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Abstract

This thesis presents research on the motion planning of robotic systems in

diagnostic and therapy applications, emphasizing the integration of control and

AI techniques. Three main contributions are discussed: a robotic ultrasound

imaging method, a robot-assisted ultrasound scanning system, and a novel

framework for uncertainty-aware control in medical robots.

The first part of the thesis introduces a robotic ultrasound imaging method.

This method utilizes a robotic system with five Degrees of Freedom (DoFs)

to achieve precise scanning of the breast for high-quality ultrasound images.

In the pre-scan phase, the system employs geometrical analysis of the target

inside the breast to determine the desired trajectory. In the post-scan phase,

the probe’s rotational and translational movements are updated based on the

center of mass of segmented targets in each acquired frame and the average

of the image confidence map. Experimental testing of the proposed visual

servoing algorithm on a plastisol phantom demonstrates the system’s successful

control of the ultrasound probe to target tissue and the algorithm’s efficiency

in real-time robotic control loops.

The second contribution of this thesis is a robot-assisted ultrasound scan-

ning system designed as a response to the COVID-19 pandemic. During tra-

ditional ultrasound scans, the sonographer is in close contact with the patient,

increasing the risk of COVID-19 transmission. The proposed system addresses

this issue by automating tissue scanning with a dexterous robot arm holding

the ultrasound probe. The system continuously assesses the quality of ac-
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quired ultrasound images in real-time using a quality assessment algorithm

based on correlation, compression, and noise characteristics. The ultrasound

image feedback guides the system to automatically adjust the probe contact

force, ensuring high image quality. To accomplish this, an SVM classifier is

used to analyze the image features and provide feedback to the robot arm for

adjusting the scanning force. Experimental testing on plastisol phantom tissue

confirms the system’s ability to maintain image quality while minimizing the

need for direct sonographer-patient contact.

The third contribution of this thesis centers around addressing safety con-

cerns and uncertainty analysis in deep learning-based medical robotic applica-

tions for motion planning. Incorporating deep learning algorithms in medical

robots introduces uncertainties in real-world scenarios, which can compromise

the safety of both the patients and the overall operation. To tackle this chal-

lenge, a novel framework for uncertainty-aware control of medical robots is

proposed. The study focuses on a lower-limb exoskeleton designed to assist

people with disabilities. The framework leverages fast uncertainty analysis

to be used in the control loop of the medical robot. By quantifying uncer-

tainty levels during both training and testing phases, the proposed framework

ensures safe and reliable human-robot interactions. To achieve this, the frame-

work employs Kullback-Leibler (KL) divergence during the training phase to

identify similarities between labels and predictions, while in the test phase,

it utilizes Mahalanobis distance to detect out-of-distribution (OOD) data, en-

hancing safety and improving decision-making for the robot controller. The

experiments conducted on the ExoH3 lower-limb exoskeleton demonstrate the

effectiveness of the proposed uncertainty analysis technique in real-time mo-

tion planning and its capability to detect OOD features that may lead to

unsafe motion execution.

Overall, this thesis contributes to advancements in motion planning for
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robotic systems in diagnostic and therapy applications, addressing key chal-

lenges related to safety and uncertainty. The proposed approaches for robotic

ultrasound imaging, robot-assisted ultrasound scanning, and uncertainty-aware

control hold the potential for enhancing medical robotics’ efficacy and safety,

thereby benefiting patients and healthcare providers alike.
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Preface

The main contribution of this thesis is the development of innovative ap-

proaches in motion planning for robotic systems in diagnostic and therapy

applications and addressing safety and uncertainty concerns. This thesis is

part of a multidisciplinary research collaboration, led by Dr. Mahdi Tavakoli

(principal investigator) at the Department of Electrical and Computer Engi-

neering, University of Alberta, and Dr. Lei Ma at the Department of Electrical

and Computer Engineering, University of Alberta. All of the work presented

in this thesis was conducted in the Telerobotic and Biorobotic Systems Lab at

the University of Alberta.

I was responsible for the experiment design, performing the experiments,

data collection and analysis, and manuscript preparation. Also, the experi-

mental setup was designed by myself. Dr. Mahdi Tavakoli was the supervisory

author on this project and was involved throughout the project in concept for-

mation and manuscript composition.

Chapter 1 presents the motivation and objectives of this project and sum-

marized the thesis organization and contributions. Chapter 2 reviews state-

of-the-art motion planning algorithms related to this research project.

Chapter 3 of this thesis has been presented as: Mojtaba Akbari, Jay

Carriere, Ron Sloboda, Tyler Meyer, Nawaid Usmani, Siraj Husain, Mahdi

Tavakoli, ”Robot-assisted Breast Ultrasound Scanning Using Geometrical Anal-

ysis of the Seroma and Image Segmentation,” 2021 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), Prague, Czech Repub-

lic, 2021, pp. 3784-3791, doi: 10.1109/IROS51168.2021.9636401.

Chapter 4 of this thesis has been published as: Akbari, Mojtaba, Jay Car-

riere, Tyler Meyer, Ron Sloboda, Siraj Husain, Nawaid Usmani, and Mahdi
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Tavakoli. ”Robotic ultrasound scanning with real-time image-based force ad-

justment: quick response for enabling physical distancing during the COVID-

19 pandemic.” Frontiers in Robotics and AI 8 (2021): 645424.

Chapter 5 of this thesis has been submitted as Mojtaba Akbari, Javad

K. Mehr, Lei Ma, Mahdi Tavakoli, ”Uncertainty-aware Safe Adaptable Mo-

tion Planning of Lower-limb Exoskeletons Using Random Forest Regression,”

Mechatronics, 2023
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Chapter 1

Introduction

1.1 Motivations

In recent years, the integration of robotic systems into diagnostic and therapy

applications has shown the potential in revolutionizing healthcare practices.

These robotic systems possess the ability to enhance precision, efficiency, and

patient outcomes. Among the critical aspects of implementing such robotic

systems lies the concept of motion planning, which plays a pivotal role in ensur-

ing safe, accurate, and optimal movements of robotic devices during medical

procedures.

The primary motivation behind this thesis titled ”Motion Planning of

Robotic Systems in Diagnostic and Therapy Applications Using Control and

AI” stems from the need to address the complexities and challenges associated

with motion planning in medical robotics. As medical procedures continue to

evolve with cutting-edge technologies, the demand for sophisticated, adapt-

able, and autonomous robotic systems becomes increasingly evident.

The thesis seeks to delve into the intricacies of motion planning in diag-

nostic and therapy applications, emphasizing the significance of incorporating

both control techniques and artificial intelligence (AI) algorithms. The fusion

of control and AI empowers robotic systems with the ability to navigate com-

plex environments, dynamically adjust movements, and respond intelligently

to unexpected scenarios, thereby ensuring patient safety throughout medical

interventions.

The thesis focuses on two specific applications that hold great promise in

1



the realm of medical robotics. The first application involves ultrasound breast

scanning for surgery. By employing advanced motion planning techniques,

the thesis aims to optimize the scanning process, allowing for precise imag-

ing of breast tissues and facilitating more accurate diagnostic and surgical

procedures.

The second application considered in this thesis pertains to exoskeletons

for rehabilitation purposes. By incorporating sophisticated motion planning

strategies, the thesis seeks to enhance the control and coordination of lower-

limb exoskeletons, assisting people with disabilities in their rehabilitation jour-

ney. Through robust motion planning, these exoskeletons can better adapt to

user movements, provide a more natural gait, and ensure the safety and com-

fort of patients during rehabilitation sessions.

With a primary focus on two fundamental applications in medical robotics,

namely surgery and rehabilitation, this thesis places safety at the forefront of

its endeavours. The envisioned outcomes have the power to drive medical

robotics toward an era of heightened precision, efficiency, and patient-centred

care. By pushing the boundaries of motion planning techniques, and leveraging

the integration of control and AI, this research aims to make a contribution

to the dynamic landscape of medical technology. Ultimately, the objective is

to elevate patient outcomes.

1.1.1 Ultrasund Image-based Surgical Motion Planning

The field of medical robotics has witnessed significant advancements, offering

promising applications in various domains of healthcare. Among these appli-

cations, two critical areas of interest are surgery and rehabilitation. Robotic

systems have demonstrated their potential to enhance surgical precision and

aid in rehabilitation processes, revolutionizing patient care. However, success-

ful integration of medical robotics relies heavily on motion planning algorithms

that ensure safe and accurate movements of robotic devices, particularly in ul-

trasound image-based surgical procedures.

Ultrasound (US) imaging has emerged as a widely used and safe medi-

cal imaging modality, offering a low-cost alternative to modalities like MRI,
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CT, and X-ray. Despite the inherent challenges of low signal-to-noise ratios in

US images, leveraging robotic systems to hold the US probe during scanning

presents an opportunity to address factors affecting image quality, such as

probe orientation and tissue contact force. In this context, robot-assisted US

scanning has garnered attention due to its potential to generate high-quality

images autonomously or in collaboration with sonographers. Enhancing mo-

tion planning techniques in robot-assisted US scanning holds the promise of op-

timizing imaging processes, ensuring better visualization of anatomical struc-

tures, and facilitating accurate interventions during surgical procedures.

Breast cancer diagnosis and treatment represent a prominent application of

US image-based surgical motion planning. Breast conservation surgery, such

as lumpectomy, followed by brachytherapy, has gained popularity for its cos-

metic advantages. To ensure precise needle insertion during radiation therapy,

accurate segmentation of the seroma (a fluid-filled area post-lumpectomy) in

US images is crucial. The proposed fully-autonomous US image scanning algo-

rithm seeks to precisely control the US probe’s position and orientation based

on a pre-scan phase for seroma analysis and a post-scan phase for optimal

visualization. The ability to repeatedly scan the seroma autonomously holds

promise for further required steps, such as 3D reconstruction of the breast.

The assessment of image quality plays a vital role in developing effective

robotic US scanning systems. Quality metrics become especially challenging

in US images due to inherent noise, impacting a physician’s interpretation. In

this context, no-reference image quality assessment algorithms are critical in

the absence of quality reference images. This thesis proposes a novel method

for US image quality assessment in the presence of a robotic arm holding the

US probe. Integrating the proposed algorithm into the robot control loop en-

ables automatic tissue scanning with the assistance of an admittance-based

controller. The robotic assistant, equipped with the ability to analyze image

quality, adjusts the US scanning force applied to the tissue autonomously, re-

ducing contact time between the sonographer and the patient, thus mitigating

the risk of virus transmission. The proposed system optimizes scanning ef-

ficiency and enhances patient safety by employing image quality assessment
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feedback for autonomous scanning, allowing the sonographer to focus on crit-

ical aspects of the procedure.

1.1.2 Post-diability Gait Rehabilitation Motion Plan-
ning

Deep learning has shown tremendous promise in various medical applications,

fueled by the abundance of available data and the data-driven system develop-

ment approach. However, in safety-critical domains such as medical robotics,

concerns about the quality and reliability of deep learning-based methods per-

sist. The integration of data-driven Artificial Intelligence (AI) as decision-

makers in medical robots demands thorough safety analysis, particularly given

the potential consequences of uncertain predictions. Deep learning models lack

statistical guarantees for handling scenarios beyond their training distribution,

making it essential to address uncertainties in their decision-making processes.

In the context of medical robots, where AI-driven systems rely on imagers and

sensors to make critical decisions, the need for robust uncertainty assessment

becomes even more critical to ensure safety in human-robot interaction.

This thesis seeks to address the challenge of incorporating the uncertainty

of deep learning decision-makers into the control loop of medical robots while

maintaining real-time efficiency. Notably, we propose a novel approach to em-

ploy random forest regression (RFR) to predict the passive dynamics of the

human-exoskeleton system, using joint positions, velocities, and accelerations

as inputs. By estimating human-exoskeleton interaction torques, we inform

and update motion planning, enhancing the safety of human-robot interac-

tion. Our contribution lies in integrating uncertainty estimation into the Cen-

tral Pattern Generator (CPG) dynamics for gait motion planning, effectively

reducing potential safety risks. Leveraging Kullback-Leibler (KL) divergence

and Mahalanobis distance, we develop a comprehensive uncertainty analysis

technique that measures RFR uncertainty and detects out-of-distribution data

points. This framework ensures adaptability to different learning techniques,

offering a robust safety-enhancing solution for AI-powered medical robots in

post-disability gait rehabilitation motion planning.
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1.2 Dissertation Contributions and Overview

The major contributions of this dissertation are summarized as follows:

• Ultrasound Image-based Surgical Motion Planning:

– We propose a visual servoing algorithm that controls five Degrees

of Freedom (DoFs) of the probe during breast scanning. The al-

gorithm employs a two-phase approach, pre-scan and post-scan, to

analyze geometrical features of the seroma and ensure visualization

during US imaging.

– The integration of image feedback and admittance control in the

US scanning procedure represents a novel approach. This allows

for effective collaboration between humans and the robotic system,

enhancing safety during medical procedures.

– We introduce a real-time image quality assessment algorithm to

inform the robotic system, facilitating clinician-in-the-loop robot-

assisted medical applications. The combination of admittance con-

trol and online image quality assessment ensures social distancing

during the COVID-19 pandemic, presenting an unexplored solution

in the literature.

• Context of COVID-19 Pandemic and Medical Robotics:

– We propose a rapid, cost-effective, and deployable solution to ad-

dress COVID-19 concerns during US scanning. The system can

be trained based on sonographers’ preferences for different applica-

tions, providing the flexibility to tailor the system to specific needs.

