpy), where

a new coordinate frame {R} is defined for the pixels with the ROI image. The

transformation between a pixel in the TRUS image {U} frame and the ROI

image frame {R} is given by

Rpx = srx
(
atan2( Upy − Upyc,

Upx− Upxc) + trx
)

Rpy = sry

(√
( Upy − Upyc)2 + ( Upx− Upxc)2 + try

)
,

(7.2)

with the point ( Upxc,
Upyc) being the origin of the new ROI (polar-coordinate

system). The output Rpx and Rpy values of the transformation are converted

to whole pixel index values that lie within a desired ROI image width, RIwidth
, and height, RIheight, using the function

( Rpx, Rpy) = Trunc( Rpx, Rpy, RIheight, RIwidth). Thus the coordinates of a

pixel in the ROI image ( Rpx, Rpy) are in the sets { Rpx ∈ N, 1 ≤ Rpx ≤
RIwidth} and { Rpy ∈ N, 1 ≤ Rpy ≤ RIheight}. The constants srx and sry

implement a scaling component within the transformation, so that the output

ROI image will be of a desired size, and in the same manner, the trx and try

constants are chosen to translate the warped pixels to be within valid ROI

image locations. The result of this warping on pixels within the TRUS image

ROI can be seen in Fig. 7.4(b) with the coordinate frame {R} shown in Fig.

7.4(d). The warped TRUS images will be input into the superpixel algorithm,
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covered in 7.3, to identify edges and salient features that will be used for

prostate segmentation.

7.2 Active Shape Prostate Contour Model

To evaluate the radiation dosimetry and create a surgical plan for a prostate

brachytherapy procedure, a clinician is required to manually segment, or de-

lineate the 3D contour, of the prostate. When using axial US images to create

the surgical plan, planning software will allow the clinician to select points

in each axial TRUS image which correspond to the edge of the prostate,

thereby contouring the prostate. This prostate contour can, in general, be

represented by a polygon that is comprised of a number of vertices, p(v,i) =

[ Px(v,i),
Py(v,i),

P z(v,i)]
>, with v being an index for the vertices, in the axial

image slice i (from the index of the TRUS image PIi). For each axial slice the

polygon can be represented by the vectors

P~xi = [ Px(0,i),
Px(1,i), ...,

Px(nv ,i)]

P~yi = [ Py(0,i),
Py(1,i), ...,

Py(nv ,i)]

P~zi = [ P z(0,i),
P z(1,i), ...,

P z(nv ,i)],

(7.3)

where nv is the number of the vertices in the polygon. The position point

vector is defined in terms of the patient-attached frame, {P}, and can be

converted, for a particular image slice i, to the pixel locations in the US image

by using the transform U
PT , given in (7.1). The pixels inside of the prostate

contour polygon in the US pixel frame, {U}, are defined as being inside the

prostate.

To smooth out the point-based contour, we will propose a prostate contour

model in Sec. 7.2.1 to describe the shape of the prostate in axial image slices.

This contour model is designed to allow for the creation of the prostate shape

model and ensures that algorithmic prostate segmentation will result in a

closed prostate contour with no self-intersections. The probabilistic prostate

shape model, described in Sec. 7.2.3, forms the basis of the probabilistic

prostate shape model that will be incorporated, by the graph-cut procedure,

into the prostate segmentation algorithm.
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(a) TRUS image with region-of-interest
indicated by the shaded blue area.

(b) Warped TRUS image with region-of-
interest indicated by the shaded blue area.

(c) TRUS image Ux− Uy axes. (d) Warped TRUS region-of-interest im-
age Rx− Ry axes.

Figure 7.4: Ultrasound image preprocessing region-of-interest and warping.
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7.2.1 Axial-image Prostate Contour Model

In this section, we propose a model which describes the shape of the prostate

in an axial TRUS image. This sliced-based contour model is designed to

incorporate physical and geometric attributes of the prostate in axial images,

such that the contour of a the prostate should be a smooth continuous curve

with no self-intersections. To achieve this, the model is implemented using a

weighted sum-of-sines series within a cylindrical coordinate system3. Given a

center point P c = [ Pxc,
Pyc]

>, the standard form of the axes in the cylindrical

coordinate system4 is defined with respect the patient attached frame, such

that
θ = atan2( Py − Pyc,

Px− Pxc)

r =
√

( Py − Pyc)2 + ( Px− Pxc)2

z = P z,

(7.4)

where the angle, θ, is constrained to the range −π ≤ θ < π, by definition r is

positive semi-definite, and z is the image slice depth ( P z = P zi). For each

image slice i, The prostate contour model, Ri(θi), describes the radius of a

curve, within the cylindrical coordinate system, as a weighted sum-of-sines (a

finite length Fourier Series). The general form of the model is given by

Ri(θ) = α0 +
nω∑
j=1

αj sin(jθ + φj), (7.5)

where nω is the number of sine components in the model, j controls the fre-

quency of sine components in the model (j = [1, 2, ..., nω]), α0 is a positive

constant (α0 > 0) , the αj terms weight the magnitude of each of the sine

functions, and the φj terms are phase offsets for the sine functions. The model

consists of a number of modes, where the j-th mode refers either to the con-

stant, α0 for mode 0, or weighted sine component of the model (αj sin(jθ+φj)).

3The left-hand superscript has been deliberately omitted for axes of the cylindrical co-
ordinate system to indicate that the origin of the system (the center point) is not fixed
and changes from prostate to prostate. An optimal center point is found in (7.11) which
minimizes the SSD of the curve with respect to the input contour points.

4The contour model is based on a Cartesian-to-cylindrical transform of points in the
patient-attached frame, {P}, and should not be confused with the image warping transform
given in Sec 7.1.2
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In the patient frame, the model describes the curve

Px = Ri(θ) · cos(θ) + Pxc

Py = Ri(θ) · sin(θ) + Pyc

P z = P zi,

(7.6)

for a particular image slice i, and the model can thus be seen as imposing a θ

dependence onto the radius of a planar curve. The output value of Ri(θ) must

be strictly positive over the domain of theta, where Ri(θ) > 0, ∀ −π ≤ θ < π.

Enforcing the constraint that Ri(θ) is strictly positive ensures that the contour

model is both smooth, continuous and has no self-intersections in the patient-

attached frame.

The modes of the model, j, modify the frequency of the sine components.

The first four modes of the model, j = [1, 2, 3, 4], are shown in the patient-

attached frame in Fig. 7.5, where the sine component’s frequency dependence

on j allows for increasing contour curvatures to be described by the model.

Of note, the first mode of the model, mode 1, appears to just shift the center

point of the model as the weights, αj, for all of the modes of the model were

chosen to be unity; however when α0 6= α1 the first mode will result in elliptical

curves instead.

In this work, the parameters to be estimated when fitting the model to

the manual clinician contours consist of the weight constants αj, where j =

[0, 1, ..., nω]. The phase offset values φj, with j = [1, ..., nω], are chosen before

parameter estimation and remain constant during optimization. These phase

offsets are kept constant for a number of practical reasons, with the primary

reason involving the creation of the statistical prostate shape model, discussed

in Sec. 7.2.3, where the parameter values of αj would not be statistically

independent of the value φj. This parameter dependence would significantly

increase the amount of input data (patient contour datasets) and statistical

analysis required before the active shape model would be able to perform any

useful inference.
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Figure 7.5: Modes one through four of the prostate model overlayed on mode
0 (dashed red line) at j = 0.
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7.2.2 3D Prostate Contour Model Fitting and Results

A constrained least-squares optimization will be used to fit the manually seg-

mented prostate contour points to the contour model. While the model is

defined with respect to the prostate in a single image slice, PIi , the model

fitting optimization incorporates information from the entire patient data set,

where all nImg slice-based contours in P I will be used. Each slice’s contour

will be represented through a model, Ri(θ), with the parameters of the model

being estimated for that particular slice. By evaluating the goodness-of-fit for

all of the slice models across the patient image set an optimal, patient specific,

center point and rotation offset for the model will found.

From the introduction to Sec. 7.2, the contour points of the prostate,

segmented by the clinician, are given in the point vector form described by

(7.3), with a particular contour, in slice i, having nv contour points. A

rotation offset will be incorporated into the center point vector, such that

P c = [ Pxc,
Pyc,

Pφc]
>. This rotation offset aims to reduce any fitting arte-

facts caused by constant φj values in the model and forms an important part

of prostate shape model generation given in Sec. 7.2.3. Being as the model

is formulated in cylindrical coordinates, the prostate contour points, for im-

age slice i, are defined in terms of the patient-attached frame and must be

transformed by

~θi = atan2( P~yi − Pyc,
P~xi − Pxc)− Pφc

~ri =
√

( P~yi − Pyc)2 + ( P~xi − Pxc)2

~zi = P~zi,

(7.7)

with P~xi,
P~xi, and P~zi being the clinician-segmented points; the values of

Pxc,
Pyc, and Pφc come from the augmented center point vector, and ~θi, ~ri,

and ~zi are the transformed contour points. The individual elements of the

transformed contour point vectors are given by

~θi = [θ(0,i), θ(1,i), ..., θ(nv ,i)]

~ri = [r(0,i), r(1,i), ..., r(nv ,i)]

~zi = [z(0,i), z(1,i), ..., z(nv ,i)],

(7.8)
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with each
{
θ(v,i), r(v,i), z(v,i)

}
set of points being mapped from the set{

Px(v,i),
Py(v,i),

P z(v,i)
}

of contour points.

