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Abstract
In this paper, the biomechanical capability of the human upper limb in absorbing physical interaction energy during
human-robot interaction is analyzed. The outcome is a graphical map that can quantitatively correlate the extent of
grasp pressure and the geometry of interaction to the extent of hand passivity. For this purpose, a user study has been
conducted for 11 healthy human subjects to characterize energy absorption capability in their arm and wrist. The above
correlation is statistically validated. The identified user-specific Grasp-based Passivity Signature (GPS) map can be
used as a graphical tool to assess the biomechanical capabilities of the upper limb in absorbing interaction energy. In
this paper, the proposed GPS map is utilized in the design of a new stabilizer, for haptic systems, that takes into account
the variation in energy absorption during haptic task execution. The goal is to optimize the haptic system fidelity while
guaranteeing human-robot interaction stability despite the potential existence of delays and a non-passive environment.
The controller is termed GPS-map Stabilizer. If the user provides minimum to no energy absorption during interaction,
the controller makes the force reflection gate tight to guarantee stability. However, when the user demonstrates high
capability in absorbing interaction energy, the controller allows the forces to be reflected. The GPS-map Stabilizer
is an alternative for (a) conventional stabilizers of haptic/telerobotic systems, and (b) fixed conservative force limits
in rehabilitation systems where patient-robot interaction safety is a crucial requirement. This provides the practical
motivation for this work. Experimental results are presented.
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1 Introduction

1.1 Motivation
Telerobotic and haptic systems have attracted a great
deal of interest in the context of medical robotics during
the last two decades. Accordingly, in the literature, two
major categories for haptics-enabled and telerobotic medical
systems have been developed, namely: Robotics-assisted
Minimally Invasive Surgical (RAMIS) systems Tavakoli
et al. (2005), Westebring-Van Der Putten et al. (2008),
Tavakoli et al. (2007), Simorov et al. (2012), and Haptics-
enabled Robotic Rehabilitation systems (HRR) Blank et al.

(2014), Merians and Fluet (2014), Krebs and Hogan (2006),
Kim et al. (2013), Hogan et al. (2006).

One of the major research questions about the use of
haptic technology in medicine is “how to optimize the haptic
system fidelity (transparency) while guaranteeing safety and
stability of physical human-robot interaction”. An ideally
transparent haptic system is capable of providing the user (at
the master side) with the kinesthetic feel of force equal to that
measured/calculated at the actual/virtual environment side.
The case of an actual environment is for telerobotic systems
and the case of a virtual environment is for virtual-reality
based haptic rendering systems. However, there is a trade-off
between stability and ideal transparency in haptic systems.

For RAMIS systems, although the contribution of haptic
feedback during surgery is not negligible, this feedback is
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turned off in most of the currently-available commercial
systems Marcus et al. (2015), Okamura (2004). One of
the main reasons for the above-mentioned exclusion is to
relax the safety/stability concern by avoiding the closed-loop
system which would exist if haptic feedback is included.
There are also other reasons for excluding this feedback
in RAMIS systems, such as cost and concerns about bio-
compatibility and size of sensors Okamura (2004), Lendvay
et al. (2013). The lack of haptic feedback in commercial
systems has nevertheless been successful since without
haptic feedback, it is still possible to perform the main
goal of RAMIS systems which is accurately translating the
“motions” of a surgeon’s hand inside a patient’s body.

In contrast to surgical applications, haptic feedback
and kinesthetic interaction are essential key features of
robotic rehabilitation systems and cannot be excluded Blank
et al. (2014), Merians and Fluet (2014), Krebs and Hogan
(2006), Kim et al. (2013), Hogan et al. (2006). This forms
the main motivation of this paper which is guaranteeing
stability and safety of human-robot interaction during haptic
upper-limb motor rehabilitation while preserving system
transparency. The results of this study can be used for any
haptic/telerobotic system.

In fact, the safety of human-robot interaction in haptics-
enabled rehabilitation systems could be a major concern
Zhang and Cheah (2015), Morbi et al. (2014), Vitiello
et al. (2013), Aguirre-Ollinger et al. (2012). Most post-
stroke rehabilitation robots are designed to generate powerful
force fields in order to deliver sufficient energy for the
required motor therapy while working in contact with
post-stroke patients. Consequently, instability in the robots
can cause serious injuries including bone, joint, and soft
tissue damage Zhang and Cheah (2015), Haddadin et al.
(2010). As a result, patient-robot interaction safety should
be explicitly studied and guaranteed. This is an active
line of research since conservative solutions can degrade
the performance of robotics-assisted therapeutic systems
Zhang and Cheah (2015), Morbi et al. (2014). In most
HRR systems, predefined conservative force caps have been
utilized as a safety mechanism Kim et al. (2013), Culmer
et al. (2010). This can jeopardize system transparency
especially when there may be no stability concern (as
explained later in this paper).

Based on the above, the authors believe that the kinesthetic
biomechanical capabilities of the human upper limb should
be studied not only for motor assessment purposes but also
to develop optimal stabilizers which can guarantee patient-
robot interaction safety while minimizing transparency
distortion and maximizing the allowable intensity of the
therapeutic impedance.

1.2 Background
HRR systems have been developed to accelerate Neural
Plasticity (NP) in the brain through facilitating therapeutic
physical interaction of a patient with actual/virtual objects
Krebs and Hogan (2006), Kim et al. (2013), Hogan et al.
(2006). NP involving brain remodeling in synaptic and
non-synaptic manners helps patients to regain some of
their lost motor functions Dimyan and Cohen (2011),
Takeuchi and Izumi (2013). The effectiveness of HRR
systems in accelerating NP have been investigated in several

studies Krebs and Hogan (2006), Kim et al. (2013), Hogan
et al. (2006). Conventional HRR systems are composed of
(a) a powerful haptics-enabled robot, (b) a virtual-reality
interface, and (c) a Programmable Virtual Therapist (PVT)
software which is responsible for tuning the therapeutic
forces and the intensity of kinesthetic interaction Krebs and
Hogan (2006), Hogan et al. (2006).

Through the use of PVT software incorporated in HRR
systems, assistive and coordinative therapies are usually
prescribed in early stages of rehabilitation to accelerate NP.
Also, resistive therapy is mostly prescribed in later stages
to equalized and strengthen muscular tone Krebs and Hogan
(2006), Hogan et al. (2006).

In addition to HRR systems, taking advantage of recent
developments in the field of communication and cloud-based
computerized systems, there is a tendency towards develop-
ing remote cloud-based medical applications and rehabili-
tation systems Butler et al. (2014),Schwamm et al. (2009),
Bae et al. (2013). An example is the recently-developed
Haptics-enabled Telerobotic Rehabilitation (HTR) system,
proposed by the authors in Atashzar et al. (2015), Atashzar
et al. (2012a), Atashzar et al. (2013), Atashzar et al. (2014a),
which can deliver supervised haptic therapy to remote areas,
replace PVT software of HRR systems by keeping a human
therapist in the loop, and augment capabilities of human
therapists using robotic technology.

It should be noted that the other major safety challenge
which is highlighted for cloud-based HRR and HTR systems
is the destabilizing effect of variable communication time
delays and non-passive interaction.

Stability concerns in conventional telerobotic systems
have been studied in the literature Chawda and O’Malley
(2015), Niemeyer and Slotine (2004), Hashtrudi-Zaad and
Salcudean (2002). In this regard, several techniques have
been developed to guarantee stability of delayed haptic
systems Aziminejad et al. (2008), Sun et al. (2014),
Chopra et al. (2008), Ryu et al. (2004), Chawda and
O’Malley (2015). However, most of these techniques
(a) assume that the terminals are passive and the only
source of instability is the time delay; (b) try to
guarantee stability for a wide range of users regardless
of the corresponding biomechanical capabilities; and
(c) are specifically developed for communication-induced
instabilities.

1.3 Contributions of This Paper
Although, conventional stabilizers have shown good per-
formance in guaranteeing stability of conventional delayed
haptic systems, further developments are essential when
dealing with nonpassive rehabilitation systems. The reason
is that having a disabled patient as the user not only requires
further consideration, but also no assumption can be made
regarding the capability of the user in dealing with unstable
situations. In addition, transparency manipulation needs to
be minimized since force-feedback is the key factor for HRR
and HTR systems. However, the quality of force feedback
would be affected by using conservative force limits and/or
by implementing a stabilizers that trade-off transparency in
order to guarantee stability for a wide range of users (having
different biomechanics).
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Figure 1. Experimental setup: (a) Quanser upper-limb
rehabilitation robot for arm manipulation, (b) virtual environment
provided by a head-mounted display, (c) sensorized handle for
the arm robot, (d) Quanser HD2 robot for wrist manipulation, (e)
sensorized handle for the wrist robot.

Recently, the authors have shown that it is possible to
enhance system transparency and guarantee stability through
incorporating some quantitative information of the user’s
hand biomechanics into the design of the stabilizers Atashzar
et al. (2015), Atashzar et al. (2012a), Atashzar et al. (2013).
However, in the aforementioned work, a constant lower-
bound is considered for the capability of the user’s hand in
absorbing interactive force and energy.

