This paper appears in Brain-Computer Interfaces, 2022.
https://doi.org/10.1080/2326263X.2022.2114225

Examination of effectiveness of kinaesthetic haptic feedback for motor
imagery-based brain-computer interface training
Isao Sakamaki?, Mahdi Tavakoli®, Sandra Wiebe® and Kim Adams?

2Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada; Department of Electrical and Computer Engineering,
University of Alberta, Edmonton, Alberta, Canada; “Department of Psychology, University of Alberta, Edmonton, Alberta, Canada

ABSTRACT

Motor imagery-based brain computer interfaces (BCl) performance can be reinforced by visual presentation of
feedback about the motor imagery displayed on a screen. However, to directly control robots by the BCI, a different
feedback modality may be preferred. The objective of this study was to develop a BCl with kinaesthetic haptic
feedback based on the detected motor imagery, and compare its performance to using visual feedback. Twelve
online BCl runs with both feedback modalities were performed by ten adults without impairments, and four runs in a
game-like task were performed by one adult with cerebral palsy and one child without impair-ments. The participants
completed the BCI training with an average accuracy of 67.28 + 11.2% for visual feedback and 75.12 + 12.3% for
kinaesthetic haptic feedback. The BCl training with kinaes-thetic haptic feedback resulted in less workload and statistically

higher classification accuracy than visual feedback (p = 0.03).

1. Introduction

Play represents a critical activity for development
when children explore their environment by manipu-
lating objects within it [1]. Manipulative play contri-
butes to a child’s development of motor, social,
linguistic, and cognitive skills, and it also stimulates
creativity, learning, mastery, self-expression, and
adaption [2]. However, children who have physical
disabilities may find it difficult to participate in certain
play activities as a result of impairments that affect
movement, grasping, and reaching out for objects.
They may tend to watch others playing rather than
participating themselves because their playmates more
effectively or frequently handle the play objects [3].
This can impede their development across multiple
areas [4].

Robots, such as a mobile Lego Mindstorms robot [5]
and the workstation Play-ROB [6], have enabled chil-
dren who have physical impairments to manipulate toys
[7]. The children used switches to control the Lego
robots [5] and a joystick to control the Play-ROB [6].
However, these interfaces are not useable by children
who have significant physical impairments. Brain-
computer interfaces (BCI) are a potential solution for
children with severe physical impairments, as they do
not require motor movement, and they have been used,
primarily by adults, to control computer applications,

and control devices such as robots or neuroprosth-
eses [8,9].

In order for children with disabilities to use a BCI to
control mobile robots, we must try to make the system
easy to set up and use. Noninvasive electroencephalo-
graphy (EEG) is appropriate since it records the brain’s
activity through electrodes on the surface of the scalp
[10]. Using a self-induced motor imagery paradigm,
rather than external stimuli presented on a computer
screen, is preferable since attending to both the robot in
the physical environment and a screen to pick a desired
option using eye-gaze has been shown to be challenging
for children [11]. Specifically, we propose to use event-
related desynchronization/synchronization (ERD/ERS),
which detects decreases in alpha rhythm from eight to
13 Hz (ERD) [12], and increases of beta rhythm from 13
to 26 Hz (ERS) [13].

One drawback of motor imagery paradigms is the
training required to achieve sufficient accuracy to
use it functionally. 14,estimated that between 15%
and 30% of the non-disabled population cannot
produce the ERD/ERS to control a BCI in their
first session. It is recommended to perform repeated
practice with feedback to acquire the skill to control
the BCI system [15]. One of the most widely used
BCI training protocols in the field of BCI research is



the Graz training protocol [16]. Following a cued
stimulus such as visual signs or symbols indicating
when a user should perform motor imagery or rest,
the induced sensorimotor rhythms are detected and
classified according to the probability that the user
is imagining movement or resting, and the user
receives visual feedback on a computer screen in
order to see the strength of their ERD/ERS brain
response [15]. However, in order to use the BCI to
control a robot in a physical play environment
without a screen, we will need to examine the use
of a different feedback modality.

Several studies involving participants with physi-
cal impairments have used ERD/ERS to control
assistive technology [17-19]. In 17, 14 participants
without impairments and 14 participants with
spinal muscular atrophy or Duchenne muscular
dystrophy successfully performed two-dimensional
cursor control with motor imagery. The average
classification accuracy achieved was 80% for parti-
cipants without impairments and 62% for partici-
pants with impairments. A study by 19,evaluated
the ERD/ERS of six participants without impair-
ments and three participants with spinal cord injury
(SCI) during upper limb movement activities. The
BCI system correctly detected 75% of the move-
ments for participants without impairments, and
the detection rates for participants with SCI was
similar to those of the participants without
impairments.

There is a lack of BCI implementation for chil-
dren, and particularly for children with severe dis-
abilities [20-22]. The frequency of mu rhythms in
children is less than in adults and varies depending
on age [23], but there have been studies of ERD/
ERS with children. 24,investigated the feasibility
and test-retest reliability of the ERD by using
a brain mapping system with five non-disabled
child participants and seven child participants with
cerebral palsy. ERD during reach-and-grasp hand
movements were repeatedly measured and obtained
excellent reliability with a level of significance
(p < 0.05) for both participant groups. Other studies
have used motor imagery with children, but using
proprietary software from the BCI headset com-
pany, for example, children with cerebral palsy
played computer puzzle games [25] and children
without disabilities controlled a toy car [26]. No
accuracy results were reported.