The parameters of the model are denoted by βi = [α0, α1, ..., αnω ] and are

found through the least squares optimization

argmin
βi

∥∥∥~ri −Ri(~θi|βi)
∥∥∥ (7.9)

where Ri(~θi|βi) is the model, incorporating parameters βi, and the optimiza-

tion is constrained, such that

Ri(~θi|βi) > 0, ∀ − π ≤ θ < π, (7.10)

holds for the fit βi parameters. A second least-squares optimization will

be performed in order to find the optimal augmented center point, P c =

[ Pxc,
Pyc,

Pφc]
>, for fitting the 3D model. The augmented center point cor-

responds to the center point of the prostate for each patient. Having an op-

timal P c allows for the prostate shape model to be found directly, as find-

ing P c removes the relative translation and rotation between two prostate

contours in different image sets. Here the parameters to be optimized are

βc = [ Pxc,
Pyc,

Pφc]. The least-squares optimization, under the constraint

given in (7.10), is then

argmin
βc

nImg∑
i=0

argmin
βi

∥∥∥{~ri|βc} −Ri(
{
~θi|βc

}
|βi)

∥∥∥ (7.11)

where, {~ri|βc} and
{
~θi|βc

}
are the transformed points calculated from (7.7).

Thus the optimal augmented center point is found which minimizes the slice

contour model error across all slices, i, in the image set (i = [0, 1, ..., nImg]).

This fitted contour model, incorporating the prostate contour information from

all 2D slices thus describes the 3D contour of the prostate. The resulting 3D

contour model, after fitting to all of the patient contour slices, is shown in Fig.

7.6, where input contour points are the red dots and the blue curves are the

resulting prostate contour model.

To evaluate the accuracy of the prostate contour model, the mean-squared

difference and maximum absolute error between the output model and the
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Figure 7.6: Input clinician contour points and resulting 3D prostate contour
model curves.
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input contour points will be used. The mean-squared error is given as

MSE =
1

npt

nImg∑
i=0

{~ri|βc} −Ri(
{
~θi|βc

}
|βi), (7.12)

where npt is the total number of clinician-segmented contour points that the

model was fit to. The maximum absolute error is given as

MAE = max
i

max
v

∣∣∣{~ri|βc} −Ri(
{
~θi|βc

}
|βi)

∣∣∣ , (7.13)

with v being the index of a vertex point within the input slice contour points;

hence the MAE is the maximum absolute error between the model and all

of the input contour points. These two metrics were evaluated for a set of

100 3D clinician-segmented contours (consisting of 7 to 13 2D slice contours

each) based on a TRUS images of the prostate and a set of 100 3D clinician-

segmented contours (consisting of 7 to 16 2D contours each) based on MR

images of the prostate. While this chapter is focused on US prostate segmen-

tation, the second MR data set was evaluated to see if the model had any

bias with respect to input imaging modality. In these results, and for the

prostate contour after graph cutting segmentation, only four modes were used

in the model (nω = 4), and the phase offset values, φj, were chosen to be

φ1 = 0, φ2 = π/2, φ3 = 0, and φ4 = π/2; as shown in Fig. 7.5. For each

contour slice, the four mode model is given by

Ri(θ) = α0 + α1 sin(θ) + α2 cos(2θ) + α3 sin(3θ) + α4 cos(4θ) (7.14)

where the parameters to be fit for slice i are βi = [α0, α1, α2, α3, α4]. The

mean value and standard deviation of the MSE and MAE across the 100 con-

tours and the range (minimum-to-maximum) of the MAE for the two data

sets is presented in Table 7.1. The results show that the contour model has

an average sub-millimetre mean-square error accuracy and a mean maximum

absolute error less than 1.6 mm, regardless of imaging modality. The results

also indicate that, by using only four modes, the clinician-segmented contours

are modelled with acceptable accuracy, where the largest discrepancy (maxi-

mum absolute error) between the input clinician contour point and the contour

model across the two data sets was under 2.2 mm.

117



Table 7.1: Prostate Model Fitting Results

Data Set Average
MSE (mm)

Average Max Abs
Error (mm)

Range of Max Abs
Error (mm)

US Contours 0.611 (±0.165) 1.519 (±0.310) 0.679 − 2.031
MR Contours 0.616 (±0.167) 1.565 (±0.305) 0.794 − 2.124

7.2.3 Statistical Prostate Shape Model

For the prostate segmentation algorithm a 3D probabilistic shape model of the

prostate will be created. This shape model is used to find the likelihood of

the edge of the prostate being at a particular point. To generate the prostate

shape model, a statistical distribution of the prostate contour locations is

found by analysis of the prostate shape information contained in a number of

3D contour models from different patients (image sets). The resulting shape

model characterizes the average prostate shape, and variance of the prostate

shape, measured across a large number of 3D contour models.

After fitting in (7.11), a particular 3D contour model, given an index m,

will be denoted by

R(θ, i|βm) = Ri(θ|βi) (7.15)

where βm contains the model parameters of all the slices, mnImg for a particular

prostate, such that βm = [β0,βi, ...,βmnImg ].

The probabilistic prostate shape model will incorporate many, nModel, 3D

contour models from different patient TRUS images, and is created using lin-

ear interpolation of Gaussian distributions. The radius R, from the 3D contour

models, will be evaluated at a discrete number of θc points to build the proba-

bility model for each slice. The probabilistic prostate shape model will then be

in the same slice-based 3D form as the contour model, in the cylindrical coor-

dinate system. Each Gaussian component of the shape model will be centered

at ~θ = [θ1, θ2, ..., θnθ ] points with the vector

~θ =

[
−π,−π + 2π

1

nθ − 1
,−π + 2π

2

θ − 1
, ...,−π + 2π

nθ − 1

nθ − 1

]
(7.16)

giving nθ points sampled at regular intervals in the range (−π, π]. The Gaus-
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sian normal distribution for a single point, θc, in contour slice i, is

pc(r|θc, i) =
1

w(c,i)

√
2πσ2

(c,i)

exp

(
−

(r − µ(c,i))
2

2σ2
(c,i)

)
, (7.17)

where wc,i is a normalization constant, µ(c,i) is the mean radius, and σ(c,i) is the

standard deviation for all of the shape model at the θc point. Note that the θc

points are used for all slices of the shape model. The CDF of this distribution

is given by

Pc(R ≤ r|θ, i) =

∫ r

0

p(r|θ, i)dr −
∫ 0

−∞
p(r|θ, i)dr

Pc(R ≤ r|θ, i) =
1

2

[
erf

(
(r − µ(c,i))

σ(c,i)
√

2

)
− erf

(
(0− µ(c,i))

σ(c,i)
√

2

)] (7.18)

where erf() is the error function, and the normalization constant is given by

w(c,i) =
1

2

[
1− erf

(
(0− µ(c,i))

σ(c,i)
√

2

)]
(7.19)

such that the probability of Pc(0 ≤ R ≤ ∞|θc, i) = 1 as desired. With this

normalization constant, the mean and standard deviation of the radius at θc,

across all nModel contour models, are calculated by

µ(c,i) =
1

nModel

nModel∑
m=1

R(θc, i|βm) (7.20)

and

σ(c,i) =
1

nModel + 1

nModel∑
m=1

(
R(θc, i|βm)− µ(c,i)

)2
(7.21)

in the same manner as a standard Gaussian distribution.

To find the contour edge probability for any value of θ in the slice, linear

interpolation between the two closest θc distributions is used. For a point θ,

let θ−c be the closest θc point that is less than θ and θ+c be the closest θc which

is greater than θ. If θ is between the largest θc and π (θnθ < θ ≤ π), then

θ−c = θnθ and θ+c = −π, so that the contour probabilities at −π and π are the

same. The interpolated probability for all θ values is then

p(r|θ, i) =

(
θ − θ−c
nθ − 1

)
pc(r|θ−c , i) +

(
1− θ − θ−c

nθ − 1

)
pc(r|θ+c , i) (7.22)
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Figure 7.7: Probabilistic prostate shape model for entire prostate with the
blue lines representing the mean contour location and the red lines showing
one standard deviation away from the mean.

where normalization of (7.17) means that the interpolated shape model value

is also a normalized (standard) probability. The CDF of the probability for

the shape model for any point θ is given by

P (R ≤ r|θ, i) =

(
θ − θ−c
nθ − 1

)
Pc(R ≤ r|θ−c , i)+(

1− θ − θ−c
nθ − 1

)
Pc(R ≤ r|θ+c , i)

(7.23)

where R ≤ r is the probability that the edge of the prostate is located at some

point less than r for a given value of θ. The resulting mean and standard

deviation of the probabilistic prostate shape model, from a set of 100 prostate

contours segmented by clinicians from TRUS images is shown in Fig. 7.7.

When creating the shape model, the number of contour slices between 3D

models may vary; nImg0 may or may not equal nImg1 for instance. The

number of slices, nSlice, in the prostate shape model will be limited to the

smallest number of slices, nImg, across all of the 3D contour models. To
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line up the slices, the prostate shape model components are calculated for

all models with nSlice images. For any contour model with more than nSlice

images, nSlice components of the 3D contour model are compared to the mean

prostate shape components, such that

MD(iz) =
nSlice∑
i=0

nθ∑
c=1

∣∣R(θc, i+ iz|βm)− µ(c,i)

∣∣ (7.24)

with iz being a slice index offset. The model difference is evaluated starting

at index iz = 0, the first nSlice components are compared to the mean 3D

contour in the prostate shape model, then the next nSlice components, iz = 1,

are evaluated, continuing until iz = nImgm−nSlice. The set of slices with the

lowest model difference, starting at iz, will be incorporated into the prostate

shape model by updating µ(c,i) and σ(c,i). Essentially, the nSlice components

from each 3D contour model which best match the prostate shape model are

used.

