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Abstract 

A bilateral impedance controller is presented to enable robot-

assisted surgery of a beating heart. For this purpose, two desired 

impedance models are designed and realized for the master and 

slave robots interacting with the operator (surgeon) and the 

environment (heart tissue), respectively. The impedance 

models are designed such that (a) the slave robot complies with 

the oscillatory motion of the beating heart and (b) the surgeon 

perceives the non-oscillatory portion of the slave/heart contact 

force at the master robot implying arrested-heart surgery. These 

performance goals are achieved via appropriate adjustment of 

the impedance model parameters without any measurement or 

estimation of heart motion. Two nonlinear robust adaptive 

controllers are proposed for the master and slave robots to track 

their corresponding desired impedance responses in the 

Cartesian space. The stability, tracking convergence and the 

robustness against parametric and non-parametric modeling 

uncertainties are proven using the Lyapunov theorem and based 

on two types of adaptation laws. The stability of impedance 

models and nonlinear tele-operation system can enhance the 

patient’s safety during the robotic surgery. Experimental results 

show that the proposed controller compensates for the beating 

motion and provides smooth force feedback to the surgeon. 
 

Keywords: Beating-heart surgery, robotic surgery, bilateral 

impedance teleoperation control, nonlinear adaptive control. 
 

1. Introduction  
 

In recent years, teleoperation systems have been employed in 

biomedical applications such as minimally invasive robotic 

surgery [1], tele-rehabilitation [2-4] and tele-sonography [5, 6] 

systems. Teleoperation-based surgery of the heart as a moving 

organ is challenging due to its movement velocity and 

acceleration which are more than mm/sec210  and 

2
mm/sec3800  at the mitral valve annulus, respectively [7]. 

Arresting the heart to perform the surgery has undesirable 

side effects such as increased stroke risk [8] and long-time 

cognitive decline [9]. If the heart is allowed to beat freely during 

the surgery, these side effects would be alleviated. Moreover, 

the normal beating motion of the heart during the surgery is 

helpful for physiologic intraoperative evaluation of 

reconstructive procedures on dynamic heart structures such as 

the mitral valve, which is not possible in the arrested-heart 

surgery. Beating-heart surgery can be facilitated via a master-

slave teleoperation system in which the slave robot 

automatically complies with the heartbeat-induced motion of 

the heart while the surgeon operates through the master robot 

without needing to manually compensate for the heart’s beating 

motion. 

In the past decade, various control methods have been 

proposed for linear and nonlinear robotic teleoperation systems 

such as [10-14] for position and force tracking. However, they 

cannot be used in tele-surgery on a moving organ (e.g., the 

heart) which require a motion or force compensation strategy in 

addition to stable control laws.  

Different strategies [15, 16] have been suggested for 

prediction and autonomous compensation of organ motion for 

robotic interactions using Model Predictive Control (MPC) 

methods and vision systems. Bachta et al. [17] have presented 

a piezo-actuated compliant mechanism for active stabilization 

of the beating heart using the MPC and H  controllers. Bebek 

and Cavusoglu have measured the heart’s position using 

sonomicrometry crystals [18] and a flexible whisker-like sensor 

[19] in order to not deal with ultrasound images, which involve 

acquisition and processing delays, for heart’s position 

measurement. Ataollahi et al. [20] have also presented a new 

cardioscopic tool for optical imaging and tissue removal inside 

the beating-heart.  

A Smith predictor [21] and Kalman filtering [22] were 

suggested recently to predict and compensate for the organ 

motion under delayed vision and ultrasound images, 

respectively. However, these visual based methods have some 

drawbacks such as a) requiring a vision and/or ultrasound 

imager to follow artificial or natural landmarks inside the heart 

tissue, b) during interactions with the surgical instrument, the 

heart’s soft tissue deforms, which increases errors of the vision 

systems, and c) the processing of some vision data like the 

ultrasound images is time-consuming and generate 

considerable delays, which cause problems for the feedback 

control system. 

Some other control strategies [1, 23-25] have been presented 

that do not have the above-mentioned drawbacks of visual-

based position-control methods. The iterative learning control 

[26] and active observer (AOB) based force control [27] 

methods using Kalman Filter are used to compensate for the 

organ motion. The MPC method was also used as a linear 

predictive force controller [28] and its compensation 

performance was compared with the AOB approach in [29]. 

After that, a cascade force controller [30] was presented as a 

combination of the MPC and AOB approaches to compensate 

for physiological disturbances. Also, a force-based position 

tracking system [31, 32] was developed using a catheter robotic 

system and ultrasound observations of the previous motion 

cycles. Lastly, Hasanzadeh and Janabi-Sharifi [33] have 

employed a low-dimensional model for intracardiac catheters 

behavior in order to estimate the interaction force during heart 

surgeries. In the above force-based controllers, the convergence 
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and robustness of the observations/estimation algorithm 

together with the stability of employed controller were not 

proved analytically. Moreover, the rate of disturbance 

observation, estimation or prediction should be considerably 

faster than the heart rate in the above methods.  

In this paper, a novel bilateral impedance control method is 

proposed for robotic surgery on the beating heart using the 

measured interaction forces and without any requirement for 

heart motion prediction, observation and/or learning. In this 

method, a virtual impedance model is defined and realized for 

the slave robot such that it can comply with the physiological 

force and/or disturbance of the beating heart while tracking the 

master robot’s trajectory. Moreover, the surgeon can sense the 

non-oscillatory part of the slave/heart interaction force (such 

that the beating heart feels like a stationary heart) via 

implementing another impedance model for the master robot. 

Accordingly, the surgeon fatigue decreases and he/she does not 

need to manually compensate for the high-frequency oscillatory 

force and motion of the beating heart. For these purposes, the 

structure and parameters of the master and slave impedance 

models are designed such that they have desired responses with 

respect to the surgeon and heart forces.  

The master and slave impedance models, that provide two 

relationships between the interaction forces and desired 

trajectories, are stable. These impedance models are realized for 

the multi-DOF master and slave robots with nonlinear 

dynamics using a bilateral adaptive controller. The stability of 

nonlinear tele-robotic system together with the proposed 

bilateral adaptive controller is proven via the Lyapunov 

method. Two kinds of adaptation laws are defined and 

employed in this controller to provide robustness against 

parametric and non-parametric modeling uncertainties of the 

system.  

