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Abstract

Multi-degree-of-freedom (Multi-DOF) manipulators have shown a high potential for enhancing the flexibility and performance of
robotic manipulations. However, the presence of unknown disturbance, including uncertain dynamics and external forces/torques,
makes the control of a multi-DOF manipulator rather complicated, and the stability of the robotic system is hard to be guaranteed.
In this paper, a virtual decomposition control (VDC)-based admittance control approach for multi-DOF manipulators has been
proposed considering joint flexibility via hierarchical control framework. The joint flexibility is solved by a separate adaptive
controller different from the manipulator’s links. The high-level admittance controller is built upon a low-level VDC-based
inner control loop, which can deal with the complicated system dynamics (including the joint friction and joint flexibility) and
modeling uncertainty. The external force/torque (F/T) is estimated with a generalized momentum-based interaction force estimation
technique; thereby avoiding the cost of wrist F/T sensors. The robotic system’s stability has been guaranteed in both free-space
motions and constrained motions using the specific features of VDC (proof of each subsystem’s virtual stability). The advantages
and effectiveness of the proposed method in tuning the robot-environment dynamic behavior are demonstrated through experiments.

Keywords: Multi-DOF manipulators, virtual decomposition control (VDC), admittance control, joint flexibility, stability analysis.

1. Introduction

Multi-degree-of-freedom (Multi-DOF) manipulators have
been widely employed in many areas, including door opening
in constrained environments, human-robot interaction, and
surgical applications (Karayiannidis et al., 2016; Xing et al.,
2019; Chen and Ro, 2022; Torabi et al., 2019). The employment
of multi-DOF manipulators in addressing tasks with contact
with the environment has excellent advantages because they can
be reconfigured and adapted to yield the best task performance.
In Carriere et al. (2019), a semi-autonomous robotic assistant
was proposed for ultrasound scanning using a multi-DOF
manipulator, where the position of the probe was driven
using an admittance controller. In Ficuciello et al. (2015), a
control approach with multi-DOF manipulators was proposed
to enhance the robots’ operational performance for human-
robot physical interaction by enlarging the stability region in
the impedance parameters space. Many other potential appli-
cation areas can be found in hydraulic manipulators, mobile
manipulators, and dual-arm systems (Koivumäki et al., 2019;
Mai and Wang, 2014; Han et al., 2019). However, a practical
compliance control approach for multi-DOF manipulators with
high control bandwidth is not provided yet.
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The compliance control approach is fascinating for enabling
the robot and its environment to behave in a compliant
manner. Two fundamental methods are proposed based on
hybrid position/force control (Raibert and Craig, 1981) and
impedance control (Hogan, 1985). Impedance control and
admittance control are two ways of implementing impedance
control, depending on the causality of the controller (Ott et al.,
2010). In contrast to impedance control, admittance control
has the advantage of easily adapting to the up-to-date indus-
trial robot system, namely, a position-control/velocity-control
system; however, its implementation bandwidth is limited
by the inherent position/velocity controller. In Xing et al.
(2021), an admittance control method of mobile manipulators
was proposed for human-robot interaction; however, it was
conducted at the velocity level, and the robot dynamics was
neglected. In Zhuang et al. (2019), a torque-sensing-based
admittance controller was presented to achieve human-robot
synchronization, the reference velocity severed as the input of
a low-level PD controller. Yet, the system’s stability was not
guaranteed. Successful completion of these interactive tasks
requires that the robotic system precisely controls its interaction
with the environment with a high control bandwidth. Thus, the
complex system dynamics should be properly handled.

It is common for industrial manipulators to have flexibility
in their joints, and this contributes greatly to their dynamic
control. In Ghorbel et al. (1989), the first adaptive control
approach of flexible-joint manipulators with the assumption
of weak-joint elasticity was presented. In Fateh (2012),
a robust tracking controller of flexible-joint manipulators
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was developed using voltage control strategy, where a novel
uncertainty estimation approach was introduced. However,
only simulation verification was provided. In Ma et al.
(2021), an adaptive fuzzy control strategy was presented for
flexible-joint manipulators. The nonlinearity was solved by
a fuzzy-logic algorithm. Nonetheless, this approach was
only applicable to a single-link manipulator, and no real-
time implementation was attempted. Also, many model-free
methods were proposed for manipulators with flexible joints
(Kim et al., 2019; Yuan et al., 2020; Du et al., 2021).

For force control of multi-DOF systems, the abundant
DOFs makes the system’s nonlinear dynamics rather compli-
cated. From the view of online implementation, the traditional
dynamic control methods, like Lagrangian formulation (Holler-
bach, 1980) and Newton–Euler formulation (Buondonno and
De Luca, 2015), cannot be effectively employed, suffering from
the high computational load and parameter uncertainty. Fur-
thermore, the robotic system’s stability in contact environment
should also be considered because the contact dynamics can be
severe if the robot dynamics are not treated adequately (Xing
et al., 2022).

The control challenges mentioned above have led to the
employment of a nonlinear model-based control method, where
a well-designed feedforward control term can partially address
the system’s nonlinearities. However, the exact feedforward
dynamic model of multi-DOF manipulators is hard or even
impossible to derive due to the severe joint coupling and
nonlinear friction (Ficuciello et al., 2014). In Zhu (2010), an
adaptive nonlinear model-based control approach was proposed
called virtual decomposition control (VDC) to model and
control multi-DOF robotic systems inspired by the Newton–
Euler formulation. The primary concept of this approach is
to virtually decompose the entire robotic system into several
independent subsystems. Each subsystem is connected with the
contiguous subsystem through the “force” element composed
of force/torque (F/T) and the “velocity” element comprised of
linear velocity and angular velocity. The dynamic interaction
between the adjacent subsystems is described using the unique
feature of VDC called virtual power flow (VPF). Compared
with the dynamic model based on the Lagrangian formulation,
this method’s computation is proportional to the number of
the subsystems (the calculation of the Lagrangian high-order
dynamic model is proportional to the fourth power of the
system’s DOF (Zhu, 2010)). Therefore, the computational
efficiency improves significantly.

With its stunning performance in dealing with complex
robotic systems, VDC has been highlighted with many ap-
plications involving multi-DOF systems, including electrically
driven manipulators (Zhu et al., 1998; Zhu and Lamarche, 2007;
Zhu et al., 2013), mobile manipulators (Antonelli et al., 2004;
Jafarinasab et al., 2019), and exoskeleton robots (Luna et al.,
2016; Ochoa Luna et al., 2015). A hybrid force/position control
framework with smooth transition phases from free-space
motion to constrained motion based on VDC was achieved, yet,
a commercial end-effector force sensor was required (Zhu and
De Schutter, 2002). In Xia et al. (2019), a dynamic model
for a 6-DOF manipulator was established with consideration

of joint elasticity and friction based on VDC. This modeling
approach’s effectiveness has been experimentally verified, but
they failed to provide a corresponding control method for their
model. In Koivumäki and Mattila (2017), an impedance control
method for multi-DOF hydraulic manipulators was proposed
with highly nonlinear dynamics solved, which guaranteed the
L2 and L∞ stability of the system in both free space and contact
environment. However, the inertial term of the impedance
model was neglected, and the joint friction was not addressed.
In Asl et al. (2021), an adaptive neural networks-based control
scheme was presented for robotic exoskeletons to obtain the
desired transparency, while joint flexibility was not considered.