In this paper, we have relaxed the above-mentioned
assumption by proposing a novel Grasp-based Passivity
Signature (GPS) map which takes into account the variable
energy absorbability of the user’s hand during the operation.
The presented work has two major contributions:

• Developing the GPS map which correlates the grasp
condition and geometry of haptic interaction with
the capability of the user’s upper limb in absorbing
physical interaction energy.
• Proposing a new safety mechanism which incorporates

the proposed GPS map to perform minimum
manipulation of transparency while guaranteeing
stability, in the context of Strong Passivity Theorem
(SPT) Vidyasagar (2002), Forbes and Damaren
(2010).

For this purpose, in the first part of this work, a user
study was conducted with 11 human subjects to study
nonlinear biomechanics of both their left and right hands.
The study was conducted separately for the users’ arms
and wrists. Consequently, two haptic systems were utilized:
(a) an upper-limb rehabilitation robot (from Quanser Inc.,
Markham, ON, Canada) for studying arm biomechanics; and
(b) an HD2 haptic device (from Quanser Inc.) for the wrist.
The participants were asked to tune their grasp pressure to
levels shown by a monitor, while the robot perturbed their
limb. Force and motion data were captured and analyzed and
the quantitative Excess of Passivity (EOP) was calculated for
different directions of motion. Then, the correlation between
the calculated EOP (in different geometries of motion) and
the amount of grasp pressure was identified and statistically
evaluated. The result of this study provides a user-specific
GPS map which represents the biomechanical capability
of the human upper limb in absorbing interaction energy
under variable grasp conditions and in different directions
of motion.

In the second part of this work, the identified GPS map
was utilized in the design of a new controller, called GPS-
map Stabilizer. The proposed technique utilizes the identified
user-specific GPS map in a nonlinear Force Reflection Gate
(FRG) function, defined to guarantee the interaction safety
in the context of SPT. The proposed FRG function can be
explained as a nonlinear gain that converges to zero when the
user provides minimal to no energy absorption and converges
to unity when the user provides enough energy absorption.
In the latter case, even if the communication is delayed
and the therapy is non-passive (e.g., assistive therapy), the
transparency will not be affected by the stabilizer.

It should be noted that the controller can be used not
only for HRR/HTR systems but also for conventional haptic
and haptic teleoperation systems. Experimental validations
are reported to support the proposed technique. The setup is
shown Fig. 1.

The rest of this paper is organized as follows. In Section
II, the required preliminaries are presented. In Section III,
the GPS map is introduced. In Section IV, the design of the
proposed FRG function is given. In Section V, experimental
evaluations are presented. Finally, concluding remarks are
given in Section VI.

2 Preliminaries and Mathematical Modeling
The preliminaries given in this section are mostly taken
from the authors’ previous work Atashzar et al. (2015).
In order to analyze the passivity of the user’s hand
and develop the stabilizing controller, a transparent two-
channel bilateral architecture was previously proposed by
the authors Atashzar et al. (2012b) and used for both HRR
and HTR systems Atashzar et al. (2015), Atashzar et al.
(2012a), Atashzar et al. (2013), Atashzar et al. (2014a).
The architecture is an extended version of Lawrence’s four-
channel model Hashtrudi-Zaad and Salcudean (2001). Using
this architecture, it is shown that only two communication
channels are needed to allow the patient to feel the delayed
therapeutic forces and the human/virtual therapist to feel
the patient’s delayed hand motion. The details of the
utilized telerobotic architecture are in Atashzar et al. (2015).
Using the above-mentioned two-channel telerobotic system,
transparency is achieved as follows:

fp(t) =− f̂th(t), (1)

vth(t) = v̂p(t). (2)

In (1), (2), fp(t) is the force applied by the patient to the
master robot, f̂th(s) is the delayed therapeutic force received
at the patient’s side, sent through the first communication
channel (slave to master), v̂p(t) is the patient’s delayed
hand velocity, received at the therapist’s side, sent through
the second communication channel (master to slave). In
addition, vth is the therapist-side velocity. Note that for
HRR systems vth is the velocity of the virtual object in the
virtual reality environment while for HTR systems vth is the
velocity of the human therapist. For HRR systems, f̂th(s) is
the delayed force generated by the PVT software to deliver
assistive/resistive/coordinative therapeutic forces. For HTR
systems, f̂th(s) is the delayed force applied by the human
therapist on the slave robot.
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2.1 Patient’s Force Decomposition
The patient’s force can be decomposed into an active
component f ∗p(t) (which generates movement), and an
impeding reactive component freact(t) (which behaves
similar to resistive impedance in linear models), as shown
below:

fp(t) = f ∗p(t)− freact(t), where freact = zp(vp, t) (3)

In (3), zp(vp, t) is the non-autonomous nonlinear impedance
function which models the mechanical resistance of the
patient’s limb. This function relaxes the conventional
linearity assumption for the operator’s hand dynamics (such
as in Tsuji et al. (1995) for a healthy human, and in McCrea
et al. (2003) for post-stroke patients). f ∗p(t) is the active
component of the force applied by the patient’s hand while
performing the tasks. f ∗p(t) is composed of (a) residual
voluntary (functional) active forces, denoted by f ∗p−v(t), and
(b) abnormal and involuntary active forces such as abnormal
patterns of activation and involuntary reflexes, denoted by
f ∗p−i(t). Consequently, f ∗p−v(t) and f ∗p−i(t) result in (a)
voluntary, and (b) uncoordinated and involuntary patterns of
motion, respectively (Cirstea and Levin (2000); Ellis et al.
(2005); Makowski et al. (2015); Sethi et al. (2013)).

The force decomposition can be modeled using the
notation of an admittance function Ωp(·) as

vp = Ωp( f ∗p(t)− fp(t), t) (4)

2.2 Characteristics of the Components of the
Interaction

The components of the system have the following
characteristics Atashzar et al. (2015).

1. The therapist is considered to be a non-passive nonlin-
ear non-autonomous dynamical terminal for the inter-
connection. This enables the therapist (virtual/human)
to inject energy into the system during assistive and
coordinative therapies. The model remains valid dur-
ing time-varying nonlinear complex therapies.

2. The second norm of the active component of the
patient’s hand f ∗p is considered to be bounded. This
means that the patient can generate positive or negative
(voluntary and involuntary) time-varying forces that
result in movement; however, the patient does not
generate unbounded (in terms of the second norm)
forces. This is a realistic assumption.

3. The reaction component of the patient’s hand zp(vp, t)
is initially considered as a passive nonlinear non-
autonomous biomechanical terminal which absorbs
therapeutic energies. This model includes (but is not
limited to) the commonly-used passive linear mass-
spring-damper models introduced in the literature for
the dynamical reaction of a healthy human upper-limb
Tsuji et al. (1995), Masia and Squeri (2014), Dyck
and Tavakoli (2013) and post-stroke patients McCrea
et al. (2003); De Vlugt et al. (2010); Mirbagheri
et al. (2008). In Section 4.1, it is shown that the
assumption of passivity on zp can be relaxed in
the proposed framework. This helps to ensure the
generality of the technique.

4. The communication network can be subjected to time-
varying delays which is the case for cloud-based HRR
and HTR systems and is the conventional source of
non-passivity in haptic systems.

The above mentioned considerations are valid for most
of the conventional applications of haptic and telerobotic
systems including HRR and HTR architectures.

Remark 1. It should be noted that the three common
symptoms after stroke are motor weakness, increased joint
and muscle resistance to movement (i.e., hypertonia), and
increased involuntary reflex activities (De Vlugt et al. (2010);
Dietz and Sinkjaer (2007); Thibaut et al. (2013)). The
weakness in generating motor commands, will result in
reduced ability to move the limbs for performing tasks
(e.g., position and/or velocity tracking). Considering (3), this
corresponds to a reduced capability in generating f ∗p−v(t).
Hypertonia results in increasing the viscosity and stiffness
of the muscles. Clinicians usually apply movements to
the joints to feel the resistance and objectively evaluate
hypertonia. As mentioned above, this has been modeled
in the literature using linear viscoelastic dynamics, e.g.,
McCrea et al. (2003); De Vlugt et al. (2010); Mirbagheri
et al. (2008). An increase in viscoelastic parameters due to
hypertonia increases the magnitude in terms of nonlinear
norms of zp in (3). In addition, the involuntary and abnormal
post-stroke muscle activities (such as involuntary reflexive
activities and abnormal muscle synergy) result in involuntary
forces f ∗p−i(t) in (3) and subsequently abnormal involuntary
patterns of movement (Cirstea and Levin (2000); Makowski
et al. (2015); Sethi et al. (2013); Ellis et al. (2005)). •

Remark 2. It should be noted that in this paper, we
initially assume the passivity characteristic for the resistive
component of the hand dynamics (i.e. zp). This assumption
does not restrict other hand activities such as voluntary
and involuntary behavior of the user’s hand. In this paper,
the only requirement for the active component f ∗p is that
the patient should not generate unbounded (in terms of
the second norm) active forces, which is realistic. The
assumption of passivity on zp is in agreement with existing
linear and passive viscoelastic models which have been used
in the literature for modeling limb impedance in post-stroke
patients (McCrea et al. (2003); De Vlugt et al. (2010);
Mirbagheri et al. (2008)), where increased stiffness and
viscosities have been correlated to post-stroke hypertonic
symptoms. However, a specifically-designed clinical study
is yet to be conducted to provide more details on the
passivity characteristics of the impeding component zp for
the upper-limbs (the focus of this paper) of post-stroke
patients. Consequently, in order to preserve the generality
of the proposed technique and since further investigation
may report some non-passive behavior for neurologically-
damaged patients (such as the one suggested in Lee and
Hogan (2016) for the lower-limb), in Section 4.1 we will
show that the assumption of passivity can be relaxed for the
proposed framework. •

