
  

 
 

Abstract-A neural-network-based heart motion prediction 

method is proposed for ultrasound-guided beating-heart 

surgery to compensate for time delays caused by ultrasound 

(US) image acquisition and processing. Such image processing is 

needed for tracking heart tissue in US images, which is itself a 

requirement for beating-heart surgery. Once the heart tissue is 

tracked in US images, a recurrent neural network (NN) is 

employed to learn how to predict the motion of the tracked 

heart motion in order to compensate for the delays introduced 

in the initial US image processing step. To verify the feasibility 

of predicting both simple and complex heart motions, the NN is 

tested with two types of heart motion data: (i) fixed heart rate 

and maximum amplitude, and (ii) varying heart rate and 

maximum amplitude. Also, the NN was tested for different 

prediction horizons and showed effectiveness for both small and 

large delays. The heart motion prediction results using NN are 

compared to the results using an extended Kalman filter (EKF) 

algorithm. Using NN, the mean absolute error and the root 

mean squared error between the predicted and the actually 

tracked heart motions are roughly 60% smaller than those 

achieved by using the EKF. Moreover, the NN is able to predict 

the heart position up to 1000 ms in advance, which significantly 

exceeds the typical US image acquisition/processing delays for 

this application (160 ms in our tests). Overall, the NN predictor 

shows significant advantages (higher accuracy and longer 

prediction horizon) compared to the EKF predictor. 

I. INTRODUCTION 

Robotic-assisted beating-heart surgery has significant 

advantages over the arrested-heart surgery such as reducing 

the risk of cognitive loss, decreasing the recovery time, and 

enabling intraoperative evaluation of the heart [1]. Without the 

assistance of a surgical robot, it is super difficult for the 

surgeon to operate on a beating heart as the velocity and 

acceleration of it are approximately 210 mm/s and 3800 

mm/s2, respectively [2]. Therefore, developing a robot to 

automatically compensate for the heart’s motion is the focus 

of current research in the medical robotics community  [3]–

[6]. With a robotic-assisted beating-heart surgical system, the 

surgeon would have a feeling of operating on an “arrested” 

heart as the surgical robot can be controlled to synchronize 

itself with the beating heart’s motion.  
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The robotic assistance approaches for beating heart’s 

motion compensation can be divided into three major 

categories: (a) force-based method, (b) impedance-based 

method, and (c) position-based method. In [7], [8], the authors 

implemented different control approaches to reject 

disturbances caused by the heart’s motion so that the contact 

force between the surgical instrument and the heart tissue can 

be kept to a desired value. The constant contact guarantees the 

beating heart’s motion is well compensated for.  

As a generalization of the above approaches, impedance- 

based methods [3], [5] control the dynamic behaviour between 

the surgical robot and the heart instead of treating the surgical 

robot and the heart as isolated systems. The beating heart can 

be regarded as a disturbance to the surgical robot, and the 

disturbance response of the surgical robot can be modulated to 

control the dynamic behaviour between the surgical robot and 

the heart by changing the parameters and/or structure of the 

impedance [9]. For instance, in [3], a reference impedance 

model for the surgical robot was designed to be flexible to 

make sure the surgical robot comply with the heart’s motion.    

The above methods require the surgical instrument to keep 

in contact with the heart tissue all the time. Once the contact 

disappears, they are not going to achieve the motion 

compensation goal. In this case, the best approach would be 

based on position control. For position-based motion 

compensation methods, several types of sensors have been 

used to capture the position of the heart such as high-speed 

camera, X-ray and CT, infrared radiometer, magnetic 

resonance imaging, and US machine. Considering the 

requirements for visualization of the interior of the beating 

heart (i.e. seeing through the blood) and the safety, economy 

and convenience of use of the sensors, US imaging is the most 

appropriate choice for heart tissue tracking.  