The problem with much of the literature about dynamic
control of complex robotic systems is that when the number of
DOFs increases, the computational load will increase rapidly;
hence, online implementation is extraordinarily challenging
(Koivumäki and Mattila, 2017; Sciavicco and Siciliano, 2012).
Besides, the unknown dynamic parameters, nonlinear frictions,
and elasticity of the robotic system also present great difficulty
in controlling the system (Wang, 2016; Sharifi et al., 2020;
Madsen et al., 2020). The model-based adaptive control
approach and model-free method have been widely used
in dealing with complicated joint flexibility. However, a
complete-dynamics-based control of multi-DOF manipulators
integrated with flexible joints for experimental implementation
and stability proof was not provided.

This paper proposes a novel VDC-based admittance control
approach for multi-DOF manipulators integrated with flexible
joints via a hierarchical control framework. The main contri-
butions of this paper are as follows: 1) A novel non-switching
stability-guaranteed admittance control method is proposed for
multi-DOF manipulators considering joint flexibility using a
hierarchical design framework; 2) the admittance controller
based on the inner motion control loop is designed using
virtual decomposition theory, the joint friction and flexibility
are specially handled by a VDC-based adaptive controller,
where the joint stiffness coefficient is also self-adapted; 3)
rigorous stability proof and motion/force convergence proof
are presented for multi-DOF manipulators to cover both
unconstrained and constrained motions. The benefit of VDC
is that each subsystem can be independently controlled to
reduce computation and the entire system’s stability can
simultaneously be guaranteed.

The remainder of this paper is organized as follows. Section
2 presents the kinematic and dynamic models for Multi-DOF
manipulators based on VDC. The proposed hierarchical control
framework for compliant behavior and singularity avoidance
via VDC is described in Section 3. Section 4 provides the
stability proof of the approach. Experiments that demonstrate
the validity and performance of the proposed method are
presented in Section 5. Section 6 concludes the manuscript.

2. VDC-Based Modeling of Multi-DOF Manipulators

In this section, the kinematic and dynamic models of multi-
DOF manipulators are provided. Section 2.1 presents the
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Figure 1: Virtual decomposition of an n-DOF manipulator.

kinematic model of the manipulators, and their dynamic model
is shown in Section 2.2.

2.1. Kinematic Modeling of Multi-DOF Manipulators

Fig. 1 shows the virtual decomposition of an n-DOF
manipulator. The entire manipulator system is virtually
decomposed into 2n + 1 subsystems, including n joints, n
links, and an object. As shown in Fig. 1, 2n virtual cutting
points (VCPs) (B1, · · · ,Bn,T2, · · · ,Tn,TO) have been defined
(the definition of VCP is shown below). Frame {TO} is located
at the connection point between the nth link and the object.
Also, frame {E} is located at the point where the contact occurs.
It should be emphasized that the object has only one VCP.

The concept of VCP is of great importance to the VDC
approach because it can conceptually decompose a complex
robotic system into several subsystems, which is defined in
Definition 1.

Definition 1. A cutting point is a directed separation interface
that conceptually cuts through a rigid body. The two parts
caused by the virtual cut share equal pose. The cutting point
is expressed as a driving cutting point by one part and is
simultaneously expressed as a driven cutting point by the other
part. The force/moment vector is exerted from which the cutting
point is expressed as a driving cutting point to which the cutting
point is expressed as a driven cutting point.

Here, the term of linear/angular velocity and force/torque
transformations will be introduced. Consider {A} as a frame
attached to a rigid body. Let Av ∈ R3 and Aω ∈ R3 be
the linear and angular velocity vectors of frame {A}, and the
linear/angular velocity vector of frame {A} is written as AV =

[
AvT, AωT

]T
. Similarly, let A f ∈ R3 and Am ∈ R3 be the force

and torque vectors of frame {A}, and the F/T vector of frame {A}
is written as AF =

[
A f T, AmT

]T
. Then, consider two frames,

expressed as {A} and {B}, being fixed to a rigid body, no matter
whether it is moving or subject to physical force and torque
vectors. The following relations hold

BV = AUT
B

AV, AF = AUB
BF, (1)

where AUB ∈ R6×6 is an F/T transformation matrix that
transforms the F/T vector expressed in frame {B} to the same
F/T vector expressed in frame {A}.

Thus, the linear/angular velocity vector of each manipula-
tor’s subsystem in its corresponding frame can be expressed as

B1 V = zq̇1,

Ti V = Bi−1 UT
Ti

Bi−1 V,
Bi V = zq̇i +

Ti UT
Bi

Ti V = zq̇i +
Bi−1 UT

Bi

Bi−1 V,
TO V = Bn UT

TO

Bn V,
OV = TO UT

O
TO V,

EV = OUT
E

OV,

(2)

where i = 2, 3, . . . , n, z = [0, 0, 0, 0, 0, 1]T ∈ R6, q̇i represents
the angular velocity of the ith joint, and TUB denotes the
force/moment transformation matrix from {B} to {T} with its
definition in (1).

The task-space velocity vector EV ∈ R6 and the joint
velocity vector q̇ = [q̇1, . . . , q̇n]T ∈ Rn are controlled by a
Jacobian matrix J ∈ R6×n as follows,

EV = Jq̇ =
[
B1 UT

Ez, B2 UT
Ez, . . . , Bn UT

Ez
]
q̇. (3)

It is worth mentioning that the reference frame of the Jacobian
J is the contact point frame {E}.

2.2. Dynamic Modeling of Multi-DOF Manipulators

Consider a rigid object with frame {A} fixed; then, the
general formulation of its dynamics, in which frame {A} is used
as the reference frame, can be expressed as

MA
d
dt

(AV) +CA(Aω)AV +GA =
AF∗, (4)

where MA ∈ R6×6 is the mass matrix, CA(Aω) ∈ R6×6 is the
matrix of Coriolis and centrifugal terms, GA ∈ R6 is the gravity
term, and AF∗ ∈ R6 is the net F/T vector of the rigid body
expressed in frame {A}.

According to (4), the force resultant equations of the n links
and the object can be calculated as

OF∗ = OUTO
TO F − OUE

EFe,

Bn F∗ = Bn F − Bn UTO
TO F,

Ti F = Ti UBi
Bi F, i = n, . . . , 2,

Bi F∗ = Bi F − Bi UTi+1
Ti+1 F, i = n − 1, . . . , 1,

(5)
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where EFe ∈ R6 is the external F/T vector exerted at the contact
point {E} and AF ∈ R6, A ∈ {TO,Bi,Ti}, denotes the driving F/T
vector of each link at its corresponding frame. The purpose of
(5) is to calculate the driving F/T vector from each joint to the
next link, Bi F, according to (4), via an iterative approach.