Auditory or haptic feedback can also be used
with BCIs [27]. Haptic feedback can be tactile or

kinaesthetic sensations: tactile sensation is normally
conveyed through the skin, such as by pressure or
vibrations, while kinaesthetic sensation refers to
static and dynamic posture based on muscles and
tendons that allow us to feel the pose of our body,
i.e. proprioception [28]. A review of feedback mod-
alities in BCI revealed 19 studies where visual, audi-
tory, tactile, and proprioceptive feedback were
compared to at least one other modality [29].
Seventeen out of the 19 studies used motor ima-
gery-based BCI. Visual feedback was included in
every study, seeing as it was intrinsic to the tasks
(e.g. seeing the control item move, such as the
cursor on the screen). Two out of the five studies
comparing auditory feedback found that it was
effective. The effect of tactile feedback for motor
imagery-based BCI tasks seemed to be inconclusive,
where studies had either a better response, or the
same as the control. In one application with
a neuroprostheses, the vibrotactile feedback made
it hard to concentrate [30], but in another study
there were improvements in performance reading
a map, which were attributed to freeing up the
visual channel [31]. Others have found that perfor-
mance will vary among participants in studies com-
paring vibrotactile feedback with visual and
auditory feedback in a motor imagery task [32].
However, the 29,review found that proprioceptive
feedback was effective in four out of four studies,
all of which were testing proprioceptive feedback
combined with visual feedback in neuroprosthetics.
Notably, only 10.5% of the 19 reviewed studies
involved individuals with disabilities.

Another review specifically examined haptic technol-
ogies in BCl/neurofeedback applications [33]. The
ERD/ERS was the most popular motor imagery para-
digm, and haptic feedback was usually done in conjunc-
tion with visual feedback. They pointed out that even
though the first study of haptic feedback in clinical
applications was with an individual with a high spinal
cord injury [34], the vast majority of studies use kinaes-
thetic feedback for rehabilitation of stroke patients. The
most common interfaces were orthoses placed on the
hand or arm. The review stated that several studies seem
to indicate that haptic feedback is either equivalent to,
or more effective than, visual feedback in certain appli-
cations, and they called for further studies.

Passive movements can induce EEG patterns simi-
lar to those observed during motor imagery [35], so
studies have used kinaesthetic feedback to help
induce sensorimotor rhythms for better performance.
For example, non-disabled participants used kinaes-
thetic feedback through a haptics-enabled robot for



rehabilitation therapy [36] and non-disabled partici-
pants received feedback through an orthosis attached
to the right hand [37]. Both studies saw enhanced
performance, even though there was only a single
session.

In the current study, a BCI system and training
protocol were designed that provided kinaesthetic
haptic feedback according to the detected movement
intention to examine if this phenomenon could ben-
efit classification accuracy compared to typical visual
feedback. Additionally, the feedback was examined
over several sets of BCI training to see if accuracy
would improve.

In developing technology for individuals with dis-
abilities, it is common to first test with individuals with-
out disabilities to examine if expected outcomes occur
and determine challenges with the use of the technology
[38-40]. As such, Study 1 was performed with adults
without disabilities who tested both visual and haptic
feedback to examine if the latter might provide some
benefit in BCI training. After adjustments to the experi-
mental set up and procedure, Study 2 was performed
with a child without impairment and an adult with
cerebral palsy in case studies to examine effects with
populations closer to our target group. The research
questions of the studies were:

(1) Which feedback modality (visual or kinaesthetic
haptic) leads to better BCI classification
accuracy?

(2) Can repeated runs of the BCI training with the
feedback improve the BCI classification accuracy
over time?

(3) How does power spectrum density of alpha and
beta bands differ between a motor imagery task
with visual feedback and haptic feedback?

(4) Which feedback modality leads to a lower work-
load for the participants?

2. Methods: Study 1
2.1. Study design

A crossover study design was used where each partici-
pant performed the BCI training in two conditions, with
visual feedback and with kinaesthetic haptic feedback.
To account for practice effects, the order of the feedback
conditions was counterbalanced across the participants.
Ethical approval was received from the local Health
Research Ethics Board Health Panel at the University
of Alberta.

2.2. Participants

Ten university students without physical disabilities,
six males and four females, aged from 22 to 38 years
(mean 28 years, standard deviation 4.3 years), par-
ticipated in the study. The participants were all
right-handed and had no prior BCI experience.

Figure 1. Picture of the BCl training system.
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Figure 2. Schematic diagram of the BCl system.

2.3. Experimental setup

An EEG acquisition hardware device called OpenBCI
(OpenBClI, Inc., Brooklyn, NY, USA), an open source
BCI software called OpenViBE [41], and a graphical
programming language called LabVIEW (National
Instruments, Corp, Austin, TX, USA) were used for
the BCI system. The system was composed of five mod-
ules: EEG data collection, signal pre-processing, feature
extraction, classification, and feedback. A 19 inch LCD
monitor was used to display the visual feedback, and
a Novint Falcon (Novint Technologies, Inc.,
Albuquerque, NM, USA) was used to give the kinaes-
thetic haptic feedback. A picture of the system is shown
in Figure 1, and a schematic diagram of the system is
shown in Figure 2.