– Our proposed method can be used in unilateral tele-sonography as

a local controller on the patient side, removing the need for haptic

feedback and reducing system costs. The system adjusts the force

applied to the tissue based on acquired image quality, ensuring safe

and efficient remote US scanning.
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• Uncertainty Analysis for Deep Learning-based Medical Sys-

tems:

– We introduce a novel uncertainty analysis technique that considers

both training and testing data distributions. Leveraging KL diver-

gence and Mahalanobis distance, we provide a reliable prediction

uncertainty measure for deep learning-based medical systems.

– Our proposed uncertainty technique enhances the safety of human-

robot interaction during task execution by detecting potentially

unsafe actions of the exoskeleton resulting from less certain pre-

dictions.

– We leverage Random Forest Regression (RFR) to predict the inter-

action torque between the exoskeleton and the passive component

of human-exoskeleton dynamics. RFR’s model-free nature and low

computational complexity make it a suitable choice for real-time

control requirements compared to traditional methods.

Through these contributions, this thesis advances the field of Ultrasound

Image-based Surgical Motion Planning, addresses COVID-19 safety concerns

in medical robotics, and introduces a novel uncertainty analysis technique for

deep learning-based medical systems, fostering improved precision, efficiency,

and safety in medical applications.

This thesis is structured as follows: Chapter 2 presents a summary of the

literature. In Chapter 3, we propose a visual servoing algorithm that con-

trols five DoFs of the probe during the scanning of the breast. The proposed

method has two phases called pre-scan and post-scan to analyze the geomet-

rical features of the seroma and design the controller to keep the seroma in

the field of view. We present our image quality-based ultrasound scanning

algorithm in 4. In Chapter 5, we present our proposed uncertainty-aware safe

adaptable motion planning of exoskeleton using the uncertainty of deep learn-

ing decision-makers in the control loop of the robot. The proposed method in

5 maintains the real-time necessity of the algorithm to be used in the controller
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of the robot. We conclude and discuss future work in Chapter 6.
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Chapter 2

Literature Review

2.1 Motion Planning for Ultrasound Breast

Scanning

Robots have proven to be valuable assistants for sonographers during US scan-

ning. For instance, in [43], authors develop a 4-DoF robotic wrist to perform

liver and kidney US imaging, where a teleoperated wrist obtains US images

with the robot maintaining US scanning force on the patient’s body. In [15], a

cooperative robotic US system is proposed, consisting of a 6-DoF robotic arm

holding the US probe and a dual force sensor setup enabling cooperative con-

trol and adaptive force assistance using admittance force control. Authors in

[61] introduce an impedance-controlled teleoperation system for robot-assisted

tele-echography of moving organs, compensating for organ motions using two

impedance models for local and remote robots. Additionally, [54] presents

a solution for energy management in tele-echography, and [4] reviews various

methods in robot-assisted US intervention. However, these methods commonly

utilize two robots, imposing additional costs and challenges like communica-

tion delays and haptic feedback requirements for the local robot. To address

these concerns, our thesis proposes an autonomous system for scanning that

eliminates the need for local and remote robots.

The implementation of US visual servoing involves relating the position,

velocity, and/or force control of the US probe to features seen in the US

image using various transformations like shearlet, wavelet, DCT, PCA, and

confidence maps. For instance, [14] utilizes the shearlet transform and links
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shearlet decomposition coefficients to the US probe’s velocity during scanning.

Similarly, [48] controls six DoFs of the robot using the wavelet transformation,

and [37] proposes visual servoing based on PCA algorithm projection. While

these methods demonstrate effectiveness, our thesis introduces a novel method

that utilizes US images in both pre-scan and post-scan phases, reducing costs

and ensuring safer operations.

Preprocessing methods like confidence maps have also been employed for

US image-based visual servoing. For instance, [28] introduces the confidence

map based on the US signal attenuation inside the tissue. [9] uses a confidence

map to control three DoFs of the US scanning robot and investigates the

relationship between probe positioning and US image quality. [10] proposes

a method based on an image confidence map to track a specific target inside

the tissue during scanning. Our thesis is motivated by the need to propose a

completely US-based method for scanning, which reduces costs and enhances

safety compared to relying on MRI and CT data for pre-scan information. By

incorporating US images in both pre-scan and post-scan, our proposed method

achieves cost-effectiveness and improved safety for the visual servoing system.

2.2 Image Quality based Motion Planning

2.2.1 Medical Image Quality Assessment

Medical image quality assessment is a complex field encompassing various

imaging modalities, each with its unique features and characteristics. A com-

prehensive review of medical image quality assessment algorithms and corre-

sponding imaging modalities is available in [12]. The lack of reference data

poses a critical challenge in medical image quality assessment, leading to the

development of no-reference image quality assessment algorithms. These can

be classified into model-based and image-based methods. In the former, both

images and noise are modeled, as demonstrated in [68], where Noise-Equivalent

Quanta (NEQ) is employed to model noise based on US machine parameters

and tissue properties.

In the context of US image quality assessment, various methods have been
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proposed for modeling image and noise characteristics. For instance, [68] in-

troduces NEQ as an improved signal-to-noise ratio, incorporating US machine

parameters and tissue properties for noise modeling. Additionally, the Struc-

tural Similarity Index Measure (SSIM) is widely used in image quality assess-

ment, as shown in [52], which utilizes SSIM along with specific image features

like preserved edges, structural similarity, and textures.

Image-based quality assessment methods define criteria formalizing essen-

tial features for quality evaluation. In [22], quality assessment metrics for

US images are formalized using data management and acquisition techniques.

Similarly, [3] employs the wavelet transform to extract five important fea-

tures (sharpness, illumination, homogeneity, field definition, and content) from

transformed images, combining them into a quality assessment metric for hu-

man retina images.

US imaging presents unique challenges in quality assessment due to the

inherent noise in US images. Quality is often defined by the ability to discern

tissue features or organs. For instance, [71] proposes a method using the texton

approach for segmenting the fetus in US images and uses a random forest

classifier to assess image quality based on the extracted features. Similarly, [57]

extracts three features from breast US images (nipple position, nipple shadow,

and breast contour shape) and employs a random forest for classification. [55]

expands on this approach, incorporating 14 features and a correlation matrix

for quality assessment. Deep Convolutional Neural Networks (CNN) have also

shown promising results in complex tasks like this. [66] utilizes two deep

CNNs, C-CNN and L-CNN, where L-CNN identifies the Region Of Interest

(ROI) and C-CNN evaluates image quality based on the ROI. The output of

C-CNN provides binary label segmentation of the US image. Additionally, [9]

and [64] utilize confidence maps proposed in [28] to orient and move the US

probe during tissue scanning. Confidence map methods leverage US signal

propagation models within the tissue to extract features used as inputs to the

controller, generating control signals for the probe’s orientation and position.
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2.2.2 Robot-assisted Sonography

Robots have proven to be valuable assistants to sonographers during US scan-

ning, and various methods have been proposed to enhance the sonography

process using robots. For instance, [43] developed a 4-DoF robotic wrist for

remote US imaging, utilized for liver and kidney scanning. Similarly, [1] in-

troduced a robotic mechanism that, when placed on the patient’s body, is

controlled by a US expert to facilitate the scanning procedure, ensuring con-

sistent contact between the US probe and the patient’s body. Additionally,

[15] proposed a cooperative robotic US system with a 6-DoF robotic arm that

holds and actuates the US probe. The system incorporates a dual force sen-

sor setup, enabling cooperative control and adaptive force assistance through

admittance force control. For comprehensive reviews of robot-assisted US in-

terventions and mechanical aspects of robot-assisted US scanning, [4] and [41]

are valuable sources, respectively.

Tele-sonography systems have been developed for scanning tissues using

remote robots. [61] presented an impedance-controlled teleoperation system

for robot-assisted tele-echography of moving organs such as the heart, chest,

and breast. This system utilizes two impedance models for master and slave

robots, allowing the slave robot to follow the master robot’s trajectory while

complying with the oscillatory interaction forces of moving organs, providing

feedback to the sonographer. Addressing energy consumption challenges in

tele-echography on the master site, [54] proposed a solution involving proper

scaling of the energy exchanged between the master and slave sites. Despite

the advantages of tele-sonography, challenges exist, including high system costs

and the need for haptic feedback in the master site, leading to potential time

delays between the sonographer and US probe during scanning. Our proposed

method can serve as a local controller in the slave site, mitigating such chal-

lenges and ensuring effective tele-sonography procedures.
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2.2.3 Robot Admittance Control

The admittance controller relies on a predetermined relationship between force

and position, and its application has been explored in various contexts. In the

field of co-manipulated US scanning systems, [8] employed admittance control

to ensure compliance, regulating the force applied to the tissue and reducing

the exerted force from the sonographer. Similarly, [50] utilized an admittance

controller to scale the force exerted by the user on the robot based on the

environmental forces. The stability and adaptability of admittance-controlled

robots facing different environmental forces were investigated in [16].

In the context of exoskeleton robots, [33] incorporated admittance control

to generate a reference trajectory based on the measured force. To ensure

stability in admittance-controlled robots, [13] analyzed and addressed unstable

behaviors through an adaptive online method, tuning the admittance control

gains. They stabilized the robot by monitoring high-frequency oscillations

in the force signals. A similar approach was adopted in [31] for stabilizing

admittance control during interactions with humans.

The combination of neural networks and admittance control for robot tra-

jectory tracking was explored in [67], guaranteeing trajectory tracking using

a neural network while employing admittance control to regulate torques and

follow the desired trajectory. For a comprehensive overview of admittance

control applications in robotics, [29] offers an insightful review.

2.3 Safe Motion Planning for Lower-limb Ex-

oskeleton

The literature extensively investigates uncertainty analysis of Deep Neural

Network (DNN) predictions for various applications, including medical ones

[42]. Abdar et al. provide a comprehensive review of uncertainty quantifi-

cation techniques in deep learning, while Ng et al. discuss the challenges of

uncertainty estimation in medical applications [2], [44], [45]. Three main cat-

egories of uncertainty analysis in DNN predictions have emerged. The first

involves learning model uncertainty alongside predictions, providing both a

12



prediction label and its corresponding uncertainty [6]. The second category

considers the uncertainty introduced during DNN development, often imple-

mented with dropout layers. Gal and Izmailov et al. propose a method for

uncertainty analysis by modelling dropout layers using intrinsic dropout fea-

tures [18], [19], [25]. Wen et al. introduce a layer called Flipout, inspired by

dropout, for decorrelating gradients during training and estimating uncertainty

[65]. Liu et al. demonstrate increased uncertainty awareness by incorporating

weight normalization and a Gaussian Process in the output layer [36].

Additionally, out-of-distribution (OOD) analysis serves as a safety analysis

method and can be considered an uncertainty analysis technique. Liu et al.

use the distance between test samples and training data for OOD detection

and uncertainty estimation in DNNs [30], [36]. Several other state-of-the-

art OOD detection techniques are widely used, including the simple baseline

method, ODIN, Mahalanobis, Outlier Exposure, and Likelihood-Ratio [23],

[24], [32], [34], [58]. These methods, however, are not fast enough for real-

time applications, such as within a robot’s control loop. Therefore, this paper

revisits these algorithms to make them real-time for integration into the robot

control loop.

The proposed uncertainty analysis algorithm is evaluated in the context

of a lower-limb exoskeleton. Central Pattern Generators (CPGs) are used for

motion planning, offering time-continuous rhythmic motions similar to natural

bipedal locomotion [59]. CPG has been investigated for exoskeleton trajectory

planning in previous works [21], [39], [56], [60], [70]. DNNs have been employed

in exoskeleton control for torque estimation and trajectory shaping [39], [59].

However, the reliability and safety of DNN predictions in unforeseen scenarios

are crucial considerations, which the proposed method addresses by analyz-

ing the trajectory-shaping algorithm’s reliance on DNN predictions, ensuring

exoskeleton safety during walking [5].

13



Chapter 3

Motion Planning for Ultrasound
Breast Scanning1

3.1 Introduction

Ultrasound (US) is a widely used medical imaging modality known for its

safety and cost-effectiveness compared to other imaging methods like MRI,

CT, and X-ray, despite having a low signal-to-noise ratio. The quality of US

images depends on various factors, including the intrinsic properties of the US

machine, the orientation of the US probe during scanning, and the contact

force with the tissue. While the US machine’s intrinsic properties cannot be

altered, a robotic system holding the US probe can address other factors to

improve image quality.

Robot-assisted US scanning has gained significant attention, as it allows

for the generation of high-quality images with automated control. Robotic

US assistants can function in different modes: semi-autonomous, where they

assist the sonographer through haptic feedback or partial probe control, and

fully autonomous, where the robot controls all aspects of probe positioning and

orientation during scanning based on acquired image quality, force data, or a

predefined trajectory. The proposed method falls under the fully autonomous

category, aiming for repeatable and reliable US scanning. In this chapter, we

1A version of this chapter has been presented as Akbari, M., Carriere, J., Sloboda, R.,
Meyer, T., Usmani, N., Husain, S. and Tavakoli, M., 2021, September. Robot-assisted Breast
Ultrasound Scanning Using Geometrical Analysis of the Seroma and Image Segmentation.
In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp.
3784-3791). IEEE.
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present a fully-autonomous US image scanning algorithm.