In [6], [10], the authors obtained the position of a point of 

interest (POI) on the heart from US images and used position 

to control on the surgical robot so that it follows the motion of 

the heart. However, the time delay caused by US image 

acquisition and processing is non-negligible and has to be 

compensated for. Otherwise, the position control loop of the 

surgical robot will not be able to make the robot’s motions 

synchronized to the heart motions; instead, the robot will 

follow the delayed heart motions, which creates the risk of the 

surgical robot puncturing the heart due to a collision. 
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Figure 1. A schematic of the propsed steps for heart motion prediction. 

 

Figure 2. The experimental setup for US image acquisition.   

 

To compensate for the time delay, the delayed POI 

position should be predicted. Such a heart motion prediction is 

a problem of time series forecasting, which required a model 

to predict future values of the time series based on its present 

and previously observed values. Various methods have been 

proposed to solve time series forecasting problems such as 

Kalman filtering, weighted moving average, and exponential 

smoothing. As the heart motion is quasi-periodic, in our 

previous work [4], an extended Kalman filter (EKF) was used 

for motion prediction. To improve the prediction accuracy, in 

this paper, a neural network (NN)-based heart motion 

prediction method is proposed. It has been demonstrated that a 

NN model can approximate any continuous function and it has 

been successfully used for forecasting of many time series in 

many applications [11]–[14]. Also, NN has the advantage that 

it can approximate nonlinear functions without any prior 

information of the data series, which makes it suitable for 

application of quasi-periodic beating-heart motion prediction. 

Much of the past work [14]–[16] on using NN to predict an 

organ’s physiological motion has focused on radiotherapy and 

the prediction of tumor motion under respiration. For 

image-guided radiotherapy applications, diagnostic X-ray 

imaging was used to detect the markers on the tumor. 

Different from these works, in this paper, US imaging is used 

to obtain the POI position and no markers are implanted on the 

surface of the heart to reduce the harm to the human body and 

increase the observation accuracy of the POI position.  

For the NN model, there are different architectures that can 

be chosen such as feedforward NN and recurrent NN for the 

time series forecasting problems. The main difference 

between the feedforward and recurrent NNs is the presence of 

feedback loops in the latter network. The presence of feedback 

loops in the recurrent NN has a profound positive impact on 

the learning capability and on the prediction performance. 

Therefore, a recurrent NN is used in the paper. To verify its 

ability to predict heart motion data, two types of datasets are 

acquired: (i) fixed heart rate and maximum amplitude, and (ii) 

varying heart rate and maximum amplitude. Also, different 

prediction horizons are tested. A schematic of the proposed 

steps is shown in Fig. 1. A US machine acquires images of a 

beating heart and a surgical instrument and passes the image 

sequences to the image processing algorithms to capture the 

POI position. The heart tissue position data is then fed to a 

recurrent NN for training it to predict the heart motion. The 

last step involves evaluating the performance of the NN.  

To the best knowledge of the authors, this is the first 

research on using recurrent NN to predict POI position for US 

image-guided beating-heart surgery. The rest of the paper is 

organized as follows. Section II introduces the approach for 

POI motion tracking in US images. Section III presents the 

NN based motion prediction method. Section IV shows the 

results of using the NN algorithm and compares them to those 

of using the EKF algorithm. Section V concludes the paper. 

II. HEART MOTION TRACKING  

The time series of beating-heart motion data can be obtained 

through the acquisition and processing of a sequence of US 

images showing the beating heart. As discussed later, the 

position of the POI on the beating heart is defined as the heart 

position along the surgical instrument’s axis, and it can be 

calculated through feature extraction algorithms. When the 

surgical instrument is kept still, the POI position can be 

acquired directly from the measured tool-heart distance along 

the surgical tool’s axis.  