The dynamics of all manipulator joints are also considered
to improve the modeling accuracy. It is worth mentioning that
for most conventional manipulator joints, their transmission
system is usually mixed with transmission elasticity, motor
inertia, and friction (Ren et al., 2018). In the case of a flexible
manipulator joint, when taking the friction term on both the
motor and link sides and the joint elasticity into account, the
dynamic model is expressed as (Spong, 1987)

τ f i(q̇i) = τti − τai,

τti = k f i(ϕi − qi),
Imiϕ̈i + τ fϕi(ϕ̇i) = τi − τti,

(6)

where i = 1, . . . , n, τ f i denotes the link-side friction torque, τti

is the effective transmission input torque, Imi denotes the joint
moment of inertia, ϕi represents the motor-side joint position,
τ fϕi denotes the motor-side friction torque, τi represents the
motor control torque, k f i is the joint stiffness coefficient, and

τai = zT Bi F (7)

denotes the torque output of the ith joint toward the correspond-
ing link.

The friction torques τ f i and τ fϕi are assumed as

τ f i(q̇i) = fvqiq̇i + fcqisign(q̇i),
τ fϕi(ϕ̇i) = fvϕiϕ̇i + fcϕisign(ϕ̇i),

(8)

where fvqi and fcqi denote the link-side viscous and Coulomb
friction coefficients of the ith joint, fvϕi and fcϕi represent its
motor-side viscous and Coulomb friction coefficients.

3. Hierarchical Control Framework for Compliant Behav-
ior via VDC

The primary target of this section is to design an ap-
propriate admittance controller to realize the desired user-
defined compliant behavior for a flexible-joint manipulator.
We are starting with the presentation of a robot-environment
interaction force estimation method to generate the signal input
for the admittance controller in Section 3.1. In Section 3.2, a
high-level admittance controller integrated with the low-level
VDC is designed, where an adaptive controller is proposed for
joint friction and flexibility within the low-level controller.

3.1. Robot-Environment Interaction Force/Torque Estimation

The robot-environment interaction-related F/T of the admit-
tance controller can be obtained either by using a commercial
wrist F/T sensor or estimation approach (Mohammadi et al.,
2013). When there is no wrist sensor available at the end-
effector, an alternative method of obtaining the interaction can
be provided based on joint torque measurements.

For a manipulator with flexible joints, if the joint torque
sensor is integrated; then, we can take advantage of the joint
torque measurements instead of working with the full dynamics
of the robot mixed with joint elasticity. This method can
avoid the requirement of (ϕi, ϕ̇i, ϕ̈i), Imi, τ fϕi(ϕ̇i); thus, the
force estimation accuracy will be enhanced (Liu et al., 2019).
Actually, when a high-resolution position encoder and a joint
torque sensor are equipped on the motor side and the link
side of a joint, respectively, the joint link-side position can be
calculated as q = ϕ − τt/k f .

The complete dynamic model of an n-DOF manipulator
considering link-side joint friction can be expressed as

M(q)q̈ +C(q, q̇)q̇ +G(q) + τ f (q, q̇) = τ + JT EFe, (9)

where M(q) ∈ Rn×n, C(q, q̇) ∈ Rn×n, and G(q) ∈ Rn denote
the inertia matrix, Coriolis and centrifugal terms, and gravity
term of the entire robotic system, respectively, τ f (q, q̇) ∈ Rn

denotes the joint friction torque vector, and τ ∈ Rn denotes the
joint control torque vector. It should be noted that the contact
F/T EFe is usually measured using a wrist sensor placed at the
end-effector. Here, a generalized momentum-based interaction
force estimation method (De Luca et al., 2006) is adopted to
avoid the requirement of a wrist F/T sensor.

According to Siciliano et al. (2010), in (9), Ṁ(q) − 2C(q, q̇)
is a skew-symmetric matrix, and with symmetry of M(q), it is
obvious that

Ṁ(q) = C(q, q̇) +CT(q, q̇). (10)

To circumvent the measurement of joint acceleration, which
is difficult if not impossible, a practical interaction force
estimation approach with joint torque measurements according
to generalized momentum (De Luca et al., 2006) is proposed.
The generalized momentum is expressed as

p = M(q)q̇. (11)

The time evolution of p can be obtained as

ṗ = Ṁ(q)q̇ + M(q)q̈, (12)

and combining (9), (10), and (12) yields

ṗ = CT(q, q̇)q̇ −G(q) − τ f (q, q̇) + τ + JT EFe. (13)

Then, the interaction force-related joint torque is observed
using

r(t) = KI
(
p−
∫ t

0
(τ+CT(q, q̇)q̇−G(q)− τ f (q, q̇)+ r)dτ

)
, (14)

where KI is a positive gain matrix. The dynamic evolution of
r(t) has a stable structure as

ṙ(t) = KI(JT EFe − r). (15)

If the gain matrix KI is chosen sufficiently massive, then we
can obtain the estimate of the joint torque resulting from the
interaction force as

JT EFe ≈ r. (16)
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According to (16), the estimated interaction F/T EF̂e can be
calculated as

EF̂e =
(
JT(q)

)†r, (17)

where (.)† denotes the Moore-Penrose pseudoinverse of a
matrix. To estimate the robot-environment interaction, τ is
measured by joint torque sensors, the manipulator parameters
related to M(q), C(q, q̇), G(q), and τ f (q, q̇) can be estimated by
experiment (Calanca et al., 2010; Gaz et al., 2019). Here, the
joint friction model for τ f (q, q̇) is simplified as (8), which only
relates to its corresponding joint position and velocity (Calanca
et al., 2010). It is noteworthy that the linearized joint friction
model in (8) is only applicable when the joint motion is small
(Xing et al., 2021); if the joint motion is on a large scale, a more
elaborated joint friction model is required.

3.2. Admittance Controller Design Based on Low-Level VDC

The required end-effector velocity considering interaction
force is proposed in Section 3.2.1, followed by the VDC-based
subsystem control of the compliant object, links, and joints,
respectively.

3.2.1. Design of Required End-Effector Velocity with Compli-
ance Considered

According to Hogan (1985), the desired task-space admit-
tance model for a manipulator is expressed as1

fd − fe = Md(ẍ − ẍd) + Dd(ẋ − ẋd) + Kd(x − xd), (18)

where Md ∈ R3×3, Dd ∈ R3×3, and Kd ∈ R3×3 are diagonal
positive-definite matrices characterizing the desired inertia,
damping, and stiffness; fd ∈ R3 and fe ∈ R3 are the desired and
actual external forces, thus, fe represents the force component
of EF̂e in the first equation of (5), which can be estimated via
(17); and xd ∈ R3 and x ∈ R3 are the desired and actual end-
effector trajectories at the contact point, respectively. In this
paper, the orientation of the manipulator’s end-effector will be
invariable unless orientation compliance is taken into account.

The terminology of required velocity is an essential concept
in the VDC approach, including the desired velocity and one or
more terms related to the control errors, such as position errors
and force errors.

Inspired by Koivumäki and Mattila (2017), the required
velocity for the manipulator ẋr is designed as

ẋr = ẋd + Λa(xd − x) + Λb(ẍd − ẍ) + Λc( fd − fe), (19)

where Λa ∈ R3×3, Λb ∈ R3×3, Λc ∈ R3×3 are three diagonal
positive-definite matrices. The values of the diagonal positive-
definite matrices are defined as

Λc = D−1
d , Λa = KdD−1

d , Λb = MdD−1
d . (20)

1Here, the admittance model is only for the position adjustment of the
manipulator under the action of the external force. The compliant orientation
adjustment can be easily achieved via a similar method with external torque,
which will be demonstrated in the experiment to make the paper concise.