Breast cancer is a prevalent disease among women aged 30 to 39, and

various treatment options are available, including mastectomy and lumpec-

tomy. Lumpectomy, followed by external beam radiation therapy, is a popular

choice due to cosmetic reasons. After lumpectomy, a fluid-filled pocket called a

seroma forms in the area where the tumor was removed. An alternative to ex-

ternal beam radiation therapy is permanent seed breast brachytherapy, which

can be done in one or two sessions. However, precise needle insertion around

the seroma is challenging, requiring accurate segmentation of the seroma dur-

ing radiation therapy. To address this, our chapter proposes a method to

control the probe during scanning to ensure the seroma remains in the field of

view of the US images.

The proposed visual servoing algorithm controls five Degrees of Freedom

(DoFs) of the probe during breast scanning. The algorithm has two phases,

namely pre-scan and post-scan. During the pre-scan phase, we manually seg-

ment the seroma within the breast US images by moving the probe on the

breast’s surface to extract geometrical features. In the post-scan phase, which

can be performed repeatedly, we calculate the desired probe position and ori-

entation based on acquired US images to control the force and steer the probe

for optimal seroma visualization. Our research aims to use an autonomous

system for repeatable US post-scans, allowing for further required steps like

3D breast reconstruction. The setup is shown in Figure 4.1.

The outline of this chapter is as follows. We develop our proposed US scan-

ning trajectory planning algorithm in Section 3.2 that uses pre-scan images for

defining 5-DoF trajectory. We will propose our US visual servoing algorithm

in post-scan in Section 3.3, which discusses the specific image features used

to control both the position and orientation by updating the trajectory cal-

culated in Section 3.2 of the probe during scanning. The experimental setup

and results are presented in Section 3.4. Concluding remarks and discussions

will be provided in Section 3.5.
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Figure 3.1: Robotic US scanning assistant including Panda robot arm, US
probe, tissue phantom, frame grabber

3.2 Ultrasound Scanning Trajectory Planning

As previously mentioned, many factors need to be considered during US image

acquisition to maintain the quality of the US image. Our proposed method

consists of two phases, pre-scan to extract the initial trajectory and post-scan

to refine the initial trajectory. The proposed system will extract necessary

information from the breast and seroma during the pre-scan, including the lo-

cation of the seroma inside the tissue. Our US image visual servoing algorithm

will then control the US probe’s orientation and position during the post-scan

phase, utilizing the localized seroma from the pre-scan. The post-scan phase

trajectory will be initially designed from this pre-scan information and real-

time image processing and visual servoing will be used to refine the orientation

and position of the probe throughout the post-scan.

3.2.1 Pre-scan Phase

In the pre-scan phase, the probe will be moved on the surface of the breast with

an initial position and orientation trajectory either manually, by the sonogra-

pher, or through some naive autonomous US scan. The US image acquired at

each point, and the position and orientation of the probe as determined from

the robot encoders at each point will be saved for further processing. Within

each of the pre-scan US images, the contour of the seroma (region of inter-
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est) will be manually segmented. The manually segmented regions within the

US images will be used to estimate the location and the shape of the seroma

to design the post-scan trajectory. The seroma inside the breast will be ap-

proximated as an ellipsoid with frame {E} that is defined along the principal

axes of the ellipsoid. The dimensions of the ellipsoid are calculated using the

manually segmented areas in the US pre-scan image set and principal compo-

nent analysis. Before US scanning, calibration is done to determine the scale

between pixel distances in the US images and real-word distances (in meters).

We will define various coordinate frames shown in Figure 3.2. These frames

are defined to track the movement of the probe during post-scan and relate

this movement to each other for estimating the location and shape of the

seroma for post-scan. We are going to find the ellipsoid frame {E} in space

from the pre-scan images centered at the center of the ellipsoid approximated

from these images and aligned with principal axes of the ellipsoid. We define

intersecting frame {C} to calculate the desired value of out-of-plane rotation

in this frame that would simplify the calculation. We also introduce US image

frame as {U} for each pixels value in the image and US probe frame (desired

frame) {D} to relate the movement of the US probe with respect to other

frames attached to the system and acquired features from US image in our

proposed control scheme. We can then estimate the dimension of the seroma

by a transformation of each point belonging to the segmented region in a pre-

scan image to the base frame, i.e, transforming from {U} to the {B}. The

mathematical details in calculating frame transformation from {E} and {U}

to {B} are BP = B
UT

UP , BP = B
ET

EP . Transformation matrix from {B} to

{D}, which is important for our control system is shown as

D
BT =

R(α, β, γ)

DP x0
DP y0
DP z0

0 0 0 1

 , (3.1)

where [DP xo ,
DP yo ,

DP zo ] is the position of the origin of {B} in {D}.

In Figure 3.2, we have shown the position and orientation of the probe

during the pre-scan phase.
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Figure 3.2: Visualization of frames attached to the system in pre-scan phase

3.2.2 Post-scan Phase

The geometrical information of the ellipsoid calculated in the pre-scan phase

is being used for calculating the desired values of in-plane, out-of-plane, and

x− y− z position of the probe. We are using an axial plane for taking images,

which is perpendicular to the trajectory. Hence, we define the orientation of

the probe in this plane as in-plane rotation and the orientation of the probe

out of this plane as out-of-plane rotation. We update the in-plane rotation

and the movement of the probe in the z direction of the {B}, as shown in

Figures 3.2 and 3.3, by segmenting the seroma and using an image confidence

map.

Designing Trajectory for Post-scan

We calculate the desired x−y−z trajectory of the probe on the surface of the

breast based on the intersection of a plane containing the principal axis of the

ellipsoid (i.e. aligned with the principal axis Ex of the seroma) and oriented

with the orientation of the this principal axis to have maximum alignment

with surface normal of the breast surface. The post-scan trajectory will then
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be a curve on the surface of the breast resulting from this intersection. We can

define our trajectory points as BP j = [Bxj,
Byj,

Bzj, αj, βj, γj], which creates

a set of point Π = {BP j|j = 1, . . . , n}. γ or the roll angle of the probe is

the part of the trajectory that does not affect our scanning method, hence

we are not considering it in our control scheme. The beginning and endpoint

of the trajectory are defined as BP 0 and BP n, respectively, and are chosen

manually on the intersecting curve. The visualization of the frame attached

to the system and acquired trajectory is shown in Figure 3.3.

In	the	Plane
Out	of	the	Plane

Figure 3.3: Designing Trajectory for post-scan phase

The geometrical dimensions of the ellipsoid, containing the seroma, inside

the breast are shown in an axial view in Figure 3.4a and a sagittal view in

Figure 3.4b. Here, the view is defined as a projection of the in two planes

from the user view. The desired out-of-plane αj and in-plane βj rotations for

points j on the trajectory will be found using geometrical analysis based on

the ellipsoid and the surface of the breast.

Finding Desired Out-of-plane Orientation

The intersecting plane frame {C}, containing the principal axis of the ellipsoid,

allows for finding αj. The desired out-of-plane rotations are designed to sweep

the US probe smoothly as it is translated along the trajectory so that the US
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(a) Finding αj using axial view (b) Finding βj using sagittal view

Figure 3.4: Finding αj and βj using axial and sagittal view

probe is always pointed towards a target point CPO. The point CP o is the

point that the line passing through the center of ellipsoid from the surface of

the breast intersect with two separate tangents originated from beginning and

end point of the trajectory. The visualization of the points coordinates that

need to be defined for calculating αj are shown in Figure 3.4a. We define the

coordinates of the following points in {C} using C
BT = B

CT
−1 as CP o = C

BT
BP o,

CP n = C
BT

BP n, CP s = C
BT

BP s and CP j = C
BT

BP j.

The desired value of out-of-plane rotation αj can be found in

αj = atan2(Czs − Czo,
Cys − Cyo)

− atan2(Czj − Czo,
Cyj − Cyo)

(3.2)

between CP j,
CP s and CP o.

Finding Desired In-plane Orientation

With the out-of-plane orientation αj of the US probe trajectory defined, we

can find the desired value for the in-plane orientation βj. This process is shown

in a sagittal view of the breast in Figure 3.4b. Here, we are using the center

of ellipsoid BPm which was also found from the pre-scan images.

We define BP s,
BP j, and BPm in the robot base frame {B} to calculate

desired in-plane orientation. We need to consider surface normal vectors of

the breast when finding the desired value of βj so that the probe is kept in a

natural orientation, with respect to the surface of the breast, during scanning.

20



This is shown in
βj =max

i
β⃗i · B⃗ni

subject to i = 1, . . . , θ.
(3.3)

that finds the angle which maximizes the dot product between the normal

vector and the candidate vectors (β⃗) in a feasible range (1, . . . , θ). The feasible

range can be found by considering the dimension of the probe and the region

of interest in each point of the trajectory found in 3.2.2. The surface normal

vector Bn⃗j of the breast in position BP j within the scanning trajectory is

Bn⃗j =


∂f(Bxj ,

Byj)

∂x
∂f(Bxj ,

Byj)

∂y

−1

 , (3.4)

Which considers the points on the surface of the breast follows the 3D equation

as

Bzj = f(Bxj,
Byj). (3.5)

3.3 Ultrasound Visual Servoing

From Section 3.2, we have developed a 5-DoF trajectory on the surface of the

breast for the robot US scanning assistant to follow. The five DoFs are the

x − y − z position of the probe, and the in-plane and out-of-plane rotation

of the probe on the surface of the breast. Using visual servoing techniques,

we now refine the in-plane angle βj of the probe and the downward pressure

applied to tissue (by modulating Dzj) according to information from the US

image confidence map and the segmentation of seroma in the US frame.

US images have a low signal-to-noise ratio and need preprocessing to en-

hance their quality to be used for control purposes. The US confidence map

is a commonly used preprocessing method. The US confidence map is a per-

pixel measure calculating the probability of a random walk [20] starting from

each pixel to reach a number of virtual transducer elements, under specific US

constraints [28]. This method considers an US image as a graph where nodes

represent the pixels with edges interconnecting the nodes. For our implemen-

tation of the confidence map, we will consider a 4-connected neighborhood for

each pixel node.
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The mean value of the confidence map Cmeanj
can be considered as an

image-based measure of the contact between the breast tissue and the US

probe. The desired value of the mean of the confidence map is defined as Cset.

The Cset value can be defined experimentally during the pre-scan phase ensur-

ing the contact between the probe and the breast is sufficient. The Dzj posi-

tion from the previously found trajectory is updated, in real-time, to increase

Cmeanj
to Cset to ensure sufficient probe/tissue contact. The mathematical

equation for calculating Cmeanj
is

Cmeanj
=

1

M ×N

∑
(px,py)∈S

C(px, py) (3.6)

where S is the area of the US confidence map, M and N are the height and

width of S, and C(px, py) is the confidence value of pixel located in (px, py).

The error between current and desired value (ecj = Cmeanj
−Cset) is used as an

input to the controller for controlling the Dzj about the original Dzj position

calculated in Section 3.2.

The center of the mass of the segmented object is a measure that indicates

whether the image intensities are well divided over the segmented region or

not. We use this feature to refine our predefined in-plane rotation in the

scanning. Here, a US image Ij will be segmented for extracting the seroma.

The output is a binary image, in which the background intensities have 0

values and foreground intensities are 1. The center of mass of the segmented

image is a measure for rotating the probe toward the seroma during scanning.

We calculate the location of the center of mass in the segmented image as

Uµi =
1

Itb

∑
(i,j)∈Ib

i× Ib(i, j)

Uµj =
1

Itb

∑
(i,j)∈Ib

j × Ib(i, j).
(3.7)

Here, Uµi and Uµj are the coordinate of the center of mass in {U}, Ib is

the binary segmented image, and Itb =
∑

(i,j)∈S Ib(i, j). Our segmentation

algorithm uses Otsu’s threshold method to create a binary image and selects

the largest connected component as the seroma inside the breast. The values
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β

Figure 3.5: Center of the mass and calculation of eβj
using segmented US

frame

of Uµi and Uµj can be transferred to {D}, resulting in Dµx and Dµy (Dµx =

D
UT

Uµi and Dµy = D
UT

Uµj). The angle between the central image scan line

and the line passing through the center of the mass as determined from the

center of the scan line defines an error that can be used to control the in-

plane rotation of the probe during scanning. The mathematical expression for

finding the in-plane rotation error eβj
is

eβj
= atan2(Uµj −

M

2
, Uµi)−

atan2(Uµd,j −
M

2
, Uµd,i)

(3.8)

where Uµd,i and Uµd,j are the coordinate of desired value. A visual illustration

of how the value eβj
is calculated is shown in Figure 3.5.

3.3.1 Ultrasound Scanning Robot Controller

From the trajectory found in Section 3.2 and the visual serving information

demonstrated in Section 3.3, we can now describe our control law for the

position and orientation of the US probe during the post-scan. This con-

troller considers the position and orientation of the probe in {D} as DP =

[Dxp,
Dyp,

Dzp,
Dαp,

Dβp,
Dγp]

t. The desired value of the robot’s position and

orientation in {D} is denoted as DP d = [Dxd,
Dyd,

Dzd,
Dαd,

Dβd,
Dγd]

t. Here,

the initial x − y − z position of a trajectory calculated from Section 3.2.2.
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The initial and desired value of in-plane rotation and out-of-plane rotation for

any points of the trajectory are βj and αj respectively, which were calculated

in Section 3.2.2 and 3.2.2. The desired value of the probe position in the z

direction Dzj and in-plane rotation will also be updated using ecj and eβj
as

Dzd = Dzd + k1ecj ,
Dαd = Dαd + k2eβj

. The error between the current point

and the desired one is being used for controlling the robot during scanning

calculated by

DP d =



Dxd
Dyd

Dzd + k1ecj
αj

βj + k2eβj
Dγd

 ,
DEj =



Dxd − Dxp
Dyd − Dyp

Dzd + k1ecj − Dzp
αj − Dαp

βj + k2eβj
− Dβp

Dγd − Dγp

 (3.9)

Here, k1 and k2 are gains assigned to the corresponding features to relate them

to the velocity of the robot.