Accordingly, based on (a) the stability of impedance models, 

and (b) the Lyapunov-based stability proof for the proposed 

nonlinear robotic tele-surgery system, the patient safety can be 

enhanced during interaction with the slave robot using the 

presented impedance-based control strategy. Note that the 

communication delays are not considered in this work because 

the master/surgeon and slave/patient are close to each other in 

the most of real robot-assisted surgeries performed in medical 

clinics/hospitals. However, communication delays can be taken 

into account in future works for possible surgery operations on 

the remote patients.  

 

2. Nonlinear Dynamics of a Master-Slave Robotic 

Surgery System 
 

The nonlinear model of an n-DOF tele-robotic system (master 

and slave robots) with parametric (structured) and unstructured 

uncertainties is expressed in the joint space as (chapter 9 of 

[34]):   
 

, , , ,

,

,( ) ( ) ( ) ( )
m m m m mm m m m m m

m sur m 

  



q q q q

q

q q q q qM q C q G F

τ τ d
 (1) 

, , , ,

,

,( ) ( ) ( ) ( )
s s s s ss s s s s s

s env s 

  



q q q q

q

q q q q qM q C q G F

τ τ d
 (2) 

where m
q  and 

1n

s


q  are the joint positions, , ( )

mmq qM  and 

, ( )
n n

s s


q qM  are the inertia/mass matrices, , ( , )

m mmq q qC  and 

, ( , )
n

s s

n

s


q q qC  include the centrifugal and Coriolis terms, 

, ( )
mmq qG  and 

1

, ( )
s

n

s


q qG  are the gravity terms, , ( )

mmq qF  

and 
1

, ( )
s

n

s


q qF  are the friction torques, and m

τ  and 

1n

s


τ  are the control torques (originated from the actuators) 

of the master and the slave robots, respectively. Also, 
1n

sur


τ  is the torque that the surgeon (human operator) 

applies to the master robot and 
1n

env


τ  is the torque that the 

slave robot applies to the environment (heart tissue). The 

vectors of bounded unstructured modeling uncertainties and/or 

bounded exogenous disturbances of the system are also denoted 

by 
,mq

d  and 
,sq

d  for the master and slave robots, respectively. 

Then, the robots’ end-effector equations of motion in the 

Cartesian space are represented as: 
 

, , , ,

,

,( ) ( ) ( ) ( )
m m m m mm m m m m m

m sur m 

  



x x x x

x

q q q q qM x C x G F

f f d
 (3) 

, , , ,

,

,( ) ( ) ( ) ( )
s s s s ss s s s s s

s env s 

  



x x x x

x

q q q q qM x C x G F

f f d
 (4) 

where m
x  and 

6 1

s


x  are the Cartesian positions of the 

master and slave robots’ end-effectors, respectively. m
f  and 

6 1

s


f  are the generalized actuator forces of the master and 

slave robots defined in the Cartesian space, respectively. sur
f  

and 
6 1

env


f are the interaction forces that the surgeon applies 

to the master robot and the environment (heart tissue) applies to 

the slave robot, which are measured by two force sensors 

attached to the master and slave end-effectors, respectively.  

Assumption. It is assumed that the unstructured modeling 

uncertainties and/or disturbances are bounded and there exist 

positive constants 
m
  and 

s
  such that: 

,m m
xd  ,     ,s s

xd  (5) 

Using the subscript i m  for the master and i s  for the 

slave, the matrices of dynamic models in the joint space (Eqs. 

(1) and (2)) and the Cartesian space (Eqs. (3) and (4)) are related 

via the non-singular Jacobian matrices ( )
ii

qJ  as: 

 

1

, ,

, ,

, ,

1 1
, , ,

, ,

( ) ( )

( , ) ( , ) ( )

( ) ( )

, ( ) ( )
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T T
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T T
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T T T
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C J C M J J J

F J F d J d

f J τ f J τ f J τ

 (6) 
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with the following properties [34-36]: 

Property 1. The left side of Eqs. (1) and (2) can be linearly 

parameterized as 

, , , , , ,

, , , ,

,( ) ( ) ( ) ( )

( , , , )

i i i i i

i i

i i i i i i

i i i i

  



q 1 q 2 q q

q 1 2 q

q q q q qM ψ C ψ G F

Y ψ ψ q q β
 (7) 

where 
,iq

β  is the vector of unknown parameters of each robot. 

The regressor matrix 
,iq

Y  includes known functions [34] in 

terms of the arbitrary vectors ,i1
ψ  and ,i2

ψ . 

Property 2. The matrices  , ,
( ) ( , )2

i i ii i


q q
q q qM C  and 

 , ,
( ) ( , )2

i i ii i


x x
q q qM C  are skew symmetric. 

 

3. Impedance Control Objectives for Master-Slave 

Robotic Surgery of Beating Heart 
 
 

3.1. Reference Impedance Models for Slave and Master 

Robots 

Two stable reference impedance models are defined and 

realized for the slave and master robots to perform robotic 

surgery on beating heart using the proposed bilateral controller. 

The reference impedance model of the slave robot is defined 

as a dynamical relationship between the slave-heart tissue 

interaction force and the desired slave impedance model’s 

response deviation (
simpx  in (8)) from the scaled 

master/surgeon trajectory in Cartesian space as 
 

s s simp imp imp envs s sm c k  x x x f  (8) 
 

where pimp imp ms s
k x x x , and pk  is the scaling factor for the 

master/surgeon position. Here, s
k , s

c  and s
m  are the virtual 

stiffness, damping and mass parameters of the desired slave 

impedance model.  

The reference impedance model of the master robot is also 

defined as a dynamics between a summation of the surgeon and 

scaled heart tissue forces and desired master response trajectory 

in Cartesian coordinates as 
 

fm m mm imp m imp m imp sur envm c k k   x x x f f  (9) 
 

where 
mimpx  is the response (position) of the master impedance 

model. fk  is the scaling factor for the slave-heart interaction 

force. m
k , m

c  and m
m  are the virtual stiffness, damping and 

mass parameters of the master impedance model, respectively. 

As mentioned in Sec. 2, the surgeon ( sur
f ) and the heart tissue 

( env
f ) forces  are measured by the master and the slave force 

sensors, respectively, placed at two different points of the tele-

robotic system.  