With the proposed control law (19) and the parameter
definition in (20), the control law (19) equals the target
admittance (18).

The matrices Md, Dd, and Kd are all diagonal positive-
definite, thus it derives

D−1
d ΛaDd = Λa, D−1

d ΛbDd = Λb,

DdKdD−1
d = Kd, Dd MdD−1

d = Md.
(21)

According to (18)-(21), it yields

ẋr =ẋd + Λa(xd − x) + Λb(ẍd − ẍ)
+ Λc(Md(ẍ − ẍd) + Dd(ẋ − ẋd) + Kd(x − xd))
=ẋd + ΛcDd(ẋ − ẋd) + Λa(xd − x)
+ Λb(ẍd − ẍ) + Λc(Md(ẍ − ẍd) + Kd(x − xd))

=ẋd + D−1
d Dd(ẋ − ẋd) + Λa(xd − x) + Λb(ẍd − ẍ)

+ D−1
d ΛbDd(ẍ − ẍd) + D−1

d ΛaDd(x − xd)
=ẋ.

(22)

Combining (19)-(22) yields

fd − fe
=Λ−1

c (ẋr − ẋd) − Λ−1
c Λa(xd − x)

− Λ−1
c Λb(ẍd − ẍ)

=DdKdD−1
d (x − xd) + Dd(ẋr − ẋd)

+ Dd MdD−1
d (ẍd − ẍ)

=Kd(x − xd) + Dd(ẋr − ẋd) + Md(ẍd − ẍ),

(23)

where the last row is equal to (18).
With the obtained required end-effector velocity, we will

design the independent controllers for each subsystem using
VDC framework.

3.2.2. Control of Compliant Object
The linear/angular velocity vector EV ∈ R6 of the contact

point in frame {E} is written as

EV = T ẋ (24)

with T =
[
I3×3, 03×3

]T
∈ R6×3, meaning no angular velocity is

applied to the contact point. Then the velocity vector for the
object can be obtained using the last equation of (2). Here,
ẋ ∈ R3 represents the end-effector’s task-space velocity vector,
derived in (18).

The F/T vector of the contact point expressed in {E} is
derived as

EFe = T fe; (25)

then, the net F/T vector of the object can be derived as the first
row of (5). Here, fe ∈ R3 represents the robot-environment
interaction force vector.

Similar to (24), the required velocity at the contact point in
{E} is expressed as

EVr = T ẋr, (26)
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where ẋr ∈ R3 is defined in (19), and the required velocity for
the object is

OVr =
EUT

O
EVr. (27)

Similar to (25), the required F/T at the contact point in {E}
is expressed as

EFr = T fd, (28)

where fd ∈ R3 is the desired task-space force vector in (18).
The required net force/moment vector for the object can be

expressed as

OF∗r = YOθ̂O + KO(OVr −
OV) (29)

with
YOθO = MO

d
dt

(OVr) +CO(Oω)OVr +GO,

where YO ∈ R6×13 is a regressor matrix, θO ∈ R13 and
θ̂O ∈ R13 are the unknown parameter vector and its estimate,
respectively, and KO ∈ R6×6 is a symmetric positive-definite
matrix representing the velocity feedback control. YO is a
function of the known parameters (measured or calculated),
including d

dt (
OVr), OVr, and OV . θO denotes a function of the

unknown parameters, containing object mass, position of the
mass center, and moment of inertia. The exact representation of
each element of these parameters can be found in Zhu (2010).

The following projection function in Zhu (2010) is utilized
for unknown parameter adaptation.

Definition 2. A projection function P(s(t), k, a(t), b(t), t) ∈ R is
a differentiable scalar function defined in t ⩾ 0 such that its
time derivative is governed by

Ṗ = ks(t)κ (30)

with

κ =


0, if P ⩽ a(t) and s(t) ⩽ 0
0, if P ⩾ b(t) and s(t) ⩾ 0
1, otherwise

where s(t) ∈ R is a scalar variable, k is a positive constant and
a(t) ⩽ b(t) holds.

Consider an arbitrary P function defined in (30), and for
any constant Pc satisfying a(t) ⩽ Pc ⩽ b(t), it follows that

(Pc − P)
(
s(t) −

1
k
Ṗ

)
⩽ 0. (31)

The estimated parameters of θ̂O in (29) can be updated using
the parameter adaptation method provided in Definition 2 with

sO = YT
O(OVr −

OV). (32)

Then, each element of θ̂O can be updated using (30) as

θ̂Oγ = P(sOγ, ρOγ, θOγ, θOγ, t),∀γ ∈ [1, 13], (33)

where θ̂Oγ is the γth element of θ̂O, sOγ is the γth element of sO,
ρOγ > 0 is the update gain, and θOγ and θOγ are the lower bound
and the upper bound of θOγ.

Similar to the first equation of (5), the required net
force/moment vector of the object can be calculated as

OF∗r =
OUTO

TO Fr −
OUE

EFr. (34)

3.2.3. Control of Links
The linear/angular velocity vector of the ith link Bi V ∈ R6

can be obtained using the first three equations of (2), and its
force/moment vector Bi F ∈ R6 can be derived using the last
three equations of (5).

According to (3), the required joint velocity q̇ir is expressed
as

q̇r = J†EVr, (35)

where q̇r =
[
q̇1r, · · · , q̇nr

]T
∈ Rn denotes the required joint

velocity vector.
The required velocity vector of the ith link Bi V ∈ R6 is

expressed as

B1 Vr = zq̇1r,

Ti Vr =
Bi−1 UT

Ti

Bi−1 Vr,

Bi Vr = zq̇ir +
Ti UT

Bi

Ti Vr = zq̇ir +
Bi−1 UT

Bi

Bi−1 Vr.

(36)

The required F/T vector of the ith link Bi F ∈ R6 can be
obtained as

Bn F∗r =
Bn Fr −

Bn UTO
TO Fr,

Ti Fr =
Ti UBi

Bi Fr, i = n, . . . , 2,
Bi F∗r =

Bi Fr −
Bi UTi+1

Ti+1 Fr, i = n − 1, . . . , 1.

(37)

The VDC-based control procedure for the links is the
same as the process for the object in (29) and (32)-(34) with
appropriate frame substitutions.

3.2.4. Control of Joints
The relationship between the joint velocity vector and the

linear/angular velocity vector of the adjacent links is shown in
the first three equations of (2). The dynamics of the ith joint is
provided by (6), where the joint elasticity is considered.

Combined with (37), the commanded joint torque of the ith

joint is designed as

τtid = Yaiθ̂ai + zT Bi Fr + kvqi(q̇ir − q̇i),

ϕir = τtid/k̂ f i + qir,

τi = τtid + Ybiθ̂bi + kvϕi(ϕ̇ir − ϕ̇i),

(38)

with

Yai =
[
q̇ir, sign(q̇ir)

]
, θai = [ fvqi, fcqi]T;

Ybi =
[
ϕ̈ir, ϕ̇ir, sign(ϕ̇ir)

]
, θbi = [Imi, fvϕi, fcϕi]T.