The error DEj is an input to a PID controller to control both the position

and orientation of the probe during scanning. The image acquisition block,

which is a US machine, sends an image to the receiver for calculating Cmeanj

and eβj
by using confidence map mean from (3.6) and the segmented center

of mass from (3.7). The control loop is shown in Figure 4.9 and the algorithm

is demonstrated in Algorithm 2, where ϵ, δ1, and δ2 are the tolerance of the

position and orientation error in the proposed system.

3.4 Experiment and Results

In this study, an Axia80-M20 force-torque sensor (ATI Industrial Automation,

Apex, NC, USA) is mounted on a Panda robotic arm (Franka Emika GmbH,

Munich, Germany) and an adapter was built to hold an US probe (see Figure

4.1). The US machine used for the experiment was an Ultrasonix Touch with a

4DL14-5/38 Linear 4D transducer (Ultrasonix Corp, Richmond, BC, Canada).

For this experiment, we only used the 2D functionality of the US probe. Images

from the US machine were captured in real-time with an Epiphan DVI2USB3.0

(Epiphan Systems Inc, California, USA) for processing. For our experiment,

we used a tissue phantom made of plastisol.
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Figure 3.6: Control loop of post-scan phase

The controller was programmed and implemented in MATLAB 2019a (The

Mathworks Inc, Natwick, MA, USA) and ran using Simulink on a PC running

Ubuntu 16.04 LTS. The PC has an Intel Core i5-8400 running at 4.00 GHz.

The communication between robot and computer was done over UDP.

The pre-scan phase consisted of moving the US probe on the surface of the

phantom tissue and recording the applied forces and US probe positions. The

duration of the pre-scan phase depends on the size of the breast and whether

the location of the seroma has been extracted or not. The seroma within this

initial image set was manually segmented and the parameters, including the

principal axis and center, of the approximated seroma ellipsoid, was found. We

designed our post-scan trajectory based on the output of the pre-scan phase.

During the post-scan phase, the robot moved the probe along the surface of

the phantom and the algorithm changed the values of x − y position, αj, βj

and force applied to the surface of the phantom. The evaluation is based on

three main criteria, which are reported in Figure 3.7 for five randomly selected

points on the trajectory, with five different desired out-of-plane and in-plane

rotations, on the surface of the phantom calculated using(3.2) and (3.3). The

evaluation metrics are the norm of the error in the probe’s orientation with
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Algorithm 1 Proposed US Scanning Controller

Require: Desired position and orientation of the probe of the probe
(Dxd,

Dyd,
Dzd,

Dαd,
Dβd,

Dγd), ϵ, δ1, δ2
1: while ecj ⩾ ϵ and eα ⩾ δ and eβ ⩾ δ2 do
2: if ecj ⩽ ϵ then
3: Update the Dzd
4: ecj = Cmeanj

− Cset

5: end if
6: if eα ⩾ δ1 and eβ ⩾ δ2 then
7: Update Dαd using (3.2)
8: eα = Dαd − αj

9: Update the Dβj using (3.3) and (3.8)
10: eβ = Dβj − βj
11: end if
12: end while

respect to the desired in-plane and out-of-plane rotation as

∥eα,β∥2 = ∥(Dαp − Dαd,
Dβp − Dβd)∥2, (3.10)

the variation of βj which results in movement of the center of mass, and the

force applied to the phantom during the experiment.

The variation of error norm ∥eα,β∥2 reported in Figure 3.7 shows our pro-

posed method is able to decrease the norm of the error in each point of the

trajectory. It also indicates that our method works even when there is a change

in the in-plane rotation caused by the movement of the center of mass. Fig-

ure 3.7 shows our proposed controller compensates for deviation of the probe

orientation caused by the movement of the center of mass, with the probe

being reoriented successfully to keep the center of mass on the center of an

image frame. This guarantees that our proposed method keeps the seroma in

the center of the acquired US image as the variation converges to 0 for each

point. The force values reported in the last figure of Figure 3.7 show that our

proposed method applies a reasonable amount of force during scanning (The

values are different for different points as they correspond to different parts of

the tissue phantom with different characteristics). This level of force does not

cause deformation of the tissue during scanning. We have also calculated the

average of these criteria for the five points within Table 4.1.

26



Point Point Point

Point Point

β 
(r

ad
)

-0.2

0

0.2

0 5 10 15 20

||e
α,
β||

2

0.25

0.15

0.05

0 5 10 15 20

Time (sec)
10 15 20

F
or

ce
 (

N
)

5

18

17

16

15

Figure 3.7: Experimental results for variation of β, ∥eα,β∥2 and force

3.5 Conclusion

In this chapter, we proposed a method to define a 5-DoF US scanning trajec-

tory based on the geometrical features of a target seroma within the breast.

A visual servoing algorithm method was used to update two of the controlled

DoFs in real-time during scanning to ensure sufficient probe contact and to

better visualize the seroma within the US images. Our proposed trajectory

generation and visual servoing method, referred to as the post-scan, was based

on information captured during a manual pre-scan set of images. The pre-scan

images can be captured at arbitrary orientations and positions, with the pose
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Table 3.1: Average of ∥eα,β∥2, deviation of βj and force values in five separate
points on the trajectory

Point ∥eα,β∥2 Deviation of βj Force

Point #1 0.04± 0.048 -0.19± 0.015 (rad) 16.01± 0.314 (N)

Point #2 0.07± 0.057 -0.06± 0.021 (rad) 16.84± 0.397 (N)

Point #3 0.01± 0.007 0.01± 0.021 (rad) 15.31± 0.217 (N)

Point #4 0.06± 0.022 -0.06± 0.016 (rad) 16.14± 0.645 (N)

Point #5 0.01± 0.006 -0.02± 0.019 (rad) 16.20± 0.455 (N)

of the US probe was recorded as the pre-scan images are capture. The pre-scan

images were processed to extract geometrical information of the seroma inside

the breast. The seroma was approximated by an ellipsoid, with the center of

the ellipsoid and principal axis being used as part of the geometrical analysis

to define the post-scan trajectory. For the post-scan, we calculated the de-

sired US probe trajectory through the intersection of a plane (containing the

ellipsoid principal axis) with the surface of the breast. The intersection points

on the surface of the breast then form the desired x− y − z trajectory of the

US probe. The in-plane and out-of-plane rotation of the probe is calculated

at each point of the trajectory via geometrical analysis of the seroma inside of

the breast. The in-plane orientation of the probe is updated using an online

segmentation algorithm that locates the center of the seroma and orients the

probe to point towards it. The desired value of the z position of the probe

was also updated, using the average confidence map calculated from the US

image during scanning, to ensure sufficient contact between the breast and

the probe. The proposed method was evaluated experimentally using plastisol

phantoms. The experimental results show that our proposed method orients

the probe to keep the seroma in the center of acquired image and keeps the

probe in contact with the phantom with minimum deformation.

In the future, we will work on a 3D reconstruction algorithm that is able

to generate a 3D volume of the breast using pre-scan images automatically to

be able to control the remaining DoF of the robot during visual servoing. This

additional information will help the proposed method locate the seroma more
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precisely for the post-scan phase. The other feature that can be added to the

system is to propose a new set of features that is able to control the probe

when a needle is inserted inside the breast to have a good visualization of the

seroma and needle together during scanning.
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Chapter 4

Motion Planning based on
Ultrasound Image Quality
Assessment1

4.1 Introduction

As mentioned in Section 3.1, ultrasound (US) imaging is a widely used and safe

medical modality, known for its radiation-free nature, cost-effectiveness, and

wide availability. Amid the COVID-19 pandemic, US scanning has become a

vital tool for COVID-19 diagnosis, especially in resource-limited areas where

access to lab kits is limited [7], [38]. However, certain factors related to US

scanning during the pandemic need to be addressed. Firstly, the close contact

between sonographers and patients poses a significant risk of virus transmission

[26], [27], [40], [73]. Secondly, COVID-19 patients with underlying conditions,

such as heart conditions, require careful US imaging, like echocardiography.

Lastly, US imaging can be time-consuming, with most scans lasting between 15

to 45 minutes [46]. To mitigate these challenges, this chapter proposes a quick,

low-cost, and deployable solution using robots to assist in US scanning. Robots

can handle tasks that put the sonographer at higher risk, while experienced

sonographers manage critical aspects of the scanning process. This approach

significantly reduces the risk of virus transmission, as the robotic system can

1A version of this chapter has been published as Akbari, M., Carriere, J., Meyer, T.,
Sloboda, R., Husain, S., Usmani, N. and Tavakoli, M., 2021. Robotic ultrasound scanning
with real-time image-based force adjustment: quick response for enabling physical distancing
during the COVID-19 pandemic. Frontiers in Robotics and AI, 8, p.645424.
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be easily sanitized between procedures [62].

In developing robotic US scanning, image quality assessment plays a crucial

role. Medical image quality assessment has been a challenging topic, and var-

ious methods have been proposed in the literature. There are three categories

of image quality assessment algorithms based on the availability of reference

images or supplementary information. The first category is full-reference im-

age quality assessment, where a reference image is available, and the quality

metric compares a given image to the reference image. The second category

is semi-reference image quality assessment, which utilizes limited information

about the reference image, such as critical features. For example, [11] uses

visual features for sonar image quality assessment, even without a reference

image. Semi-reference methods are more challenging and require careful han-

dling of additional information. The final category is no-reference image qual-

ity assessment, where the algorithm lacks access to a reference image or any

related information. This category is particularly challenging but crucial for

medical image quality assessment [12]. Since quality reference images are typ-

ically unavailable, the key aspect of no-reference image quality assessment is

developing appropriate quality metrics based on relevant features present in

high-quality and low-quality images.

The inherent noise in US images complicates the image processing and

makes US image quality assessment challenging. In this chapter, we propose a

method to assess the US image quality while a robotic arm holds the US probe.

The algorithm will be integrated into the robot control loop for automated

tissue scanning. An admittance-based controller will be employed for the robot

to automatically control the scanning force applied to the tissue by the US

probe [17], [69]. The US scanning assistant setup is shown in Figure 4.1. The

sonographer will use a handle to position the robot, utilizing the robot’s built-

in admittance control, while the robot will adjust the scanning force based on

the quality analysis of the acquired image. This system reduces contact time

and minimizes the risk of virus transmission between the sonographer and the

patient, as the robot autonomously performs the scanning process based on

image quality assessment feedback.
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Figure 4.1: US scanning assistant including Panda robot arm, US probe, han-
dle for sonographer, tissue phantom, frame grabber, and robot base frame

The outline of the chapter is as follows. We develop our proposed image

quality assessment algorithm in Section 4.2 by giving details of the algorithm

and discussing the specific image features it uses. In Section 4.3, we will give

the details of the robotic admittance controller used in the system to adjust

the US scanning force applied to the tissue. The experimental setup and the

experimental results are presented in Section 4.4. We will conclude our method

and its advantages in Section 4.5.

4.2 Image Quality Assessment Algorithm

As previously mentioned, US images are usually very noisy, and therefore, the

tissue is not very clear in the images. This problem makes the automated

assessment of US images complicated. A US image quality assessment algo-

rithm should distinguish between different features in an image and decide on

image quality based on the acquired features. For our proposed image quality
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assessment method, we will use a Support Vector Machine (SVM) classifier,

which is compatible with small training sets and has proven to have a good

ability to solve complicated problems, especially in medical applications.

4.2.1 Image Quality Assessment Metrics

We propose three distinct features for estimating the quality of the image. The

first feature is based on the contact between the probe and the tissue. The

second feature computes the level of compression caused by the US scanning

force applied to the tissue. The third feature is an estimation of the noise level

in the image. The noise level is estimated based on the statistical features of

the noise in the US image. We will discuss each of the features in-depth in the

following sub-sections.

Correlation

We use image correlation for modelling the contact between the tissue and

probe. When there is no contact (or proper contact) between the probe and

tissue, the US image will only consist of patterns of arcs; see Figure 4.2a.

When we have sufficient contact, however, actual tissue will be visible in the

image. In Figure 4.2a, the image captured by the US machine was defined as

no-contact image Inc in the sense that probe is not contacting the tissue when

the image is captured. We define the contact feature as the correlation of no-

contact image Inc with an image captured by the US machine Ik in every time

step k of the experiment. The contact feature ck gives us a good estimation

of the sufficiency of contact and ck ∈ [0, 1]. The mathematical details of how

the correlation between the images is calculated and how contact between the

probe and the tissue is defined are as follows:

corr(Ik,Inc) =

∑M
px=1

∑N
py=1(Ik(px, py) − Ik)(Inc(px, py) − Inc)√

(
∑M

px=1

∑N
py=1(Ik(px, py) − Ik)2)(

∑M
px=1

∑N
py=1(Inc(px, py) − Inc)2)

(4.1)
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X

Y

(a) Ultrasound image without suffi-
cient contact

(b) Ultrasound image with sufficient
contact

Figure 4.2: Ultrasound images with and without contact between tissue and
probe

ck =

{
1, if corr(Ik,Inc) ≥ tcorr

0, if corr(Ik,Inc) < tcorr
(4.2)

Here, the contact feature ck is the value of the correlation between the two

images. (px, py) is the location of pixels in the image frame, and M and N are

the height and width of input images, respectively. Ik and Inc are the average

of the pixels’ intensities in the acquired image and the image with no contact

with the tissue, respectively, and tcorr is the threshold for determining the

contact level. Figure 4.2 shows two images, in which Figure 4.2a was captured

when there is not enough contact between the tissue and the probe, and Figure

4.2b was conducted with sufficient contact. The x-y axis in the image frame

is shown in Figure 4.2a and it is the same for all images in this chapter.