The desired responses 
simpx  and 

mimpx of the slave and 

master impedance models are tracked by the slave and master 

robots, respectively, using nonlinear robust adaptive control 

laws presented in Sec. 4. The concepts of two defined stable 

impedance models (8) and (9) are schematically expressed in 

Fig. 1. The master impedance model (9) is perceived by the 

surgeon (as his haptic sense), and the slave impedance model 

(8) determines the compliance (flexibility) of the slave robot 

with respect to the surgeon/master trajectory in response to the 

physiological forces of the heart tissue ( envf ).  

Note that both of the slave (8) and master (9) reference 

impedance models are stable second-order differential 

equations when using positive impedance parameters in them.  
 

 

 
 

Fig. 1.  The concepts of master and slave reference impedance models in the 
proposed bilateral controller for robotic surgery systems. 
 
 

3.2. Adjustment of the Slave Impedance Model 

The slave impedance model (8) should be adjusted such that 

the slave robot complies with the physiological force and/or 

disturbance of the beating heart during the tracking of the scaled 

master robot’s trajectory. For this purpose, using small 

parameters s
k , s

c  and s
m  in the slave impedance model (8), 

the flexibility of the slave robot increases in the sense that it can 

deviate from the master trajectory ( pimp imp ms s
k x x x ) based 

on the magnitude of the slave-heart interaction force ( envf ). 

Therefore, the slave robot end-effector (i.e., surgical tool) will 

have an oscillatory motion in response to the high-frequency 

harmonic portion (
HFenvf ) of the heart-robot interaction force 

HF LFenv env env f f f originating from the heart’s beating 

motion.  

Accordingly, the stiffness value of the slave impedance model 

( s
k ) is designed to have a moderate value based on the desired 

static relationship between the heart interaction force and the 

slave robot’s deviation from the master trajectory ( s
k 
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menv i ps
Xf  from Eq. (8) when 

env
f  and consequently 

imps
X  are 

assumed to be constants). It should be noted that too small 

values of s
k  will make the slave robot too flexible such that it 

cannot apply appropriate forces to the heart tissue. Conversely, 

too large values of s
k  will result a rigid behavior for the slave-

tissue interaction such that compliance with the physiological 

force of the heart is not achieved. This implies a trade-off 

between the flexibility and the force applying performance of 

the slave robot.   

In addition, the damping ratio of the slave impedance model 

(8) as a second-order differential equation is set at 

2 0.7
s s s s

c m k    such that it has a fast behavior in 

response to the harmonic physiological force of the heart 

comparing to the dimensionless time 
sn t  (with appropriate 

overshoot in response to step forces). Moreover, the natural 

frequency 
n s ss

k m   (which is the cut-off frequency for 

0.7
s

  ) of the slave impedance model (8) should be adjusted 

larger (e.g., ten times larger) than the range of the heart beating 

rate HB
 . In other words, the Bode diagram of the slave 

impedance model (with 0.7
s

  ) in Fig. 2a shows that if 

n HBs
  , the imps

x  (response of (8)) would have its 

maximum magnitude that is about 
imp n ss e v

k FX . Also, using 

this frequency adjustment (
n HBs

  ), the desired deviation 

response (
imps

x ) has nearly the same phase as the harmonic 

physiological force of the heart according to Fig. 2b (i.e., phase 

distortion does not occur), which is necessary for compliance 

with the heart’s oscillatory motion.  
 

 
            (a)   

 
           (b) 

 

Fig. 2.  The Bode diagram of the slave impedance model (with the natural 

frequency of 
sn

  and 0.7
s

  ) for a fast and compliant response to the 

oscillatory physiological force of the heart (with 
HB

  frequency): (a) 

logarithmic magnitude and (b) phase distortion. 

Note that if the natural frequency of the slave impedance 

model (
n s

 ) is not adjusted well such that 0.1
HB n s

  , a 

phase distortion occurs between the applied oscillatory heart 

force 
env

f  and the slave deviation response imps
x . This means 

that the slave robot will not have an appropriate synchronized 

flexibility with respect to the heart motion which is undesired 

for having a persistent interaction with the beating-heart during 

a surgery operation. 

Then,  the damping and mass parameters ( s
c  and s

m ) of the 

slave impedance model (8) are obtained from the above 

mentioned quantities ( s
k , 2

s s s s
c m k   and 

n s ss
k m  ). The value of position scaling factor in 

pimp imp ms s
k x x x  can also be chosen less than one (

p
1k  ) 

to enlarge the surgical workspace as much as needed for the 

surgeon.  
 

3.3. Adjustment of Master Impedance Model 

In this bilateral controller, the master impedance model 

should be designed to provide feedback of the non-oscillatory 

part of the heart interaction force (like a stationary heart) for the 

surgeon in the form of force feedback. In the master impedance 

model (9), employing small values for the parameters m
k , m

c  

and m
m , the left side of (9) becomes small due to the 

boundedness of 
mimp

x , 
mimp

x  and 
mimp

x . Accordingly, the right 

side of (9) will be also small (
f

( ) 0
sur env

k f f ); therefore, 

the force reflecting performance is achieved.  

However, the high-frequency physiological portion (
HFenvf ) 

of the total slave-heart interaction force (
HF LFenv env env f f f ) 

should not be reflected to the surgeon’s hand because it would 

be challenging and exhausting for the surgeon to perform a 

surgical operation in the presence of a permanent oscillatory 

force. To solve this issue using the proposed bilateral controller, 

the master impedance model (9) are adjusted such that this 

oscillatory interaction force (
HFenvf ) is filtered and does not 

affect the desired impedance model’s response (
mimpx ), which 

is tracked by the master robot through its nonlinear adaptive 

controller.   

For the purpose of high-frequency force filtration, the second-

order master impedance model (9) is designed such that its cut-

off frequency ( n
 for 2 0.7

m m m m
c m k   ) is several 

times (e.g. ten times) smaller than the beating heart frequency 

range (
BH

 ), as shown in Fig. 3.  

Similar to the slave impedance model (9) discussed in Sec. 

3.2, the damping ratio of the master impedance model (9) is set 

to 2 0.7
m m m m

c m k    in order to have a fast response 

comparing to the dimensionless time 
mn t  and appropriate 
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overshoot. 
 

 
 

Fig. 3.  The Bode diagram of the master impedance model (with the natural 

frequency of 
mn

  and 0.7
m
  ) for filtration of the heart’s oscillatory force 

(
HFenv

f  with 
HB

  frequency). 