A. Image Acquisition  

The US image sequences are acquired through a 6MHz 

4dl14-5/38 linear 4D transducer connected to a SonixTouch 

US scanner (SonixTouch from Ultrasonix, Richmond, BC, 

Canada) (Fig. 2). The 2D US images are collected from the US 

scanner using a DVI2USB 3.0 frame grabber (Epiphan, 

Ottawa, ON, Canada). The frame rate of the US scanner is 25 

Hz. A one-degree-of-freedom custom-built mechanical cam 

and a voice coil actuator (NCC20-18-020-1X from H2W 

Technologies Inc., Santa Clarita, CA, USA) are used to 

simulate the beating heart’s motion. The heart simulator can 

produce motion signals, which temporally matched to an ECG 

signal [17], with a peak-to-peak amplitude of 9 mm. At the tip 

of the heart simulator, an artificial plastisol-based tissue is 

mounted on to simulate the heart tissue. A straight and rigid 

tool is used as the surgical instrument. Both the plastic tissue 

and the rigid tool are submerged in a water tank to simulate the 

heart’s blood pool and guarantee that they are visible under the 

US. The depth of the US images is 5.5 cm.  

B. Image Processing 

To capture the heart motion data, each US image frame is first 

converted to a binary image by choosing a threshold of 0.3. 

Then, a 3×3 Sobel edge detection and a Hough transform are 

used to obtain, respectively, the edge points and the longest 

line (as the detected surgical tool). The extension of the 

longest line intersects the edge of the heart tissue, and the 
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Figure 3. The detected tooltip, POI, and tool-heart distance. 

 
   (a)                                                           (b) 

Figure 4. (a) Time series of the tracked and directly measured POI 

position with fixed heart rate and amplitude. (b) The PSDs of the tracked 

POI position captured from two types of US image sequences.  

 

 
Figure 5. Block diagram of time series prediction using the NN model.  

 
Figure 6. Architectural graph of a NAR network.  

 

intersection point is considered as the POI (Fig. 3).  
 

The tracked POI position in the image frame is converted 

to the world coordinate by converting it from pixels into mm, 

and the time series of the POI position is obtained (Fig. 4a). To 

compare the tracked POI position data with the simulated 

heart’s directly measurable position, a potentiometer 

(LP-75FP-5K from Midori America Corp., Fullerton, CA, 

USA) is used to collect and record the real-time position of the 

beating-heart simulator. The mean absolute error between the 

tracked data and the directly measured data of a 1000 s-long 

data is 0.5697 mm, which is 0.0633 of the peak-to-peak 

amplitude of the heart motion and is sufficiently small.  

Five US image sequences each ~ 1000 s long are recorded 

for the training and test of the NN. The corresponding time 

series of the tracked POI position data are labelled as dataset 

1-5. These data are approximately periodic as the simulated 

heart keeps creating the same motions, which means the 

fundamental frequency (f1 = 1.12 Hz) and the maximum 

amplitude of the motions are fixed (Fig. 4b).  

To further simulate more realistic and complex heart 

motion, the voltage applied to the voice coil actuator of the 

simulated heart, which is responsible for creates the back-and 

-forth motion, is changed. Also, the maximum amplitude of 

the simulated heart motion is changed by using springs of 

different stiffnesses in the heat simulator, thus changing how 

closely the simulator’s end point follows the motions of the 

rotating cam. Five similar 1000 s long US image sequences 

are recorded and the time series of the acquired POI position 

data are labelled as dataset 6-10. The power spectral density 

(PSD) of the POI position data show that the dominant peaks 

are f21 = 0.8214, f22 = 1.123, and f23 = 1.310 Hz (Fig. 4b).  

To implement the NN, the acquired ten POI position 

datasets will be split into training and out-of-sampling test 

subsets, separately. Specifically, the first 75% of each dataset 

is used for training and the left is reserved for testing.  

III. HEART MOTION PREDICTION 

For training the NN that will predict the heart motion, the 

tracked heart motion x(n) serves both as the input and the 

output or the observation (albeit with the difference that the 

former is delayed with respect to the latter). The prediction 

problem can, therefore, be described as given an input vector 

x(n), the NN model must capture the underlying dynamics 

responsible for generating x(n+1) as shown in Fig. 5. For 

multiple-step ahead prediction of x(n), namely, to predict 

x(n+D), where D is the delay length that needs to be 

compensated for, a closed-loop nonlinear autoregressive 

(NAR) network is employed as discussed later. 