Compression

The level of compression is a very important feature in US image acquisition.

When the robot applies force to the tissue, it causes deformation. More force

causes greater distortion/deformation. This causes pain for the patient, and
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may lead to wrong clinical diagnosis [15]. The proposed compression feature is

the difference between the maximum and minimum index of the pixels brighter

than the threshold tcomp, relative to the image’s size in the vertical direction.

The mathematical expression for calculating the image compression feature is

as follows:

U = max(py), where Ik(py,∀px ∈ Ik) ≥ tcomp

L = min(py), where Ik(py, ∀px ∈ Ik) ≥ tcomp

fc =
U − L

M

(4.3)

In (4.3), U and L are the maximum and minimum location of the pixels

having intensity higher than tcomp. We define fc as the compression feature in

(4.3). M is the height of the image along the y direction. Figure 4.3 shows

two images with different levels of compression. Figure 4.3a is the US image

with a high level of compression, and Figure 4.3b is the US image with a low

level of compression. We have also shown a variation of fc with respect to

measured force in the z direction of the force sensor frame FZ|k (this is aligned

with the y direction in image frame) in Figure 4.4.

Noise

As we mentioned earlier, the US image is very noisy. The noise comes from

the manner in which US captures an image. This noise feature is also very

important for the quality assessment of US images. As a first step, we use a

Wiener filter for removing speckle noise from the US image. The calculation of

the Wiener filter is based on [35]. The US image’s noise level can be estimated

by the mean and standard deviation of the difference image between the origi-

nal image Ik and the filtered image Ik,f . (4.4) to (4.8) show the mathematical

explanation of using a Wiener filter to remove noise from the US image and

calculate the noise feature.

µ =

∑
px∈η

∑
py∈η Ik(px, py)

P ×Q
(4.4)
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(a) Ultrasound image with high tissue
compression

(b) Ultrasound image with low tissue
compression

Figure 4.3: Ultrasound images with high and low level of compression

σ2 =

∑
px∈η

∑
py∈η Ik(px, py)

2

P ×Q
− µ2 (4.5)

Ik,f (px, py) = µ+
σ2 − ν2

σ2
(Ik(px, py) − µ) (4.6)

In = Ik − Ik,f (4.7)

fn = In + σn (4.8)

Here, η is the neighbourhood with the size of P ×Q around each pixel of

the noisy image and Ik(px, py) is the intensity of each pixel in the noisy US

image. µ is the average of pixel intensity in the original US image, and σ2 is

the corresponding variance value in (4.5). Ik,f (px, py) is the intensity of the US

image after removing the noise using Wiener filter and ν2 is the noise variance

in the image in (4.6). The increase in the noise value in the high force values is

36



FZ|k (N)
15 300

Co
m

pr
es

si
on

 F
ea

tu
re

(f
c)

0.04

0.10

0.20

Figure 4.4: Compression feature with respect to measured force

due to the nature of speckle noise in ultrasound and interference of ultrasound

signals inside the tissue. (4.7) finds the difference between US image Ik and

filtered image Ik,f to find the US image’s noise. In (4.8), In is the average

of noise in the image and σn is the corresponding standard deviation value.

Figure 4.5 shows two images with high level (Figure 4.5a) and low level (Figure

4.5b) of noise. We have also shown in Figure 4.6, the variation of the noise

feature fn in the US image with respect to measured force FZ|k.

4.2.2 Support Vector Machine (SVM)

The compression and noise features mentioned above will be used as an input

to the SVM classifier (e.g, taking the output of the image feature calculation,

(4.3) and (4.8), for Ik we then calculate the SVM score) and the correlation

feature works as a gate. SVM classifier tries to find a line that separates

two classes based on the features in feature space. SVM finds this line by

optimizing a cost function based on the margin between two classes in feature

space. There may be a need to increase the features’ dimension to find this

line in a higher dimensional space.

We trained SVM model with Gaussian kernels using our dataset and tested
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(a) Ultrasound image with a high lev-
els of noise

(b) Ultrasound image with a low lev-
els of noise

Figure 4.5: Ultrasound images with high and low levels of noise

it using cross-validation. We used two different tissue phantoms to train and

test the SVM, meaning we trained the SVM using one of the phantoms and

tested it on the other phantom. The phantoms were biological porcine and

bovine tissue. We trained the SVM using bovine phantom, and the trained

SVM was tested on porcine tissue and vice versa. We will use the output of

the SVM for robotic control.

We created an image database for training and testing the SVM. To create

a database, we used a robot arm to scan bovine and porcine tissue phantoms

by scanning multiple points on these tissues automatically by increasing force

values at each point. The scanning procedure started from one side of the

tissue and continued by dividing them to many points and increasing the US

scanning force applied to the tissue from 1 N to 20 N with an increment

of 0.25 N . The force increment was based on force control feedback in the

robotic arm by increasing the tissue indentation until the force value reached

the desired force. This procedure was just used for creating a bovine and

38



FZ|k (N)

f n

18

Figure 4.6: Noise feature with respect to measured force

porcine image database. The images captured at each point on the tissue and

the forces’ value were saved using a computer. A trained non-medical user

then manually classified all images and a subset of 1000 images selected with

500 high-quality images and 500 low-quality images from the tissue phantoms’

US images for different force values. The images were classified subjectively by

the user, and the images were determined to be high quality if there is sufficient

contact between tissue and the probe and tissue is visible without significant

deformation within the US image. The variation of the pixel intensity in

the frame with respect the background was also been considered for image

classification. The SVM was trained using 800 images with equal probability

weighting in each of the two classes. The trained SVM was tested on the

remaining 200 images. After training, the SVM has reached an accuracy (a

ratio of the number of correct labels to all labels) of 96% on our test database.

Figure 4.7 shows the procedure of training SVM using biological porcine and

bovine tissue.

The rule for updating the force’s value based on the output of the image

quality assessment algorithm is shown in (4.9) and (4.10). We have also shown

a block diagram of the quality assessment algorithm in Figure 4.8.

Vsvm = SVM(fc, fn);Vsvm ∈ {0, 1} (4.9)
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Figure 4.7: SVM training procedure

FZ|k+1 = FZ|k + δF (1 − Vsvm) (4.10)

4.3 Robot Admittance Control

Our admittance controller in the x-y-z direction keeps the robot in the original

x-y position and updates the z position based on the image quality assessment

algorithm, as mentioned earlier. We transform the force sensor data into the

base frame of the robot. Figure 4.1 shows the robot coordinate system during

the experiments.

We use the output of the quality assessment algorithm in the loop control-

ling the force applied by the US probe to tissue. Figure 4.9 shows the control

loop for the z-axis used during the experiments. The admittance model cal-

culates desired position of the robot based on the input force. Kθ is the gain

for calculating how much torque should be applied at joints. The control loop

works on two different frequencies. Dash lines in Figure 4.9 represent image-

quality feedback working on 30 Hz, and the solid lines represent robotic control

working on 1 kHz. We reduced the sampling time of robotic control to 30 Hz
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to avoid discrepancies during our experiment.

Figure 4.8: Quality assessment algorithm

The value of the force applied to the tissue in the z-direction is fed to

the admittance controller. The transfer function describes the admittance

model in (4.11). Where Xk(s) is the desired Cartesian position in the robot

base frame, and Fk(s) is the force applied to the end effector in the robot base

frame in the z-direction. M is the virtual mass matrix specified for the system.

B and K represent specified damping and spring matrices, respectively. The

matrices M, B and K are shown in Section 4.4. The admittance model in

the feedforward finds the desired position for the system, while the feedback

impedance model calculates the robot’s current position. We multiply the

error by inverse jacobian J−1 and Kθ to find the error in joint space, and

torque should be applied at joints.

H(s) =
Xk(s)

Fk(s)
=

1

Ms2 + Bs+ K
(4.11)
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Figure 4.9: Robot control for the z axis

For the experimental setup and results, which will be covered in 4.4, We

chose the values of M, B and K for the parameters of the admittance model,

as shown in the following matrices. The matrix of K has only one non-zero

parameter (in the z direction) that controls the US force applied to the tissue.

The values of M and K are based on [50], and they were chosen empirically

as a trade-off between sluggishness and control of the system. We calculated

the value for B to have a critically damped response in the z-direction. The

threshold values in our quality assessment algorithm were found empirically

based on the SVM response in our US image database, these values are tcorr =

0.7 and tcomp = 20.

M =

5.625 0 0
0 5.625 0
0 0 5.625

 kg
B =

33.54 0 0
0 33.54 0
0 0 33.54

 N · sec
m

K =

0 0 0
0 0 0
0 0 50

 N

m
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4.4 Experimental Setup and Results

In this study, an Axia80-M20 force-torque sensor (ATI Industrial Automation,

Apex, NC, USA) was mounted on a Panda robotic arm (Franka Emika GmbH,

Munich, Germany), which holds US probe (see Figure 4.1). We have used US

machine for capturing images with an Epiphan DVI2USB3.0 (Epiphan Systems

Inc, California, USA) for sending the image to the computer. The US machine

used for the experiment was an Ultrasonix Touch with a 4DL14-5/38 Linear 4D

transducer (Ultrasonix Corp, Richmond, BC, Canada). For this experiment,

we only use the 2D functionality of the US probe. We used a tissue phantom

made of plastisol as an artificial tissue for our experiment. The setup is shown

in Figure 4.1.

The admittance controller was programmed and implemented in MATLAB

2019a (The Mathworks Inc, Natwick, MA, USA) and ran using Simulink on

a PC running Ubuntu 16.04 LTS. The PC has an Intel Core i5-8400 running

at 4.00 GHz. The communication between robot and computer was done over

UDP, and the Epiphan was connected to the computer using a USB port.

To evaluate the image quality controller algorithm, we selected six spots

on the surface of the plastisol tissue and ran the proposed method on those

six locations. We then manually classified the acquired images and found the

values of Structural Similarity Index Metric (SSIM) and Peak Signal to Noise

Ratio (PSNR) between the output of our quality assessment algorithm and our

manual subjective results. The calculation of SSIM is based on [63]. These

values are reported in Table 4.1.

The experiments are designed to test the feasibility of incorporating our

quality assessment algorithm into the control loop. The robot increases the

force applied to the tissue by going down in the z-axis using an admittance

controller. Figure 4.10 shows the output of the quality assessment algorithm

and the subjective result by the human operator. Figure 4.10a is the output

of the quality assessment algorithm in one specific position and Figure 4.10b

is the output of the manual classification of the image in that specific position.

This will show that our proposed method provides US images of high quality
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Location SSIM PSNR

First Position 0.87 26.85

Second Position 0.76 20.60

Third Position 0.84 24.30

Fourth Position 0.88 28.16

Fifth Position 0.86 24.53

Sixth Position 0.82 22.54

Table 4.1: Similarity metrics’ value between quality assessment algorithm and
subjective classification

similar to those taken by a sonographer.

The values reported in Table 4.1 show the US image captured using our

proposed image quality assessment method is similar to the result of manual

classification. The similarity between the values of SSIM and PSNR in all

six positions proves the generality of the proposed quality assessment method.

Being as PSNR only compare the values of intensities without analyzing gen-

eral features of the image like the shape of the organ inside the tissue. The

SSIM finds the similarities between two images based on structural analysis.

The values of SSIM are high for our experiment, which proves our algorithm

performs very close to a human operator.

We evaluated the performance of the proposed method experimentally by

recording the values of each feature and the output of SVM by controlling the

force applied to the tissue. Figure 4.11 shows the average value of compression

value with respect to the force applied to the tissue during the test experiment.

The values reported in this figure, are the average compression feature values

in six different spots on the surface of the tissue. The bar in each force value

represents the variation of the compression feature at the corresponding force

value at all six locations on the tissue. We also reported the same variation
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(a) Quality assessment output (b) Subjective result

Figure 4.10: Output of quality assessment algorithm and human subjective
classification

for noise feature in Figure 4.12. Figure 4.13 shows the variation of SVM

output during scanning of the tissue by increasing the force applied to it. The

threshold value of tSVM divides the graph to two separate classes in which the

top part is associated with class of high-quality images and the bottom part

is related to the low-quality images. These graphs prove the generality of our

proposed method in different situations as the variation of each feature across

the different levels of force was within the limited range in all six locations on

the tissue.

The experiments conducted in this section shows us that the level of force

applied to the tissue using the quality assessment algorithm is whitin a rea-

sonable range, based on the results shown in Figures 4.11, 4.12 and 4.13. The

general trend and variation of these features during scanning are consistent

with respect to the applied force, which proves the generality of the proposed

method. The output of the SVM shown in Figure 4.13 shows that the SVM

classifier is able to give positive scores to high-quality images in the experi-

ment while it gives negative values to the low-quality images. Figure 4.10 and

Table 4.1 show us that the output of the quality assessment algorithm is very
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Figure 4.12: Variation of noise feature during the test experiment in all six
spots on the surface of the tissue

close to the desire of the sonographer that all the values reported in Table

4.1 are whitin a reasonable range and the image acquired using image quality

assessment algorithm and the subjective result are very close to each other in

Figure 4.10.