EEG Data Collection: An EEG cap with eight elec-
trodes was placed on the surface of the participant’s
scalp to collect EEG signals, which were sampled with
a 250 Hz sampling frequency. The input bias current of
the BCI system was about 6 nA, and the impedance of all
electrodes was kept below 5 kQ. Channels Cz, Cp, F3,
C3, P3, F4, C4 and P4, according to the 10-20 interna-
tional system, were selected since they are over the pre-
motor cortex area of the brain, which is responsible for
the motor imagery and physical movement of the upper
limbs. Channels T7 and T8 were used as reference and
bias of the BCI system, respectively.

EEG Data
Collection

Main PC

Signal Pre-processing: The collected EEG data was
preprocessed in real-time through a notch filter with
cutoff frequencies between 58 and 62 Hz to reject
power line noise. Then, the signal was band-pass filtered
from seven to 30 Hz to preserve the alpha and beta
bands [36,42,43].

Feature Extraction: In order to retrieve the component
signal that best represented the brain activity for the motor
imagery task from the pre-processed signal, a Common
Spatial Pattern (CSP) filter was applied in the feature
extraction module [44]. CSP, a highly successful method
for ERD/ERS detection, is a mathematical procedure used
in signal processing for separating a multivariate signal
into additive subcomponents which have maximum dif-
ferences in variance between two windows [45]. The EEG
signals were spatially filtered using CSP and the logarith-
mic band powers of the filtered signals were then sent to
the classification module. One-second epochs were sent to
a classifier every 0.0625 seconds.

Classification: Linear Discriminant Analysis (LDA)
was used for the BCI classification (i.e. MOVE or REST)
because it achieved better BCI classification accuracy
than linear Support Vector Machine (SVM) and
Multilayer Perceptron (MLP) with participants without
impairments in a previous study [46]. After the data was
classified using the LDA, the control loop was closed
with the feedback, as follows.



Visual Feedback: The visual feedback was provided
to the users through the computer screen as visual
stimuli. A bar indicator displayed on the computer
screen presented the confidence values of the classifica-
tion when the participants were performing the motor
imagery task (i.e. thinking about moving the dominant
hand from right to left across the midline, called MOVE,
or thinking about resting the dominant hand, called
REST). The confidence of the classification results for
the motor imagery was obtained by an OpenViBE fea-
ture called Classification Processor, which estimates
posterior probability of the LDA based on Bayes’ theo-
rem. Smaller confidence values corresponded to the
classification of REST while larger confidence values
corresponded to the classification of MOVE. The value
was in the range of zero to one, and the threshold of the
classification between REST and MOVE was 0.5.

Kinaesthetic Haptic Feedback: Kinaesthetic haptic
feedback, i.e. passive movement of the participant’s
hand based on the sensorimotor rhythm brain response,
was given using the Novint Falcon haptic robot inter-
face. When the confidence value of the classifier
exceeded 0.6, the haptic robot interface started to
move the participant’s hand from the right to left end-
points of the robot workspace. The classifier threshold
of 0.6 was chosen according to pretesting to make sure
that the haptic interface only moved when it was sup-
posed to, so it would not confuse the user during the
online run.

2.4. Procedures

Each participant performed six sessions for each feed-
back modality. Sessions were approximately one hour
each, including system setup, BCI classifier training and
online runs. The participants performed the sessions for
the first feedback condition within two weeks and had at
least a one-week resting period before doing the next
feedback condition, the sessions of which were com-
pleted within two weeks. Each session had one training
BCI run (that is, training of the classifier) and two
online BCI runs. Thus, each participant did 12 online
BCI runs for each feedback condition.

In each session, a classifier was updated based on the
data set from the BCI training run and it was used for
the online runs in the same session. Such continuous
updating of the classifier parameters reduces the
amount of practice needed to achieve effective use of
a BCI system [47,48]. The quality of the training classi-
fier was validated with 5-fold cross validation right after
the training runs; if training classification accuracy was
less than 50% the participant redid the training, and if it
was above 50% they went on to do the online runs. For

both training and online BCI runs, EEG signals were
monitored to make sure that all the EEG channels were
properly connected and the signals were successfully
recorded during the entire run.

During the classifier training run, the participants
sat in front of a monitor and performed the motor
imagery task according to a cue (i.e. MOVE or REST)
displayed on the monitor. The cue was randomly
assigned in 24 trials in each BCI training run (i.e. 12
trials for each cue condition), ensuring counterbalance.
The sequence of the cue was as follows: 1) five seconds
of a blank screen, 2) two seconds of a cross displayed
on the screen, and 3) six seconds of the cue (either
MOVE or REST) while the participant performed
motor imagery about the task indicated by the cue
(see Figure 3). For training before the visual feedback
condition, the participant’s arms rested on a table in
front of them. When the cue indicated MOVE, the
participants were instructed to imagine their arm mov-
ing from right to left until the monitor displayed the
blank screen again. When the cue indicated REST, the
participants were instructed to imagine no movement.
For training before the kinaesthetic haptic feedback
condition, the same sequence of the cue was used,
but the participants placed their right hand over the
end-effector of the haptic robot interface, and when the
cue indicated MOVE, they were instructed to imagine
their arm moving from right to left, and the haptic
robot interface moved from right to left, regardless of
their EEG signals.