 

The stiffness parameter (
m

k ) of the master impedance model 

(9) is chosen small such that the static force reflecting 

performance (
f

( ) 0
sur env

k f f ) is achieved. In other words, 

when 
m

k  is small, 
mm imp

k x
fsur env

kf f  is also small given 

(9) when 
sur

f , 
env

f  and consequently 
impm

X  are considered 

constant.  However, the desired master stiffness (
m

k ) should 

not be chosen too small because then the amplitude of the 

master impedance response to the high-frequency force of the 

heart would become too large, since 
HFmimp
X

f HFenv m
k k F  

based on (9). Therefore, the filtration of this high-frequency 

force becomes hard and the oscillatory response to this force      

(
HFmimpx ) becomes large using too small 

m
k , which is not 

desired as discussed above. This trade-off between the force 

reflection performance and high-frequency force filtration 

should be considered during the adjustment of 
m

k .  

The damping and mass parameters ( m
c  and m

m ) of the 

master impedance model are obtained from the above 

parameters ( m
k , 2

m m m m
c m k  and 

mn m m
k m  ).  

Also, the force scaling factor f
k  in (9) can be chosen to be more 

than unity to amplify the applied interaction force of the heart 

during the surgery for the surgeon. In this case, filtration of the 

scaled-up oscillatory force of the heart (
f HFenv

k f ) under the 

surgeon’s hand becomes more important.  

The normal range of heart beating rate is 1 1.7 Hz
HB

 

6.28 10.68 rad/sec   for the above-mentioned adjustments 

of the slave (8) and master (9) impedance models in Sec. 3.2 

and Sec. 3.3, respectively. However, the heart rate of some 

patients may be lower than the normal range ( HB


0.4 1 Hz ) or higher than it ( 1.7 3 Hz
HB

  ), which 

should be considered in the natural (cut-off) frequency 

adjustment of the impedance models (Sec. 3.2 and Sec. 3.3).  

 

Due to the sensitivity of robotic surgery on the beating heart, 

linear reference impedance models (such as (8) and (9)) benefit 

from their simplicity, stability and possibility of their analysis 

in the frequency domain. In other words, the specific 

adjustment of proposed impedance models in Sec. 3.2 and Sec. 

3.3 as a contribution of this work on the beating-heart robotic 

surgery is presented based on the frequency-domain analysis of 

such linear models. Accordingly, these reference impedance 

models (8) and (9) are adjusted such that the slave robot has a 

compliance and agile flexibility in response to the heart 

interaction force (Sec. 3.2) and the master robot filters the high-

frequency portion of this force under the surgeon hand (Sec. 

3.3). In addition, the stability of these linear models, input-to-

output analysis of them and the provided haptic sense for the 

surgeon can be appropriately discussed (Sec. 3.1).  

 
 
 

4. Nonlinear Bilateral Robust Adaptive Impedance 

Controller 
 

The responses (positions) of the two reference impedance 

models (8) and (9) defined in Sec. 3 should be tracked by the 

slave and master robots, respectively. The dynamic models of 

multi-DOF master and slave robots are considered to have 

parametric and bounded non-parametric (unstructured) 

uncertainties. Therefore, two nonlinear robust adaptive control 

laws are designed for the master and slave robots in this section. 

For this purpose, two sliding surfaces are defined for the master 

and slave controllers as: 

1, 2,
0

1, 2,
0

,
t

m m m m m m

t

s s s s s s

dt

dt

 

 

  

  





x x x

x x x

ε

ε

 (10) 

where 
mm m imp

 x x x  and 
ss s imp

 x x x  are the position 

tracking errors of the master and slave with respect to the 

responses of their impedance models (9) and (8), respectively. 

1,m
 , 2,m

 , 1,s
  and 2,s

  are positive constant parameters. Also, 

the reference velocities are expressed as 

0

0

, 1, 2,

, 1, 2,

t

m mm

t

s ss

ref m imp m m

ref s imp s s

dt

dt

 

 





 

 





x x

x x

x x

x x

 (11) 

such that the sliding surfaces (10) can be represented as 

,m m ref m
 x xε  and ,s s ref s

 x xε . Now, the nonlinear 

bilateral robust adaptive impedance control (BRAIC) laws for 

the master and slave end-effectors in Cartesian space are 

defined as 

3, , , ,

, , , ,

( ) ( )

( , ) ( ) ( )

sgn( )

ˆ ˆ

ˆ ˆ ˆ

ˆ

m m

m m m m

m

m m m m ref m

m ref m m m

sur m

m 



  

  

 

x x

x x x

q q

q q q q

M M x

C x G F

f ε

f ε

 (12) 
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3, , , ,

, , , ,

( ) ( )

( , ) ( ) ( )

sgn( )

ˆ ˆ

ˆ ˆ ˆ

ˆ

s s

s s s s

s

s s s s ref s

s ref s s s

env s

s 



  

  

 

x x

x x x

q q

q q q q

M M x

C x G F

f ε

f ε

 (13) 

The accent   denotes the estimated and/or updated values of 

matrices, vectors and scalars. It will be proven that the terms 

ˆ sgn( )
m m

 ε  and ˆ sgn( )
s s

 ε  provide the robustness of the 

bilateral controller against the bounded non-parametric 

(unstructured) uncertainties. ˆ
m

  and ˆ
s

  are positive robust 

gains that are intelligently updated via adaptation laws to 

overcome the bound of non-parametric uncertainties (as will be 

presented in the next section). The motor torques of robots 

(control laws in the joint space) are obtained in terms of joint 

space matrices and vectors by substituting (6) in (12) and (13) 

and simplified using Property 1 as  

, , sgn( )ˆ ˆT T

m sur m m mm m m   q qτ Y β J f J ε  (14) 

, , sgn( )ˆ ˆT T

s env s s ss s s   q qτ Y β J f J ε  (15) 

where 
,mq

Y  and ,sq
Y  are obtained from (7) in terms of the 

following known vectors: 
1 1 1 1

3, , ,

1 1 1 1

3, , ,

1 1

,

,

, , , ,

,

,

,

m m m m ref m m m m ref m

s s s s ref s s s s ref s

m s

m

s

m ref m s ref s





   

   

 

   

   

 

1

1

2 2

J J J

J J J

J J

ψ J ε J x x

ψ J ε J x x

ψ x ψ x

 (16) 

To obtain the closed-loop dynamics of the master and slave 

robots using the presented nonlinear bilateral controller, the 

control laws (12) and (13) are substituted in the end-effector 

dynamics (3) and (4) of the tele-robotic system, which turn out 

after some simplifications as 

, 3, ,

, , , sgn( )

( )

ˆ
m

m m m m m m

T
m m m m m





  

  

x x

q q x

M C

J Y β d

ε ε ε

ε
  (17) 

, 3, ,

, , , sgn( )

( )

ˆ
s

s s s s s s

T
s s s s s





  

  

x x

q q x

M C

J Y β d

ε ε ε

ε
  (18) 

where , , ,
ˆ

m m m
 

q q q
β β β  and , , ,

ˆ
s s s
 

q q q
β β β  are the estimation 

errors of master and slave dynamic parameters, respectively.  
 