4.5 Conclusion

This chapter has presented US image quality assessment algorithm used for

robotic control of US scanning. Our proposed quality assessment algorithm

uses feature extraction and a SVM classifier to assess the acquired images’
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quality. The algorithm estimates the US image’s quality based on correlation,

compression, and noise features. These features are input into a SVM classifier

to determine an image is of high quality or low quality. The algorithm was used

as a part of the real-time control loop in the robotic US image scanning system.

The user is able to put the US probe at a specific location on the tissue, and

the algorithm will modulate the US scanning force applied to the tissue. An

admittance controller was used internally to modulate the force. We evaluated

the performance of the proposed system using different quality assessment

metrics, showing close agreement between manual subjective assessment of

the captured US image quality and the quality estimation from our algorithm.

This system is designed to enable isolation between patients and sonogra-

phers during the COVID-19 pandemic. In the future, we can control the US

probe’s orientation in an autonomous manner to enable six degrees of freedom

of the US probe during scanning. We can also incorporate the quality assess-

ment algorithm into a teleoperation system to enable remote control of a US

scanning robot. Here, the user can remotely move the robot to the desired

location, with the algorithm appropriately adjusting the US scanning force

automatically.
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Chapter 5

Safe Motion Planning for
Lower-limb Exoskeleton1

5.1 Introduction

Deep learning has seen successful applications in various medical domains,

leveraging the abundance of available data and data-driven system devel-

opment approaches. However, quality issues in current deep learning-based

methods raise significant concerns, particularly in safety-critical medical appli-

cations [5], which require high safety standards. Medical robots, in particular,

are safety-critical systems, and when data-driven Artificial Intelligence (AI)

is integrated as the decision-maker within the robot control system, thorough

safety analysis becomes imperative [47]. Data-driven AI models, such as deep

neural networks, learn decision logic based on training data and are expected

to perform well on unseen data following a similar distribution. Nonetheless,

deep learning lacks statistical guarantees for reliable performance on a wide

range of input scenarios and struggles with handling data outside the training

distribution [72]. This limitation can be critical, as AI-enabled medical robots

rely on imagers and sensors feeding a DNN for decision-making. To address

safety concerns and avoid uncertain predictions with potential catastrophic

consequences, it becomes essential to analyze when input data falls outside

the deep neural network’s decision boundary. This motivates our proposal for

integrating an uncertainty assessment technique into the control loop of med-

1A version of this chapter has been published as Uncertainty-aware Safe Adaptable Mo-
tion Planning of Lower-limb Exoskeletons Using Random Forest Regression
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ical robots, continuously monitoring DNN actions and decisions to enhance

safety in human-robot interactions.

In this chapter, we tackle the challenge of using uncertainty in deep learn-

ing decision-makers within the robot’s control loop while ensuring real-time

performance, an aspect not previously explored. To achieve this, we adopt

random forest regression (RFR) to predict the passive dynamics of the human-

exoskeleton system, considering position, velocity, and acceleration of six joints

as inputs. This estimation of human-exoskeleton interaction torque informs

and updates motion planning, adjusting the exoskeleton’s motion based on the

user’s applied torques. Our contribution involves incorporating uncertainty

estimation in the adaptable Central Pattern Generator (CPG) dynamics for

gait motion planning, aiming to enhance safety in human-robot interaction.

Specifically, we utilize Kullback-Leibler (KL) divergence between training la-

bels and predictions to measure RFR’s uncertainty. Additionally, we employ

Mahalanobis distance to determine the distance between the current input

and training distributions, acting as the out-of-distribution (OOD) detection

part of our proposed technique. It is important to note that the uncertainty

analysis technique we propose is a framework that considers data distribution

and is agnostic to the specific learning technique used within the framework.

The rest of this chapter is organized as follows. First, in Section 5.2, we

introduce the proposed uncertainty analysis technique and details of modified

CPG equations with the consideration of prediction uncertainty. Then, in

Section 5.3, we demonstrate the experimental result of the proposed method,

followed by the concluding remarks in Section 5.4.

5.2 Methodology2

This section introduces the background and mathematical formulations of the

proposed uncertainty-aware exoskeleton control technique. This strategy ad-

justs the gains in the CPG based on the uncertainty of random forest predic-

2The list of variables used in this section and their definitions are available in the Ap-
pendix
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tions to give the exoskeleton the ability to have safe interactions with human

users. The overview of the proposed technique is summarized in Figure 5.1.

Here, τmotor is the total torque measured by exoskeleton torque sensors, τexo is

the torque applied to the exoskeleton’s joint by joint-level position controller,

and τh is the human torque vector.

Figure 5.1: Overview of proposed uncertainty-aware exoskeleton control
method.

5.2.1 Random Forest Regressor Method for HRI Esti-
mation

The non-linear dynamics of multi-DOF lower-limb exoskeleton interacting with

the human user is

Mq(q)q̈ + Cq(q)q̇ +Gq(q) = τHRI + τmotor + τh,pass. (5.1)

Here, q is the exoskeleton’s joint positions vector, Mq(q) is the inertia matrix,

Cq(q) is the Coriolis, centrifugal and damping term, and Gq(q) is the gravi-

tational torques. The torque values on the right side of (5.1) are exoskeleton

motor torque (τmotor), human-robot interaction (HRI) torque (τHRI), and pas-

sive dynamics of human exoskeleton system (τh,pass). The passive dynamics of

the human exoskeleton system is defined as the exoskeleton joint torques re-

quired to drive a user in the absence of any interaction between the human and

the exoskeleton. Given these passive torque values, the active human-robot

interaction torque can be calculated as the difference between measured joint

torque applied by human (τh) and estimated passive torque. Our proposed
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method uses ensemble decision trees in the form of a random forest regression

(RFR) for estimating the passive torque (τh,pass) that is used for estimating

HRI torque (τHRI) using

τHRI = τh − τh,pass. (5.2)

τHRI calculated in (5.2) is used to calculate the energy transferred between

the human user and exoskeleton. The frequency and amplitude of the desired

trajectory will be affected by the energy in walking with an exoskeleton. The

mathematical details are given in Section 5.2.2.

Random forests are multiple decision trees with voting schemes at the end

of these trees for making predictions. Decision trees have proven to have a good

performance for regression problems and are easy to be trained on commodity

hardware [51], [53]. The complexity and the performance of the regression

algorithm are essential considerations in our application under the context of

a medical robot. The performance is also critical as the decision coming from

RFR affects the physical human-robot interaction (pHRI). Figure 5.2 shows

the structure of the model that has been developed for estimating the passive

torque of the human (τh,pass).

Figure 5.2: Random forest model for human passive torque estimation τh,pass

In this experiment, we asked a human user to walk with an exoskeleton over

the ground in several training data collection trials. We used CPGs with differ-

ent walking speeds for trajectory shaping during these trials. Each exoskeleton
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joint’s position, velocity, acceleration and corresponding motor torques have

been saved. The user was asked to comply with the exoskeleton-imposed mo-

tion and not apply any force to the exoskeleton so that the torque of each

joint equals the passive torque. We changed the velocity of the exoskeleton

walking for training the random forest. The position, velocity and acceler-

ation of the exoskeleton’s joints (q, q̇, q̈) are the input to the random forest

model and the estimated passive torques of each joint (τh,pass) is the output.

Applying torques to the joint of the exoskeleton will result in faster motions.

Hence, τHRI , which has a direct relation to the energy transferred between the

user and exoskeleton, is used in the modified adaptable CPGs algorithm for

shaping the trajectory of the exoskeleton along with its uncertainty.

5.2.2 Modified Adaptable CPG for Trajectory Shaping

Modified adaptable CPG dynamics are used for designing gait trajectories

based on HRI torque. The HRI torque (τHRI) is used for calculating the

energy transferred between the user and exoskeleton. This is inspired by the

method in [39], [59]. We calculate the energy of each joint i by using the HRI

torque and the velocity of each joint as

Ei(t) =

∫ t

0

τHRIi(t)q̇i(t). (5.3)

Here, τHRIi(t) is calculated using (5.2) for each joint and q̇i(t) is the velocity

of each joint coming from the exoskeleton sensors (i = 1, ..., n). The modified

adaptable CPG dynamics for the desired joint trajectory generation based on

the amplitude and the frequency update are proposed as

ϕ̇i(t) = f(t) +

Ni∑
j=1

νij sin (ϕi(t) − ϕj(t) − ψij)

f̈(t) = αf (
αf

4
(F + CRF (ftest)

n∑
k=1

λkEk − f(t)) − ḟ(t))

ä(t) = αa(
αa

4
(A+ CRF (ftest)

n∑
k=1

ηkEk − a(t)) − ȧ(t)).

(5.4)

Here, Ni is the number of adjacent joints to the joint i. a(t) is the amplitude

of the movement, and f(t) is the frequency of the movement. αf and αa are
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constant parameters. λk and ηk are constant gains for updating the frequency

and amplitude of the gait cycles, based on the injected pHRI energy Ek defined

in (5.3). A change in frequency will result in changes in walking speed, while

a change in amplitude will result in changes in the walking step length of the

user with the exoskeleton. In the above, we have modified the adaptable CPG

dynamic proposed in [39], [59] by adding CRF (ftest) to the energy term in the

frequency and amplitude dynamic formula. Here CRF (ftest) is the uncertainty

in the estimation of passive torque using RFR and will be explained in Section

5.2.3. Adding CRF (ftest) to (5.4) enables the algorithm to scale the effect of

the pHRI energy in the CPG gait trajectory update. For instance, if the input

feature is far from the distribution of the training data, the distance value will

be high. Then this technique is able to reduce the effect of the energy term in

(5.4) by using CRF (ftest) found in (5.8).

We now can formulate the desired trajectory of joint i using (5.4) and

Fourier series as

qdi(t) = a(t)(ci0 +

Ni∑
j=1

(cij cos jϕi(t) + dij sin jϕi(t))). (5.5)

Here, cij and dij are the Fourier series coefficients for each joint’s trajectory.

The trajectory calculated in (5.5) considers the uncertainty of the prediction in

real-time using (5.8) and (5.4). The proposed adaptable CPG can be used in

any other motion planning approach for exoskeletons in a similar manner. We

did it for CPGs as one example of motion planning methods for the lower-limb

exoskeleton.

5.2.3 Uncertainty Analysis & OOD Detection

Our proposed uncertainty analysis technique considers both the training and

run-time prediction phase for determining the uncertainty of the prediction.

The similarity between training labels and model predictions during training

is a measure that can be used to assess the model’s reliability for an input

that falls inside the training distribution. We use Kullback-Leibler (KL) di-

vergence as a similarity measure in this regard. Our proposed technique finds
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the Mahalanobis distance between the input feature and training data dis-

tribution during the test phase to check how far the test feature is from the

training data for updating uncertainty values. This mechanism refines the

initial uncertainty measure found using KL divergence for the test sample in

real time. Using Mahalanobis distance for OOD detection is inspired by the

method proposed in [32]. The overview of the proposed uncertainty analysis

and OOD detection technique is shown in Figure 5.3. Otrain, Ltrain and Ftrain

are predictions of the training set, labels of the training set and input training

features, respectively. These data are used for calculating KL divergence.

Figure 5.3: Overview of proposed uncertainty analysis and OOD detection
technique.

KL Divergence as Similarity Measure

The Kullback-Leibler (KL) divergence, DKL(Pl(
−→x ), Pp(

−→x )) is a statistical

measure of how a distribution Pp(
−→x ) is similar to a reference distribution

Pl(
−→x ). The KL divergence between two discrete distributions Pl(

−→x ) and

Pp(
−→x ) is calculated as

DKL(Pl(
−→x ), Pp(

−→x )) =
∑
−→x ∈χ

Pl(
−→x ) log

Pl(
−→x )

Pp(
−→x )

. (5.6)

Here, Pl(
−→x ) and Pp(

−→x ) are the distributions of the labels and predictions on

the training set, respectively. χ is the probability space where distributions

are defined. The mathematical details of the distribution analysis for KL

divergence is demonstrated in Section A (Appendix).
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Mahalanobis Distance for OOD Detection

Mahalanobis distance is a statistical measure of the distance between a point

and a distribution. Assume a vector −→v = [vi]
n
i=1 and a distribution P with

mean value of −→µ and covariance matrix (Σ). The Mahalanobis distance be-

tween vector −→v and distribution P is

DM(P,−→v ) =
√

(−→v −−→µ )TΣ−1(−→x −−→µ ). (5.7)

The covariance matrix Σ is a positive definite matrix; hence its inverse exists

and is also positive definite, and the root square is shown in (5.7) always has

a real value.

In the proposed method, we use (5.7) to check how far input feature (ftest) is

to the distribution of the training set (Pt(
−→x )) for OOD detection. We calculate

the histograms of training data, mean value −→µf and covariance matrix Σf .

Then we use (5.7) to find the distance value (DM(Pt(
−→x ), ftest)). The distance

found using (5.7) refines the initial uncertainty estimation obtained using (5.6)

in real-time for the test sample. The resulting Mahalanobis distance is used

in our proposed adaptable CPGs gain tuning technique described in Section

5.2.3.