7.3 Superpixel Optimization Incorporating Im-

age Statistics

In this section, we propose a superpixel algorithm which incorporates statisti-

cal information from an image to detect edges and salient features. Superpixel

algorithms, such as the SLIC algorithm[105], group individual pixels within

an image into large clusters (or superpixels). An iterative method is used

to update which pixels are grouped into each cluster to minimize a score or

distance function. This work will follow a similar design for pixel-based clus-

tering and proposes an additional optimization (or clustering) layer that is

built on top of, and groups together, the pixel-based clusters. The regions in

the input image delineated by this second layer will be considered the output

superpixels of the algorithm, and will be used as the basis for the prostate

contouring and segmentation covered in Sec. 7.2. The algorithm will update

and optimize the pixel clusters and superpixel regions in an iterative manner,

where in each iteration the pixel clusters will first be updated (Sec. 7.3.1) and

then the superpixel regions will be updated (7.3.2). An outline of the complete
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algorithm along with an example of the processing and output of our proposed

superpixel algorithm will be given in Sec. 7.3.3.

While the target application of our proposed superpixel algorithm is ultra-

sound image segmentation, it can be applied in theory to aid in the segmenta-

tion of any generic grayscale image. To more closely match the notation used

in the literature5, in this section I(i) refers to the pixel intensities (brightness

values) of an input image and individual pixels are denoted by an index i or

equivalently a 2D position (xi, yi).

7.3.1 Pixel Clustering

At the pixel level, superpixel clustering will be performed on an input image

I(i), where Iwidth and Iheight are the width and height of the image. An

iterative method will be used to group individual pixels, i, in I(i) into clusters

Cj. A pixel may only belong to a single cluster, and from the work of [105], a

label image6, L(i), is created to indicate which cluster that the pixel is grouped

into, where L(i) = j signifies pixel i is a member of cluster Cj. The pixel-

based clustering will be described in two separate stages, the initialization

stage, where initial pixel clusters are created from the input image, and the

update stage, which is done iteratively to optimize which cluster a particular

pixel belongs to.

At initialization, the label image is divided into a regular grid of squares

(or approximately a regular grid for a non-square input image). The chosen

height and width of each grid, sgrid, breaks the input image into ns square

sections, where ns =
Iwidth·Iheight

s2grid
(or ns ≤ Iwidth·Iheight

c2grid
when the input image is

non-square). To assign the pixels to an initial set of clusters, each grid square

is given a unique index, j, where j = {1, 2, .., ns}. The label for all of the

pixels within a grid square is then updated, L(i) = j, to match.

With the label image created and the initial pixel clustering performed, an

5The superpixel algorithm will be applied to the warped ROI images after preprocessing,
where I(i) ≡ RId(Rpx, Rpy) with the pixel index i and its corresponding location (xi, yi) ≡
(Rpx, Rpy)

6The label image L(i) is identical in size (width and height) to the input image I(i).
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array of cluster elements, C, will be created. The array takes the form

C = [C0, C1, ..., Cnc ]
>, (7.25)

where each element is a pixel cluster, Cj, containing a set of parameters to be

calculated. The cluster parameters are expressed as

Cj = [µj, xj, yj], (7.26)

with (xj, yj) being the centroid of the cluster and µj denoting the average

intensity of the pixels in the cluster. The values of µj,xj, and yj are computed

through

µj =
∑
i∈Cj

I(i)

njpx

xj =
∑
i∈Cj

xi
njpx

yj =
∑
i∈Cj

yi
njpx

,

(7.27)

where xi and yi are the x-y coordinates of the pixel i and njpx is the number

of pixels i ∈ Cj (the set of all pixels i in the cluster Cj).

The distance of an individual pixel i with respect to the cluster to which it

belongs, Cj, will be stored in a distance image, D(i), which is of the same size

as the input image, I(i), and which will be used when updating the pixel label

image L(i). To ignore regions in the US image which contain invalid pixels,

for instance those pixels in the warped US image that are outside the desired

ROI (i /∈ IROI , see Fig. 7.4(b)), the distance image will be initialized to allow

only valid pixels to be considered during cluster updating. The pixel value in

the distance image will be set to infinity (or a large positive value) for pixels

inside of the ROI and −1 for pixels outside of the ROI, such that

D(i) =

{
∞ for i ∈ IROI
−1 for i /∈ IROI

(7.28)

with i ∈ IROI and i /∈ IROI being the pixels inside of and outside of the ROI,

respectively. The invalid pixels are removed from their respective clusters

through modifying the label image, such that L(i) = 0, ∀ {i /∈ IROI}. If there
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Figure 7.8: Hierarchy created by the superpixel algorithm, showing individ-
ual pixels, pixel clusters (C1, C2, C3, C4, C5 and,C6), and superpixel regions
(R1, R2, and R3), where the regions are the graph verticies interconnected
with graph edges.

are large areas outside of the ROI then there may be several clusters which

no longer contain any pixels. In this case, the clusters without any pixels are

removed from the cluster array so that C only contains valid pixel clusters.

7.3.2 Superpixel Regions

The input image pixels are now grouped into SLIC style clusters as proposed

in [105], through the creation of the label image. We now propose our ex-

tension to the SLIC superpixel algorithm with a second optimization layer.

This additional layer is the mechanism through which image statistics will be

incorporated into the superpixel algorithm. The underlying implementation

of the second layer incorporates a graph component, which will allow for the

output of the superpixel algorithm to be segmented by graph cutting in a

straightforward manner. The components of this second layer will be referred

to as superpixel regions, which will be stored in a list R, given by

R = [R0, R1, ..., Rn],> (7.29)
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with Rk denoting the individual regions. In a similar manner to a pixel cluster,

Cj, being comprised of a number of individual pixels, a region Rk is comprised

of a number of pixel clusters (Cj), thus building a second optimization layer on

top of the pixel clusters. This second layer creates a pyramid-type hierarchy

in this superpixel implementation, as diagrammed in Fig. 7.8.

Each region consists of a series of calculated values, given by

Rk = [F̂k, xk, yk, j
?
k ], (7.30)

where j?k is the list of indexes to the pixel clusters (Cj) which make up the

superpixel region, (xk, yk) is the centroid of the region, and F̂k is the empirical

cumulative density function (CDF) of all of the pixels contained within the

region. Being as a region is made up of a number of pixel clusters, all of the

pixels belonging to the region’s subordinate clusters are defined to be pixels

of the region. Formally this is described as the union of all of the pixels in the

component clusters of Rk, given as

i ∈ Rk =
⋃
j∈k

i ∈ Cj, (7.31)

where j ∈ Rk are the component clusters of the region. The centroid values

of the region, xk and yk, are calculated as follows

nkpx =
∑
j∈Rk

njpx

xk =
∑
j∈Rk

njpx · xj
nkpx

yk =
∑
j∈Rk

njpx · yj
nkpx

,

(7.32)

with njpx being the number of pixels in a cluster and nkpx being the total

number of pixels within the region. The empirical CDF, F̂k, allows for a

metric based on pixel intensity (image) statistics within a region; the CDF is

calculated through

F̂k(x) = Count (L(i ∈ Rk) ≤ x)

F̂k = [F̂k(0), F̂k(1), ..., F̂k(255)],
(7.33)
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given a counting function, Count(), which returns the number of pixels within

a set, in this case, the set of pixels in the region Rk with an intensity value,L(i),

less than I. This is essentially the cumulative summation of all the elements

in the image intensity histogram, for all of the pixels in the region i ∈ Rk.

The superpixel region optimization uses a graph-based component, G to

keep track of which regions are adjacent to one another, called neighbours.

For this work, an undirected graph of the form

G = {V , E}, (7.34)

is used. Here V are the vertices of the graph which are interconnected by edges

E . The vertices of the graph will be the superpixel regions and edges define

which regions are neighbours to one another; the vertices and edges have the

form

V = {0, 1, ...nR} (7.35)

E = {k?v1, k?v2}, (7.36)

with V being a set of all of the region indexes (k). The edges in the graph E are

described by a set of double-valued elements, kv1 and kv2, with an individual

line edge element connecting two vertices given by Ev = (kv1, kv2), where kv1

and kv2 are the indexes of two neighbouring regions Rk1 and Rk2. With the

graph being undirected, the ordering of the elements in an edge is ignored,

such that (kv1, kv2) ≡ (kv2, kv1). Additionally, under this independence from

element ordering, the connection between two vertices kv1 and kv2 is described

by a single edge without duplication. For example, only one of the two edge

elements Ea = (kv1, kv2) and Eb = (kv2, kv1) are allowed to be a member of the

set E .

The adjacency graph is used to definite a region’s neighbours and will be

used when optimizing region placement and size. The neighbourhood of a

region will also be used as part of the weighting to determine the optimal

prostate segmentation graph-cut. The neighbours to a region, Rk, are defined

as a set of all of the regions, Rm, which have a graph edge connected to Rk.

The set of neighbours, Nk, is derived from the elements Ev = (kv1, kv2) in the
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edge set E , where Nk is given by

Nk1 = {kv1, ∀Ev where kv2 = k}

Nk2 = {kv2, ∀Ev where kv1 = k}

Nk = Nk1 ∪ Nk2

(7.37)

such that Nk contains all of the kv1 and kv2 regions that are paired with

(connected to) k in any edges of the graph E .