 

5. Lyapunov Stability Proof and Adaptation Laws 
 

In this section, the stability of the proposed controlled tele-

robotic system and tracking convergence of the robots’ 

trajectories to desired impedance responses (
mm imp

x x  and 

ss imp
x x ) are proven. Also, the robustness of proposed 

controller against parametric and bounded non-parametric 

uncertainties is guaranteed via two adaptation laws. For these 

purposes, a positive definite Lyapunov function is defined as 

1

, , ,

1

, ,,

2

2

( ) 1

1

1
ˆ( )

2

ˆ( )

( )

( )

(

)

T T

m m m m m m m m m

T T

s s s s s s s s s

tV 



 

 









  

  

q q

q q

x

x

β β

β β

M Η

M Η

ε ε

ε ε

(19) 

 

where m  and s  are the unknown upper bounds of the 

unstructured (non-parametric) modeling uncertainties, 

introduced in (5). m
Η  and s

Η  are symmetric positive-definite 

matrices. m
  and s

  are also positive constants.  

   Now, the time derivative of the Lyapunov function (19) is 

obtained as 

, ,

1

, ,

, ,

1

, ,

( ) 1 2)

ˆ

1 2)

ˆ

(

1

(

1

ˆ ˆ( )

ˆ ˆ( )

( )

( )

T T

m m m m m m

T

m m m m m m m

T T

s s s s s s

T

s s s s s s s

tV





  

  





 

  

 

  

x x

q q

x x

q q

β β

β β

M M

Η

M M

Η

ε ε ε ε

ε ε ε ε
  (20) 

where 
,,

ˆ
ii  qqβ β  because , ,,

ˆ
i ii  

q qqβ β β  and the actual 

parameters are constant (
,

0
i


q
β ). Employing 

,m mx
M ε  and 

,s sx
M ε  from (17) and (18) and according to Property 2 of robot 

manipulator dynamics (
, ,

2
i i


x x
M C  is skew symmetric), Eq. 

(20) is found as 

1

3, , , , , ,

,

1

3, , , , , ,

,

ˆ( )

sgn( ))

ˆ

sgn( ))

ˆ 1

ˆ 1

ˆ ˆ( ( )

ˆ ˆ( ( )

( )

( )

m

s

T T T T

m m m m m m m m m m m

T

m m m m m m m

T T T T

s s s s s s s s s s s

T

s s s s s s s

tV 

 



 

  

  

 

 

   

   

  

   

x q q q q

x

x q q q q

x

β β β

β β β

M J Y Η

d

M J Y Η

d

ε ε ε

ε ε

ε ε ε

ε ε

  (21) 

Now, the first adaptation law for updating the estimated 

parameters of the robotic surgery system is expressed as 

1

, ,
ˆ T T

m m m m m


 

q q
H Y Jβ ε  ,   

1

, ,
ˆ T T

s s s s s


 

q q
H Y Jβ ε  (22) 

such that the terms in (21) including ,mq
β  and 

,sq
β  are cancelled, 

i.e., the adaptive controller becomes robust against parametric 

uncertainties. Then, having 
1

sgn( )T

i ii ε ε ε , we get 

3, , , 1

3, , , 1

( ) ˆ

1

ˆ

1

ˆ ˆ( )

ˆ ˆ( )

( )

( )

m

s

T T

m m m m m m m

m m m m

T T

s s s s s s s

s s s s

tV  



 



  

  

   

 

  

 

x x

x x

M d

M d

ε ε ε ε

ε ε ε ε
  (23) 

The second adaptation law for updating the robust gains ˆ
m

  

and ˆ
s

  of the controller (12) and (13) is defined as 

01

01

0

0

( )

( )

0

0

ˆ ˆ ˆ,

ˆ ˆ ˆ,

m

s

m m m m

s s s s

   

   





 

 

ε

ε
  (24) 

where 0
ˆ

m
  and 0

ˆ
s

  are positive constants being the initial 

values of the robust gains at 0t  . Using the above-mentioned 

adaptation laws (24), Eq. (23) is simplified as 
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, 3, ,

, 3, ,

1

1

( )
m

s

T T

m m m m m m m

T T

s s s s s s s

tV 







  

  

x x

x x

d M

d M

ε ε ε ε

ε ε ε ε
  (25) 

Due to the boundedness condition of the unstructured non-

parametric uncertainties ( ,mxd  and ,sxd ) presented in (5), the 

time derivative of Lyapunov function is finally obtained as 

3, , 3, ,
( )

T T

m m m m s s s s
tV    

x x
M Mε ε ε ε   (26) 

Since the Lyapunov function (19) is positive definite                      

( ( ) 0tV  ) and its time derivative (26) is negative semi-definite 

( ( ) 0tV  ), ( )tV  is bounded. As a result, the boundedness of 

m
ε , s

ε , 
,mq

β  ,
,sq

β , ˆ( )
m m

   and ˆ( )
s s

   is concluded 

considering (19). Moreover, it is proven using the Barbalat’s 

lemma [34] that ( ) 0tV   as t  . Since 3, 0m  , 3, 0s  , 

,
0

T

m m m


x
Mε ε  and ,

0
T

s s s


x
Mε ε , ( ) 0tV   imply the 

convergence to sliding surfaces 0
m
ε  and 0

s
ε  as t  . 

Thus, according to the stable dynamics of the sliding surfaces 

m
ε  and s

ε  in (10), the convergence of the master and slave 

tracking errors to zero 0m x  (i.e., 
mm imp

x x ) and 0s x  

(i.e., 
ss imp

x x ) on the surfaces of 0
m
ε  and 0

s
ε  are 

established.  
 