Adaptable CPGs Gain Tuning Technique

Our proposed adaptable gain tuning algorithm should have the ability to ac-

count for the effect of uncertainty in the CPGs trajectory planning based on

the distance between input feature and training distribution. We propose

CRF (ftest) =

{
DKL(Pl(

−→x ), Pp(
−→x )) ×D, if D < 1

0, if D ≥ 1
(5.8)

as the uncertainty input to be fed into the CPGs for controlling human-robot

interaction during task execution. Here, C is a constant value (in the range

of 60 to 80, which has been found empirically). D ≜ |1 − DM (Pt(
−→x ),ftest)
C

|,

and DKL(Pl(
−→x ), Pp(

−→x )) and DM(Pt(
−→x ), ftest) are from (5.6) and (5.7). The

summarized version of the proposed uncertainty technique for adaptable CPG

gain tuning is shown in Algorithm 2. This is important to note that the

55



proposed method only changes the coefficients of some terms in 2nd-order

ordinary differential equations (ODEs) shown in (5.5) at a 20Hz rate. The

ODEs will be numerically solved at a higher rate, so in practice, we see only

a smooth and continuous gradual transition. The mathematical explanation

of the effect of uncertainty in the CPG algorithm is demonstrated in Section

5.2.2.

Algorithm 2 Proposed Adaptable CPG Gain Tuning

Require: Training feature distribution (Pt(
−→x )), Training label distribution

(Pl(
−→x )), Random forest prediction for training set distribution (Pp(

−→x )),
Gain constant (C), Training data distribution −→µPt , KL divergence between
predictions and labels DKL(Pl(

−→x ), Pp(
−→x ))

1: for each ftest do
2: Find DM(Pt(

−→x ), ftest) using (5.7)
3: Find CRF (ftest) using (5.8)
4: Update CPG equations and calculate amplitude and frequency of the

trajectory using (5.4) and find CRF (ftest) using (5.8)
5: end for

5.3 Results and Discussion

As a showcase of the proposed framework, an exoskeleton was utilized in this

chapter. The exoskeleton is operated by a human user who applies force to its

joints, resulting in additional torques on the torque sensors. If the interaction

torque does not align with the distribution of data on which the model was

trained, an unsafe situation may arise. This would result in the model making

inaccurate decisions and potentially endangering the user who interacts with

the exoskeleton.

We have tested our proposed method on the ExoH3 (Technaid S.L.) ex-

oskeleton, Madrid, Spain. A non-disabled human user with a height of 173 cm

and weight of 67 kg wore the exoskeleton while also using crutches as shown

in Figure 5.4. The trajectory of the walking has been saved and Fourier se-

ries analysis was conducted on the acquired trajectory to obtain a minimum

number of series and the best coefficients. Eight terms of the Fourier series

were sufficient and attained coefficients of the hip, knee and ankle motions are
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listed in Table 5.1. Additionally, parameters and initial values of the CPG

dynamics for hip, knee and ankle joints of both legs are listed in Table 5.2.

Figure 5.4: Experimental setup with the human user.

This experiment was planned for two scenarios with and without uncer-

tainty analysis to evaluate the proposed technique’s performance in the ex-

oskeleton’s control loop. Real-time Desktop MATLAB/Simulink was employed

for receiving the sensory data and sending the control commands to the ex-

oskeleton. The sampling frequency was 20 Hz. For this, the exoskeleton was

connected to a laptop with a CAN interface (Vector VN1610) running on a

Core i7 CPU with 16 GB RAM. We implemented the RFR model on a differ-

ent PC using Python programming language and scikit-learn machine learning

library [49]. We used the UDP communication protocol for sending and re-

ceiving data between the PC and the laptop.

We trained the RFR model for learning the passive human-exoskeleton

dynamics using our training dataset. The same user was asked to wear the

exoskeleton and walk on the ground without interacting with the exoskeleton.

The authors are aware that it is hard to make human-robot interaction zero

during the experiment. The HRI torque has two parts, intentional and un-

intentional torque. The intentional torque is used in the adaptable CPG for
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Hip initial
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Ankle initial
motion
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a0 = 5.057,
a1 = 6.222,
a2 = 0.521,
a3 = 0.052,
a4 = 0.456,
a5 = 0.032,
a6 = 0.186,
a7 = −0.06,
a8 = 0.014,
b1 = 19.24,
b2 = 5.028,
b3 = 1.272,
b4 = −0.01,
b5 = −0.49,
b6 = 0.131,
b7 = −0.01,
b8 = 0.073,

a0 = 12.28,
a1 = 19.88,
a2 = 11.76,
a3 = 7.327,
a4 = 4.888,
a5 = 2.369,
a6 = 0.957,
a7 = −0.38,
a8 = 0.180,
b1 = −0.95,
b2 = −0.37,
b3 = 0.707,
b4 = 1.083,
b5 = 1.231,
b6 = 0.962,
b7 = 0.405,
b8 = 0.115,

a0 = 6.842,
a1 = −6.46,
a2 = −2.77,
a3 = −0.35,
a4 = 0.369,
a5 = 0.590,
a6 = 0.552,
a7 = −0.28,
a8 = 0.165,
b1 = −4.03,
b2 = 4.996,
b3 = 5.156,
b4 = 1.475,
b5 = 0.876,
b6 = 0.388,
b7 = 0.242,
b8 = −0.004,

Table 5.1: Coefficients of the Fourier series (5.5) for the hip, knee and ankle
initial motions based on the analysis of normal gait trajectories

Hip, knee and ankle CPGs’ parameters

Dynamic param-
eter values

νh−h = 0.5, νh−k = 0.5, νk−h = 0.5, νa−k =
0.5, νk−a = 0.5, νa−a = 0.5, αf = 15π, αa =
15π, ψ = 0.7, λ = 0.3, η = 0.3, F = 0.35π,
A = 1

Initial values ϕright(0) = 2 rad, ϕleft(0) = 2 + π rad,
f(0) = 0.1π rad/s, a(0) = 0.1π rad

Table 5.2: Parameter and initial values of CPG dynamics (5.4) for the hip,
knee and ankle joints
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trajectory shaping. The average value of the torque was subtracted from the

experimental torque to make sure that unintentional torque is not included in

the experiment. The kinematic data (position, velocity and acceleration) and

the torque values of each exoskeleton joint were recorded during this walking.

80% of the data was used to train the model, and the rest was used for testing.

After training the model using 5-fold cross-validation, we reached the average

mean absolute error (MAE) value of 0.014(N.m) on our test set.

In the first scenario, the user walked with the exoskeleton while interacting

with it, but the uncertainty analysis algorithm was turned off. In this sce-

nario, we revised the CPG algorithm to create the desired trajectory for the

exoskeleton joints by considering the energy transferred between the user and

the exoskeleton. In the second scenario, while the CPG was revised according

to the user-exoskeleton energy transfer, we also turned the uncertainty analy-

sis technique on. We evaluated its performance in detecting unsafe decisions

and changing CPG’s gains when the exoskeleton is making a potentially unsafe

decision and taking potentially unsafe action in two user trials. In this way,

we evaluated and compared the performance of the uncertainty analysis tech-

nique by monitoring the amplitude and frequency of the trajectory created by

the CPG with and without the uncertainty gain. We present the experimental

results for the first scenario in the time interval between 20 (sec) and 80 (sec)

as it is a time interval during which the user interacts with the exoskeleton.

The time interval for the second scenario is between 50 (sec) and 250 (sec)

as in this time interval, the user interacts with the exoskeleton and applies

additional torques to the exoskeleton’s joint.

5.3.1 Scenario one: CPG without Uncertainty Estima-
tion Technique

We used eight terms of typical human gait’s hip, knee and ankle motions

Fourier coefficients for calculating CPGs’ gait trajectory. The walking data

were acquired during our experiment to make a training dataset. During the

experiment, first, the CPG dynamics calculates the amplitude and frequency

of the trajectory using (5.4) with CRF (ftest) = 1. Then, the desired trajectory
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is calculated in (5.5) using Fourier series coefficients.

A human user wore the exoskeleton as shown in Figure 5.4. We evaluated

the position control algorithm’s performance by comparing the exoskeleton

points desired and current trajectories. This result is shown for the left and

right knees in Figure 5.5. Figure 5.5 shows that the exoskeleton is able to follow

the desired trajectory created by the CPG dynamics as the user interacts with

it.

Figure 5.5: Desired and current trajectories of the right and left knee joints of
the exoskeleton.

Next, the user applies active torques on different joints of the exoskeleton

to analyze the CPGs’ performance in changing the frequency and amplitude

of the motions based on the energy transferred between the user and the ex-

oskeleton. Figure 5.6a shows the total energy transferred between the user and

the exoskeleton during the experiment. Figure 5.6b and Figure 5.6c show the

amplitude and frequency of the desired trajectory created by CPGs following

this energy transformation.

The experimental results in Figure 5.6 show that CPGs is able to change

the desired trajectory of the robot as the user applies active torque to the

robot’s joints. This is implied in the spikes of Figure 5.6b and Figure 5.6c that

happen when the user adds active torque to the system, shown in Figure 5.6a.
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(a) Energy transferred
between user and ex-
oskeleton

(b) Amplitude of the
desired trajectory calcu-
lated by CPGs

(c) Frequency of the de-
sired trajectory calcu-
lated by CPGs

Figure 5.6: Performance of CPGs in designing trajectory based on energy
transferred between user and exoskeleton

5.3.2 Scenario Two: Uncertainty Estimation Technique
Performance Analysis

The performance of the proposed uncertainty analysis technique experimented

with decisions from exoskeletons that may be unsafe for human users. This

may result from irregular changes in the velocity of the exoskeleton during

usage. As mentioned earlier, the training data was collected for walking on

the ground with no interaction between the user and the exoskeleton. If the

situation changes, the user may apply irregular torque to the joints of the

exoskeleton, and CPG may interpret it as a speed-up request from the user.

This can be an unsafe decision, and the uncertainty technique should detect

it as OOD and stop the exoskeleton from speeding up. We tried to simu-

late this situation for the exoskeleton during our experiment in two separate

user trials to evaluate the performance of the proposed uncertainty analysis

technique. During our first user trial, we analyzed the performance of Maha-

lanobis distance and the thresholding algorithm in detecting unsafe actions.

The proposed uncertainty analysis technique monitored the distance between

the coming features and training set to inform the exoskeleton when an unsafe

situation happens. The Mahalanobis distance between a test sample and the

training set is a criterion for the proposed OOD detection algorithm. The

distance between test features and training set before (Figure 5.7a) and after

thresholding (Figure 5.7b) are shown in Figure 5.7.

The uncertainty detection technique should detect unsafe decisions of the
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(a) Original values of Mahalanobis distance between test
features and training set

(b) Mahalanobis distance between test features and train-
ing set after thresholding.

Figure 5.7: Mahalanobis distance between test features and training set (5.7a)
before and (5.7b) after thresholding for user trial #1.

exoskeleton and apply appropriate gains to CPG dynamics to modify its tra-

jectory. The performance of the proposed uncertainty detection technique is

shown in Figure 5.7b. During our first user trials, the distance between input

features and the training set jumps when the user applies excessive torques to

the exoskeleton, which results in an unsafe decision from the RFR. This situ-

ation is simulated in the experiment by asking the user to resist the changes

in the trajectory coming from CPG. These jumps were exactly when we asked

the user to start applying additional torques to the joint of the exoskeleton.

We used two threshold values to keep jumps in Figure 5.7a and discard the

rest. thup and thdown are two threshold values that isolate unsafe actions of

62



the user using

DMt(ftest) =


S, if S < thdown

0, if thup > S > thdown

S, if S > thup.

(5.9)

Here, S ≜ DM(ftest) − Doffset and we chose thdown = −20 and thup = 25

to make sure that the thresholding method only selects unsafe actions and

discards smooth interactions between the user and exoskeleton. We found

these thresholds experimentally by walking with exoskeleton. The value of

offset is Doffset = 15. The results shown in Figure 5.7b present a corresponding

peak that can be considered as the level of uncertainty in our test feature.

Our proposed adaptable CPG gain tuning technique should limit the tra-

jectory’s amplitude and frequency growth whenever the user applies excessive

torques to exoskeleton joints, which is caused an unsafe decision from ex-

oskeleton. Furthermore, the gain value should be tuned based on the level

of the uncertainty coming from the Mahalanobis distance of the test feature

and training set using (5.8) and (5.7). We investigated the performance of our

proposed adaptable CPG gain tuning during our second user trial. For this

purpose, we first need to check whether our algorithm is real-time or not. Fig-

ure 5.8 shows the real-time features of our proposed method as an adaptable

CPG gain tuning algorithm is triggered whenever the distance exceeds the

tolerance interval. This is shown with lines from the top figure to the bottom

figure in Figure 5.8. Figure 5.8 shows that our proposed method is able to

detect unsafe decision from the kinematic data of the robot in real time, which

make it applicable to real-time applications like robotic trajectory shaping.

Secondly, we monitored the amplitude and frequency of the trajectory gen-

erated by CPG during user trial # 2. The results are reported in Figure 5.9.

The frequency and amplitude shown in Figure 5.9b and Figure 5.9a indicate

that our proposed uncertainty algorithm is able to detect irregular actions

and control the trajectory generated by CPG. The behaviour of the proposed

method can be seen in Figure 5.9 as the blue trajectory, which is an output of

the proposed algorithm, cancels the effect of unsafe actions in the trajectory

generated by CPG (the blue line does not follow the orange line in the unsafe
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Figure 5.8: Analyzing real-time performance of proposed method in user trial
# 2.

situations). The proposed method detects irregular jumps, decreases the tra-

jectory’s amplitude and frequency, and smoothly converges to the correspond-

ing value (the blue line was shown with the thicker font for demonstration
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purposes. In the actual result, the two lines are exactly fit to each other).

This decrease and smooth convergence in the frequency and amplitude of the

trajectory will vanish the effect of unsafe action on the user. Furthermore, a

decrease in frequency will control the speed of the exoskeleton. A decrease

in the amplitude will control the gait of the trajectory generated by CPG to

enhance the safety of human-robot interaction.