(39)

Define

sai = YT
ai(q̇ir − q̇i),

sbi = YT
bi(ϕ̇ir − ϕ̇i),

sk f i =
(
ϕir − qir

)[
(ϕ̇ir − ϕ̇i) − (q̇ir − q̇i)

]
,

(40)

then, each element of θ̂ai, θ̂bi, and k̂ f i can be updated using (30),
respectively, as

θ̂aiγ = P(saiγ, ρaiγ, θaiγ, θaiγ, t),∀γ ∈ {1, 2, 3},

θ̂biγ = P(sbiγ, ρbiγ, θbiγ, θbiγ, t),∀γ ∈ {1, 2},

k̂ f i = P(sk f i, ρk f i, k f i, k f i, t),

(41)
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where θ̂aiγ, θ̂biγ, saiγ, and sbiγ denote the γth element of θ̂ai, θ̂bi,
sai, and sbi, respectively; ρaiγ, ρbiγ, and ρk f i represent positive
parameter update gains; θaiγ and θaiγ are the lower and upper
bounds of θaiγ; θbiγ and θbiγ denote the lower and upper bounds

of θbiγ; and k f i and k f i are the lower and upper bounds of k f i.
The entire control system is shown in Fig. 2.

4. Stability Analysis

This section presents the stability proof of the designed
control approach. Sections 4.1, 4.2, and 4.3 provide the virtual
stability of the compliant object, links, and joints, respectively.
Section 4.4 proves the stability of the entire manipulator based
on the virtual stability of each subsystem.

First, we present the concept of VPF and virtual stability.
The unique feature of the VDC approach is the introduction of
VPF (defined in Definition 3). A VPF is defined and used to
characterize the dynamic interactions among the subsystems,
and plays an important role in leading to the theorem of
virtual stability, which will be presented in Definition 4
(Koivumäki and Mattila, 2017).

Definition 3. With respect to a frame {A}, the VPF is defined
as the inner product of the linear/angular velocity vector error
and the F/T vector error as

pA
de f
= (AVr −

AV)T(AFr −
AF), (42)

where AVr ∈ R6 and AFr ∈ R6 represent the required vectors of
AV ∈ R6 and AF ∈ R6, respectively.

Definition 4. A subsystem with a driven VCP to which frame
{A} is attached and a driving VCP to which frame {C} is
attached is said to be virtually stable with its affiliated vector
x(t) being a virtual function in L∞ and its affiliated vector y(t)
being a virtual function in L2 , if and only if there exists a
nonnegative accompanying function

ν(t) ⩾
1
2

x(t)TPx(t), (43)

such that

ν̇(t) ⩽ −y(t)TQy(t) + pA − pC − s(t), (44)

which is subject to ∫ ∞
0

s(t)dt ⩾ −γs (45)

with 0 ⩽ γs < ∞, where P and Q are two positive-definite
matrices.

4.1. Virtual Stability of Compliant Object
Theorem 1. Consider the compliant object described by (4),
(5), (18), (24), (25), combined with its respective control equa-
tions (19), (26)-(29), (34), and with the parameter adaptation
algorithms (32) and (33). The compliant object is virtually
stable.

Proof. Define the nonnegative accompanying function for the
object νO as

νO =
1
2

(OVr −
OV)TMO(OVr −

OV)

+
1
2

13∑
γ=1

(
θOγ − θ̂Oγ

)2
ρOγ

,
(46)

then, the time derivative of (46) can be obtained as

ν̇O ⩽ −(OVr −
OV)TKO(OVr −

OV) + pTO − pE, (47)

where pTO is the VPF (defined in Definition 3) at the driven
VCP of the object, and pE is the VPF between the object and
the environment.

It is noteworthy that the compliant object of the manipulator
only has one VCP (shown in Fig. 1), but two VPFs appear in
(47). The VPF pTO locates at the VCP attached to frame {TO} of
the object. Therefore, for the virtual stability of the compliant
object, the condition to guarantee that the existence of VPF pE
still satisfies Definition4 must be found.

According to (18), (19), (24)-(26), (28), and (42), it yields

pE =(EVr −
EV)T(EFr −

EF)
=
[
(ẋd − ẋ) + Λa(xd − x) + Λb(ẍd − ẍ)

+ Λc( fd − fe)
]TT TT ( fd − fe)

=(ẋd − ẋ)T( fd − fe) + (xd − x)TΛT
a ( fd − fe)

+ (ẍd − ẍ)TΛT
b ( fd − fe) + ( fd − fe)ΛT

c ( fd − fe)

=(ẋd − ẋ)T[Md(ẍ − ẍd) + Dd(ẋ − ẋd) + Kd(x − xd)
]

+ (xd − x)TΛT
a
[
Md(ẍ − ẍd) + Dd(ẋ − ẋd) + Kd(x − xd)

]
+ (ẍd − ẍ)TΛT

b
[
Md(ẍ − ẍd) + Dd(ẋ − ẋd) + Kd(x − xd)

]
+
[
Md(ẍ − ẍd) + Dd(ẋ − ẋd) + Kd(x − xd)

]
ΛT

c[
Md(ẍ − ẍd) + Dd(ẋ − ẋd) + Kd(x − xd)

]
=(xd − x)T(KdΛcKd − ΛaKd)(xd − x) + (ẋd − ẋ)T(DdΛcDd

− Dd)(ẋd − ẋ) + (ẍd − ẍ)T(MdΛcMd − ΛbMd)(ẍd − ẍ)

+ (ẋd − ẋ)T(2DdΛcKd − ΛaDd − Kd)(xd − x)

+ (ẋd − ẋ)T(2DdΛcMd − ΛbDd − Md)(ẍd − ẍ)

+ (xd − x)T(2MdΛcKd − ΛbKd − ΛaMd)(ẍd − ẍ) = 0.
(48)

Therefore, the following condition∫ ∞
0

pEdt ⩾ −γE (49)

holds with 0 ⩽ γE < ∞. Then, the compliant object is
virtually stable according to Definition 4.

4.2. Virtual Stability of Links
Theorem 2. Consider the links described by (2), (4), (5),
combined with their respective control equations (36), (37), and
with parameter adaptation algorithms, which are the same as
(32) and (33) with appropriate frame substitutions. The links
are virtually stable.
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Figure 2: Block diagram of the control system based on VDC.

Proof. Choose the nonnegative accompanying function for the
ith link νBi as

νBi =
1
2

(Bi Vr −
Bi V)TMBi (

Bi Vr −
Bi V)

+
1
2

13∑
γ=1

(
θBiγ − θ̂Biγ

)2
ρBiγ

,
(50)

then, the time derivative of (50) can be obtained as

ν̇Bi ⩽ − (Bi Vr −
Bi V)TKBi (

Bi Vr −
Bi V)

+ (Bi Vr −
Bi V)T(Bi F∗r −

Bi F∗).
(51)

In view of (5), (37), and Definition 3, it yields

(Bn Vr −
Bn V)T(Bn F∗r −

Bn F∗)

= (Bn Vr −
Bn V)T[(Bn Fr −

Bn F) − Bn UTO (TO Fr −
TO F)
]

= pBn −
[Bn UT

TO
(Bn Vr −

Bn V)
]T(TO Fr −

TO F)

= pBn − pTO ,

(52)

(Bi Vr −
Bi V)T(Bi F∗r −

Bi F∗)

= (Bi Vr −
Bi V)T[(Bi Fr −

Bi F) − Bi UTi+1 (Ti+1 Fr −
Ti+1 F)

]
= pBi −

[Bi UT
Ti+1

(Bi Vr −
Bi V)
]T(Ti+1 Fr −

Ti+1 F)

= pBi − pTi+1 , i = 1, . . . , n − 1.