 

6. Experiments 
 

The bilateral impedance controller is evaluated experimentally 

in this section to show its performance for the robotic surgery 

on a simulated beating heart. In the designed experiments, the 

Phantom Premium 1.5A robot (Geomagic Inc., Wilmington, 

MA, USA) with three DOFs and the Quanser robot (Quanser 

Consulting Inc., Markham, ON, Canada) with two DOFs are 

employed as the master and slave robots (Fig. 4). To measure 

the applied interaction forces of the surgeon (human operator) 

and the heart tissue, the Phantom Premium and Quanser robots 

are respectively equipped with a 6-axis 50M31 force/torque 

sensor (JR3 Inc., Woodland, CA, USA) and a 6-axis Gamma 

force/torque sensor (ATI Industrial Automation, Apex, NC, 

USA). The slave (Quanser) robot is equipped with a stapling 

device to mimic a realistic surgical task in mitral valve 

annuloplasty. This surgery is used for implanting an 

annuloplasty ring onto the mitral valve using several staples in 

order to reshape this valve during the normal beating motion of 

the heart. Note that the human operator (shown in Fig. 4) only 

applies the force sur
f  to the master robot during the experiment. 

He also clicks a button at the end of flexible cable of the stapling 

device by his other hand in this experimental set-up, without 

applying any force to the slave robot. Accordingly, the slave 

force sensor purely measures the heart-tissue interaction force 

env
f  as expected and required in the presented impedance 

models (8) and (9) of this strategy (Sec. 3).  

In addition, a beating heart motion simulator device is 

utilized to replicate the physiological motion of the mitral valve 

annulus. It should be mentioned that although the mitral valve 

has 3D movements, the motion of the mitral valve annulus, onto 

which the annuloplasty ring needs to be sutured, is mostly one 

directional [7, 31, 32] as was shown in 3D ultrasound (US) 

images [37] and simulated in these experiments. An artificial 

soft tissue is also attached to this device as shown in Fig. 4. Note 

that a healthy human operator behaves as the surgeon in these 

experiments.  

 

 

 
Fig. 4.  The experimental system for robotic surgery with application in the mitral valve annuloplasty of the beating heart, including the master and slave robots 
and their accessories in addition to the heart simulator device. The monitor shows the on-line surgeon-master and slave-heart interaction forces in x and y directions. 
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The QUARC software (Quanser Consulting Inc., Markham, 

ON, Canada) is used as a real-time control environment to 

implement the proposed bilateral impedance controller with a 

sampling rate of Hz1 k . 

The workspace of the slave (Quanser) robot is a subset of 

x y  plane and the master (Phantom) robot is controlled to 

move in the same 2D space as shown in Fig. 4. The kinematics 

and dynamics of the Phantom Premium and Quanser robots 

were comprehensively presented in [38] and [39, 40], 

respectively, and are not presented here for the sake of brevity. 

The “sgn( iε )” function in the control laws (12) and (13) leads 

to undesired discontinuities and chattering in the input torques. 

Therefore, the “sgn( iε )” function is replaced in practice by the 

continuous approximation 150tanh( )
i
ε , where iε  is defined in 

Eq. (10) for the master ( i m ) and the slave ( i s ). 

The heart rate in the experiments presented in the following 

Sec. 6.1, 6.2 and 6.3 is 70 beats/min which is in the normal 

range 60 100 beats/min
HB

  1 1.7 Hz   for adults.  
 

6.1. Appropriate Adjustments of Impedance Models 

The parameters of the slave (8) and the master (9) impedance 

models are chosen according to the adjustment procedures 

discussed in Sec. 3.2 and 3.3, respectively, and listed in Table 

1. Note that these parameters are scalar; however, without loss 

of generality, they can be set to be diagonal matrices with 

different element values in order to have various characteristics 

in different directions of Cartesian space.  
 

 
Table 1. Parameters of the master and slave impedance models for robotic 

surgery of normal beating heart 60 100 beats/min
HB

   

Master impedance 
parameters 

Slave impedance 
parameters 

Force and position 
scaling factors 

N/m4
m

k   N/m100
s

k   f 2k   

N.s/m11.2
m

c   N.s/m2.8
s

c   p 0.7k   

kg16
m

m   kg0.04
s

m    

 

As seen in Fig. 5, the master and slave robots’ end-effectors 

track their corresponding impedance responses in the x  and y  

directions during the entire operation using the proposed 

bilateral adaptive controller. 

 
 

 
          (a)  

 
          (b) 

Fig. 5.  Position trajectories of the master and slave robots track their respective 

impedance models responses, in (a) x  and (b) y  directions. 

However, based on the slave impedance model (8), after 

starting the heart interaction and applying the heart force envf  

to the slave robot, the slave has some flexibility and deviation 

imps
x  from the master trajectory in Fig. 5. Therefore, the slave 

robot has a fast compliant response based on the applied 

interaction force envf  and adjusted characteristics of the 

impedance model (8).  

The scaled-up applied interaction force between the heart 

tissue and the slave robot ( f env
k f ) together with the applied 

interaction force from the operator/surgeon to the master robot 

( sur
f ) in the x  and y  directions are plotted in Fig. 6. As it is 

observed in Fig. 6, the surgeon applies a force to move the 

master and consequently the slave robots when the tissue 

environment force env
f  is zero. After starting the interaction, the 

oscillatory component of the force of the beating heart is 

applied to the slave and causes the deviation of the slave 

trajectory from the master one (as shown in Fig. 5). Based on 

Fig. 6, the operator/surgeon perceives the non-oscillatory (low-

frequency) portion f LFenvk f of the slave-heart interaction force 

in the form of haptic feedback, which is the result of master 

impedance model (9) adjustment. According to this force 

reflection performance (Fig. 6), the operator’s sense is made 

similar to that experienced in a stopped-heart surgery. 
  

Slave-Heart Interaction 

Slave-Heart Interaction 
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            (a)  

 
            (b) 

Fig. 6.  Scaled-up heart force (with 
f

2k  ) and the surgeon’s force applied, 

respectively, to the slave and master robots, in (a) x  and (b) y  directions. 

 
 

To elaborate more on the performance of the bilateral 

adaptive controller, Fig. 7 shows the convergence of robots 

trajectories to sliding surfaces 0
m
ε  and 0

s
ε , which is 

consistent with the Lyapunov stability proof (Sec. 5).  