Likewise, during the online run, the participants per-
formed the motor imagery tasks according to the cue
displayed on the monitor. The sequence for the online
run was similar to the training run. However, instead of
six seconds of the cue, the cue was displayed for 1.25 sec-
onds and then there were eight seconds of feedback
provided (see Figure 3). For the visual feedback condi-
tion, a bar indicator representing the confidence value
was provided. For the kinaesthetic haptic feedback con-
dition, the haptic interface continuously guided the par-
ticipant’s hand from right to left as long as the confidence
value of the classification was above 0.6, and stopped
guiding it when the confidence value dropped below 0.6.

To prevent movement artifacts, participants were
asked to avoid strong blinking and head movements.
In addition, they were asked not to push the haptic
robot interface, and the force the participant put on it
was measured to confirm that the participant was not
physically pushing it (i.e. it was only moving by their
motor imagery). Maximum interaction force detected
from the interface was set to 4 N, chosen based on
a pretest, to avoid active movements by participants. If
more than 4 N of interaction force was detected from
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Figure 3. Timing diagram of a training BCI run (top) and an online BCl run (bottom).

the interface, it was assumed that the participant was
performing an active movement rather than a passive
movement and that EEG data were excluded from the
analysis. Only 1.2 % of the total data needed to be
excluded due to this.

The North American Space Agency Task Load Index
(NASA-TLX) was used to examine participants’ experi-
ence of workload with each feedback modality. The
NASA-TLX is a commonly used method to evaluate
subjective mental workload when using human technol-
ogy interfaces [49]. It examines the workload in six dif-
ferent aspects: Mental Demand, Physical Demand,
Temporal Demand, Own Performance, Effort, and
Frustration Level [50]. Participants rated each aspect,
from 0 (low) to 20 (high), on a printed form of the NASA-
TLX after all six sessions with that condition were done.
Related participant comments were recorded.

2.5. Measurements and analysis

EEG data during the cue part of the training run was used
to train the classifier, and EEG data during the feedback
part of the online run was used to evaluate the

performance of the online classification. The data
between the trials was excluded from measurements
and analysis. Accuracy of the classifier was obtained by
5-fold cross validation in each training run (hereinafter
referred to as ‘training classification accuracy’), and
online classification accuracy was calculated as the per-
centage of the number of correct classification predictions
divided by the total number of classification predictions
from each online run. Pearson’s correlation coeflicients
between the training and online classification accuracies
were also calculated for each feedback condition.

To determine if there was a statistically signifi-
cant difference in online classification accuracy
between feedback modalities and runs, the online
classification accuracy was entered into a 10,000
bootstrapped two-way repeated measure analysis of
variance (ANOVA) with the following factors: fac-
tor 1 was the online run (12 levels: 1 to 12) and
factor 2 was the type of feedback (2 levels: visual
feedback and kinaesthetic haptic feedback). Also,
simple linear regression modeling was used to
examine the linear trends of the BCI training over
time. Since high variability of individual BCI



performance is a well-known issue of many BCI
applications [51], the results of individual perfor-
mance were also plotted to examine individual
differences.

Power spectrum density, which represents the
distribution of the EEG power in the frequency
domain, was calculated and plotted for each indivi-
dual to examine how brain activity differed between
the motor imagery task with visual feedback com-
pared to kinaesthetic haptic feedback. Also, the
short-time Fourier transform (STFT) spectrograms
during the tasks with 3 s before to 7 s after the
MOVE cue onset were obtained as the time-
frequency analysis of the EEG power for each indi-
vidual. Both plots were analyzed descriptively and
categorized by types of spectral patterns. In addi-
tion, the spectral power differences from REST to
MOVE for all the EEG channels during the motor

imagery task were compared, as in other studies
[13,18]. The frequency bands selected were: the low-
alpha band (eight to 10 Hz), the high-alpha band
(10 to 13 Hz), the low-beta band (13 to 16 Hz), and
the high-beta band (16 to 26 Hz) [52].

3. Results: Study 1
3.1. BCI Classification accuracy

Figure 4 shows the training classification accuracy (esti-
mated by the cross validation from the training runs)
and the online classification accuracy for the visual and
kinaesthetic haptic feedback for each participant. None
of the adult participants without impairments needed to
repeat any BCI classifier training runs since their train-
ing classification accuracy was above the minimum 50%.
Eight out of 10 participants had an accuracy that was
higher with the kinaesthetic haptic feedback, and one
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participant, P9, had an accuracy that was higher with
the visual feedback, for both training and online BCI
runs. One participant, P10 had higher accuracy with
kinaesthetic haptic feedback in the training run but
higher with the visual feedback in the online run. In
the online classification accuracy, the error bars
representing one standard deviation do not overlap
between the two feedback conditions for P1, P6 and
P8. The Pearson’s correlation coeflicients between
the training and online classification accuracies
were r = 0.82 for visual feedback and r = 0.93 for

kinaesthetic haptic feedback.