2.3 Closed-loop system
Utilizing the architecture introduced in the above and
detailed in Atashzar et al. (2015), the resulting interconnec-
tion for both HTR and HRR is a two-channel closed-loop
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Figure 2. The overall schematic of the resulting
interconnection. The subsystem Σ1 is called the “therapy
terminal” which consists of the communication and any behavior
of the therapist. Σ2 is the entire interaction which gets f ∗p as the
input and provides vp as the output. Σ3 is the admittance model
of the patient’s limb mechanical reaction.

haptic system which is shown in Fig. 2. The resulting system
is an interconnection between (a) the admittance model of
the patient’s reaction dynamics Σ3; (b) the impedance model
of the therapist’s behavior Σ0; and (c) the communication
network. Combination of Σ0 and the communication net-
work is called “therapy terminal”, denoted by Σ1. Con-
sequently, the resulting system can be summarized as the
interconnection of Σ1 and Σ3. This enables us to analyze
the interaction stability from the perspective of input-output
energy exchange between Σ1 and Σ3. Note that Σ1 includes
both sources of non-passivity which can destabilize the
system (i.e., the delayed communication network and the
non-passive therapeutic behaviors). The proposed controller
estimates the extent of energy absorption by Σ3 (using GPS
map) and compares it to the energy generated by Σ1 to tune
force reflection parameters and stabilize the system.

2.4 Passivity Definition and EOP-based
Stability Condition

When a (virtual/human) therapist provides resistive therapy,
they essentially dissipate the energy of the patient’s
movements. In this case, if the communication is not subject
to delays, the situation results in a passive interconnection.
However, when the therapist provides assistive/coordinative
forces or if the communication network is delayed (which
is the case for cloud-based HRR/HTR), the interconnection
will be non-passive and can jeopardize the stability of
patient-robot interaction Atashzar et al. (2016), Atashzar
et al. (2015), Atashzar et al. (2014b). In practice, therapists
provide mixed therapies in various time episodes. Also the
communication can be delayed. As a result, analyzing the
stability in the context of the passivity theorem can allow
us to diagnose potential instabilities and provide stabilizing
actions through the controller. In this regard, to minimize the
transparency distortion and manipulation (commonly used
to guarantee stability), we propose to identify the capability
of the user’s hand reaction dynamics in absorbing energies.
Since we do not assume linearity for the limb’s dynamics, the
passivity is studied in the context of nonlinear control theory
and the following definitions are given.

Definition I. For a system with input vector uin(t), output
vector yout(t), and initial energy β at t = 0, if there exists a

constant β such that for all t ≥ 0 we have∫ t

0
uin(τ)

T · yout(τ)dτ ≥ β , (5)

the system is passive Vidyasagar (2002), Jazayeri et al.
(2013), Hill and Moylan (1977), Khalil and Grizzle (2002).
•

Definition II. For the system mentioned above, if there is
a constant β such that for all t ≥ 0 we have∫ t

0
uin(τ)

T · yout(τ)dτ ≥ β +δ ·
∫ t

0
uin(τ)

T ·uin(τ)dτ, (6)

for δ ≥ 0, the system is Input Strictly Passive (ISP) with an
excess of passivity (EOP) equal to δ . Also, if we have δ < 0,
the system is Input Non-Passive (INP) with the Shortage
of Passivity (SOP) of δ Vidyasagar (2002), Jazayeri et al.
(2013), Hill and Moylan (1977), Khalil and Grizzle (2002).
•

Definition III. For the system mentioned above, if there is
a constant β such that for all t ≥ 0 we have∫ t

0
uin(τ)

T ·yout(τ)dτ ≥ β +ξ ·
∫ t

0
yout(τ)

T ·yout(τ)dτ, (7)

for ξ ≥ 0, the system is Output Strictly Passive (OSP) and the
EOP is ξ . If ξ < 0, the system is Output Non-Passive (ONP)
and the SOP is ξ Vidyasagar (2002), Jazayeri et al. (2013),
Hill and Moylan (1977), Khalil and Grizzle (2002). •

Remark 3. It has been shown that all passive systems are
asymptotically stable. In addition, an OSP systems is also L2
stable with a finite L2 gain less than or equal to 1/ξ , where
ξ is the EOP of the OSP model Khalil and Grizzle (2002). •

Remark 4. In Atashzar et al. (2015), the authors have
shown that when there is a nonpassive therapy terminal
(Σ1) in a haptic rehabilitation system (due to a non-passive
therapist and/or a non-passive communication network), the
closed-loop system Σ2 can still remain stable if the energy
absorbed by the impeding component of the patient’s limb
(i.e.

∫ t
0 freact(τ)

T · vp(τ) dτ) can compensate for the energy
injected by the therapy terminal Σ1, (i.e.

∫ t
0 fp(τ)

T ·vp(τ)dτ).
This condition will be used later in this paper to analyze the
stabilizing behavior of the proposed controller. •

Remark 4 can be summarized in the following condition.

The entire interconnection Σ2 remains passive if∫ t

0
fp(τ)

T · vp(τ)dτ +
∫ t

0
freact(τ)

T · vp(τ)dτ ≥ 0.
(8)

This is equivalent to

ξp + δ̂th ≥ 0, (9)

where, ξp is the EOP of the patient’s hand biomechanics and
δ̂th is the SOP of Σ1. Details can be found in Atashzar et al.
(2015).

Remark 5. The EOP of a human upper limb is the
quantitative capability of the corresponding biomechanics in
absorbing kinesthetic energy. The more rigid the impeding
component of a human upper limb is, the higher the EOP
that might be expected. As a result, if a patient has a rigid
hand with hypertonia, his/her upper limb might be expected
to demonstrate a higher EOP. In the literature higher
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Figure 3. The experimental setup and the resulting motions:
(left) Quanser upper-limb rehabilitation robot, (right) Quanser
HD2 robot.

viscoelasticity has been reported for post-stroke patients with
hypertonia. High viscoelasticity can mathematically result
in high EOP. Clinical analysis is still needed to evaluate
this point, as other post-stroke symptoms may affect the
result. It should be noted that as discussed in Section 4.1,
the assumption on passivity (which results in positive EOP)
can be relaxed in the context of the proposed framework. •

If the mentioned passivity condition (8) is not satisfied,
some sort of energy manipulation technique should be
implemented to compensate for parts of the energy which
cannot be absorbed by the EOP of the user’s hand. There
is no need to compensate for all non-passive therapeutic
energies. Consequently, knowledge of the EOP of a user’s
hand and the corresponding variation and geometry can
result in a new stability paradigm which takes into account
variable biomechanical capabilities of the user’s upper limb
in absorbing interaction energies to stabilize the system
while performing minimal transparency manipulation.

In this paper, the extent of grasp pressure and the geometry
of haptic interaction are correlated with the change in EOP,
through the definition of GPS map. This allows us to account
for variable grasp-based and geometry-based changes in the
capability of the user’s upper-limb in absorbing interactive
energies, during haptic task execution. The quantified GPS
map is then utilized in the design of a new controller
(called GPS-map Stabilizer) which modifies the delivered
therapeutic energy considering the aforementioned changes
in EOP.

3 GPS map Identification and User Study
In this section, the proposed GPS map is introduced and
statistically analyzed. For this purpose, the experimental
setup shown in Fig. 3 is utilized. For the case of arm
interaction, the Quanser upper-limb rehabilitation robot is
used to provide 2D planar arm motions composed of
elbow flexion-extension, shoulder protraction-retraction and
internal-external rotation. In addition, for the case of wrist
interaction, the Quanser HD2 robot is utilized to apply
2D angular wrist movements composed of wrist abduction-
adduction and pronation-supination.

3.1 Demographic Data
In order to develop and analyze the proposed GPS map,
11 healthy human subjects were recruited for both the arm
and the wrist experiments. Some of the subjects participated
in both experiments and some did not. As explained later
in this paper, to make each GPS map, two experiments
need to be conducted (considering two grasping conditions).

Table 1. Participation Chart for the 40 Calculated GPS maps

In total, the participants participated in 80 experiments
which resulted in identifying 40 GPS maps. Table 1 shows
the participation chart. Note that each item in Table 1
contains two experiments. The study was conducted at the
University of Alberta, Canada, under an ethics approval
from the corresponding Research Ethics Board. The details
of the experiments were explained to the participants prior
to the experiment and they were given time to become
familiar with the robotic system. For the arm experiment,
the participants (6 males, 5 females) were aged between 25
and 30 (mean value: 27.63, standard deviation: 1.36). For
the wrist experiment, the participants (8 males, 3 females)
were aged between 26 and 40 (mean value: 28.63, standard
deviation: 3.93).