(53)

As shown in Fig. 1, each link has two cutting points, one
driving cutting point associated with frame {Ti+1}, i ∈ [1, n − 1]
or associated with frame {TO}, i = n, and one driven cutting
point associated with frame {Bi}, i ∈ [1, n]. Therefore, all the
links are virtually stable in the sense of Definition 4.

4.3. Virtual Stability of Joints
Theorem 3. Consider the flexible joints described by (6), (7),
(8), combined with their respective control equations (38), (39),
and with the parameter adaptation algorithms (40) and (41).
The flexible joints are virtually stable.

Proof. Select the nonnegative accompanying function for the
ith joint as

ν f i =
1
2

Imi(ϕ̇ir − ϕ̇i)2 +
1
2

2∑
γ=1

(
θaiγ − θ̂aiγ

)2
ρaiγ

+

1
2

3∑
i=γ

(
θbiγ − θ̂biγ

)2
ρbiγ

,

(54)

then, combined with the third equations of (6) and (38), the
time derivative of ν f i defined by (54) can be expressed as

ν̇ f i ⩽ − kvqi(q̇ir − q̇i)2 − kvϕi(ϕ̇ir − ϕ̇i)2 + (q̇ir − q̇i)(τtid − τti)

− (ϕ̇ir − ϕ̇i)(τtid − τti) − (q̇ir − q̇i)zT(Bi Fr −
Bi F).

(55)

Subtracting the second equation of (6) from the second
equation of (38) yields

τtid − τti =k̂ f i(ϕir − qir) − k f i(ϕi − qi)

= − (k f i − k̂ f i)(ϕir − qir)+
k f i
[
(ϕir − ϕi) − (qir − qi)

]
,

(56)

then, substituting (56) into (55) and employing the third
equation of (40) derives

ν̇ f i ⩽ − kvqi(q̇ir − q̇i)2 − kvϕi(ϕ̇ir − ϕ̇i)2 +
[
(ϕ̇ir − ϕ̇i)−

(q̇ir − q̇i)
]{

(k f i − k̂ f i)(ϕir − qir) − k f i
[
(ϕir − ϕi)−

(qir − qi)
]}
− (q̇ir − q̇i)zT(Bi Fr −

Bi F)

= − kvqi(q̇ir − q̇i)2 − kvϕi(ϕ̇ir − ϕ̇i)2 − k f i
[
(ϕ̇ir − ϕ̇i)−

(q̇ir − q̇i)
][

(ϕir − ϕi) − (qir − qi)
]
+ (k f i − k̂ f i)sk f i−

(q̇ir − q̇i)zT(Bi Fr −
Bi F).

(57)

According to the third equation of (41) and Definition 2, we
can obtain

(k f i − k̂ f i)
(
sk f i −

˙̂k f i/ρk f i

)
⩽ 0. (58)

Finally, choose the nonnegative accompanying function for
the ith joint with joint elasticity considered as

νai = ν f i+
1
2

k f i
[
(ϕir−ϕi)− (qir−qi)

]2
+

1
2

(k f i− k̂ f i)2/ρk f i, (59)

where ν f i is defined in (54). Then, it follows from (57) and (58)
that

ν̇ai ⩽ −kvqi(q̇ir − q̇i)2 − kvϕi(ϕ̇ir − ϕ̇i)2 − (q̇ir − q̇i)zT(Bi Fr −
Bi F)
(60)

holds.
According to (2), (5), (36), (37), and Definition 3, we can

derive

ν̇a1 ⩽ −kvq1(q̇1r − q̇1)2 − kvϕ1(ϕ̇1r − ϕ̇1)2 − pB1 ,

ν̇ai ⩽ −kvqi(q̇ir − q̇i)2 − kvϕi(ϕ̇ir − ϕ̇i)2 − pBi + pTi , i ∈ [2, n].
(61)
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As shown in Fig. 1, joint 1 only has one driving cutting
point associated with frame {B1}. Joint i, i ∈ [2, n] has two
cutting points, one driving cutting point associated with frame
{Bi} and one driven cutting point associated with frame {Ti}.
Therefore, all the flexible joints are virtually stable in the sense
of Definition 4.

4.4. Stability of Multi-DOF Manipulator System
The following lemmas in Zhu (2010) are used to prove the

L2 and L∞ stability of the entire robotic system.

Lemma 1. Consider a non-negative piecewise continuous
function ξ(t) described as

ξ(t) ⩾
1
2

xT(t)Px(t), (62)

where x(t) ∈ Rn, n ⩾ 1, and P ∈ Rn×n is a symmetric positive-
definite matrix. If the derivative of ξ(t) with respect to time is
Lebesgue integrable and subject to

ξ̇(t) ⩽ −yT(t)Qy(t) − s(t) (63)

with y(t) ∈ Rm, m ⩾ 1, and Q ∈ Rm×m being a symmetric
positive-definite matrix, and s(t) is governed by∫ ∞

0
s(t)dt ⩾ −γ0 (64)

with 0 ⩽ γ0 < ∞, then it follows that ξ(t) ∈ L∞, x(t) ∈ L∞, and
y(t) ∈ L2 hold.

Lemma 2. Consider a multiple-input-multiple-output second-
order system described by

Mẍ(t) + Dẋ(t) + Kx(t) = u(t) (65)

with x(t) ∈ Rn, u(t) ∈ Rn. M ∈ Rn×n, D ∈ Rn×n, and K ∈ Rn×n

being symmetrical and positive definite. If u(t) ∈ L2 ∩ L∞, then
x(t) ∈ L2 ∩ L∞ and ẋ(t) ∈ L2 ∩ L∞.

Lemma 3. If e(t) ∈ L2 and ė(t) ∈ L∞, then limt→∞ e(t) = 0.

Lemma 3 is of great importance in proving the asymptotic
convergence for an error signal e(t).

Theorem 4. Consider the manipulator, shown in Fig. 3 and
described by (48). Furthermore, let the conclusions in (47),
(51), and (61) hold. The stability of the manipulator can be
guaranteed.

Proof. Define the nonnegative accompanying function for the
entire system as

ν = νO +

n∑
i=1

νBi +

n∑
i=1

νai, (66)

and according to (47), (48), (51), and (61), the time derivative
of (66) can be derived as

ν̇ ⩽ − (OVr −
OV)TKO(OVr −

OV)

−

n∑
i=1

(Bi Vr −
Bi V)TKBi (

Bi Vr −
Bi V)

−

n∑
i=1

[
kvqi(q̇ir − q̇i)2 + kvϕi(ϕ̇ir − ϕ̇i)2

]
.

(67)

Then, integrating (67) over time from t = 0 to t = T , ∀T > 0
obtains ∫ T

0
(q̇ir − q̇i)2dt ⩽

1
kvqi
ν(0), (68)

∫ T

0
(ϕ̇ir − ϕ̇i)2dt ⩽

1
kϕqi
ν(0). (69)

Combining Lemma 1, (66), and (67) yields

OVr −
OV ∈ L2 ∩ L∞,

Bi Vr −
Bi V ∈ L2 ∩ L∞,

(ϕir − ϕi) − (qir − qi) ∈ L∞.