To initialize the regions and the graph, a region Rk is created for each

cluster Cj such that k = j, resulting in an initial one-to-one mapping between

the clusters and regions. Being as pixel clusters are created in a grid pattern

(see Sec. 7.3.1 and Fig. 7.11(a)), the graph G can be easily created by finding

the (4-connected) grid squares that adjoin each other; see Fig. 7.11(b) and

Fig. 7.11(c). With the pixel clusters, superpixel regions, and graph structure

created, the algorithm will then work to reduce the number of superpixel

regions while simultaneously enlarging the area (number of pixels) contained

within those regions. The relationship between the individual pixels, the pixel

clusters, and superpixel regions along with the graph structure are shown in

Fig. 7.8. Explicitly, in Fig. 7.8, R1 is a superpixel region comprised of three

pixel clusters C1, C2, and C3, with neighbouring regions R2 and R3 connected

via graph edges.

7.3.3 Superpixel Algorithm

After both the pixel clusters and superpixel regions have been initialized, the

algorithm will step through a series of update steps, such that large superpixel

regions will be created. These update steps work to reduce the number of

regions in an image by increasing the area (number of pixels) belonging to

each region. Using the region layer and its associated graph, the algorithm

works to decrease the number of regions by joining together statistically similar

regions, returning a smaller number of larger regions each process iteration.

This statistics-based approach creates regions from which edges and salient

features can be found in a straightforward manner. This section will provide

an explanation of the update process, with final segmentation of the resulting
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superpixel regions described in Sec. 7.4.

Each update step can be broken into two sub-steps, the first of which works

at the individual pixel level to determine which pixels belong to a particular

cluster, acting to increase or decrease the size of the clusters with each step.

The second sub-step controls the growth of the superpixel regions by increasing

the number of clusters belonging to each region and grouping together pixel

clusters to maximize region size. This region update step incorporates the

region statistics to only group together regions which have comparable image

statistics, thus separating regions which vary in average pixel intensity and

standard deviation (or covariance) of pixel intensity. This statistical separation

uses the premise developed in [107], where edge and corner features in a generic

image have been shown to have distinct statistical properties from smooth

features in the image. During the region update step a hard limit is placed

on how dissimilar two regions can be when joined together, with small regions

being retained if they are distinct enough from neighbouring regions.

The algorithm uses a few parameters which can be tuned to control how the

pixel clusters and superpixel regions are modified during updating. The use of

these parameters will be described in full in the text for the cluster update and

region update sub-steps. One of the parameters of the algorithm is a weighting

vector, λ, is used to determine the goodness-of-fit for a particular pixel to a

cluster and to limit region-to-region statistical similarity. The values within

this vector are

λ = [λµ, λL2, λKS] , (7.38)

with λµ and λL2 being used in the cluster update step to weight a distance

function (score) between a pixel and nearby clusters. The value λKS will be

described in the region update step and defines the limit on how dissimilar

two regions must be before they cannot be merged.

There are a few constraints on the output superpixels of the algorithm

which will either be enforced by the algorithm or be checked at the end of

each iteration to determine when the optimization is complete (to be discussed

below). The desired size of the output superpixel regions is defined as rdarea
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with constraints on the minimum pixel cluster and region area, cmin and rmin

respectively. The minimum acceptable size for the regions is chosen to be

equivalent to or larger than the size of the initial grid squares such that rmin ≥

sgrid with the clusters being required to be larger than cmin, where cmin =

αcrmin with αc being a scaling constant taking values within the range 0 <

αc ≤ 1. For this work a value of αc = 0.75 was found to be sufficient. A

limit is also placed on the maximum number of pixel clusters, cmax, allowed

within each region. The desired number of regions returned by the algorithm

is controlled by the parameter rdnum, where, nominally, there will be rdnum or

fewer regions when the algorithm terminates.

7.3.4 Cluster Update

Two distance functions are used during the pixel cluster update operations

which score which cluster, Cj, an individual pixel, i, should belong to. The

calculation of this score is based on two different distance metrics, Dµ(i, j) and

DL2(i, j). The metric Dµ(i, j) is the absolute difference between the pixel’s

intensity (in the input image I(i)) with respect to the average pixel intensity,

µj, of a cluster. The other metric DL2(i, j) is defined as the Euclidean distance

from the pixel’s coordinates, (xi, yi), to the centroid, (xj, yj), of the cluster. A

distance score, DScore(i, j), for a pixel is calculated as

Dµ(i, j) = |µi − I(i)|

DL2(i, j) =
√

(xi − xj)2 + (yi − yj)2

DScore(i, j) =

(
Dµ(i, j)

λµ

)
+

(
DL2(i, j)

λL2

) (7.39)

with λµ and λL2 being two tunable parameters that weight the importance of

the average intensity distance and Euclidean distance. The distance value of

each pixel, with respect to the cluster to which it currently belongs, is stored

in the distance image D(i).

The goal of the cluster update step is to minimize the total of the distance

score for all (valid) pixels in the image. Here the method for updating the

clusters is similar in most respects to the SLIC superpixel algorithm [105].

Minimization of the total distance score is achieved by moving a pixel to a

129



different cluster if the pixel’s score, with respect to that new cluster, is less

than its current score value D(i). To determine if a pixel should be moved,

the distance score for each pixel, i, is calculated with respect to each cluster

Cj. This calculation is evaluated individually for all of the clusters within the

cluster array C in a loop. If, during the loop, the distance score, DScore(i,m),

for a cluster, Cm, is less the current value in D(i), then the pixel is relabelled

through the function

L(i) = m if DScore(i,m) < D(i), (7.40)

so that the pixel is now a member of the cluster Cm. To speed up processing,

only the distance values for pixels within a square region (of size 2rdesarea ×

2rdesarea) around each cluster’s centroid are evaluated, based on the suggested

method in [105]. After all of the clusters have been iterated through, with

pixels relabelled to minimize the distance scores, the values in the cluster array,

C, are updated using (7.27). Note that the distance image value for invalid

pixels, those outside of the ROI, was set to −1 when the distance image was

created. Being as the distance score is positive semi-definite (DScore(i, j) ≥ 0)

invalid pixels will never be incorporated into a cluster and do not need to be

considered separately.

Region Update

With the cluster update sub-step completed, the region update sub-step is

then performed. Region updating incorporates pixel cluster information and

the calculation of image statistics to modify the individual regions Rk and

the region adjacency graph G. The goal of the region update sub-step is to

join neighbouring regions together so that, at the termination of the super-

pixel algorithm, large statistically similar regions in the input image will be

delineated. In a similar manner to the pixel cluster update, a distance metric,

DKS(k1, k2), will be used to inform the region update process. The distance

metric used is the Kolmogorov–Smirnov (KS) test, which gives a distance be-

tween two empirical CDFs [115]. The KS test is the mechanism through which

changes in image statistics in the input image will be incorporated into the
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region update process. Using the KS test, regions with similar statistical prop-

erties (or equivalently similar empirical CDFs), will be joined together, and

conversely, dissimilar regions will remain separated, thus creating regions with

distinct image statistics. The region update step consists of two separate op-

timizations, a region-statistic optimization through performing a region union

operation and a subsequent optimization of the pixel cluster through cluster

merging.

Region Union

The first operation, the region union, will incorporate the adjacency informa-

tion stored in the graph G to evaluate the KS distance between neighbouring

regions and to choose which regions a union operation should be performed

on. As each region consists of a pixel cluster (or pixel clusters after the first

iteration of the algorithm) the values in the region list R must be updated to

incorporate the changes to the pixel clusters during their update step. Val-

ues of the centroid of each region, given in (7.32), and the empirical CDF of

each region, given in (7.33), need to be calculated. Using these new region

list values, the distance metric is computed for each edge Ev = (kv1, kv2) in

the graph (Ev ∈ E). The edges describe the interconnection between the re-

gion elements, a region’s neighbours, and the score measures how statistically

similar neighbouring regions are. The score is stored in an array,

S = [s0, s1, ..., s`]
>, (7.41)

which contains the same number of entries as the edge structure, ` = vmax

where vmax is the largest index of edges Ev ∈ E . The distance score is then

calculated along each edge via the function

DKS(ki, kj) = sup
x

∣∣∣F̂i(x)− F̂j(x)
∣∣∣

sv = DKS(kv1, kv2)
(7.42)

which returns the largest mismatch between the values of the empirical CDFs,

F̂k(x) (stored in F̂k), across all of the input pixel intensities, x = {0, 1, ..., 255},

seen in the input image I(i). The KS test has several useful properties, in that

it is symmetric DKS(F̂i(x), F̂j(x)) ≡ DKS(F̂j(x), F̂i(x)) and doesn’t require the
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(a) Superpixel regions before union oper-
ation.

(b) Superpixel region after union opera-
tion.

Figure 7.9: Union on yellow superpixel regions, showing regions and connec-
tions before and after operation.

data to be modelled as belonging to some underlying distribution. The sym-

metry property of the KS test allows for the distance values to be evaluated

only once per graph edge irrespective of the order of elements in an edge Ev.

The second property, the independence from an underlying distribution, is

critical in the context of ultrasound image processing as the pixel intensities

seen in B-mode images have been shown to follow a number of different statis-

tical distributions varying with tissue type, location in the body, ultrasound

intensity, and transducer focusing [116].