3.2 GPS map Identification Protocol
To find the user-specific GPS maps, sinusoidal linear and
angular motions were applied to participants’ arms and
wrists, while force and velocity data were logged. The
identifying motion profile was composed of 10 sinusoids
with frequencies range from 0 to 2 Hz. It should be
noted that 2 Hz is usually considered in the literature as
the upper-limit of the frequency range of motion during
normal daily activities Herrnstadt and Menon (2016); Taheri
et al. (2015). One of the factors which was studied in this
paper is the geometry of GPS maps. To account for the
geometry, the identifying motion profile was designed in a
way that specifically engages different degrees of interaction
separately. Consequently, 8 directions of stimulation were
considered: θ = 0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4,
where θ is the angle of stimulation. The stimulating signal
stayed in each of the mentioned 8 phases for 10 seconds
and then switched to the next phase. Consequently, the total
identification time for one trial was 80 seconds.

For each hand of a participant (right and left) and each
limb (wrist and arm), the above-mentioned protocol was
conducted two times considering the two different grasp
requirements described below. The two aforementioned sets
of experiments are denoted as (a) Relaxed Grasp (RG) and



Atashzar, Shahbazi, Tavakoli and Patel 7

Stiff Grasp (SG) tests. The RG test corresponds to the
participant keeping the grasp pressure less than 5% of his/her
maximum grasp pressure while the robot is stimulating the
limb by applying the motion perturbations. The SG test
corresponds to the participant keeping the grasp pressure
close to 80% of their maximum grasp during perturbations.

The grasp pressure for each participant was measured
using the sensorized robotic handles. The measurement
system composed of two FSR-406 (Interlink Electronics)
pressure sensors for each robot. Using a head-mounted
display, the two levels of grasp pressure (for SG and
RG tests) were shown to the participants. Participants
were asked to keep the grasp pressure close to the levels
shown. Since the experiment was designed such that the
participants were not asked to track any trajectory during
the identification procedure, they did not apply exogenous
kinesthetic forces which means that f ∗p −→ 0. Consequently,
during the identification procedure we have

∫ t
0 freact(τ)

T ·
vP(τ) dτ =

∫ t
0 fp(τ)

T · vP(τ) dτ , where both fp(t) and vp(t)
are accessible.

The aforementioned two sets of experiments (SG and RG)
were conducted for both the wrist and the arm, and for the
left and right hands. As a result, each participant was invited
to participate in 8 trials. Out of these 8 trials, four were for
the right hand and four for the left hand. Also, out of the
mentioned four experiments, two sets (SG and RG) were
for the wrist and the other two for the arm. Most of the
participants agreed to participate in all 8 trails. In total, 80
experiments were conducted as summarized in Table 1. The
results are given in the next subsection. The goal was to
identify the GPS map (a) for both the wrist and the arm
since it was likely that the GPS map of the wrist and the
arm would behave differently in response to the change in
the grasp condition; and (b) for both left and right limbs to
have a statistically-rich data set.

Remark 6. The study developed in this section addresses
the following questions: (a) Is there a statistically significant
change in the EOP of the human upper-limb (wrist and arm)
under different grasp conditions (realized by the RG and SG
tests)? (b) Is the EOP of the human upper-limb (wrist and
arm) geometry-specific? As shown later in this paper, the
answers to both questions are affirmative and that is why
the identified result is denoted as GPS map for EOP of the
human upper-limb. •

Using the collected force and velocity data from each of
the 8 identification trials and using the definition of EOP
given earlier, the EOP for the participant’s limb in the ith

direction of stimulation (which corresponds to the ith item of
θ ), is calculated as

ξp−i =

∫ Tei

T si

freact(τ)
T · vP(τ)dτ∫ Tei

T si

vT
p (τ) · vP(τ)dτ

. (10)

In (10), ξp−i is the estimated EOP of the participant’s limb
calculated for the ith direction of stimulation, T si is the
starting time for stimulating the ith direction, and Tei is the
stop time. The results are given in the following subsection.

3.3 GPS map Identification Results
The results of the proposed GPS map identification protocol
are given below. Eight phases of the identification procedure
are shown in Fig. 4 for Participant #2, considering the RG
test conducted on the right arm. As can be seen in Fig. 4
(a) and (b), force and velocity profiles are collected during 8
phases. Based on the collected data and (10), the EOP of the
participant’s arm is calculated as given in Fig. 4(c). As can
be seen in Fig. 4(c), changing the direction of the stimulation
considerably changes the EOP of the participant’s hand. In
this case, the maximum EOP is 3 times larger than the
minimum EOP. Afterwards, the result is transformed to the
radarplot of EOP shown in Fig. 4(d). The same procedure is
also conducted for the SG test to finally make the complete
radarplot (which is the GPS map). Consequently, each map
includes the geometry of EOP for both the SG and RG tests
and represents their graphical summary (which defines the
EOP value considering different directions of interaction and
levels of grasp pressure). With the 80 experiments that were
conducted, 40 GPS maps were made. Fig. 5 shows 15 GPS
maps out of the total 40.

Considering the plotted GPS maps in Fig. 5, increasing
the grasp pressure results in enlarging the area of EOP in the
map. As a result, when a user applies higher grasp pressure,
higher energy can be absorbed by their limb. In addition, the
EOPs were different in various directions of interaction. The
pattern of grasp-based increase and the shape of the EOP area
are specific for each participant and each limb. That is why
the factor is termed “signature”. This information is utilized
in the next section to design the GPS-map Stabilizer.

Remark 7. The GPS map of a user’s hand can also be
potentially used as a graphical representation which has
encapsulated information about the user’s biomechanical
capabilities, and can be studied from the point of view
of symmetry, shape and grasp-based size variations. This
could be a tool for monitoring progress in strengthening and
equalizing muscular functionality, which is critical to assess
progress during rehabilitation procedures. •

Remark 8. The order of directions for stimulating the
user’s biomechanics can be interpreted by comparing Figs.
4(c) and 4(d). In fact in the conducted experiment, during
the first phase (0 < t ≤ 10) the stimulation angle (θ ) was 0;
for the second phase (10 < t ≤ 20), we had θ = π/4; for the
third phase (20 < t ≤ 30), we had θ = π/2; for the fourth
phase (30 < t ≤ 40), we had θ = 3π/4; for the fifth phase
(40 < t ≤ 50), we had θ = π; for the sixth phase (50 < t ≤
60), we had θ = 5π/4; for the seventh phase (60 < t ≤ 70),
we had θ = 3π/2 and for eighth phase (70 < t ≤ 80), we
had θ = 7π/4. Any different order (such as a random one)
could be considered for generating GPS maps. The order
does not change the entire framework that is proposed in
this paper. It should be noted that based on our observations
we have not seen correlations between the order, in which
the biomechanics of the users were stimulated, and the GPS
maps. However, further analysis is needed to scientifically
evaluate this point. This forms part of our future study. •

Remark 9. Considering Fig. 4(c), during each phase the
identified EOP converges to the corresponding value in less
than 5 seconds. This tells us that we may be able to reduce
the identification phase to half of what has been tested. In
addition, a good suggestion can be to give the user resting
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Figure 4. The experimental data for Participant #2, considering RG test on the right arm: (a) force profile, (b) stimulating velocity
profile, (c) EOP for 8 phases of the experiment, (d) resulting radarplot.

episodes between every two consecutive phases and evaluate
different directions of stimulation with a break in between.
This can help to avoid potential fatigue specifically when we
ask the user to hold a high grip value. •

3.4 GPS map: Statistical Analysis

This part of the paper focuses on statistical evaluation of the
40 identified GPS maps to analyze them in a more accurate
manner. The goal is to illustrate that the correlation between
the EOP and (a) grasping condition and (b) geometry of
interaction are statistically significant. For this purpose, the
following two-step analysis is conducted.

Step #1: The Effect of the Grasping Condition on GPS
maps: First, the areas of both radarplots in the GPS maps
are calculated. The area for the RG test is denoted by ARG
and the area for the SG test is denoted by ASG. The average
increase in EOP was calculated for each GPS map as

β =

√
ASG

ARG
−1. (11)

Note that β = 0 is equivalent to having zero average increase.
In total, forty β values were calculated and the corresponding
distributions were developed and analyzed. Note that out of
the 40 values, 22 items correspond to the wrist experiments
and 18 items correspond to the arm experiments. The results
are shown in Fig. 6. As can be seen in Fig. 6, increasing the
grasp pressure has increased the EOP of all the GPS maps
for both the arm and the Wrist. For the case of the arm, the
mean value for the increases was 0.82 (that is equivalent to
82% increase in EOP). For this case, the standard deviation
was 0.29 (i.e. 29%). For the case of the wrist, the mean value

for the increases was 3.7 (that is equivalent to 370% increase
in EOP). For this case, the standard deviation is 2.26.