Figure 5 shows the average online classification accu-
racy for all the participants on each BCI run for both
feedback conditions. The participants completed the
BCI training at an average accuracy of 67.28% (standard
deviation 11.2) for visual feedback and 75.12% (stan-
dard deviation 12.3) for kinaesthetic haptic feedback.
The bootstrapped two-way repeated measure ANOVA
(factor 1 = runs, factor 2 = type of feedback, 10,000
repetitions) revealed that there was a statistically signif-
icant difference between the classification accuracy of
the two feedback conditions, but the runs and the inter-
action of the two factors did not reach significance (F
[11, 99] = 0.72, p = 0.72 for the runs, F [1, 9] = 6.73,
p = 0.03 for the type of feedback, and F [11, 99] = 0.60,
p = 0.83 for the interaction of the two factors). The
regression line of the average online classification accu-
racy with respect to the run showed a small positive
slope linear relationship for both feedback conditions

(0.29 for the visual feedback and 0.11 for the kinaes-
thetic haptic feedback).

3.2. Spectral band power

Figure 6 shows the power spectrum density of the C3
EEG channel for the run with the median online classi-
fication accuracy of each participant. Channel C3 was
selected because it was on the contralateral side to the
hand used during the task and it is believed to be
involved in brain activity related to motor imagery
[13]. Figure 7 shows the STFT spectrograms of the C3
EEG channel for both feedback conditions before and
after the MOVE cue onset. Suppression of EEG oscilla-
tion in the alpha frequency band after the cue onset (i.e.
ERD), and increase of EEG oscillation in the beta fre-
quency band after the cue onset (i.e. ERS), were indi-
cated according to visual inspection. From the
spectrograms, four participants show a clear brain
response after the cue onset for the visual feedback
(i.e. P3, P6, and P9 show ERD, and P4 and P8 show
ERS), and seven participants show a clear response after
the cue onset for the kinaesthetic haptic feedback (i.e.
P3, P6, and P9 show ERD, and P1, P2, P4, and P8 show
ERS). These brain patterns are also shown in the power
spectrum density of Figures 6 that the participants
demonstrate three types of responses: 1) P3, P6, and
P9 show a clear ERD response; 2) P1, P2, P4, and P8
show a clear ERS response; and 3) P5, P7, and P10 show
no clear response, with only a small difference between
REST and MOVE in both feedback conditions.
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Figure 6. Power spectrum density of the EEG channel C3 during MOVE (black line) and REST (red line) for the two feedback conditions

for the adults without impairments.

Figure 8 shows the spectral band power differ-
ences from REST to MOVE in the low-alpha, high-
alpha, low-beta, and high-beta frequency bands.
From the Figure, we can see that P3 and P6 have
clear negative spectral band power differences in all
the frequency bands in both feedback conditions,
while the rest of participants show both positive
and negative spectral band power differences
depending on the frequency band and feedback con-
ditions. The results also indicate that the error bars
of the two feedback conditions do not overlap in at

least one of the power bands in six out of 10 of the
participants (i.e. P1, P2, P4, P6, P8, and P9). P1 and
P8 have no overlap in three of the power bands and
P6, has no overlap in two of the power bands.

3.3. NASA-TLX

Figure 9 shows the average participant scores of the
six workload aspects in the visual and kinaesthetic
feedback conditions. In all six workload aspects, the
score of the workload with kinaesthetic haptic
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Figure 6. (Continued).

feedback was lower than with visual feedback. One
participant commented that she preferred kinaes-
thetic haptic feedback because she could feel her
arm moving from right to left, so she could easily
focus on imagining that movement. Another partici-
pant said that the visual feedback was better because
he could see in real time how calm he was becoming
during the relaxation part because of the bar indica-
tor on the display. Some participants commented
that the visual feedback gave them more fatigue
and involved more possibilities of distraction, while
the kinaesthetic haptic feedback required less

Frequency (Hz)

concentration during the task. However, another par-
ticipant commented that the kinaesthetic haptic feed-
back was distracting during the REST phase when
the EEG signal was incorrectly classified and the
haptic robot interface moved.

Study 1 demonstrated that the kinaesthetic feed-
back did provide some classification accuracy
improvements, but there were some issues that
needed to be addressed before trials with children
and/or individuals with impairments. First, it was
noted that participants in Study 1 did not find the
interface to be very engaging. Motor imagery-based
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Figure 7. STFT spectrogram of the EEG channel C3 during the tasks with 3 s before to 7 s after the MOVE cue onsets for the two
feedback conditions for the adults without impairments. Boxes with red dotted lines indicate ERD, and boxes with blue dotted lines

indicate ERS. Vertical black dotted lines indicated the cue onsets.

BCI training protocol is generally said to be time-
consuming and tedious [53], so we tried to make it
more motivating and playful for Study 2. Second,
since 12 runs did not improve BCI classification
accuracy for the adults without impairments in
Study 1, we reduced the number of runs and sessions
to something that would not be too much burden on
the participants, but enough to begin to explore the
brain responses in this task. The ethical approval,
experimental setup, procedures, and measures were

the same as in Study 1, except for the following
modifications.

4. Methods: Study 2
4.1. Study design

Exploratory case studies were performed to explore if
the feedback may be beneficial for a child without
impairments and an adult with physical impairments.
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4.2. Participants

The system was tested by one 10 year, two month old
child without impairments, C1, and a 48-year-old
female with quadriplegic cerebral palsy who has mixed
high and low muscle tone and involuntary movements,
AD1. She has been classified as Level IV in the Gross
Motor Function Classification System Expanded and
Revised (GMFCS-E&R) [54], and Level III according
to the Manual Ability Classification System (MACS)
[55], meaning that she performs self-mobility by using
a powered wheelchair and has difficulty handling
objects.
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4.3. Experimental setup

The BCI system was modified to a game-like application.
Instead of visual feedback using the simple bar indicator
in Study 1, a car and traffic light were displayed on the
computer screen, and the car moved during the motor
imagery task according to the confidence value of the
LDA classifier (See Figures 10 and 11).