A low KS score between two regions indicates that they are statistically

similar. In a loop, each region Rk and its neighbours Rm ∈ Nk will be com-

pared to see if they are statistically similar enough, and if so a union operation

will be performed. For each Rk the neighbour with the minimum KS distance,

DKSmin(Rk) = min
km

DKS(k, km)∀km ∈ Nk, (7.43)

giving the index m of the neighbouring region Rm with the minimum statistical

difference DKSmin(Rk) to Rk is identified. A binary threshold is then used to

determine if a union will be performed,

R′k = Rk ∪Ri if (DKSmin(k) ≤ λKSornkpx < rmin) , (7.44)

which results in a new region R′k when Rk and Rm are either similar to one

another or, forcing a union, when the area of Rk is smaller than the minimum

allowable region size rmin. When nkpx ≥ rmin the threshold λKS prevents
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unions between statistically dissimilar regions. If neither condition is met

then Rk will be ignored and the next region in the set R will be tested.

When either of the the union conditions are met, the union results in the

two regions being combined to create one larger region; R′k = Rk ∪ Rm. This

new region, R′k, takes ownership over all of the pixel clusters that originally

belonged to Rk and Rm. From (7.30), the region is described by its parameters,

R′k = [F̂′k, x
′
k, y
′
k, j
′?
k ]. The indexes for the all of the pixel clusters in this new

region, j′?k , are given by

j′?k = j?k ∪ j?m, (7.45)

where j?k were indexes for the clusters {Cj, j ∈ Rk} and, likewise, j?m were

indexes for the clusters {Cj, j ∈ Rm}. The values in the rest of Rk are then

updated, from (7.32) and (7.33), to incorporate all of the information from the

pixel clusters in the new region. A diagram of the region union operation is

given in Fig. 7.9, where a union is performed on the two regions in Fig. 7.9(a)

(indicated in yellow) combining them into the single region in Fig. 7.9(b).

As shown in Fig. 7.9 after the union operation the region list R and

the adjacency graph, G = {V , E}, need to be updated. For simplicity, the

newly created region R′k will replace the parameters of Rk (at row k) in the

region list, R, and the row m, corresponding to Rm, is removed from R. To

update the graph, the m vertex Vm is deleted and the edge Ev = (k,m) is

removed. Any additional edges, Ev = (kv1, kv2), which originally connected to

m, {kv1, kv2 = m}, will be updated to connect to k. Any duplicate edges in

E will also be cleaned up to ensure that there is only a single edge between

vertices connected to one another.

This procedure can continue until all of the regions Rk have been tested.

From empirical observation however, it is advantageous to limit the number of

unions performed during one algorithm iteration. This allows more time for

the pixel cluster layer to converge, where the base SLIC algorithm in [105] was

shown to require a number of iterations before satisfactory cluster convergence.

For this work, a subset of all of the regions is evaluated for union operations

in each iteration. The subset of regions to analyse was chosen to encourage
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regions to grow in size and to guarantee that small regions, those with an area

less than rmin, had a union performed on them. To do this, the size values

nkpx in the superpixel region list R were sorted such that the smallest regions

are investigated first. A limit, nunion, was placed on the number of unions

performed at each iteration and, empirically, the superpixels were found to

converge well when nunion = 50 regions per iteration. Using the list of region

indexes sorted according to size, all regions smaller than rmin are evaluated.

If removing those small regions did not exceed the nunion unions-per-iteration

limit then the algorithm continues working through the sorted list to evaluate

regions until nunion union operations have been performed. This ensures all

regions have an area larger that rmin while achieving adequate convergence of

the pixel clusters and growth of the superpixel regions.

Cluster Merge

After the cluster update and region union operations, the optimization con-

straints for the pixel cluster size cmin and number of clusters per region cmax

must be enforced. After the region union procedure, all regions smaller than

rmin have been placed into nearby regions and the following cluster merge op-

eration works on the pixel cluster components inside of the updated regions.

Regions may also now contain more than the maximum allowable number of

clusters which will be corrected through the use of the cluster merge oper-

ation. In a similar manner to the region update method, the cluster merge

method works to join together neighbouring pixel clusters to create new larger,

and contiguous, pixel clusters. The cluster merge operation respects the pixel

cluster-superpixel region hierarchy, such that a pixel cluster belongs only to a

single region, and the merge operation does not move clusters between regions.

The cluster merge update loops through all of the individual pixel clusters, Cj,

with the size of the cluster, njpx, being calculated. Any regions smaller than

cmin are merged with their nearest neighbouring clusters inside of their re-

spective regions. The neighbours of a cluster Cj belonging to a region Rk are

defined to be all of the other clusters within that region, {Ci ∈ Rk 6= Cj}. The

nearest neighbour to the cluster Cj is defined as the neighbouring cluster with
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(a) Pixel clusters before merge operation. (b) Pixel cluster after union operation.

Figure 7.10: Union on pixel clusters, showing features before and after opera-
tion.

the minimum Euclidean distance between their respective centroids,

NN(Cj) = min
i

√
(xj − xi)2 + (xj − xi)2∀Ci ∈∈ Rk 6= Cj, (7.46)

where xi, xj, yi, yk are pixel coordinates of the centroids and NN(Cj) returns

the index i of the nearest neighbour to Cj. The merge operation is performed

by updating the label image L(i) such that,

L(j) = i, ∀ pixels j ∈ Cj, (7.47)

which relabels all of the pixels in the cluster j ∈ Cj to belong to the cluster

Ci. Lastly, the row j in the pixel cluster list C and the pointer j?k = j in the

parameters of region Rk, are then removed. Note that the scaling constant

αc between the minimum region size and minimum cluster size cmin = αcrmin

is within the region 0 < αc ≤ 1. This ensures that, at the ouput of the

region union operation, any region containing a cluster of size njpx < cmin will

necessarily have a second cluster that it can be merged with. An example of

the cluster merge operation is shown in Fig. 7.10, with the two clusters in

Fig. 7.10(a) (indicated in yellow) being combined into the single cluster in

Fig. 7.10(b).

After all the pixel clusters smaller than cmin have been merged, a second

loop is used which calculates the number of cluster components nck within

a region Rk, where nck = Count(j?k), the number of indexes in j?k . If nck is

greater than cmax then the nrc−cmax smallest clusters will be merged with their

nearest neighboring cluster. After evaluating the loop for all of the superpixel
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regions in the image, the last step is to update the parameters of each of the

pixel clusters Cj in the cluster list C using (7.27). The parameter update

recalculates the position of the centroids and average pixel intensity of the

cluster for use in the distance-image based cluster optimization in the next

iteration of the algorithm.

7.3.5 Algorithm Iteration and Output

With all of the cluster merging having been performed and the parameters of

the pixel clusters updated, the current iteration step of the superpixel algo-

rithm is completed. The next and subsequent algorithm iterations will start

again at the cluster update step, followed by the region update step (con-

sisting of the region union and cluster merge operations). The algorithm will

continue iterating until a stopping condition occurs, thus terminating the algo-

rithm. There are three cases under which the algorithm will be stopped, with

the first case occurring when the statistical dissimilarity between all regions is

greater than the threshold λKS, as no further region union operations can be

performed. The second case arises when all of the superpixel regions within

the image are larger than the desired superpixel size rmax, and the third case

happens when the current number of superpixel regions (in R) is less than or

equal to rndes. The algorithm will be stopped whenever any of the cases occur

and the condition can be given as a boolean value

Estop =


true if min

E
(DKS(kv1, kv2)) > λKS ∀ Ev

true if nkpx > rmax ∀Rk

true if Count(Rk ∈ R) ≤ rndes

false otherwise

(7.48)

with the first case being evaluated for all of the edges Ev in the graph, and

the second and third cases being evaluated for all of the regions in the image.

When the algorithm terminates, the resulting output is a label image LR(i)

that indicates the corresponding superpixel region for each pixel in the input

image and the superpixel adjacency graph. The region image is created by

initializing a new image of the same size as the input image, initializing all

pixel values to zero, and then updating the label (value) of all of the pixels
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based on which superpixel (region) they are contained within, with the labeling

given by

LR(i) = k, ∀ {i ∈ Cj, for each Cj ∈ Rk}, (7.49)

such that all of the pixels i in the component clusters Cj of the superpixel Rk

are labelled with an index k.

The results of running the superpixel algorithm on an input TRUS image,

showing the pixel cluster, superpixel regions, and adjacency graph during mul-

tiple algorithm iterations are given in Fig. 7.11 and Fig. 7.12. The boundaries

of the pixel clusters are indicated with blue lines and the centroids of the pixel

clusters are shown as blue dots in Figs. 7.11(a), 7.11(d), and 7.12(a). The

superpixel region boundaries are designated with green lines and the region

centroids are shown in Figs. 7.11(b), 7.11(e), and 7.12(b). Red dots are used

to indicate the centroids of each of the regions (which are also the graph ver-

tices) in Figs. 7.11(b), 7.11(c), 7.11(e), 7.11(f), 7.12(b), and 7.12(c). The

region adjacency graph is drawn in Figs. 7.11(c), 7.11(f), and 7.12(c) where

a red line between two region centroids represents a graph edge. The output

of the superpixel algorithm would be the label image based on the remaining

regions in Fig. 7.12(b) and its adjacency graph shown in Fig. 7.12(c).