5.4 Conclusion and Future Works

Deep learning has been applied in many medical applications. However, the

safety and security concerns of using it in the control loop of medical robots

have not been thoroughly investigated, which is a safety-critical application

of deep learning. In this chapter, we proposed a method that can evaluate

the uncertainty of the deep learning algorithm in real-time and use this uncer-

tainty measure in the control loop of the robot to inform the system whenever

the situation is unsafe for the user. Our proposed method finds the training

features and label distributions during the training phase. When the train-

ing phase ends, the proposed method finds the distribution of the predictions

when the training features feed into the model. The Kullback-Leibler (KL) di-

vergence between predictions and labels is the initial uncertainty of the model.

The uncertainty of the prediction for the input feature is updated based on the

Mahalanobis distance of the test feature from the training distribution. The

calculated uncertainty will update the effect of energy transferred between the

user and the robot in the CPGs dynamics. This chapter used a random forest

regression to estimate the human robot’s passive torque.

The proposed method has been tested in the control loop of the ExoH3

(Technaid S.L.) exoskeleton with six degrees of freedom. The experiments

were conducted in two scenarios. In the first scenario, we asked the user

to walk with the exoskeleton and apply active torque to its joints to revise

the CPG dynamics. In the second scenario, we evaluated the performance of

the proposed uncertainty analysis technique in two user trials. The proposed

technique was able to detect unsafe decisions of the exoskeleton and tuned
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(a) Comparison of amplitude of the desired trajectory with
and without uncertainty analysis.

(b) Comparison of frequency of the desired trajectory with
and without uncertainty analysis.

Figure 5.9: Performance of the proposed uncertainty analysis algorithm in
adjusting trajectory’s amplitude and frequency during user trial # 2.

CPGs gains considering the level of uncertainty in the coming data during

both user trials.

Although the proposed method has the ability to reduce the safety concerns

in using medical robots for clinical applications, it has some limitations that
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need to be addressed. In the next steps of this project, we will address the

concerns and limitations of the proposed method. The first concern is the

energy loss in changing trajectories generated by CPGs. This issue has a

direct impact on the ability of our proposed method to satisfy the preferences

of the user. The second concern is fixing the user-dependant nature of the

training data which can be fixed by state-of-the-art online learning algorithms

like reinforcement learning. The last concern is the stability analysis of the

gait generated by the CPGs which can be addressed in future. The proposed

method can be used as a framework for uncertainty analysis and will be used

in different medical robotic applications in the future.
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Chapter 6

Conclusions and Future
Directions

6.1 Conclusions

This thesis has presented research on the motion planning of robotic systems

in diagnostic and therapy applications, with a focus on integrating control and

AI techniques. Three main contributions have been discussed, each address-

ing important aspects of medical robotics. The first contribution introduced

a novel robotic ultrasound imaging method, enabling precise scanning of the

breast for high-quality ultrasound images. The second contribution presented

a robot-assisted ultrasound scanning system designed to minimize the risk of

COVID-19 transmission by automating tissue scanning with a dexterous robot

arm. The system continuously assesses image quality and adjusts the probe

contact force for better results. Finally, the third contribution centred around

safety and uncertainty analysis in deep learning-based medical robotic applica-

tions, proposing a novel framework for uncertainty-aware control. By quanti-

fying uncertainty levels and detecting out-of-distribution data, this framework

ensures safe and reliable human-robot interactions. These advancements hold

the potential for enhancing medical robotics’ efficacy and safety, benefiting

both patients and healthcare providers.

In chapter 3, we presented a method for defining a 5-DoF ultrasound (US)

scanning trajectory based on the geometrical features of a target seroma within

the breast. The proposed method employed a visual servoing algorithm to
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update two controlled DoFs in real-time during scanning, ensuring adequate

probe contact and improved visualization of the seroma in the US images.

Referred to as the post-scan, our trajectory generation and visual servoing

method relied on information gathered from a manual pre-scan set of images.

During the pre-scan, images were captured at arbitrary orientations and po-

sitions, and the pose of the US probe was recorded. Geometrical information

of the seroma inside the breast was extracted from the pre-scan images, ap-

proximating the seroma by an ellipsoid. The center and principal axes of the

ellipsoid were utilized in defining the post-scan trajectory. For the post-scan,

the desired trajectory of the US probe was calculated by intersecting a plane

containing the ellipsoid’s principal axis with the breast’s surface, generating

the x − y − z trajectory points. The in-plane and out-of-plane rotation of

the probe were determined at each point based on geometrical analysis of the

seroma. The in-plane orientation of the probe was updated using an online

segmentation algorithm that locates the center of the seroma and aligns the

probe towards it. Additionally, the desired z position of the probe was up-

dated using the average confidence map from the US image during scanning

to ensure sufficient breast-probe contact. The proposed method was evaluated

experimentally using plastisol phantoms, demonstrating its ability to orient

the probe to keep the seroma centered in the acquired image while maintain-

ing sufficient probe contact with minimal deformation.

Chapter 4 presented an algorithm for US image quality assessment that

is utilized for robotic control of US scanning. Our proposed algorithm incor-

porates feature extraction and an SVM classifier to evaluate the quality of

acquired images. By analyzing correlation, compression, and noise features,

the algorithm estimates the quality of the US images, distinguishing between

high-quality and low-quality ones. Integrated into the real-time control loop

of the robotic US image scanning system, the algorithm allows the user to

position the US probe at a specific location on the tissue, while the algo-

rithm modulates the US scanning force applied to the tissue using an internal

admittance controller. To validate the system’s performance, we conducted

evaluations using various quality assessment metrics, which demonstrated a
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close correlation between manual subjective assessment of the captured US

image quality and the quality estimation derived from our algorithm.

In chapter 5, we addressed the safety and security concerns of integrating

deep learning into the control loop of medical robots, a safety-critical appli-

cation. Our proposed method evaluates the uncertainty of the deep learning

algorithm in real-time and utilizes this measure in the robot’s control loop

to ensure user safety. During the training phase, the method calculates the

Kullback-Leibler (KL) divergence between predictions and labels to obtain the

initial uncertainty of the model. Additionally, the method finds the distribu-

tion of predictions when the training features are fed into the model. The

uncertainty of the prediction for a test feature is updated using the Maha-

lanobis distance from the training distribution. The calculated uncertainty

influences the energy transfer between the user and the robot in the CPGs

dynamics. We tested the proposed method on the ExoH3 exoskeleton with six

degrees of freedom. Two scenarios were considered: the user walking with the

exoskeleton and applying active torque to revise the CPG dynamics, and the

evaluation of the uncertainty analysis technique in two user trials. The results

demonstrate the ability of the proposed technique to detect unsafe decisions

of the exoskeleton and adjust CPGs gains considering the level of uncertainty

in the incoming data during both user trials.

6.2 Future Directions

For future research in the field of motion planning for ultrasound breast scan-

ning surgery, there are several avenues to explore. One direction is the de-

velopment of a robust 3D reconstruction algorithm that can automatically

generate a detailed 3D volume of the breast using pre-scan images. This ad-

vancement would enhance the control of the robot during the visual servoing

process, providing more accurate and precise localization of the seroma in the

post-scan phase. By incorporating advanced 3D reconstruction techniques,

the proposed method can further improve the overall efficiency and accuracy

of the ultrasound breast scanning process.
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Another aspect to consider for future research is the integration of needle

insertion control into the system. The introduction of a new set of features that

enables precise control of the ultrasound probe when a needle is inserted inside

the breast would be highly beneficial. This feature would facilitate better

visualization of both the seroma and the needle during scanning, ensuring

safer and more efficient breast biopsy procedures. By incorporating needle

insertion control, the proposed method can extend its capabilities to address

a wider range of clinical applications, thus advancing the field of ultrasound-

guided breast interventions.

For researchers interested in continuing this research, exploring full auton-

omy in controlling the orientation of the ultrasound probe is an exciting direc-

tion to pursue. Achieving six degrees of freedom during scanning would elevate

the robotic system’s capabilities, providing greater flexibility and adaptability

in various scanning scenarios. Additionally, considering the integration of the

quality assessment algorithm into a teleoperation system holds potential for

remote-controlled ultrasound scanning robots. Such a system would empower

medical professionals to perform ultrasound scans from a distance, making it

particularly valuable in telemedicine and situations where in-person access is

limited or unsafe.

For future researchers, we recommend further exploring and advancing the

proposed method for rehabilitation motion planning with medical robots. The

potential impact of this research is important, as it addresses safety concerns

and limitations while enhancing the effectiveness of robotic rehabilitation in

clinical applications. To build upon the current work, researchers should focus

on the following key areas:

• Optimize Trajectory Generation: Investigate innovative techniques to

optimize trajectory generation by Central Pattern Generators (CPGs)

to reduce energy loss during motion planning. By minimizing energy

consumption, the rehabilitation process can become more efficient and

user-friendly, leading to improved patient experiences.

• Integrate Online Learning Algorithms: Overcome the user-dependent
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nature of training data by incorporating state-of-the-art online learning

algorithms, such as reinforcement learning. Adaptive learning methods

will enable the proposed framework to continuously adapt to individual

user preferences, providing a more personalized and effective rehabilita-

tion experience.

• Conduct Stability Analysis: Perform thorough stability analysis of the

gaits generated by CPGs to ensure the safety and reliability of the reha-

bilitation motion planning. Validating the stability of generated gaits is

crucial for providing confidence in the robot’s ability to support patients

during their rehabilitation exercises without compromising safety.

• Explore Broad Applications: Extend the proposed uncertainty analysis

framework to various medical robotic applications beyond rehabilitation.

Investigating its integration in different clinical settings will enhance

safety and reliability across diverse medical contexts, contributing to

the advancement of medical robotics.

Embracing these recommendations will drive advancements in robotic-

assisted rehabilitation, ultimately contributing to the improvement of health-

care practices and patient well-being.
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Appendix A

Appendix: List of Variables and
Distribution Analysis

A.1 List of Variables and Definitions

• τinput Total Torque Measured by Torque Sensors

• τexo HRI Torque Applied to Exoskeleton’s Joints

• τmotor Exoskeleton Motor Torque

• τh Human Torque Vector

• τHRI Physical Human-robot Interaction Torque

• τh,pass Passive Torque Dynamic of Human-Exoskeleton

• Mq(q) Inertia Matrix

• Cq(q) Coriolis, Centrifugal and Damping Term

• Gq(q) Gravitational Torque

• q, q̇, q̈ Position, Velocity and Acceleration of Joints

• Ei(t) Energy Transferred to Joint i

• Ni Number of Adjacent Joints to Joint i

• a(t) Amplitude of the Movement
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• f(t) Frequency of the Movement

• ftest Test Feature

• CRF (ftest) Adaptable Uncertainty Gain

• D Adaptable Uncertainty Threshold

• cij , dij Fourier Series Coefficients

• Otrain Random Forest Predictions for Training Data

• Ltrain Training Labels

• Ftrain Training Features

• DKL KL Divergence

• DM Mahalanobis Distance

• DMt Mahalanobis Distance after Thresholding

• Pl(
−→x ) Distribution of Training Labels

• Pp(
−→x ) Distribution of Training Predictions

• Pt(
−→x ) Distribution of Training Set

• −→x Vector of One Feature

• xi Element of Feature Vector

• yi Sample from Training Predictions

• Nf Total Number of Samples in Feature Set

• µl, σl Training Labels Mean and Standard Deviation

• µp, σp Predictions Mean and Standard Deviation

• µf , Σf Training Data Mean and Standard Deviation
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A.2 Distribution Analysis

Let us define xi as a sample from −→x , where −→x is the vector of one feature

and xi is an element of this vector (xi ∈ −→x ). Then nxi
is the number of

times that the input data is in the interval of [xi − ϵ, xi + ϵ]. Here ϵ is the

value that controls the length of histogram intervals in our probability function

estimation. Then we have

M∑
i=1

nxi
= Nf

Pxi
=
nxi

Nf

.

(A.1)

Here, M is the number of distinguished samples and Nf is the total number

of samples in the dataset. We need to calculate the distribution of the dataset

to find KL divergence using (5.6), while (A.1) is only useful for finding the

probability of one sample. To solve this problem, we estimate the distribution

of (Ltrain) and (Otrain) using Gaussian fitting as the distribution of the acquired

data follows Gaussian distribution shown in Figure A.1. Then we have

Figure A.1: Training dataset with Gaussian distribution fitted to the data.

Ltrain ∼ N (µl, σl), (A.2)

where mean value (µl) and standard deviation (σl) can be calculated using

µl =
∑N

i=1 xi and σl =
√

1
N

∑N
i=1(xi − µl)2. We now formalize the distribution

of the training labels Pl(
−→x ) as
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Pl(
−→x ) =

1√
2πσ2

l

exp
(−→x −−→µl )

2

2σ2
l

. (A.3)

We follow the same procedure for finding the distributions ofOtrains (Pp(
−→x ))

as

Otrain ∼ N (µp, σp)

µp =
N∑
i=1

yi

σp =

√√√√ 1

N

N∑
i=1

(yi − µp)2.

(A.4)

We now formalize Pp(
−→x ) as

Pp(
−→y ) =

1√
2πσ2

p

exp
(−→y −−→µp)

2

2σ2
p

. (A.5)

Here, yi is the sample from Otrain. We calculate the required distributions

using (A.3) and (A.5), then we use (5.6) for calculating KL divergence between

distributions as our initial uncertainty measure.
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