Moreover, since the robots have zero initial errors with respect 

to their impedance models’ responses, the tracking errors 

remain small even before the convergence to zero (Fig. 7). Note 

that the chattering of errors around the sliding surfaces ( 0
m
ε  

and 0
s
ε ) is prevented by employing the continuous function 

150tanh( )
i
ε  instead of sgn( iε ) in implementation of the 

control laws (12) and (13). 
 

 

 
 

Fig. 7.  Distance from the master and the slave sliding surfaces (
m
ε  and 

s
ε ). 

 

As seen in Figs. 5 and 6, the control objectives that are (1) 

the slave robot’s flexibility (deviation from the master 

trajectory) during the interaction with the heart, and (2) the 

reflection of non-oscillatory force of the heart to the operator 

are achieved.  

Figure 8 shows the performance of the second adaptation law 

(24) in updating the robust gains ˆ
m

  and ˆ
s


 
of the controller 

to provide robustness against bounded unstructured 

uncertainties as proven in Sec. 5. As seen, these robust gains 

increase as much as needed to overcome uncertainties and 

finally converge to constant values ( 0ˆ
m

   and 0ˆ
s

  ) 

based on Eq. (24) as a result of convergence to sliding surfaces 

0
m
ε  and 0

s
ε  (shown in Fig. 7). Accordingly, the upper 

bounds of master and slave robots’ disturbances ( m  and s  in 

Eq. (5)) can be estimated less than N1  due to the final values 

of robust gains ˆ
m

  and ˆ
s

  in Fig. 8, as discussed in Sec. 5.  

 

 
 

Fig. 8.  The update process of robust gains ˆ
m

  and ˆ
s

  in the bilateral 

controller using the second adaptation law (24). 
 

6.2. Inappropriate Adjustments of Impedance Models 

In this section, the experimental results for two cases of 

inappropriate adjustment of the impedance models are shown. 

In the first case, the natural (or cut-off) frequency 
n s

 of the 

slave impedance model (8) is chosen 
sn s s

k m 

Slave-Heart Interaction 

Slave-Heart Interaction 
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2 rad/sec  to be less than the frequency of the heart beat                   

(
HB

 6.28 10.68 rad/sec ). Accordingly, using the same 

slave impedance model’s stiffness and damping ratio as in the 

previous section ( N/m100
s

k   and 2
s s s s

c m k  0.7 ), 

only the damping and mass parameters of the slave impedance 

model in Table 1 change to N.s/m70
s

c   and kg25
s

m  , 

respectively. As observed in Fig. 9a, the slave robot becomes 

too sluggish and cannot comply with the beating heart 

oscillatory motions unlike the previous case in Sec. 6.1 (Fig. 5) 

which has the appropriate adjustment with a large 
n s

 . Due to 

this slow and rigid behavior of the reference slave impedance 

model, the slave robot-heart interaction force ( env
f in Fig. 9b) 

becomes too large (more than 5 N) during the oscillatory 

motions of the heart, which is dangerous for the heart’s delicate 

tissue. 
 

 

 
           (a) 

 
          (b) 

Fig. 9.  (a) Position trajectories and (b) interaction forces, when the slave 

impedance is not adjusted appropriately to have an agile yet compliant response 

in response to the heart interaction forces. 
 

 

In the next case of inappropriate adjustment, the master 

stiffness is considered to be 1mk  , which is four times smaller 

than the appropriate value used in Sec. 6.1. The other 

parameters of the master impedance model (9) are obtained as 

N.s/m2.8
m

c   and kg4
m

m   using the same natural frequency 

nm
 0.5 rad/sec  and the damping ratio 

m
 0.7  as ones 

employed in Sec. 6.1. The other parameters are the same as ones 

presented in Table 1.  

According to Fig. 10, the scaled-up oscillatory force 

component f HFenv
k f

 
of the beating heart (with f 2k  ) is not 

filtered out and is instead reflected to the operator via the master 

robot. In this case, the operator should try to overcome these 

high-frequency forces via sur
f  (Fig. 10b) in order to maintain a 

desired position (Fig. 10a). This performance comes from too 

small value of the master impedance model stiffness mk  that 

increases amplitude of the master impedance response to the 

high-frequency component of the heart force 
HFmimp

X

f
/

HFenv mk k F  as discussed in Sec. 3.3.  
 

 

 
           (a) 

 
           (b) 

Fig. 10.  (a) Position trajectories and (b) interaction forces when the master’s 
reference impedance model is not adjusted appropriately to filter the oscillatory 

portion of the heart interaction forces. 
 

6.3. Evaluation of Direct Force Reflection (DFR) Strategy 

For the purpose of comparison, performance of the DFR 

control method [11] is evaluated in the same surgical task 

(stapling with application in mitral valve annuloplasty). 

As seen in Fig. 11, the DFR strategy is provided position and 

force tracking performances without having any position 

flexibility and high-frequency force filtration between the 

master and slave robots. Therefore, the operator/surgeon should 

compensate the oscillatory motion of the beating-heart 

manually by trying to have the same motion in his hand (master 

end-effector), as shown in Fig. 11. However, the operator could 

not have a persistent oscillatory motion like the heart, which 

results in detachment form the heart tissue surface and/or 

pressing it more than enough in some moments (causes sudden 

large forces). Accordingly, the DFR control method [11] makes 
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the beating-heart surgery hard such that the surgeon should 

concentrate on the motion compensation in addition to the 

surgery task.  
 

 

 
           (a)  

 
            (b)  

Fig. 11.  (a) Position trajectories and (b) interaction forces, when the DFR 

control strategy [11] is implemented and the manual compensation is required. 

 

6.4. Evaluation of the Proposed Strategy in High Heart 

Rates 

In this section, the proposed impedance-based bilateral 

controller is evaluated experimentally for high rates of the heart 

beat ( 100 180 beats/min
HB

  1.7 3 Hz  ). For this case, 

parameters of the impedance models (8) and (9) are adjusted 

based on procedures presented in Sec. 3.2 and 3.3 and expressed 

in Table 2, where the same stiffness parameters ( m
k  and s

k ) as 

ones in Sec. 6.1 (Table 1) are used. 
 

Table 2. Parameters of the impedance models for robotic surgery of beating 

heart with high beat rates 100 180 beats/min
HB

   

Master impedance 
parameters 

Slave impedance 
parameters 

Force and position 
scaling factors 

N/m4
m

k   N/m100
s

k   f 2k   

N.s/m5.6
m

c   N.s/m0.467
s

c   p 0.7k   

kg4
m

m   kg0.011
s

m    

 

Figure 12 illustrates that the master and slave robots could 

provide the desired position flexibility (Fig. 12a) and force 

filtration (Fig. 12b) by appropriate tracking of their reference 

impedance responses with the heart-beat rate of 
HB



150 beats/min . 