7.4 Graph-Cut Segmentation and Results

The last step in the prostate segmentation algorithm, as shown in Fig. 7.2,

combines the output of the superpixel processing with the statistical prostate

shape model. The prostate shape model, described in Sec. 7.2.3, can be used

to find the likelihood that a particular pixel will be on the edge of the prostate.

The superpixel image processing algorithm returns an image which has been

divided into a large number of superpixel regions, with each superpixel region

being a large area of pixels which have particular pixel intensity distributions.

The superpixel algorithm also returns an associated graph describing the ad-

jacency between the superpixel regions. A graph-cut algorithm will be used

to merge the contour position information with statistical properties of the

superpixel regions in order to segment the prostate.
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Given an input set of TRUS ultrasound images slices, UI, containing nImg

images, the first step in segmentation is to pre-process each image, as covered

in Sec. 7.1.2, to obtain the ROI for segmentation. After pre-processing, each

of the ROI images in the set, RI, will be input into the superpixel processing

algorithm. Each image i in the set will then have a corresponding superpixel

region image RLRi and graphs describing the neighbours of each region Gi =

{Vi, Ei}. For final segmentation, the superpixel region image is warped back

into the ultrasound image frame {U} by inverting the transform given in (7.1).

To do this, the location of each pixel inside of the ROI in UI( Upx, Upy)i will

be used to find the corresponding pixel in RI( Rpx, Rpy)i, and the region label

for that pixel, at RLRi( Rpx, Rpy), will be transferred to a new region image

ULRi( Upx, Upy) and any pixels outside of the ROI are given a label of 0. For a

region Rk, the pixels inside of that region are defined to be { ULRi( Upx, Upy) =

k : ∀( Rpx, Rpy) ∈ Rk}; the result of this warping procedure is shown in Fig.

7.13. Warping the region images back in the {U} frame is required in order to

use the prostate shape model, as it was derived based on the prostate contour

segmented by clinicians in standard TRUS images. The probabilistic prostate

shape model is generated offline before segmentation and so the prostate can

be segmented in all of the input images.

For segmentation, an energy-based cost function [117], will be minimized

to perform the final segmentation (contouring) of the prostate in the TRUS

images. The segmentation and contouring will be performed by labelling pixel

regions Rk as being inside of the prostate, LIn, or outside of the prostate, LOut.

For a single image i the cost function is given by

E(L)i = λD
∑
k∈Vi

ψk(Lk) + λS
∑
k,m∈Ei

ψkm(Lk,Lm) (7.50)

where L is a labelling for the images. The cost function contains a data term∑
k∈Vi

ψk(Lk) (7.51)

for each region Rk in the image corresponding to the vertices in Vi and a

smoothness term ∑
k,m∈Ei

ψkm(Lk,Lm), (7.52)
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Figure 7.13: Output of superpixel algorithm in TRUS image frame {U} with
region borders shown in green and region centroids indicated wtih red dots.
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which incorporates a score based on the neighbours connected by an edge Ei,

of the region Rk. The values λD and λS weight the data terms and smoothing

terms, respectively, and this cost function will be minimized through the graph-

cut procedure.

The data term will incorporate the contour location probabilities from the

prostate shape model and a prostate appearance term into the graph-cut score.

For this, the probability from the prostate shape model, given in (7.22), will

be discretized to give a pixel-based probability score which will be stored in an

image, UPi, of the same size as the TRUS images (with a height UIheight and

width UIwidth). For mapping between the ultrasound image set and prostate

a center point, P c = [ Pxc,
Pyc,

Pφc]
>, will be used. Only a single contour

point is used for the entire image set and, in a similar manner to the contour

fitting procedure, this center point will be optimized during the graph-cut

procedure. Using a given center point, the location of a pixel in the TRUS

image, ( Upx, Upy), is converted to the contour coordinate system through the

transform
Ppx =

Upx− tpx
spx

Ppy =
Upy − tpy

spy

θpx = atan2( Ppy − Pyc,
Ppx− Pxc)− Pφc

rpx =
√

( Ppy − Pyc)2 + ( Ppx− Pxc)2

(7.53)

where Ppx and Ppy are the pixel coordinates in the patient attached frame,

using the constants in the transform (7.1), giving the output values θpx and

rpx in the contour coordinate system. Using this transform, the probability

image, UP , is created by evaluating the CDF of the prostate shape, given in

(7.23), for every pixel within the ROI of in the input image, such that

UP( Upx, Upy)i =

{
P (R ≤ rpx|θpx, i) for ( Upx, Upy) ∈ UIROI
1 for ( Upx, Upy) /∈ UIROI

(7.54)

where P (R ≤ rpx|θpx, i) is the probability that the prostate contour is smaller

than the pixel’s radial distance rpx, relative to the center point, and the value

of 1 will prevent the prostate contour from being outside the ROI.
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With the probability image defined, the data term components ψk(Lk) for

the cost function (7.50), are given as

ψk(Rk ∈ LIn) = λDP

 ∑
(Upx,Upyk)∈k

UP( Upx, Upy)i
nkpx

+

λSD

 1

npx

∑
(Upx,Upyk)∈k

∣∣ UL( Upx, Upy)i − µL
∣∣

nkpx

 (7.55)

and

ψk(Rk ∈ LOut) = λP

 ∑
(Upx,Upyk)∈k

1− UP( Upx, Upy)i
nkpx

+

λL

 1

npx

∑
(Upx,Upyk)∈k

255/µL −
∣∣ UL( Upx, Upy)i − µL

∣∣
nkpx

 (7.56)

with nkpx being the number of pixels in the region k, and λDP weighting

contour probabilities. The µL value is an input constant corresponding to the

average pixel intensity of pixels inside the prostate, and λDL weights this pixel

intensity term. The two weighting components are represented in (7.50) as λD,

such that λD = [λDP , λDL]. The smoothness terms within the cost function

use the KS distance to weight the statistical distances between regions with

the same and different labels, given by

ψkm(Lk,Lm) =


(

supx

∣∣∣F̂k(x)− F̂m(x)
∣∣∣) where Lk = Lm(

1− supx

∣∣∣F̂k(x)− F̂m(x)
∣∣∣) where Lk 6= Lm

, (7.57)

with F̂k(x) and F̂m(x) being the empirical CDFs of the neighbouring regions

Rk and Rm.

Each TRUS image slice i is then labelled to optimize the cost function

using graph cutting [117]. The cost of the particular labelling L is calculated

using (7.50) for all of the slices. To get the most accurate contour probability

in the images UPi from the prostate shape model, the center point P c =

[ Pxc,
Pyc,

Pφc]
> is optimized to remove any translational and rotational offset

between the TRUS image and the prostate shape model. The center point is
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found through the optimization

argmin
P c

nImg∑
i=0

argmin
L

E(L)i (7.58)

where the argminLE(L)i corresponds to the graph-cut procedure and the

argmin P c optimization is done through a pattern search algorithm. Once the

optimal center point has been found, with a minimal labelling cost across all

of the slices, the prostate segmentation is complete, as shown in Fig. 7.14. All

regions labelled with LIn after graph cutting are inside of the prostate, which

could be represented in a binary image where all of the pixels inside of the

regions Rk ∈ LIn have a value of one and all other pixels are zero. To smooth

out the segmented prostate contour, the contour model is fit to the pixels on

the perimeter of the binary region Rk ∈ LIn. The perimeter pixels are trans-

formed to the contour model coordinate system using (7.53), and then the

model is fit to these pixel points from the least-squares fitting given in (7.9),

thus creating a 3D contour model for the segmented prostate; see Fig. 7.15.

The results of the segmentation on a number of patient images sets is given in

Sec. 7.4.1.

7.4.1 Prostate Contour Results

The input dataset used to create the probabilistic prostate contour model was

a series of contours exported from Variseed (Varian Medical Systems Inc, Palo

Alto, CA, USA) after pre-planning for clinical prostate brachytherapy 7. For

this work the prostate segmentation algorithm was tested on the clinical ul-

trasound images collected from 9 patients during a prostate brachytherapy

procedure. The ultrasound images were taken using a B&K Medical Pro Fo-

cus 2202 ultrasound machine with a B&K Medical Type 8808 Biplane Trans-

ducer (B&K Medical Systems, Peabody, MA, USA). The image processing,

model fitting, and graph-cut algorithms were all programmed or implemented

in Matlab 2018a (The Mathworks Inc, Natwick, MA, USA) and run using the

7Approval for study granted from Alberta Cancer Research Ethics Committee under
reference 25837
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Figure 7.14: Superpixel regions after graph-cut procedure. The centroids of
regions labelled as being inside of the prostate, Rk ∈ LIn, are displayed with
green dots and the centroids of the superpixel regions outside of the prostate,
Rk ∈ LOut, are displayed with red dots.
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Figure 7.16: Bounding box, indicated in red, and shaded-blue polygon contour
area used for prostate contour height,width, and volume measurements.

Simulink Real-Time environment, on an Intel Core i7-3930K running at 3.20

GHz (Intel Corporation, Santa Clara, CA, USA).