Remark 10. In order to statistically analyze the
significance of the results obtained, we have conducted
standard one-sample t-test evaluations on the distributions
shown in Fig. 6. A similar approach has also been used
for analyzing other results of the paper. The statistical t-
test evaluation returns a test decision for the null hypothesis
that the study data comes from a normal distribution with
mean value of zero and unknown variance. The output of the
conducted t-test is a p-value which is a probability. Small
values for p (usually < 0.05) correspond to statistically
significant evidence to reject the null hypothesis (Hommel
et al. (2009); Seltman (2012)). In this paper, in order to
show that the observed positive increases in the area of
the calculated GPS maps (resulting from increases in grasp
pressure) is statistically significant, we should reject the null
hypothesis that the observed changes in the area of the maps
comes from a distribution with zero mean increase. A similar
approach has also been used for analyzing the effect of
geometry on GPS map, in this paper.•

Considering the definitions given in Remark 10, the
results of the statistical analyses, that is conducted on the
distributions shown in Fig. 6 (against β = 0), are given in
Table 2. The results (in Table 2) indicate that the positive
average increase in EOP of the participants’ arms and wrist
(due to increase in grasp pressure) is statistically significant.

Remark 11. Based on the results shown in Table 2,
it can be concluded that the increase in grasp pressure
considerably increases the EOP of the user’s arm and wrist.
This was the first hypothesis of the paper which is validated
by the above results. The grasp-dependent increase in EOP
is statistically significant (p-value<0.001) and the average
increase is higher for the case of the wrist (i.e., 370%) in
comparison to the arm (i.e., 82%). More information about
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o)

Figure 5. The Calculated GPS maps for 15 items. Note that the blue line corresponds to the SG test and the red line corresponds
to the RG test. For the wrist GPS maps, the 1st direction is Pronation-Supination and the 2nd direction is Abduction-Adduction. (a)
Participant #18: Right Wrist Experiment, (b) Participant #18: Left Wrist Experiment, (c) Participant #16: Right Wrist Experiment, (d)
Participant #16: Left Wrist Experiment, (e) Participant #2: Right Wrist Experiment, (f) Participant #2: Left Wrist Experiment, (g)
Participant #0: Right Wrist Experiment, (h) Participant #0: Left Wrist Experiment, (i) Participant #17: Right Arm Experiment, (j)
Participant #16: Right Arm Experiment, (k) Participant #7: Right Arm Experiment, (l) Participant #5: Right Arm Experiment, (m)
Participant #2: Right Arm Experiment, (n) Participant #0: Right Arm Experiment, (o) Participant #0: Left Arm Experiment,

the results of this statistical analysis (including the t-statistic
and degrees of freedom can be found in Table 2). To highlight
the importance of the results, it should be noted that an α%
increase in EOP can be transformed to an α% increase in the
allowable amplitude of the force to be reflected to the user’s
hand which directly enhances the system transparency.•

Step #2: The Effect of Geometry on GPS maps: In
the second step, the geometry of GPS maps was separately
analyzed for the SG and RG tests and for the cases of the
wrist and arm, using the following metric:

γ =
MaxEOP

MinEOP
−1. (12)
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(a) (b)

Figure 6. Distributions for grasp-based increase in EOP: (a)
Arm, (b) Wrist. In the distributions shown, a sample β value
equal to 1 is equivalent to 100% increase in EOP due to
increase in grasp pressure.

Table 2. Summary of the Statistical Evaluation for the
Distributions Given in Fig. 6. β = 0 is the value that the t-test is
being compared against.

In (12), MaxEOP is the maximum value of the eight
EOP values achieved by perturbing the corresponding
limb in eight different directions of interaction (i.e., θ =
0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4). Also, MinEOP
is the corresponding minimum value. Consequently, in this
step, we evaluate the deviation of the GPS map geometries
from a circle with a radius equal to MinEOP. In other words,
we have evaluated the anisotropy of the proposed GPS map
using γ . The above-mentioned circle is denoted by “EOP
circle” in this paper. In order to evaluate this anisotropy, the
distributions of the γ values are analyzed. As a result, four
statistical distributions have been calculated namely: (a) SG-
Arm, (b) RG-Arm, (c) SG-Wrist and (d) RG-Wrist. Note that
the SG-Wrist and RG-Wrist distributions include 22 items
and the other two distributions include 18 items. It should be
mentioned that γ = 0 is equivalent to having no geometry-
based differences between the calculated EOP values. Also,
the higher the γ value, the more deviation from the EOP
circle. Consequently, γ = 1 means that in one direction the
EOP is two times larger than MinEOP that results in having
two times more capability in absorbing interaction energies.
The distributions are shown in Fig. 7. The outcomes of
the statistical test conducted on the results given in Fig. 7
(against γ = 0) are given in Table 3.

Remark 12. From the results shown in Fig. 7 and Table
3, it can be concluded that the geometry of stimulation
plays an important role in the capabilities of the human
hand in absorbing interaction energies. This was our second
hypothesis which has been validated using the results given
above. In some cases, the EOP can be even more than three
times in some directions compared to the minimum EOP. •

Considering Remarks 11 and 12, we have shown that the
EOP of the user’s hand can be significantly changed by (a)

(a) (b)

Figure 7. Distribution of geometry-based change in EOP: (a)
Wrist, (b) Arm. In the distributions shown, a sample γ value
equal to 0 is equivalent to having no geometry-based
differences between the calculated EOP values in different
directions. The higher the γ value, the more deviation from the
EOP circle.

Table 3. Summary of the Statistical Evaluation for the
Distributions of γ given in Fig. 7. γ = 0 is the value that the t-test
is being compared against.

increasing the grasp pressure, and (b) changing the direction
of interaction. Consequently, during haptics-enabled task
execution, taking advantage of measurable direction of
interactive forces and grasp pressure plus the pre-identified
GPS map, it is possible to interpolate the expected EOP
of the user’s hand. This information corresponds to the
capability of absorbing interaction energy and can be used
to significantly enhance the system transparency while
guaranteeing stability. This is accomplished in the next
section utilizing the proposed controller, called the GPS
map-Stabilizer. If the user provides enough EOP, the
controller will not undermine the system transparency for
preserving stability.

3.5 Case Study: Pattern of Growth in GPS
map

In this part of the paper, a case study is presented which
focuses on the growth pattern of the introduced GPS
maps. The question which is investigated here is “how to
interpolate the EOP value using the proposed GPS maps
based on real-time measurement of grasp pressure?” There
are several ways for interpolating the EOP values, in practice.



Atashzar, Shahbazi, Tavakoli and Patel 11

The most straightforward simple technique is to enrich the
GPS map by considering more values for the grasp pressure
(called “fractions” in this paper) other than the two values
used here (i.e. 5% and 80% of the maximum pressure).
An example is a 5-point fractioning technique which is
equivalent to conducting the identification procedure for 5%,
20%, 40%, 60%, and 80% of the maximum grasp pressure.
The higher the number of fractions, the more accurate is
the interpolation of EOP value. Consequently, this technique
suggests that the identification procedure could be repeated
for more values of grasp pressure to find a more accurate
GPS map. Although, this technique is straightforward, in this
section we investigate the possibility of developing a quick
interpolation. For this purpose, we have conducted a new set
of experiments for 8 participants (P0, P1, P2, P4, P5, P18,
P19, P20), and for both left and right wrists.

The new set of experiments examines the EOP of
the participants’ wrists considering the 5-point fractioning
technique for their grasp pressure. As a result, we identified
the EOP of the participants’ wrists for 5%, 20%, 40%,
60%, and 80% of their maximum grasp pressures. For each
participant, we individually normalized the calculated EOP
using the maximum EOP observed during the 5 stages of the
mentioned fractioning. The result of this case study consists
of 32 graphs of normalized EOP versus pressure percentage.
Each graph contains 5 values of EOP which corresponds to
5%, 20%, 40%, 60%, and 80% of a participant’s maximum
grasp pressures. The 32 results were obtained by conducting
the identification procedure for both right and left wrists
of the 8 participants and for both major directions of
motion (Supination-Pronation and Abduction-Adduction).
Twelve sample graphs are shown in Fig. 8. An interesting
phenomenon was observed for all the aforementioned 32
results including the ones which are shown in Fig. 8. The
observation is discussed in the following remark.

Remark 13. All 32 results support the fact that the growth
pattern of EOP can be modelled using a “Two-Segment
Piecewise Linear (TSPL)” model. The aforementioned
model includes a sharp growth for the first 20% increase in
the grasp pressure, and a second linear growth, with a smaller
slope, for the next 60% increase in the grasp pressure. The
TSPL model is shown by black dashed lines in the graphs
of Fig. 8. This pattern can be used to generate the TSPL
model by only employing a 3-point fractioning technique
using grasp percentages of 5%, 20% and 80%.

Although the cause of the two-segment piecewise behavior
is not the focus of this paper, the authors believe that one
possible explanation could be the existence of a dual-stage
behavior for the EOP growth pattern. The behavior suggests
that increasing the grasp pressure

(A) results in an increase in the antagonistic muscular tone
which gradually increases the EOP;

(B) results in a sharp increase due to a sudden forming
of a stiff linkage between the high-impedance parts
of the hand (located in upper part) and the wrist
(which interacts with the robotic handle). This is called
locking mechanism in this paper.