Note that performance of the DFR strategy in this case (high 

heart rate) is not shown here for the sake of brevity. However, 

it will be worse than the presented one in Sec. 6.3 for the normal 

heart rate 70 beats/min
HB

 , which is because that the 

manual compensation of heart’s oscillatory motion becomes 

harder for the operator in higher heart rates (e.g., 

150 beats/min
HB

 ).  
 

 
          (a) 

 
              (b) 

Fig. 12.  (a) Position trajectories and (b) interaction forces using the proposed 

controller for a high heart beat rate 150 beats/min
HB

 . 

It should be mentioned that the maximum admissible position 

tracking error during a beating-heart operation depends on the 

rigidity of the surgical tool and the specific task objective. For 

precise positioning tasks, 1-2 mm of position error is 

admissible. In cases where the tool is soft or the task requires 

force or impedance control with a flexible tool-tissue 

interaction rather than position control (e.g., using a catheter for 

heart tissue ablation), position errors can be larger.  

In the conducted experiments (shown in Figs. 5, 9a, 10a and 

12a), the slave and master tracking errors are less than 2 mm, 

which are acceptable in the proposed impedance control 

strategy for the beating-heart robotic surgery. 

 

6.5. Technical Notes 

6.5.1. Implications for Low Beating Rate 

In some patients (e.g., having Bradycardia) that their heart 

Sudden large 

Forces 

Sudden 

Detachments 

from Tissue 

Inappropriate (non-persistent) 

manual compensation 
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rates are lower than the normal range ( 1 Hz
HB

 

6.28 rad/sec ), the natural (cut-off) frequency of the master 

impedance model (
mn ) should be decreased for filtration of 

high-frequency force of the heart, as discussed in Sec. 3.3. 

Consequently, the master impedance parameters should be 

changed in comparison with the values presented in Table 1. 

Note that the proposed robotic surgery is evaluated for 

moderate and high heart rates in Sec. 6.1 and Sec. 6.4, 

respectively. Different adjustments of master impedance 

parameters are mentioned in Table 1 and Table 2 in order to 

filter high-frequency force of the heart under the surgeon hand. 
 

6.5.2. Existence of Trocar Friction  

It should be mentioned that in more realistic surgery 

operations, the trocar friction force may be applied to the slave 

robot. For this issue, friction identification and compensation 

mechanisms can be added to the proposed controller, which can 

be studied in future works. For this purpose, several methods 

were proposed in previous works on the friction compensation 

of robot manipulators considering mathematical fiction models 

(e.g., see [41-46]). Therefore, the identified friction force of 

trocar (
fric

f ) should be obtained and subtracted from the 

measured slave force ( envf ), and then the resulted force                 

( env fricf f ) should be employed as the pure slave-heart 

interaction force in the impedance models (8) and (9) instead of 

measured envf . 

However, without any friction compensation (using the 

proposed strategy in this work), the slave robot will have a 

flexible behavior in response to the small trocar friction force 

using the designed slave impedance model (8). Another strategy 

for considering the trocar friction is employing a small force 

sensor to be placed after the trocar (at the tip of slave robot). In 

such configuration, the trocar friction can be considered in the 

term ( ), ss
qxF  of the slave robot dynamics (4), and and the 

measured interaction force ( envf ) of the slave robot does not 

include the trocar friction.  
 

6.5.3. Prevention of Large Slave-Heart Interaction Force 

A large heart-robot interaction force may damage the heart 

tissue and should be avoided during the surgery operation. In 

the proposed strategy, the heart interaction force env
f  is 

employed in the master impedance model (9). Therefore, this 

force is sensed by the surgeon via the master robot and can be 

controlled and decreased as much as needed by the surgeon 

force sur
f , which affects the master and slave responses and 

consequently the heart-slave interaction. 

On the other hand, due to the definition of the slave 

impedance model (8) in Sec. 3.1 and its appropriate adjustment 

in Sec. 3.2, the slave robot will track a deviation response 
simpx  

(from the master robot trajectory) in response to the slave-heart 

interaction force env
f . This performance prevents from 

generation of large interaction forces between the slave robot 

and the heart tissue. Because by increasing the force env
f , the 

slave robot deviates more toward this interaction force (toward 

separation from the heart tissue), which decreases env
f . In other 

words, the slave impedance model (8) as a mass-damper-spring 

system provides a flexibility for the slave robot in response to 

the heart interaction force. However, low and high values for 

the stiffness parameter 
s

k  (and consequently other parameters) 

of this impedance model (8) are not appropriate as discussed in 

Sec. 3.2. 
  

 

7. Conclusion 
 

A force-based strategy for the teleoperation-assisted surgery of 

the beating heart was presented and tested via the proposed 

impedance control of the master and slave robots. In this 

strategy, without using any prediction and/or observation, 

compensation for the physiological heart motions is ensured. 

The oscillatory component of forces of the beating-heart is 

filtered out from the force feedback to surgeon’s hand. 

Therefore, using this method, the human operator’s sense 

(behaved as a surgeon) is similar to that experienced in arrested-

heart surgery. These performances are achieved by the 

proposed adjustments to the desired master and slave 

impedance models. Moreover, the trade-offs for choosing the 

master and slave impedance parameters were explained for the 

robotic surgery on the beating heart.  

Based on the Lyapunov stability proof, the designed nonlinear 

bilateral controller provides the tracking convergence to the 

impedance models’ responses, in the presence of different 

modeling uncertainties. The experimental results confirmed the 

satisfactory performance of the proposed bilateral control 

strategy and its stability during the interaction with the beating 

heart. It was shown that using the appropriate impedance 

adjustment for the master and slave robots, the surgery is 

performed easily with normal and high heart-beat rates. 

However, it is demonstrated that the previous DFR control 

strategy with exact position and force tracking objectives is 

hard to be used for the same beating-heart surgery task which 

requires the manual oscillatory motion compensation by the 

operator (surgeon). Thus, the proposed strategy (with an 

automatic high-frequency motion compensation) can be used to 

perform future tele-robotic surgeries by real surgeons on the 

biological moving organs. However, the first step before 

implementation of the proposed strategy in human surgeries can 

be conducting some in-vivo animal experiments. 
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