The the mean absolute difference (MAD), max absolute difference (MaxD),

segmented prostate volume, Jaccard index, and prostate contour width-height

will be used to compare the 3D contour volumes returned by algorithm, R(θ, i|βA),

to the target clinician segmented 3D contours, R(θ, i|βC), to evaluate the effec-

tiveness and accuracy of the algorithm. The mean absolute difference (MAD)

and max absolute difference (MaxD) are commonly used performance metrics

in the literature which provide a measure of how closely the component 2D

algorithm and clinician segmented contours match across all slices in the 3D

contour. The difference between corresponding points, with the same i and θ

values, on the algorithm segmented contour and clinician segmented contours

are given by

DCA(i, θ) =

√
( PxC(i, θ)− PxA(i, θ))2 + ( PyC(i, θ)− PyA(i, θ))2 (7.59)

where { PxC(i, θ), PyC(i, θ)} and { PxA(i, θ) PyA(i, θ)} are the corresponding

points between the algorithm and clinician contours in Cartesian coordinates,
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respectively; where the Cartesian coordinates are found from (7.6). A set

of θj points sampled at regular intervals in the range (−π, π], where thetaj =

−π+2π j
nθ−1

, will be used for calculating the MAD and MaxD values; the value

nθ is the number of points to be compared8. The mean absolute difference and

max absolute difference metrics are given by

MAD =
1

nSlice× nθ

∑
i

∑
j

|D(i, θj)|MaxD = max |D(i, θj)| ∀{i, j} (7.60)

where i = {0, 1, ..., nSlice} and j = {0, 1, ..., nθ}. The height and width of

the prostate contour, measured in mm in the ultrasound image frame Uy and

Ux axes, is found from the height and width of a bounding-box containing

the prostate contour; see Fig. 7.16. The average width and height of the

algorithmic and clinician segmented prostate contours, with respect to image

depth, are presented in Fig 7.18(b). For measuring the area and volume of the

prostate a polygon is fit to points on the prostate contour model R(θ, i|βA)

or clinician-segmented contour R(θ, i|βC) for each slice i, as shown in Fig.

7.16, with the resulting polygon areas, AreaA(i) and AreaC(i) for the algo-

rithmic and clinician contours respectively, calculated in metric units (mm 2).

To calculate the volume of the prostate for the algorithm V olA and clinician

contours V olC the area of each slice was multiplied by the 5 mm TRUS image

slice stepping distance and summed for all of the slices in the image set, such

that

V olA =
nSlice∑
i=0

5mm ∗ AreaA(i)

1000

V olC =
nSlice∑
i=0

5mm ∗ AreaC(i)

1000

(7.61)

with the factor of 1000 used to scale the output volumes to mL. The calculated

prostate volumes, for each of the 9 prostates incorporated in the experimental

results, are shown in Fig. 7.18(a). For the results presented in Table 7.2, the

volume difference in mL and % were calculated by

VolumeDifference(mL) = V olC − V olA

VolumeDifference(%) =
|V olA − V olC |

V olC

(7.62)

8nθ = 90 for the presented results.
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where a positive value for the prostate contour volume difference indicates

that the algorithm segmented prostate contour was larger than the clinician-

segmented contour and a negative difference indicates that the algorithmic

segmented contour was smaller.

As an additional metric to evaluate the performance of the prostate con-

touring algorithm the Jaccard index was also analyzed. The Jaccard index

gives a measure between 0 and 1 that indicates how well the algorithmic out-

put of the prostate contour matches with the clinician-segmented contour, with

a value of 1 indicating a perfect match. The Jaccard index is given by

JI =
|R(θ, i|βA) ∩R(θ, i|βC)|
|R(θ, i|βA) ∪R(θ, i|βC)|

(7.63)

where R(θ, i|βA) is the output contour of our proposed prostate segmentation

algorithm, for a particular TRUS image set, and R(θ, i|βC) is the clinician-

segmented contour for the same image set. Figure 7.17 shows the average

Jaccard index score values with respect to the z-axis depth of the TRUS image

where the first image slice at a depth of 0 mm corresponds to the base of the

prostate, the midgland of the prostate is located at 15 mm, and the apex of

the prostate is at a depth of 30 mm; as indicated in Fig. 7.15.

Table 7.2 and Table 7.3 show the resulting values of the metrics comparing

the output contours from our proposed prostate segmentation algorithm9 for

9 patient TRUS image sets, where each image set consisted of 7 images slices.

Table 7.2 presents the mean absolute difference, max absolute difference, and

prostate volume difference and Table 7.3 present the contour difference, Jac-

card index, and prostate volume.

The average mean absolute difference for all of the trials was 2.52 (±1.66)

mm and the average maximum absolute difference was 7.19 (±1.22) mm. While

the mean absolute difference is slightly larger than comparable results pre-

sented in the literature the maximum absolute difference is in line those re-

ported in the literature (see Table 2.1 for a summary of related literature).

9The input parameters used for the superpixel algorithm for the results given in Ta-
ble 7.2, were λµ = 100, λL2 = 125, λKS = 0.2, sgrid = 256px, rdarea = 512px, rmin =
256px, , cmin = 192px, cmax = 4, and the parameters for the graph-cut segmentation were
λDP = 3.1, λDL = 1.8, µl = 40, λS = 1.5.
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Table 7.2: Prostate Segmentation Contour Results

Data Set Mean Absolute
Difference

(mm)

Max Absolute
Difference

(mm)

Volume
Difference

(mL)

Volume
Difference

(%)

Prostate 1 2.01 (±1.30) 5.89 4.65 8.85
Prostate 2 1.87 (±1.29) 6.91 2.27 4.37
Prostate 3 3.03 (±2.21) 8.50 6.75 13.77
Prostate 4 2.54 (±1.48) 6.00 5.77 11.88
Prostate 5 2.46 (±1.60) 6.82 2.80 5.76
Prostate 6 2.24 (±1.43) 6.70 6.20 12.68
Prostate 7 3.08 (±2.06) 8.82 7.86 17.56
Prostate 8 2.73 (±1.71) 8.90 -3.39 6.07
Prostate 9 2.76 (±1.65) 6.20 7.47 17.11

Average 2.52 (±1.66) 7.19 (±1.22) 4.49 (±3.53) 10.89 (±4.90)

Table 7.3: Prostate Segmentation Jaccard Index Results

Data Set Average Jaccard
Index

Min Jaccard
Index

Max Jaccard
Index

Prostate 1 0.84 (±0.04) 0.79 0.92
Prostate 2 0.85 (±0.06) 0.75 0.91
Prostate 3 0.77 (±0.02) 0.73 0.79
Prostate 4 0.79 (±0.06) 0.73 0.87
Prostate 5 0.79 (±0.04) 0.72 0.83
Prostate 6 0.82 (±0.06) 0.71 0.90
Prostate 7 0.74 (±0.07) 0.66 0.85
Prostate 8 0.77 (±0.07) 0.66 0.84
Prostate 9 0.77 (±0.09) 0.61 0.89

Average 0.79 (±0.07) 0.71 (±0.05) 0.87 (±0.04)
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Figure 7.17: Jaccard index score of prostate contouring algorithm with respect
to contour depth in the z-axis.
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Figure 7.18: Union on yellow superpixel regions, showing regions and connec-
tions before and after operation.
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A major factor which may account for this discrepancy in mean absolute dif-

ference performance between our approach and those in the literature is that

many methods require a clinician to manually correct the algorithmic prostate

contours after segmentation [68, 69, 70], and report only the post-corrected

segmentation values. In many cases in the literature this manual clinician

correction is required in up to 30% of the input set TRUS images for segmen-

tation.

In the literature, it is well known that there is a high amount of vari-

ation between clinicians when manually segmenting the prostate in TRUS

images[15, 16]. Therefore the performance of the algorithm can also be com-

pared to clinician segmentation of TRUS images, where [15] and [16] an-

alyzed the interobserver clinician segmentation accuracy between observers

(clinicians) and intraobserver repeatability from a single observer (a clinician

segmenting the same TRUS image set multiple times). Interestingly, the differ-

ence between the prostate volume measured from the algorithm and clinician-

segmented contours is directly comparable to the interobserver variance re-

ported in [15, 16] indicating that the segmented contours from the proposed

algorithm are within the accuracy range accepted by clinicians in practice.

The average Jaccard index values across all images slices are slightly lower

than those reported for clinicians [16] indicating some additional work to in-

crease contouring accuracy may be required. The per-slice Jaccard index val-

ues presented in Fig. 7.17 indicate that the contouring has roughly the same

contouring performance across all prostate image slices with the exceptions of

the base image slice (0 mm) which has slightly lower than average accuracy

and the apex image slice (30 mm) which has higher than average accuracy.

These per slice results compare favorably with the variances reported in [16]

with the base slice segmentation variance being higher for both the algorithm

and between clinicians. The accuracy of the prostate midgland contouring

is the primary area where the algorithm performs slightly worse than clini-

cians [16] and indicates the primary area where the algorithm accuracy can be

improved.
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7.5 Conclusion

In this chapter, we have outlined a method for prostate segmentation which

incorporates a prostate contour model, active shape probabilistic model of the

prostate, a superpixel image processing algorithm, and graph-cut-based con-

tour optimization. The proposed contour model was validated independently

of the prostate segmentation algorithm by comparing the mean-squared error

and maximum absolute error between input, clinician-segmented, prostate con-

tours and the resulting contour models after parameter fitting. Two sets of 100

3D clinician-segmented prostate contours were used for validation, with one set

consisting of 3D contours containing 7 to 13 2D TRUS image derived contours

of the prostate and the second set having 3D contours with each containing 7

to 16 2D contours segmented using MR images of the prostate. The results of

this validation, given in Table 7.1, show that the clinician-segmented contours,

from either imaging modality, can be represented in the contour model with

sub-millimeter accuracy on average. The average mean-squared error across

the two input contour sets was 0.61(± 0.16) mm and the average maximum

absolute error was 1.54 (± 0.31) mm. The largest absolute error observed in

parameter fitting of all 200 contours was 2.12 mm. With these results, the

prostate contour model was shown to be unaffected by imaging modality and

capable of modeling a variety of prostate shapes with an acceptable accuracy.