Consequently, the dual-stage behavior suggests that the EOP
increase which corresponds to the first 20% grasp pressure
is affected by both of the above-mentioned points while an

increase in EOP beyond 20% is affected mainly by case A
(since the linkage is formed by the first 20% of the grasp
pressure). More investigations might be needed to better
explain the reason. •

Here we study a fast interpolation technique using only
a 2-point fractioning technique as a simple conservative
alternative approach to the TSPL technique. The suggested
simplified fast scheme is called the Quick Interpolation
Technique (QIT) in this paper, which considers only the
minimum (5%) and maximum (80%) grasp percentages,
without using the EOP value for the 20% grasp percentage.

As mentioned earlier, the TSPL model can be used for
accurate interpolating the EOP. However, the QIT utilizes a
monotonic linear growth for interpolating the EOP value, in
a simple but conservative manner. The QIT model is shown
by the red dashed lines in Fig. 8. In fact, (a) it represents
a linear monotonic behavior to interpolate EOP; (b) it is
simpler to implement (compared to the TSPL model) since it
only requires two EOP values; (c) it avoids over estimation
of the EOP; and (d) it provides a positive confidence margin
for the EOP estimation. For some of the results (such as in
Fig. 8(g) and 8(k)), the QIT model is very close to the TSPL
model and for some others, it provides a higher confidence
margin (such as in Fig. 8(d)).

It should be highlighted that “based on our observations
for all 32 results of this case study, the QIT model
avoids over estimation of the EOP and can be used
for estimating the EOP while providing a confidence
margin.” In order to statistically evaluate the significance
and the correctness of the above point, a new statistical
analysis was conducted as discussed below.

First, for each user, a polygon shape is constructed using
the 5 calculated values of the EOP. The polygons are formed
in a plane which has the EOP percentage as the vertical axis
and the grasp pressure percentage on the horizontal axis.
As a result, on the vertical axis, 0% corresponds to 0 value
for EOP and 100% corresponds to maximum observed EOP
value for that user. In addition, on the horizontal axis, 0%
means 0 grasp pressure and 100% means maximum observed
grasp pressure for the user. After making the polygon shapes,
we define and calculate a new factor called the “Signed Area
(SA)”. The magnitude of this factor is the area of the polygon
shape normalized by the area of a reference polygon which
has 0%, 100% , 100% , 100% , 100% values on the vertical
axis for grasp percentages of 5% 20%, 40%, 60% and 80%,
respectively. The area of this reference polygon is 3000. The
sign of the SA factor is based on the locations of the 5 EOP
values with respect to the QIT model. If the EOP values are
higher than their QIT-based estimations, the sign is positive.
So, the positive sign means that all of the 5 EOP values are
higher than those from the QIT model and no over-estimation
has occurred. This has been carried out for all 32 results.

In the next step, the statistical distributions of the
calculated SAs are created and analyzed using the standard
t-test technique. The distribution of SAs is shown in Fig 9.
The results of the statistical test conducted on the distribution
given in Fig. 9 (against SA = 0) are given in Table 4. As can
be seen in Table 4, having a minimum value equal to 0.065
(which has a positive sign) means that no over-estimation
has occurred (since no negative SA has been observed). The
statistical analysis given in Table 4 shows that the calculated
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 8. The Calculated EOP percentage versus the grasp pressure percentage. The grasp pressure is normalized using the
maximum pressure of the users, and the EOP is normalized by the maximum EOP observed during this experiment. Each graph is
made using 5 values. The first dashed black line (on the left) is the linear interpolation for the first 20% of the grasp pressure, and
the second dashed black line is the linear interpolation for the last 4 values. The dashed red line is the linear interpolation which can
be used for estimating all the values while avoiding over estimation of EOP. This figures includes 12 results out of the 32 results
which were calculated. (a) Participant #0: Left Wrist Pronation-Supination, (b) Participant #0: Left Wrist Abduction-Adduction, (c)
Participant #20: Right Wrist Pronation-Supination, (d) Participant #20: Right Wrist Abduction-Adduction, (e) Participant #5: Right
Wrist Pronation-Supination, (f) Participant #5: Right Wrist Abduction-Adduction, (g) Participant #4: Left Wrist Pronation-Supination,
(h) Participant #4: Left Wrist Abduction-Adduction, (i) Participant #1: Left Wrist Pronation-Supination, (j) Participant #1: Left Wrist
Abduction-Adduction, (k) Participant #2: Left Wrist Pronation-Supination, (l) Participant #2: Left Wrist Abduction-Adduction,

positive average value for SA is statistically significant.
This validates the effectiveness of the QIT model as a fast
technique, calculated by using only two grasp conditions,
and can conservatively interpolate the EOP while providing
a positive confidence margin (i.e., the amplitude of SA).

Remark 14. As can be seen in Fig. 8 the accuracy
of the TSPL technique (which includes the EOP value at
grasp percentage of 20%) is considerably higher than the
QIT model. The reason is the the QIT model does not
use any information about the sharp increase in the growth
pattern of EOP that occurs during the first 20% increase
in grasp pressure. The goal of the study, reported in this
part, was only to show that the value of EOP is higher
than the one which can be estimated by a monotonic linear
growth (QIT model). In other words, the QIT model can
provide a conservative estimate of the EOP and avoid over
estimation of this value. This has been statistically validated
by analyzing the calculated SA values that are indicators of
the distance between the QIT model and the TSPL model.

It should be added that a statistical curve fitting might be
conducted over a population of users to find an average
pattern of increase. Although, this can be an interesting
investigation, it was not the goal of the reported result. The
reason is that an average pattern can lead to considerable over
estimation of the EOP value when we only use the relaxed
and the stiff grasp conditions. Excessive over estimation of
the EOP value is not desirable from the stability point of view
for human-robot interaction (as will be clarified in the next
section). In summary, in order to estimate the EOP value for
an individual for use in the design of the controller, we can
either (a) use the three-point/five-point-fractioning technique
and generate the TSPL model (which includes the 20% grasp
pressure), or (b) use the conservative value suggested by the
QIT model that only needs two grasp conditions and does not
result in excessive over estimation of the EOP, as supported
by the results shown in Table 4. •
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Figure 9. Distribution of the normalized areas calculated for
evaluating the QIT model in terms of avoiding over-estimation of
EOP by providing positive average SA value.

Table 4. Summary of the Statistical Evaluation for the
Distribution of SA given in Fig. 9. SA = 0 is the value that the
t-test is being compared against

4 Proposed Stabilizing Control Design:
GPS-map Stabilizer

Based on the results shown in the previous section, using
real-time measurement of the grasp pressure in addition
to the geometry of the received forces at the user’s side,
it is possible to estimate the EOP of the user’s hand
through the proposed user-specific GPS map. In this section,
the proposed stabilizing scheme is presented which uses
the estimated EOP to guarantee stability and enhance
transparency. The controller is implemented at the patient’s
side and is called the GPS-map Stabilizer. The main action of
the controller is to use the estimated EOP of the user’s hand
in a Force Reflection Gate (FRG) function which changes
the loop gain of the system. The FRG function is a time-
varying nonlinear force feedback gain which modifies the
reflected forces to ensure that the stability condition of the
system remains satisfied so the system remains stable and the
interaction remains safe. Consequently, if a user represents a
low EOP when the delivered therapy is nonpassive (such as
assistive therapy), the controller makes the force reflection
gate tight to ensure that the amount of delivered nonpassive
energy can be absorbed by the user’s limb biomechanics
to guarantee interaction safety. However, when the user
provides higher EOP (which corresponds to the higher
capability in absorbing nonpassive energy), the controller
opens the gate and allows the forces to be reflected and to
be felt more by the user.

After applying the proposed controller, the original close-
loop interconnection shown in Fig. 2, is transformed to
the one given in Fig. 10. As can be seen in Fig. 10, the
controller uses prior knowledge about the GPS map in
addition to the real-time measurement of the grasp pressure
and the geometry of interaction to calculate the FRG function
and tune the loop gain. The proposed controller does not
involve a classical additive damping loop; instead, it modifies
the amplitude of the reflected forces to guarantee stability
while preserving the direction of kinesthetic interaction. This

Figure 10. Schematic of the closed-loop interconnection
applying the proposed GPS-Stabilizer.

feature is important from a practical consideration and is
helpful for enhancing transparency.

Given the estimated EOP of the user’s hand ξp(t),
the functionality of the stabilizer is explained below.
Considering the stability condition of the original system
(8), applying the controller, the new stability condition is as
follows:

The entire interconnection remains passive if:∫ t

0
freact(τ)

T · vp(τ)+ fp−mod(τ)
T · vp(τ)dτ ≥ 0.

(13)

In (13), fp−mod is the output of the controller which is the
modified force to be reflected. The above stability condition
can also be rewritten in a short version as

The entire interconnection remains passive if:
Ep(t)≥−Eth−mod(t).

(14)

In (14), Ep is the energy that can be absorbed by
the biomechanics of the patient’s hand and is equal to∫ t

0 freact(τ)
T · vp(τ) dτ , while Eth−mod is the therapeutic

energy received at the patient’s side after modification
by the nonlinear FRG function. Consequently, we have
Eth−mod(t) =

∫ t
0 fp−mod(τ)

T · vp(τ) dτ . Note that the
delivered energy before modification is Eth(t) =

∫ t
0 fp(τ)

T ·
vp(τ)dτ .