4.4. Procedures

A total of four online BCI runs for each modality were
performed. There were two sessions on different days.



Low-alpha
Power (dB)

High-alpha
Power (dB)

-10

Low-beta
Power (dB)

-10

High-beta
Power (dB)

-10

10

10

10

PL P2 P3 P4 p5 P6 p7 P8 P9 P10

W Visual feedback M Kinaesthetic haptic feedback

Figure 8. Spectral band power differences from REST to MOVE in the four different frequency bands of the visual and kinaesthetic
haptic feedback for all of the adults without impairments. Error bars represent one standard deviation.

20

M

Mental Physical Temporal Performance  Effort Frustration
NASA-TLX category
m Visual feedback m Kinesthetic haptic feedback

Figure 9. Average scores of each aspect of NASA-TLX for the adult participants without impairments. Error bars represent one standard

deviation.



Figure 11. Picture of the BCl system for children and adult with physical impairments.

Each session lasted about one hour, including system
setup, one BCI classifier training run and two online
runs for each feedback condition. During the BCI clas-
sifier training, the participants sat in front of a monitor
and performed the motor imagery task according to the
traflic light displayed on the monitor. The task cues
were green light for MOVE, yellow light for READY,
and red light for REST. The cue was randomly repeated
six times in each run. The sequence of the cue was as

follows: 1) five seconds of all the lights off, 2) two
seconds of the yellow light on, 3) six seconds of either
the green light or the red light on. For the visual feed-
back condition, the participant’s hands rested on the
table during the task. When the green light was on, the
car began to drive from the right to the left. During this
period, the participants were asked to imagine their arm
moving from right to left until all the lights turned off.
When the red light was on, the car stayed still, and the
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Figure 13. BCl classification accuracy across the 4 online BCI runs with each feedback modality for C1 (left) and AD1 (right). Only the

lines of runs were connected from the same session.

participants were asked to imagine no movement. For
the kinaesthetic haptic feedback condition, the partici-
pants put their hand over the end-effector of the haptic
robot interface during the task. The task was the same as
the visual feedback condition, however, the haptic robot
interface passively moved the participant’s hand simul-
taneously with the movement of the car. No active feed-
back based on the user’s EEG signals was given during
the training runs as in Study 1.

For the online runs, the participants moved the car
with their motor imagery. The car only moved when the
system detected the motor imagery with the same con-
fidence levels used in Study 1, which were 0.6 for both
visual and kinaesthetic feedback. Otherwise, the proce-
dure was the same as Study 1.

4.5. Measurements and analysis

The dependent measures were the same as Study 1 (i.e.
training and online classification accuracy, spectral band
power, and NASA-TLX), however, the participant’s

performance was evaluated individually based on
descriptive statistics due to the low sample size.

5. Results: Study 2

Figure 12 shows the average BCI classification accuracy
of the training runs and online runs for the visual and
kinaesthetic haptic feedback for the child participant
without impairments, C1, and the adult with physical
impairment, AD1. The child participant, C1, needed to
repeat one BCI classifier training run due to the cross
validation accuracy being 46.4% rather than the mini-
mum 50%. It can be seen in Figure 13 that the online
classification accuracies tended to decline slightly over
the runs for both feedback conditions. For Cl, the
slope of the regression line decreased by —2.7 for the
visual feedback and —2.25 for the kinaesthetic haptic
feedback, and for AD1 the slope decreased by —2.1 for
the visual feedback and —4.2 for the kinaesthetic haptic
feedback.
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Figure 15. STFT spectrogram of the EEG channel C3 during the tasks with 3 s before to 7 s after the MOVE cue onsets for the two
feedback conditions for C1 and AD1. Boxes with red dotted lines indicate ERD, and boxes with blue dotted lines indicate ERS. Vertical

black dotted lines indicated the cue onsets.

Figure 14 shows the power spectrum density in channel
C3 for the run with the median online classification accu-
racy for both participants, and Figure 15 shows the STFT
spectrograms of C3 during both feedback conditions
before and after the MOVE cue onset. A peak frequency
around 10 Hz can be seen in both feedback conditions for

the child participant, C1. The power spectrum density for
the child shows the spectrum patterns during MOVE and
REST were quite similar, and a clear ERD and ERS were
not observed in the spectrograms. On the other hand, AD1
shows a clear peak frequency around 13.5 Hz, and the
amplitude of the peak increased during REST and
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haptic feedback for C1 and AD1.

decreased during MOVE in both conditions. This peak
frequency also can be observed in the spectrogram of AD1;
it appears before the MOVE cue and decreases after the
cue onset.

The spectral band power differences from REST
to MOVE caused by motor imagery in the four
different frequency bands for Cl and ADI are
shown in Figure 16. For CIl, the expected alpha
band power decreases for MOVE appeared in the
high-alpha frequency band, and the expected beta
band increases appeared in the low and high-beta
frequency bands, for both feedback conditions.
However, the amplitude of the power differences
between REST and MOVE in both visual and
kinaesthetic was quite small. For AD1, a distinct
power decrease was detected in the low beta band
in both feedback conditions, and small positive or

negative power differences were observed in the
other frequency bands.