A. Recurrent NN  

A recurrent NN is a class of NN where connections between 

units form a directed cycle. In other words, it has at least one 

feedback loop. The advantage of a recurrent NN is it can use 

its internal memory to process sequences of inputs. In this 

paper, as the problem is to predict the quasi-periodic heart 

motion x(n) which is a time series given the present and past 

values of x(n), there is no external input to the network, a 

NAR network, therefore, is appropriate to learn and 

implement the recursive prediction of heart motion. 

The architecture layout of a NAR is shown in Fig. 6, which 

employs a generic recurrent NN that follows naturally from a 

static multilayer perceptron (MLP) with two hidden layers. 

The NAR model has a single output that is fed back to the 
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TABLE I.  NEURON NETWORK ARCHITECTURE DESIGN 

No. Architecture No. Architecture No. Architecture 

1 A-6-0-B 5 A-10-0-B 9 A-14-0-B 

2 A-6-3-B 6 A-10-3-B 10 A-14-3-B 

3 A-6-6-B 7 A-10-6-B 11 A-14-0-B 

4 A-6-9-B 8 A-10-9-B 12 A-14-3-B 

*The NN architecture form indicates the number of neurons in each layer. Here, A 

indicates the input number which is 18 for dataset 1-5 and 25 for dataset 6-10, and B 

indicates the output number which is 1.  

 

input layer of the MLP via a tapped-delay-line memory of q 

units. The output is denoted by x(n+1). The signal vector x(n) 

applied to the input layer of the MLP consists of the delayed 

values of the output, namely, x(n), x(n-1), ..., x(n-q+1). The 

dynamic behavior of the NAR model is described by  

x(n+1) = F(x(n), x(n-1), …, x(n-q+1))            (1) 

where F is a nonlinear function of its arguments. The MLP is 

used to approximate the function F. The dimension and values 

of the input vector x(n) should be determined, which are 

described in the next subsection. In Fig. 6, each circle 

represents a neuron. The model of each neuron in the 1st, 2nd, 

and output layers can be expressed as 

y
j
1(n+1) = φ(bj

1
(n+1)+ωj

1(n+1)x(n))                  (2a) 

y
k
2(n+1) = φ(bk

2
(n+1)+ωk

2(n+1)y1(n+1))            (2b) 

𝑥̂(n+1) = φ(b
o
(n+1)+ωo(n+1)y2(n+1))              (2c) 

where φ(v) is a nonlinear activation function. Here, a logistic 

function given by φ (v) = 
1

1+exp(-av)
 is used. Value a is an 

adjustable positive parameter. Also, ωj
1(n+1) and bj

1
(n+1) are 

the weight vector and bias for the jth hidden node in the 1st 

layer, ωk
2(n+1) and bk

2
(n+1) are the weight vector and bias for 

the kth hidden node in the 2nd layer, and ωo(n+1) and b
o
(n+1) 

are the weight vector and bias for the node in the output layer. 

Vector y1(n+1) consists of all node outputs in the first layer 

(i.e. y
j
1(n+1), j = 1, 2, …, J), and y2(n+1) consists of all node 

outputs in the second layer (i.e. y
k
2(n+1), k = 1, 2, …, K).  

The error between the predicted time series 𝑥̂(n+1) and the 

expected time series x(n+1) will be used for backward 

computation. The Levenberg-Marquardt backpropagation 

(LM BP) algorithm is employed as the training function to 

attain the fastest backpropagation performance.                

The NAR network is trained to model the unknown system 

by using an open-loop NAR configuration. The trained 

network then is then switched to a closed-loop NAR 

configuration for multi-step-ahead prediction so that various 

delays can be implemented. By using the closed-loop mode, 

the NN can continue to predict by using internal feedback and 

simulate for as many predictions into the future as are desired. 

B. Dynamic reconstruction 

To identify the mapping that provides the NAR model, 

dynamic reconstruction is needed. A fundamental result in 

dynamic reconstruction theory is the delay embedding 

theorem developed by Takens [18], which shows that dynamic 

reconstruction is possible using the m-dimensional vector x(n) 

when given the observable x(n+1). The vector x(n) is the input 

vector to the input layer and can be expressed as 

x(n) = [x(n), x(n-d), …, x(n-(m-1)d)]T            (3) 

where m is the embedding dimension, and d is the normalized 

embedding delay.  