(70)

It further follows from (2), (36), (68), (69), and (70) that

q̇ir − q̇i ∈ L2 ∩ L∞,

ϕ̇ir − ϕ̇i ∈ L2 ∩ L∞.
(71)

According to (2), (24), (26), (27), and (70), it obtains

ẋr − ẋ ∈ L2 ∩ L∞. (72)

Then, it yields

Λ−1
c (ẋd − ẋ) + Λ−1

c Λa(xd − x)

+ Λ−1
c Λb(ẍd − ẍ) + ( fd − fe) ∈ L2 ∩ L∞

(73)

using (19).

When ( fd − fe) = 0, it follows from Lemma 2 that (ẋd − ẋ) ∈
L2 ∩ L∞ and (xd − x) ∈ L2 ∩ L∞. Then, according to Lemma 3,
limt→∞

(
xd(t) − x(t)

)
= 0.

It is worth mentioning that ( fd− fe) , 0 denotes constrained
motions and ( fd − fe) = 0, with fd = [0, 0, 0]T, denotes free-
space motions.

5. Experimental Results

Several experiments were conducted to verify the efficiency
of the proposed approach for multi-DOF manipulator control.
The experimental setup is introduced in Section 5.1. Section
5.2 provides the experimental verification of the generalized
momentum-based force estimation approach and the proposed
admittance control based on the low-level VDC. Section 5.3
demonstrates the performance of the proposed approach in
handling compliant motion/force operation.

5.1. Experimental Setup

The experimental setup is shown in Fig. 3, which consists of
a 7-DOF manipulator Kinova Gen3 (Kinova Robotics, Canada)
and an Axia80-ZC22 F/T sensor (ATI Industrial Automation,
Apex, NC, USA). The Gen3 employs series elastic elements to
sense joint torques. It should be noted that the proposed method
is also applicable to other types of multi-DOF manipulators
with joint torque available, such as Kuka LBR iiwa (Mujica
et al., 2020) or Franka Emika Panda (Gaz et al., 2019). The
control frequency of the system is set as 1000 Hz (1.0 ms per
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Figure 3: Virtual decomposition of the tested manipulator.

loop). It is worth mentioning that the end-effector in Fig. 3 is
considered as the object to facilitate the controller design of the
subsystem dynamics. The F/T sensor is mostly used to evaluate
the accuracy of the force estimation approach rather than as a
control component.

Manipulator torque compensation is first conducted to
estimate the interaction force. The joint friction model is shown
in (8). The manipulator’s dynamics and gravity-related param-
eters are provided by Kinova Robotics, and the joint friction
parameters are estimated via a least-square method2 (Calanca
et al., 2010). It is noteworthy that these estimated joint friction
parameters are not the ones in (38). These are fixed parameters
used for interaction force estimation, and the parameters in
(38) are adaptive ones for control purposes. The joint stiffness
coefficients in (6) are obtained from Kinova Robotics, which
are listed as k f = [16, 16, 16, 16, 7.1, 7.1, 7.1]TkN·m/rad. The
task-space acceleration is obtained by differentiating the task-
space velocity. A fourth-order Butterworth low-pass filter is
performed on the acceleration and the measured joint torque
to mitigate the measurement noise effect, with the cutoff
frequency of 5 Hz and 3 Hz, respectively.

A video is attached with the manuscript to present the
experiments in this section.

5.2. Admittance Control Based on VDC

In this experiment, the proposed method’s performance
in following a task-space trajectory, which is generated by
a human-applied F/T at the end-effector via a VDC-based

2The parameter identification experiment is performed by controlling the
manipulator to track predefined task-space trajectories via PID controller with
joint position, velocity, and torque recorded.

Table 1: Desired admittance parameters and control gains.

x transl. y transl. z transl. x rot.

Kd 0 0 0 0
Dd 250 250 125 1.5
Md 25 25 12.5 0.15
Λa 0 0 0 0
Λb 0.1 0.1 0.1 0.1
Λc 0.004 0.004 0.008 2/3

admittance controller, is verified. First, we employed a PD
controller on the end-effector’s orientation to keep it constant;
thus, only position compliance was involved. Second, a similar
required angular velocity definition as (19) was utilized on the
orientation to prove the method’s effectiveness for orientation
compliance, where the desired/actual force ( fd/ fe) should be
replaced by the desired/actual torque (τd/τe). This trick allowed
the influences of forces and torques to be separated; the results
were, therefore, more accurate.

The subsequent experiments consist of two segments. The
first one proves the precision of the generalized momentum-
based interaction F/T estimation approach. The estimated F/T
(computed via (11), (14), and (17)) is compared with the F/T
measured by the wrist sensor.

The desired F/T fd/τd and trajectory xd were set as zero.
It is noteworthy that for orientation compliance, the rotation
around the base frame’s x-axis was taken as an example. The
desired admittance parameters and control gains are listed in
Table 1. The units of Kd, Dd, and Md for translation are N/m,
Ns/m, and Ns2/m. The units of Kd, Dd, and Md for rotation
are N/(m·rad), Ns/(m·rad), and Ns2/(m·rad). The stiffness of
the manipulator was zero to let the end-effector follow the
trajectory generated only by the user-applied F/T. In terms
of translation, the damping and inertial values of the z-axis
were smaller than those of the other two directions to test
the effectiveness of realizing different admittance behaviors in
different directions. The control gains were selected according
to the desired admittance parameters and (20).

Fig. 4 presents the end-effector’s translation results with
fixed orientation. Fig. 5 shows its x-axis rotation results, where
the translation setting was the same as the pure translation
scenario, but the user did not apply any force. Table 2 contains
the maximum and RMS values of the estimation errors in each
direction. During the translation experiment, the operator first
applied the force in x-axis, then, in y-axis, and finally in z-
axis. As shown in Fig. 4 and the first three columns of Table
2, the maximum task-space force estimation errors between
the estimated forces and the force measurements in x, y, and
z were 5.53 N, 5.84 N, and 4.12 N, respectively. The RMS
level of these estimation errors was 1.30 N, 1.40 N, and 1.18
N, respectively, which accounted for about 5.27%, 7.22%, and
9.25% of their corresponding maximum force measurements.
The x-axis torque estimation result is presented in Fig. 5 and
the last column of Table 2, where the maximum and RMS
estimation errors occupied 17.94% and 5.60% of its maximum

10



-30

-15

0

15

30

0 9 18 27 36 45
t (s)

In
te

ra
c
ti

o
n

 f
o
rc

e
 (

N
)

Est._x
Est._y
Est._z

Mea._x

Mea._z
Mea._y

(a) Interaction force

-6

-3

0

3

6

0 9 18 27 36 45
t (s)

E
st

im
a
ti

o
n

 e
rr

o
r 

(N
)

Error_x
Error_y
Error_z

(b) Estimation error
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Figure 5: Comparison of estimated torque and measured torque in x-axis.

torque measurement, respectively. The experimental results in
this segment verify the effectiveness of the interaction force
estimation method.