For Cl1 and ADI, the workload scores of the
kinaesthetic haptic feedback were equal or lower
than the scores for visual feedback (see Figure 17).

6. Discussion
6.1. BCl! classification accuracy

The use of kinaesthetic haptic feedback during BCI
training resulted in a statistically significant higher
online classification accuracy than using visual feedback
in Study 1 with adults without impairments. The sample
size in this study was small, so no definitive statements
can be made, but the study enabled some initial explora-
tion into whether kinaesthetic feedback could provide
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some beneficial effect. BCI classification accuracy varied
considerably between individuals. For seven out of ten
participants, the online classification accuracy was
higher with the haptic feedback, for one it was about
the same, and for two participants the accuracy was
higher with visual feedback in Study 1. The participants
who had high accuracy using one feedback modality
also had high accuracy using the other modality. The
training classification accuracies were higher than the
online classification accuracies in the visual feedback
condition for all participants. However, the online clas-
sification accuracies were higher than the training
accuracies in the haptic feedback condition for three
participants (i.e. P1, P3, and P8). One potential reason
is that there may not have been enough data for the
cross validation. The training classification accuracy in
this study was obtained based on the 5-fold cross valida-
tion, and the cross-validation may have produced biased
performance estimates with small data size [56].
Another potential reason could be that the active
kinaesthetic haptic feedback in the online runs
enhanced the sensorimotor rhythms making it easier
to detect and classify features which improved the clas-
sification accuracy over the training runs.

Individual variability is a common issue of many BCI
applications [51], and a clinical implication could be that
an examination of an individual’s responsiveness to the
haptic feedback should be done before investing time in
training. The case studies in Study 2 involved a different

number of sessions, BCI task, and analysis, so the results
cannot be directly compared to Study 1. But, visual
analysis of Figure 13 indicates that the child participant
and the adult who had disabilities tended to have the
same or higher BCI classification accuracy using the
kinaesthetic haptic feedback than the visual feedback.
No statistically significant improvement in the online
classification accuracy across the runs was found in either
feedback condition over the 12 online runs for the adults
without disabilities. A positive linear trend for the BCI
classification accuracy was found for both feedback condi-
tions, but the slope values were not large. The child without
impairment and the adult with cerebral palsy actually
showed a slight decrease in the BCI classification accuracy
over the four runs. 57,state that BCI performance should
improve through sets of BCI training. However, the dura-
tion of sessions and the number of the sessions required
was not thoroughly discussed. Training given in previous
BCI studies was from a few BCI runs in one day to more
than 50 runs over several months [16,58]. It is possible that
even 12 runs was not sufficient to show an improvement.

6.2. Spectral band power

The examination of the brain signals during motor
imagery showed differences across participants, and
some differences between feedback modalities. To accu-
rately classify the motor imagery task, it is essential to
have a clear difference in the brain patterns between
MOVE and REST. The participants who exhibited
clear ERD or ERS brain patterns tended to have better
BCI classification accuracy than the participants who
did not have a clear response (i.e. P3, P6, and P9 showed
clear ERD, P1, P2, P4, and P8 showed clear ERS, and
they had the higher classification accuracies in Figure 4).

In previous studies of motor imagery, suppression of
alpha frequency band (i.e. ERD) and an increase of beta
frequency band (i.e. ERS) after the movement onset are
both observed in participants in a single task [59,60].
However, in this study, only one of the brain patterns,
either ERD or ERS tended to be observed, depending on
the participant (Figures 6 and 7). A possible reason for
the variation in frequency band power across the parti-
cipants is that the classifier used for this study was
designed based on 1-second epochs, which could be
too short to capture both ERD and ERS patterns.
Likely, the classifier in this study classified the brain
response based on either ERD or ERS, whichever was
the stronger pattern generated by the participant.
Epochs of a longer time frame could be a solution,
however, longer a time frame would make system
response slower and may not be practical in real-time
BCI applications, such as robot control. Another



solution could be use of two classifiers [i.e. ERD-based
and ERS-based) in a single BCI system, as in 61.

In the comparison of the spectral band power differ-
ences from REST to MOVE in the four different fre-
quency bands, the one standard deviation error bars
between the two feedback conditions did not overlap
in at least two of the power bands in three out of 10
participants in Study 1 (i.e. P1, P6, and P8]. These three
participants also show that the online classification
accuracy was higher with the kinaesthetic haptic feed-
back in Figure 4. The passive movement initiated by the
kinaesthetic feedback through the haptics robot inter-
face could have elicited sensorimotor rhythms similar to
the brain activity associated with motor imagery. Thus,
the premise in the study by 13,about the ERD/ERS
response being induced by passive movement may
have been beneficial in improving BCI classification
accuracy in this study.