The prostate contour model was then incorporated, using interpolation

between Gaussian normal distribution models, into an active shape statistical

contour model of the prostate. This statistical shape model describes the prob-

ability of the edge of the prostate being at a particular location in a TRUS

image slice. The CDF for the statistical shape model was incorporated as

a parameter within the graph-cutting cost function to utilize prior prostate

contour information for algorithmic prostate segmentation. The graph to be

segmented was output by a novel superpixel image processing algorithm which

uses a hierarchical structure to simultaneously optimize pixel clusters, with re-

spect to a pixel intensity and Euclidean-based distance metrics, and superpixel

regions, which are comprised of a number of pixel clusters. These superpixel
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regions separate an input image into areas with similar image statistics, in a

type of edge and texture discrimination, with the statistical similarity between

two superpixel regions being another parameter within the graph-cutting cost

function.

The superpixel image processing algorithm created and updated a graph

structure, with the superpixel regions corresponding to the vertices of the

graph and neighboring superpixel regions being interconnected by a graph

edge. Graph-cuts are performed on the resulting superpixel adjacency graph,

after image processing, in order to segment out superpixel regions which are

inside of the prostate in the TRUS image. This prostate segmentation algo-

rithm was tested on 9 prostate TRUS image sets, consisting of 6 or 7 prostate

image slices, to assess the algorithmic segmentation accuracy. The output of

the prostate segmentation algorithm was compared to prostate segmentation

done by a clinician, in those TRUS image sets, with an average mean absolute

difference of 2.52 (± 1.66) mm and an average maximum absolute difference

was 7.19 (± 1.22) mm. The average Jaccard index of the algorithm was 0.79 (±

0.07). The average Jaccard index result is satisfactory for the limited number

of TRUS image sets that were tested, however, the continuation of this work

will require a significantly larger number of the TRUS prostate image sets to

fine-tune the optimization parameters used during superpixel image processing

and segmentation. Additional research within the area of algorithmic prostate

segmentation will be discussed as part of Chapter 8.
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Chapter 8

Conclusion

This thesis has presented research in the area of surgeon-in-the-loop robotic

assistance for percutaneous procedures, with a primary focus on image process-

ing algorithms and needle steering controllers for the prostate brachytherapy

procedure. There are many aspects of prostate brachytherapy, in current clini-

cal practice, which can utilize robotic assistance or computer guidance to aid a

clinician in increasing treatment accuracy and efficacy while reducing the time

required for surgical planning and seed implantation. The work presented in

this thesis has aimed to utilize equipment currently used by clinicians during

a prostate brachytherapy procedure, for instance, ultrasound image feedback,

when developing these surgical assistant systems. This work has developed

needle segmentation and tracking algorithms which have been incorporated

into two surgeon-in-the-loop needle steering controllers, which assist a clini-

cian during seed implantation by increasing needle placement accuracy. To

assist a clinician during the planning phase of a prostate brachytherapy pro-

cedure, a method for fully-autonomous prostate segmentation has also been

presented.

The first needle segmentation routine presented in this work utilized needle

deflection information which can be measured in sagittal plane ultrasound

images. While only a portion of the needle can be observed in a single sagittal

image, the algorithm presented in Chapter 3, used this partial observation of

needle deflection to implement a needle shape predictor, which estimates the

shape of the entire needle when it is fully inserted into tissue. This needle
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shape prediction is based around a mechanical spring-beam needle model.

The needle shape predicted by the model was compared to a reference camera

image of the same needle to validate the proposed approach. The results show

that the entire needle shape can be accurately predicted in tissues of varying

stiffness based on observation of parts of the needle in an ultrasound image.

In Chapter 4 a needle-tip tracking routine for axial TRUS images was

developed. Unlike needle shape observation in the sagittal plane, estimation

of needle model parameters requires deflection information from multiple axial

image slices and necessitates the use of a computationally efficient model which

allows for the parameters of the model to be updated in real-time as each

axial image frame is captured. In this chapter, particle filtering was used

to estimate the parameters of a kinematic bicycle model based on needle-tip

tracking between subsequent axial image frames. The tracking method and

needle-tip deflection prediction were evaluated in both ex-vivo beef phantom

tissue and in-vivo clinical images, displaying an average tip prediction error of

less than 0.5 mm in both image sets.

Using the axial image needle-tip tracking algorithm, a surgeon-in-the-loop

controller was devised in Chapter 5 based on a switching-based continuous

control law. The controller was formulated based on a reduced-order 3D non-

holonomic model of needle tip motion and was proven to reduce needle deflec-

tion to zero asymptotically. This controller was implemented with a hand-held

steering device in a surgeon-in-the-loop system and tested on multiple ex-vivo

tissue phantoms. The ex-vivo results show an average absolute needle tip de-

flection of 0.54 mm away from the target location at a depth of 120 mm, with

an average needle tip deflection of 0.36 mm throughout the entire insertion

length. This controller incorporated real-time measurement of needle-tip de-

flection but did not utilize needle tip path prediction and therefore required

that acceptable but relatively large changes in the needle-tip orientation be

allowed in order to achieve this level of deflection control.

An improved surgeon-in-the-loop system, implemented with an event-trigger

controller was presented in Chapter 6 which incorporated needle path predic-

tion based on needle-tip tracking in axial ultrasound images. An analytic
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solution to the kinematic bicycle model was derived and is shown to be more

computationally efficient than discrete-step simulations of the model. Using

this analytic solution, the event-trigger points of the controller, corresponding

to changes in the control output, were optimized. The use of the analytic

model and the event-triggered controller allowed for limiting the number and

extent of needle rotations, if required to reduce tissue trauma or for practical

reasons, in a constrained optimization framework. The system was tested in

three different ex-vivo tissue phantoms and was able to keep the average needle

deflection within 0.47 (± 0.21) mm at the final insertion depth of 120 mm.

This work also presented a fully-autonomous prostate contouring algorithm

using a novel superpixel based approach. The contouring algorithm used su-

perpixel image processing to find statistically similar areas within an input

TRUS image and used a statistical shape model along with graph-cuts to seg-

ment the prostate. The algorithm was evaluated on 10 sets of prostate images

and compared with clinician-segmented contours for those same prostate sets,

with the output of the contouring algorithm having an average mean absolute

difference of 2.52 (± 1.66) mm, an average maximum absolute difference of

7.19 (± 1.22) mm, and an average Jaccard index accuracy of 0.79 (± 0.07).

The Jaccard index, prostate volume, and height-width differences between the

proposed algorithm and clinician results were also analyzed and show that the

prostate contour algorithm segmented the prostate within the variance seen

when different clinicians segment the same TRUS image set.

8.1 Future Work

The work presented in this thesis has focused on needle deflection minimization

and has analyzed the accuracy with which the needle tip can be placed with

respect to a target position. This needle placement accuracy is one metric

through which needle steering accuracy can be evaluated but for the clini-

cal brachytherapy procedure, there are some additional factors that should

be analyzed in future work. One such aspect is seed-placement accuracy af-

ter the needle has been withdrawn, to see if there are significant deviations
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between the needle path observed during insertion and the final placed seed

locations due to tissue compression/relaxation or other forces. Another factor

to consider is prostate motion caused by needle insertion and ultrasound probe

movement. The desired seed target location, within the prostate, should be

tracked and used for control feedback. The following two research areas can

be used to address and analyze these factors in future research:

• Prostate Tracking in TRUS Images

– Our proposed prostate segmentation algorithm and other segmen-

tation systems presented in the literature can be used to measure

the location of the prostate, and associated needle insertion targets,

before needle insertion.

– The prostate moves during needle insertion and if prostate segmen-

tation can be done in real-time, or if a real-time tracking algorithm

can be developed which deforms the segmented prostate contours

based on real-time axial image feedback, then prostate motion could

be incorporated as a control input.

– Prostate motion tracking could be used as part of a surgeon-in-the-

loop system, where the 2D motion of the prostate and associated

target locations could be used to compensate for prostate motion

when steering the needle towards the target locations.

– The control algorithms presented in this thesis assume that the

desired target location is along the axis of needle insertion, so ad-

ditional work would need to be done to evaluate the stability and

needle steering performance when compensating for prostate mo-

tion.

• Prostate Motion Prediction and Modeling

– Beyond tracking the 2D in-plane motion of the prostate, there is a

need for a 3D mechanical model of prostate motion and interaction

with tissue, where such a model would incorporate 3D torques and
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forces to predict the linear and rotational movement of the prostate

during needle insertion.

– Several mechanical needle-tissue interaction models have been de-

veloped in the literature, but modeling the motion of the prostate

as a needle is inserted remains an open problem.

– Modelling the motion of the prostate during insertion is useful for

predictive needle steering control.

– The relaxation motion of the prostate after needle the needle is

withdrawn from the patient will allow for prediction of post-needle-

retraction movement of the implanted seeds, which would allow

for better needle steering algorithm development to improve final

implant seed locations.

– One of the limiting factors in developing a prostate motion model

is that a live 3D, intraoperative, volume of the prostate is needed in

order to accurately measure prostate motion for model development

and fitting.

– Several US companies now produce 2D matrix array transducers

which can capture entire 3D US volumes in real-time, and recently,

a few ultrasound manufacturers have made small endoscopic matrix

array probes commercially available.
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