The second segment is to illustrate the performance of the
admittance controller based on the low-level VDC in terms of
trajectory following exerted by an arbitrary external F/T. The
control gains were selected the same as the first experiment
segment. Fig. 6 shows some pictures during the experiment,
indicating that the trajectory following can be achieved in
each Cartesian direction with the corresponding estimated
interaction F/T. However, each direction’s admittance behavior
was different due to the different control gains. Fig. 7 shows the
end-effector’s position and force profiles during the translation
experiment. Its orientation compliance result around the x-axis
is provided in Fig. 8.

Fig. 7a shows the task-space displacements of the end-
effector during the translation experiment, the displacements
along x, y, and z occurred sequentially due to the external
forces. Fig. 8a presents the end-effector’s x-axis orientation
induced by a user-applied torque. Figs. 7b and 8b show
the estimated and fitted forces and torques during the two
experiments, respectively. The fitted forces/torques were calcu-
lated according to (18) and the desired admittance parameters
from Table 1. The RMS values of the estimated and fitted
force differences in x, y, and z were 1.74 N, 1.19 N, and

Table 2: Maximum and RMS values of F/T estimation errors.

x transl. y transl. z transl. x rot.

Max. error 5.53 N 5.84 N 4.12 N 0.37 N·m
RMS error 1.30 N 1.40 N 1.18 N 0.12 N·m
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Figure 6: Pictures of trajectory following experiment. (a) shows the translation
along x, (b) shows the translation along y, (c) shows the translation along z, and
(d) shows the rotation around x.

0.73 N, respectively. The RMS value of the estimated and
fitted x-axis torque difference was 0.088 N·m. The nearly
perfect matching of the estimated and fitted results indicates
the proposed approach’s effectiveness in following a random
trajectory generated by manual F/T.
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Figure 7: Experimental results with trajectory following generated by manual
force.

5.3. Compliant Motion/Force Operation
This experiment evaluates the controller’s capability to

perform the desired admittance behavior in both free-space
and constrained space. The end-effector’s orientation was
maintained using a simple PD controller. A desired trajectory
in the y − z plane of the base frame was provided for
the end-effector with its definition being xd(t) = x0 +

[0, 0.1 sin(π/5t), 0.08 sin(2π/5t)]T m, where x0 represented the
end-effector’s initial position. However, an obstacle prevented
its motion in z when contact occurred. The control parameters
of this experiment were set as Λa = diag(15, 15, 6), Λb =

diag(0.2, 0.2, 0.2), Λc = diag(0.001, 0.001, 0.005), the desired
force was defined as 0 N. This parameter design made the
system stiff along x and y, and compliant along z.

Here, we compared two scenarios to demonstrate the
effectiveness of the proposed method. One was to employ the
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Figure 8: Experimental results with orientation tracking generated by manual
torque.
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Figure 9: Pictures of compliant motion/force operation. (a) shows the initial
pose of the manipulator, (b) shows the free-space motion, (c) shows the
critical point between the free-space and constrained motions, (d) shows the
constrained space motion, (e) shows the critical point between the constrained
space and free-space motions, and (f) shows the free-space motion.

estimated task-space force, and the other was to implement the
measured interaction force. Some pictures of the experiment
are shown in Fig. 9, where the red circle denotes the contact
point during the constrained motion.

The experimental results are shown in Figs. 10 and 11,
where Fig. 10 presents the results with the measured interaction
force and Fig. 11 provides the results with the estimated force.
In the two figures, the left subgraph shows the desired and
actual task-space trajectories, the upper right subgraph shows
the trajectory tracking error in y, and the lower right subgraph
shows the measured/estimated contact forces in z. Here, the
period of the task-space motion was 10 s, and two periods were
recorded. Because the desired trajectory was defined in the
y − z plane, only the results in that plane were presented. It
is evident that in both two scenarios, when contact occurred
in z direction, the proposed VDC-based admittance controller
could automatically adjust its trajectory command to avoid
tremendous contact force. Take time of 3.57 s with experiment
using measured force for example, where the minimum desired
and actual end-effector’s positions in z were 15.87 cm and
18.42 cm, respectively. Then, the maximum interaction force
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Figure 10: Experimental results of compliant motion/force operation with
measured force.
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Figure 11: Experimental results of compliant motion/force operation with
estimated force.

could be estimated according to (18) as fe ≈ fd − Kd(x − xd) =
0 − 1200 × (0.1587 − 0.1842) = 30.60 N, which was consistent
with the lower right subgraph of Fig. 10. In contrast, the
trajectory tracking accuracy in y direction was still desirable,
with maximal tracking error less than 2.5 mm.

To evaluate the precision of the proposed method in
achieving the desired task-space compliance, the position/force
data obtained in the constrained motion (18.22 s – 19.38 s in
Fig. 10 and 18.14 s – 19.46 s in Fig. 11) was used to estimate
the actual admittance parameters in z via a least-square method.
Table 3 lists the estimation results. In the experiment with the
estimated force, the measured force was employed to calculate
the actual admittance parameters to illustrate the comparable
performance with/without an F/T sensor.

The estimation errors using the measured force for Md, Dd,
and Kd were 7.4 Ns2/m, 12.4 Ns/m, and 28.8 N/m, accounting
for about 18.50%, 6.20%, and 2.40% of the desired parameters,
respectively. While their values using the estimated force for
Md, Dd, and Kd were 14.5 Ns2/m, 19.8 Ns/m, and 88.6 N/m,
accounting for about 36.25%, 9.90%, and 7.38% of the desired
parameters, respectively. The estimation error for Md was a
little large because the task-space acceleration was derived via

Table 3: Desired and actual admittance parameters.

Md (Ns2/m) Dd (Ns/m) Kd (N/m)

Desired 40 200 1200
Actual (measured) 47.4 187.6 1228.8
Actual (estimated) 54.5 180.2 1288.6
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the derivative of velocity, which introduced some measurement
errors. However, the parameter estimation accuracy of Dd and
Kd was rather high. The similar parameter estimation results
confirm the feasibility of using the estimated force to realize
compliant motion/force operation.

6. Conclusions

This paper proposes a novel virtual decomposition con-
trol (VDC)-based admittance control approach of multi-DOF
manipulators considering joint flexibility using hierarchical
design framework. The high-level admittance controller
is executed based on the low-level VDC. The interaction
force/torque (F/T) is obtained using a generalized momentum-
based force estimation method. The admittance controller
with a low-level VDC control loop can improve a multi-
DOF manipulator’s bandwidth and handle robot-environment
interaction simultaneously. Moreover, a VDC-based adaptive
controller is proposed for joint friction, flexibility, etc., to
further improve the system’s control accuracy. The L2 and L∞
stability of the VDC-based admittance controller is guaranteed
for both free-space and constrained motions, and the asymptotic
convergence of the end-effector’s trajectory tracking has been
proved for free-space movement.

The proposed approach’s effectiveness was experimentally
verified. The accuracy of the generalized momentum-based
force estimation method for both task-space force and torque
was desirable. The RMS level of the estimation errors was
no more than 10% of their maximum measurements. For the
VDC-based admittance controller, the maximum estimation
error ratios of the desired admittance parameters Kd, Dd, and
Md were 7.38%, 9.90%, and 36.25%, respectively, when the
estimated interaction force was employed.

In future work, we will consider controlling a wheeled
mobile manipulator system to enlarge the system’s workspace.
Also, bilateral teleoperation will be taken into account, where
the robotic system can be haptically teleoperated from one or
two user interfaces.
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