It should be noted that during task execution, Eth(t) is
measurable; however it is not possible to measure Ep(t)
since freact is not accessible when the user performs a
task. To design the FRG function, first, assume that Ep(t)
is also accessible in real-time. This assumption is relaxed
later in this section. Based on the stability conditions (13)
and (14), one possible initial design for the FRG function
which may guarantee system stability is fp−mod(t) = α ·
FRG( fp,vp, freact) where

FRG( fp,vp, freact) :=
{

fp(t) if fp(t)T · vp(t)≥ 0,
Ψ(t) otherwise.

(15)
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In (15), we have

Ψ(t) =


fp(t) if | freact(t)T · vp(t)| ≥ | fp(t)T · vp(t)|,

|| freact ||2 ·
fp(t)
|| fp(t)||2

otherwise.

(16)
In (15), α is a positive confidence design factor (0 ≥ α ≥
1). α = 1 defines the maximum gain of the system which
can still satisfy the stability condition of the system. || · ||
represents the 2-norm of a vector.

Through the use of the proposed controller, when the FRG
function observes (a) a dissipative power packet fp(t)T ·
vp(t)≥ 0, or (b) a nonpassive packet which can be absorbed
by the user’s hand | freact(t)T ·vp(t)| ≥ | fp(t)T ·vp(t)|, it does
not change the loop gain and allows the power packet to flow.
In addition, when the controller observes a non-dissipative
power packet, fp(t)T · vp(t) < 0, which cannot be absorbed
by the user’s hand | freact(t)T · vp(t)| < | fp(t)T · vp(t)|, the
proposed FRG function lowers the loop gain to enhance
system stability.

As mentioned before, the controller given by (15) assumes
that the energy which can be absorbed by the patient’s hand
(i.e., Ep(t)) and the impeding component of the user’s hand
dynamics freact are accessible measurements. However, in
practice, when the user utilizes the robot to perform a task,
freact(t) is neither measurable nor accessible. Consequently,
it is not possible to directly calculate the energy that can be
absorbed by the patient’s hand Ep(t) and the corresponding
power packets. This issue is addressed by the proposed GPS
map which provides an estimate of the energy that can be
absorbed by the user’s hand. Consequently, instead of using
Ep(t) and freact in (16) to calculate Ψ(t), the estimated EOP
value provided by the GPS map is utilized and the design of
the stabilizing controller is explained below.

First, regarding the passivity condition of the user’s hand
and considering (7), it can be shown that when the EOP is
changing, we have∫ t

0
freact(τ)

T vp(τ)dτ ≥
∫ t

0
ξp(τ)vP(τ)

T vp(τ)dτ

≥ ξp−min

∫ t

0
vP(τ)

T vp(τ)dτ.
(17)

In (17), ξp(t) is the varying EOP of the user’s hand which can
be estimated using the corresponding GPS map. Also, ξp−min
is the minimum value of ξp(t). Consequently, considering
(17) and (14), the following new stability condition can be
obtained:

The entire interconnection remains passive if:
Êp(t)≥−Eth−mod(t)

where Êp(t) =
∫ t

0
ξp(τ)vP(τ)

T vp(τ)dτ.
(18)

The expanded version of the above stability condition is

The entire interconnection remains passive if:∫ t

0
ξp(τ)vP(τ)

T vp(τ)+ fp−mod(τ)
T · vp(τ)dτ ≥ 0

(19)

Using the Cauchy-Bunyakovsky-Schwarz inequality and
(19), the GPS-map Stabilizer that guarantees system stability
can be designed as fp−mod(t)=α ·FRG( fp,vp,ξp ·vp) where

FRG( fp,vp,ξp · vp) :=
{

fp(t) if fp(t)T · vp(t)≥ 0,
Ψ(t) otherwise.

(20)

In (20), we have

Ψ(t) =


fp(t) if |ξp(t)vP(t)T vp(t)| ≥ | fp(t)T · vp(t)|,

||ξp(t)vP(t)||2 ·
fp(t)
|| fp(t)||2

otherwise.

(21)
In fact, (20) and (21) define the proposed GPS-map
Stabilizer. The technique utilizes the user-specific GPS map
to calculate ξp(t) and finally tune the loop gain through the
proposed nonlinear FRG(·) function, in order to guarantee
that the stability condition (19) is satisfied.

Using the proposed GPS-map Stabilizer, the force
reflection gate will be tuned in a real-time and the user-
specific manner based on the corresponding biomechanical
capabilities of the user’s hand in absorbing interactive
energy. As a result, if a user represents a high EOP
(considering the direction of interaction and the grasp
pressure), the controller may completely open the force
reflection gate and allow the non-passive energy to flow since
it can be absorbed by the user’s hand biomechanics and
will not result in unsafe instability. Consequently, even if
the interconnection includes a non-passive communication
network and/or non-passive environment, the controller only
compensates for a part of non-passive energy which cannot
be absorbed by the user’s hand at each time instant. The
proposed GPS-map Stabilizer takes into account the intensity
of grasp pressure and the geometry of interaction together
with the user-specific GPS map to find the amount of energy
to be compensated for. If the calculated EOP of the user’s
hand is high-enough, the controller can guarantee a perfectly
transparent and stable system regardless of existence of
nonpassivity sources.

The proposed GPS-map Stabilizer can be used for any
haptic system, including HRR and HTR, to guarantee
stability while enhancing transparency. It relaxes the
conventional passivity assumption on the behavior of the
environment (such as the one made in Albu-Schäffer
et al. (2007); Chawda and O’Malley (2015)). The major
differences between the proposed GPS-map Stabilizer
and conventional state-of-the-art time-domain passivity
controllers, designed for haptic systems Hannaford and Ryu
(2002), are that the proposed technique (a) takes into account
the variable EOP of the user’s biomechanics (considering the
amount of grasp pressure and the geometry of interaction) in
order to take advantage of the existing EOP resources during
interaction; and (b) preserves the direction of force feedback
in the Cartesian domain which is important from a practical
point of view.

4.1 Case Study: Non-passivity of Hand and
The GPS-map Stabilizer

In this part, we discuss how the proposed framework can be
extended to relax the passivity assumption on the impeding
part of the patient’s hand. Relaxing the non-passivity
assumption for the proposed framework requires some
extensions in the design of both the GPS-map visualization
technique and the proposed stabilizer. The discussion is
divided in two parts:

4.1.1 Part A: Exponential GPS mp (E-GPS map) :
Considering the definition given in (7), the extent of passivity
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can be either non-negative (ξ ≥ 0) which is denoted as EOP,
or negative which is denoted as SOP in Section 2.4. As a
result, by conducting the identification calculation given in
(10), if the outcome (i.e., ξp−i) is non-negative, then we call
it EOP. However, if the patient shows a non-passive behavior
in some directions of interaction, we will have negative
ξp−i values which is called SOP. The current design of the
proposed radar plot of the GPS-map (explained in Section
3.3 and shown in Fig. 4(d) for Participant #2) is based on a
non-negative radius value (which shows ξp−i) and a phase
value (which shows the direction of interaction). As a result,
negative values for the radius (which correspond to SOP)
are not supported by the design of the radar plot shown in
Section 3.3.

There are different ways to address this. One is to add a
third axis to the visualization of the GPS map which can
visualize the negative values. The other technique, explained
here is to use a nonlinear one-to-one mapping function which
maps the (−∞,+∞) window of the extent of passivity to
(0,+∞) window of the transformed one. Here we suggest an
exponential mapping. The result is denoted as Exponential
GPS map (E-GPS map) which uses the following calculation
for Eξp−i as the radius of its 2D radar plot:

Eξp−i = eξp−i . (22)

In (22), ξp−i is the extent of passivity. This value is EOP
when it has the positive sign and is SOP when it has
the negative sign. ξp−i is calculated using (10) for the ith

direction of stimulation. In addition, Eξp−i is the radius of
the radar plot for the E-GPS map. As a result, Eξp−i can
represent both passive and non-passive limb activities. If a
patient shows non-passive limb dynamics in some directions,
the E-GPS value in those directions will be inside the
unit circle; and if he/she shows passive limb dynamics, the
corresponding value in the E-GPS map will be outside of the
unit circle. As a result, the unit circle represents the border
of passivity in the E-GPS map, proposed to visualize both
passive and non-passive behavior of a user.

4.1.2 Part B: E-GPS-map Stabilizer : In the next step,
we need to relax the passivity assumption for the proposed
controller. For this purpose, using the same mathematical
approach, as used for (20) and (21), the design of the FRG
function is extended as given in (23) and (24).

FRG( fp,vp,ξp · vp) :={
fp(t) if fp(t)T · vp(t)+ξp(t)vP(t)T vp(t)≥ 0,
Ψ(t) otherwise.

(23)

In (23), we have Ψ(t) = µ(t) ·
fp(t)
|| fp(t)||2

, where:

µ(t) =

 ||ξp(t)vP(t)||2 if ξp(t)vP(t)T vp(t)≥ 0,
||ξp(t)vP(t)||2 if fp(t)T · vp(t)≥ 0,
0 otherwise.