In Study 2, the child participant did not show much
difference in power spectrum density and spectral band
power differences between REST and MOVE in either
feedback condition. According to a study by 23, the
ERD response can be observed even in infants, and
generally, the frequency of the ERD gradually increases
until the age of about five. The EEG of the 10-year-old
boy should be developed, but like some adult partici-
pants in Study 1, his power spectrum density did not
show a clear ERD or ERS response. On the other hand,
the adult with impairment showed a peak frequency of
around 13.5 Hz in her power spectrum density and
spectrogram in both conditions. Because the boundary
of the frequency range between alpha and beta band was
set to be 13 Hz, this peak frequency looked like the low-
beta band in this study. As seen in Figure 14, the ampli-
tude of her low-beta peak increased during REST and
decreased during MOVE. Also, from the spectrogram in
Figure 15, suppression of the 13.5 Hz band power was
observed after the MOVE cue onset. From such
a behavior, decreases in this peak amplitude should be
considered an ERD response. Even though her ERD
appeared at a slightly higher frequency than the partici-
pants in Study 1, the system was still able to classify her
brain activity as REST or MOVE, with up to 66.5%
accuracy. There was more potential to acquire distorted
EEG signals from the adult with impairment because
she often made reactive movements when she realized
that the system misclassified her movement intention
during the task. These reactive movements likely caused
muscular artifact in her EEG signals. However, by using
the temporal and spatial filters to minimize the artifact
and noise, this BCI system could still potentially have
differentiated between the two conditions of the motor
imagery task (i.e. MOVE and REST).

6.3. Mental workload

Lastly, regarding the user’s response of workload, all the
participants without impairments reported less work-
load for the motor imagery task with kinaesthetic haptic
feedback than with visual feedback. The kinaesthetic
haptic feedback had advantages like the reinforcing
effect of the actual movement of their arm during
motor imagery, and it had disadvantages like distraction
when signals were misclassified. However, the visual
feedback tended to be quite fatiguing for the partici-
pants. The scores of the child and the individual with
impairment also indicate higher workload for the visual
feedback than the kinaesthetic haptic feedback. The
range of the workload scores are wider for the child
and the individual with impairment than those of the
adult participants without impairments (i.e. ranging
from five to 20 compared to five to 12). The higher
scores could be because of having less tolerance to
wearing the uncomfortable EEG cap, concentrating dur-
ing the motor imagery task, or keeping the body posture
still during the task to avoid muscular artifact. The one-
hour session may have been too long for them, and
indeed, the individual with impairment reported fatigue
with both feedback modalities above. BCI tasks require
focused attention, and the long BCI sessions often make
participants feel tired [53]. Lack of concentration and
focus during the BCI trials can negatively affect a user’s
BCI performance. Therefore, a shorter session time, for
example, no more than 30 minutes, would be better for
BCI sessions with children and adults with disabilities.

6.4. Limitations

This study has limitations, which should be acknowl-
edged. First, due to the small sample size (i.e. ten adults,
and two case studies), the findings cannot be generalized
and can serve only as preliminary data guiding further
research. Second, the strong linear relationship between
the training and online accuracy for both feedback con-
ditions for the participants without disabilities (i.e.
Pearson’s correlation of r = 0.82 for visual feedback,
and r = 0.93 for kinaesthetic haptic feedback) means
that the online classification accuracy heavily depended
on the quality of the training run. Thus, the online runs
were limited in the accuracy they could reach. Third, in
order to proceed to the online runs the threshold for
training classification accuracy was the theoretical
chance level of 50%, which is not enough to say the
accuracy was well above random chance. However,
since the objective of this study was to evaluate
improvement of BCI classification accuracy over time,
we avoided setting a higher threshold, which would



have required more training runs and resulted in an
unbalanced number of runs between participants. In
this study, only the child participant, C1, failed one
training run due to classification accuracy being less
than the 50% threshold, and for most participants train-
ing classification accuracy was much higher (e.g. 74.5%
(standard deviation 10.8) for visual feedback and 80.8%
(standard deviation 9.9) for haptic feedback for partici-
pants without disabilities). Fourth, the participants in
Study 2 were asked to drive a car displayed on the screen
with their motor imagery, whereas the participants in
Study 1 controlled the value of a bar indicator. Thus, the
results of the two studies are not comparable in the
strictest sense. Fifth, because of the nature of the game-
like graphical user interface, the participants had the
kinaesthetic haptic feedback in addition to the visual
feedback (i.e. the moving car) during the task in Study 2,
whereas the participants in Study 1 only had the kinaes-
thetic haptic feedback. The multimodal feedback may
have resulted in higher BCI classification accuracy than
the single mode feedback [32]. However, testing of the
BCI system with haptic feedback by a child and an
individual with impairments was beneficial to begin to
explore the possibility of doing robot movement based
on motor imagery signal. Next steps could include mov-
ing a physical car in the play environment for BCI
training, rather than on a computer screen.

7. Conclusions

In this study, we explored a method for users to experi-
ence kinesthetic haptic feedback that passively moved
their arm according to detected movement intention.
This will be valuable in next steps of our study where
users will feel the feedback about their motor imagery
and be able to operate a robot without needing visual
feedback.

BCI training using only kinaesthetic haptic feedback
was compared with the traditional visual feedback dis-
played on a screen. The classification accuracy with
kinaesthetic haptic feedback was significantly higher
than the accuracy with the visual feedback in a study
with ten adults. The accuracy was as good or higher for
a child without impairments and an individual with
physical impairments in case studies using a different
interface and fewer runs. In order to be more appealing
for children, the BCI interface was modified to a game-
like activity in order to make the BCI task sustain their
attention.

Participants may have perceived the sensory input
that their own arm was moving which may have elicited
the brain activity associated with motor imagery to
improve classification accuracy. There is need for

further research to explore using kinaesthetic haptic
feedback with longer sessions and larger sample sizes,
and to trial the system with children and adults with
physical impairments.
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