To estimate the embedding dimension m, the method of 

false nearest neighbors is used. By increasing m, the fraction 

of the false neighbors will reduce, and an appropriate 

embedding dimension can be determined. For the fixed and 

varying rate and amplitude data, the explored embedding 

dimensions are chosen to be 18 and 25, respectively.  

The proper prescription for choosing d is to recognize that 

the normalized embedding delay should be large enough for 

x(n) and x(n-d) to be essentially independent of each other, but 

not so independent as to have no correlation with each other. 

This can be achieved by using the d for which the mutual 

information between x(n) and x(n-d) attains its first minimum. 

The explored normalized embedding delays for fixed and 

varying rate and amplitude data are both selected to be 2.  

Once the m and d are determined, the delayed inputs of the 

MLP x(n) can be determined. Each vector x(n) represents a 

point in the reconstructed state space which contains all 

necessary information to find the future points in the system’s 

trajectory through state space.   

C. Evaluations 

To evaluate the prediction results, two evaluations are chosen: 

root-mean-square error (RMSE) and mean absolute error 

(MAE), which are expressed as 

RMSE = 
√∑ (x(ni) − x̂(ni))

2N

i=1

N
,   MAE = 

∑ |x(ni) − x̂(ni)|N
i=1

N
    (4) 

where x(ni) is the desired output, x̂(ni) is the actual prediction.  

RMSE is a frequently used measure of the differences 

between values predicted by a model and the values observed; 

that is, it is a good measure of accuracy. MAE is well suited to 

compare prediction methods on a single series. Therefore, the 

RMSE will be used for the training data to explore the NN 

parameters (i.e. hidden layers # and neurons # in each layer) of 

the NAR from 12 architecture forms (Table I) by using 

fivefold cross-validation design. Then, both evaluations will 

be used for the testing data to evaluate the prediction results.  

IV. RESULTS 

The aim of this study is to demonstrate the effect of the NN- 

based heart motion prediction algorithm. Two types of 

datasets (dataset 1-5: fixed heart rate and maximum 

amplitude, and dataset 6-10: varying heart rate and maximum 

amplitude) are acquired and tested. Various prediction 

horizons are tested to explore the prediction ability of the 

method. The designed NN algorithm is compared to the EKF 

algorithm to verify the effectiveness of the proposed method.  

A. The Effect of the NN Architecture  
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   (a)                                                               (b) 

Figure 7. The RMSE results of the designed different NN architecture 

forms for (a) dataset 1-5 and (b) dataset 6-10.  

 
Figure 8. The architectural layout of the designed NAR network.  

 

 
(a)                                                      (b) 

 
(c)                                                      (d) 

Figure 10. The MAE and RMSE in heart motion prediction for time 

delays that are changed from 40 ms to 320 ms with an interval of 40 ms, 

using NN and EKF. (a) and (b) are the MAE and RMSE for dataset 1-5, 

while (c) and (d) are the MAE and RMSE for dataset 6-10. 

 

Based on the design and methodology of the NAR network, 

for each architecture form, the RMSE across all five folds of 

cross-validation on each dataset is calculated and the mean 

and standard deviation across all ten datasets are presented in 

Fig. 7. It is seen that with more complex NN architecture, the 

RMSE becomes smaller. Also, due to the increase in 

complexity of the NN architecture, the computational capacity 

and the risk of overfitting increase.  Considering this tradeoff, 

the explored NN architectures for dataset 1-5 (Fig. 7a) and 

dataset 6-10 (Fig. 7b) are chosen to be 18-10-6-1 and 

25-10-9-1, respectively. The summarized architecture layouts 

of the NAR for the two types of datasets are shown in Fig. 8. 