(24)

Considering (23) and (24), if the patient has a passive limb
impedance (ξp ≥ 0) the designed FRG function behaves as
the one designed in (20) and (21). However, the new design
covers the case of non-passivity in the patient’s hand (ξp <

Figure 11. Round-trip Communication Delay

0), as well. The extended stabilizer is denoted as E-GPS-map
Stabilizer which utilizes the E-GPS map to observe the extent
of passivity at the patient’s side. For this purpose, it uses the
natural logarithm operator to calculate ξp from the E-GPS
map of the patient’s hand.

This stabilizer observes the passivity characteristics of the
patient’s hand biomechanics besides those for the reflected
therapeutic forces. If the observed non-passivities in the
system (which can either be from the therapy terminal or the
patient terminal) can be absorbed by the existing passivity
resources in the interconnection, the stabilizer does not
change the transparency. If the above-mentioned condition is
not observed by the controller, the stabilizer tunes the force
reflection gate as needed to guarantee the stability of the
system according to the stability condition given in (19).

5 Experimental Evaluation of GPS-map
Stabilizer

In this section, the proposed GPS-map Stabilizer is imple-
mented and the corresponding performance is experimen-
tally evaluated. For this purpose, the table-top upper-limb
robotic rehabilitation device from Quanser Inc. was utilized.
The robotic handle was sensorized using two Interlink pres-
sure sensors which registered the grasp pressure of the user.
The experimental setup is shown in Fig. 1. The sensors
were connected to a PCIe-6320 data acquisition card from
National Instruments to read the pressure values. The Real-
time Quarc library (from Quanser Inc.) in Matlab/Simulink
was used to run the system. The sampling period for running
the setup was 1ms and for data logging was 10ms. To account
for possible time-varying communication delays (which exist
in the case of cloud-based rehabilitation), a variable round
trip delay of τ(t) = 100+ 20sin(2πt) ms was considered as
shown in Fig. 11.

In order to evaluate the performance of the stabilizer, the
experiment was performed for both a resistive environment
(which is a passive viscous force field) and a power-
assistive environment (which is a non-passive negatively
viscous force field). During the first phase, the power-
assistive force field was generated in Matlab/Simulink with
an assistive gain of 20N.s/m. During the second phase of
the experiment, a resistive viscous force field was generated
having a viscous gain of −20N.s/m. It should be noted that
while a resistive environment is a passive component of
the system, because of the existence of the communication
delays, it can realize a non-passive interconnection such as
the assistive environment. As a result, both of the above-
mentioned environments can challenge interaction stability,
as shown in the results.
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5.1 Power Assistive Force Field
In the first phase, the stabilizer was evaluated for power
assistive environment, in four steps. For the first three steps
the controller was turned on. During the first step (t ≤ 28 s),
some sudden sharp disturbances were applied to the robot
when the user was not holding the robotic handle (zero grasp
pressure). In this situation, the stabilizer was considerably
challenged since no dissipation was applied by the user’s
hand. The velocity and force trajectories can be seen in Figs.
12(a), 12(b), and 12(c), when t ≤ 28 s. As shown in these
figure, the controller was able to stabilize the system and the
robot behaved in a safe manner and the trajectories quickly
converged to zero after the disturbances were applied. In
fact, using the identified GPS map of the user’s hand and
the measured grasp pressure, the calculated EOP was zero
while the nonpassive assistive therapy was being applied.
Consequently, the controller was automatically activated to
damp out the energy and stabilize the system.

In the second step (28s ≤ t ≤ 50s), the user provided a
soft grasp while moving the robot in 2 degrees of freedom.
In this step, since the user provided some grasp pressure,
the calculated EOP was not zero and the controller allowed
part of the non-passive energy to be delivered to the user’s
hand since it could be partially absorbed by it. The force and
motion trajectories are shown in Figs. 12(a), 12(b), and 12(c),
for 28s ≤ t ≤ 50s. As can be seen in Figs. 12(a) and 12(b),
the controller has modified the delivered force to guarantee
stability. In addition, the power modification is shown in Fig.
12(d). As shown in the figure, during this step, since the
amplitude of the received power packets (solid blue line)
was higher that the power that could be absorbed by the
user’s hand (solid green line), the controller has modified
the energy (solid red line) through force modification. As
a result, the user could feel the assistive nonpassive forces
in the same direction as that of the delivered forces, while
the amplitude was modified based on the knowledge of
the energy absorption capability of the user’s hand. The
corresponding grasp pressure is shown in Fig. 12(e), when
28 s≤ t ≤ 50 s.

In the third step of this experiment, the user provided
higher grasp pressure (shown in Fig. 12(e), when t >
50s) while moving the robot in 2 DOF. In this situation,
the amplitude of the power absorption capability of the
user’s hand was higher than the delivered non-passive
assistive power (this can be seen in Fig. 12(d) when
t > 50s). Consequently, the controller allowed all the
non-passive power to be reflected back to the user’s
hand without sacrificing the stability of the system, as
shown in Fig. 12(d) for t > 50s. As a result, the user
was able to feel all the assistive forces (shown in Figs.
12(a) and 12(b) when t > 50s) since the controller did
not change the reflected nonpassive forces/power and the
transparency of the system is completely preserved despite
the existence of communication delays and nonpassive
assistive environment.

Note that the system behaved in a stable manner during
all three steps when the controller was turned on. In the
fourth step of the first phase, the controller was turned off and
the user tried to gently move the robotic handle. The force
and velocity trajectories are shown in Fig. 13. As shown in
Fig. 13, once the user touched the robot, the system became

(a)

(b)

(c)

(d)

(e)

Figure 12. The controller is turned on: (a) the received force at
the user’s side versus the modified force in the X-direction, (b)
the force trajectories in the Y-direction, (c) the velocity
trajectories, (d) the power trajectories, (e) the grasp pressure.

unstable and went out-of-control. The trajectories grew in an
exponential manner and the robot slammed into the boundary
of the workspace.

5.2 Resistive Viscous Force Field
In the second phase of the experiment, the stabilizing
behavior of the controller is shown for the delayed resistive
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Figure 13. The controller is turned off: (left) the force
trajectories, (right) the velocity trajectories.

viscous environment. Similar four steps (conducted for phase
1) have been tested for phase 2. In the first three steps (t <
75s), the controller was turned on and different disturbances,
motion trajectories and grasp pressures were applied to the
robotic handle. The corresponding motion (velocity and
position) trajectories are shown in Fig. 14, when t < 75s. As
can be seen in Fig. 14, during the first three steps, the system
behaved in a completely stable manner. In addition, the grasp
pressure and the power modification are shown in Figs. 15(a)
and 15(b), respectively.

In the forth step, the controller was turned off and the user
provided gentle movement that resulted in instability in the
form of out-of-control high-frequency diverging oscillations.
The corresponding motion profiles are shown in Fig. 14,
when t > 75s. Due to the intense instability, the mechanical
transmission cable of the robot broke.

The results shown in this section, validate the performance
of the proposed technique and illustrate that the GPS-map
Stabilizer can guarantee stability and interconnection safety
based on the real-time estimate of the capability of the
user’s hand biomechanics in absorbing interaction energies
in different directions of interaction. If the user provides
enough energy absorption, the controller does not change
the reflected forces and allows the non-passive energy to be
completely delivered. This results in a perfectly stable and
transparent system in the presence of communication delays
and a non-passive environment.

6 Conclusion
In this paper, Grasp-based Passivity Signature (GPS) of
the human upper-limb was studied in the context of the
strong passivity theorem. The proposed GPS map provides a
graphical tool to assess and analyze the capability of a user’s
hand in absorbing interaction energies. For this purpose, a
user study was conducted consisting of 11 participants to
analyze their arm’s and wrist’s (both right and left) excess
of passivity (EOP), with respect to changes in grasp pressure
and geometry of interaction. It was shown that there is
a statistically-significant correlation between the change in
EOP and (a) the provided grasp pressure, (b) the geometry of
interaction. Further statistical investigations may shed more
light on different characteristics of the proposed GPS map.
Some interesting research questions are the following: “Does
the GPS map have a typical shape?”, “Is there any similarity
between the shape for right and left hands?”, “Does human
handedness affect the shape of the map?”, and “How do
gender, age and disabilities affect the shape of the map?”.
In this paper, GPS map was proposed for the first time

(a)

(b)

Figure 14. Motion trajectories for the case of a viscous
environment: (a) 2D position over time, (b) 2D velocity over time.

(a)

(b)

Figure 15. The controller is turned on (second phase): (a) the
grasp pressure, (b) the power trajectories.
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and used in the design of a new controller called the GPS-
map Stabilizer. The controller was shown to be capable of
guaranteeing human-robot interaction safety through the use
of the proposed GPS map. The stabilizer was motivated
by application in haptics-enabled rehabilitation technologies
where special attention needs to be paid to ensure patient-
robot interaction safety. The proposed theory can also
be used for conventional haptic and haptic teleoperation
systems. The goal of the proposed stabilizer was to minimize
transparency distortion using knowledge of the capabilities
of the human upper limb in absorbing energy and changes in
this capability due to a variable grasp pressure. The stabilizer
behaves like a force reflection gate which is completely
open if a user provides enough EOP, but otherwise closed
just enough to ensure stability. Statistical evaluation and
experimental results were reported in support of the proposed
technique and the developed theory.
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