B. Experimental Results 

By changing the delay length D in Fig. 8, various prediction 

horizons have tested. The time delay caused by US image 

acquisition and processing is approximately 160 ms [6]. As 

the frequency of the US machine is 25 Hz, the interval 

between two data points is 40 ms. Therefore, to compensate 

for a delay of 160 ms, 4 steps ahead should be predicted. In 

Fig. 9, the NN-based prediction results of a ten-second fixed 

rate and maximum amplitude data are presented and compared 

to the actual tracked POI position data. The prediction results 

using an EKF algorithm [4] are also presented in Fig. 9. The 

EKF takes advantage of the quasi-periodicity of the heart 

motion that is modeled as a time-varying Fourier series to 

compensate for the time delay. The EKF is tested with the 

same POI position data and compared to the results of the NN 

predictor. The reported errors between the predicted and the 

actual tracked POI position data in Fig. 9 show that the NN 

prediction results are better than the EKF prediction results.  

Furthermore, the NN and EKF predictors are tested for all 

datasets. The means and standard deviations of the two 

evaluations are listed in Table II. For dataset 1-5, both MAE 

and RMSE using NN are lower than those of using EKF with 

reduction by 60%, while for dataset 6-10, the two evaluations 

using NN are roughly 70% less than those of using EKF.  

To further explore the prediction performance of the two 

algorithms with respect to different datasets and time delays, 

the prediction horizon D is changed from 1 to 8 consecutively, 

which means the delay is changing from 40 ms to 320 ms with 

an interval of 40 ms. The means and standard deviations of 

MAE and RMSE for two types of datasets are shown in Fig. 

10. It is seen that the NN prediction has much lower errors 

 
Figure 9. The heart motion prediction results with a time delay of 160 

ms.  

TABLE II.  EVALUATIONS FOR A DELAY OF 160 MS 

Dataset Algorithm MAE (mm) RMSE (mm) 

1-5 
NN 0.3757 ± 0.0536 0.5177 ± 0.0842 

EKF 0.9592 ± 0.0245 1.3442 ± 0.0346 

6-10 
NN 0.6305 ± 0.0440 0.7411 ± 0.0664 

EKF 1.9540 ± 0.1384 2.5871 ± 0.1176 
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(a)                                                      (b) 

Figure 11. The MAE and RMSE in POI position prediction for (a) 

dataset 1-5 and (b) 6-10 for delays of 200, 400, 600, 800, and 1000 ms, 

using NN.  

 

compared to the EKF prediction, regardless of the types of the 

datasets, the evaluations, and the delayed time.  

The NN algorithm is applied to both types of datasets to 

measure the prediction ability of the POI position up to 1000 

ms in advance. Fig. 11 shows the prediction performance 

using NN for time delays of 200, 400, 600, 800, and 1000 ms. 

Both MAE and RMSE increase as the delayed time increases. 

The prediction for the varying rate and maximum amplitude 

datasets (dataset 6-10) has higher errors compared to those for 

the fixed rate and maximum amplitude datasets (dataset 1-5). 

For dataset 6-10, the prediction accuracy using NN for delay 

of 1000 ms is like that of using EKF for delay of 40 ms (Fig. 

10c and 10d). This demonstrates that the NN algorithm 

presents significant advantages over the EKF algorithm such 

as higher accuracy and longer prediction horizon. 

V. CONCLUSION 

A method of heart motion prediction was proposed to 

compensate for the non-negligible time delays caused by 

ultrasound image acquisition and processing. A nonlinear 

autoregressive network was used to solve the prediction 

problem for the datasets that consist of fixed and varying heart 

rate and maximum amplitude data. The neural network 

algorithm was compared to an extended Kalman filter 

algorithm. Using neural network, mean absolute error and the 

root mean squared error decreased significantly compared to 

those of using extended Kalman filter. Also, the neural 

network algorithm was proved to be able to predict the heart 

position up to 1000 ms in advance. The results showed that the 

neural network algorithm has higher accuracy and prediction 

ability than the extended Kalman filter algorithm, which 

makes it possible for the neural network algorithm to be used 

in robotics-assisted beating-heart surgery. Future work will 

involve combining the designed neural network algorithm 

with the telerobotic system for beating-heart surgery to 

compensate for the beating heart’s motion so that specific 

tasks can be operated on the beating-heart tissue. 
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