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Abstract— Prostate brachytherapy is a current technique
used to treat cancerous tissue in the prostate by permanently
implanting radioactive seeds through the use of long flexible
needles. This paper proposes a real-time method to predict the
shape of a flexible needle inserted into soft tissue using axial
Transrectal Ultrasound (TRUS) image segmentation and a non-
holonomic bicycle model informed via particle filter. The needle
location is tracked in TRUS images to capture the needle shape
up to a specified depth. Through the use of a particle filter the
noisy tracked needle shape is used to update the parameters
of a kinematic bicycle model in a robust manner to predict
the shape of the entire needle after it is fully inserted. The
method is verified in both ex-vivo beef phantom tissue and in-
vivo clinical images, yielding an average tip prediction error of
less that 0.5 mm in both the ex-vivo and in-vivo image sets with
a peak processing time of less than 9.5 ms per image frame.

I. INTRODUCTION

Prostate brachytherapy is a percutaneous minimally-
invasive surgery whereby long flexible needles containing
radioactive seeds are inserted into the prostate. Prostate
brachytherapy is effective and well-tolerated, with the ef-
ficacy and side effect profile primarily determined by the
inaccuracy with which the seeds are placed with regard to
their pre-planned target locations. Current clinical setups for
prostate brachytherapy, diagrammed in Fig 1, consist of a
guide template, which has a grid of holes through which the
needle is inserted, a transrectal ultrasound (TRUS) probe, and
the brachytherapy needle. A clinician uses a guide template
to position the needle in line with a preplanned target location
and ultrasound imaging in the axial plane, showing a cross
section of the needle, is used to verify the placement of
the needle near the target location. The beveled edge of the
needle meant to facilitate tissue cutting will also cause the
needle to deflect away from the desired target location, thus
causing seed placement errors.

Ultrasound image based needle segmentation and tracking
has been approached in both 2D axial and sagittal image
slices, taken along the length of the needle as it is inserted,
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Fig. 1: Standard brachytherapy setup with TRUS probe and
template. Figure courtesy of Cancer Research UK/Wikimedia
Commons.

as well as in 3D volumes. This paper will focus on tracking
the needle position in individual 2D axial slices, as 3D
ultrasound technology is still quite expensive and presents
additional computational challenges. Saggital image needle
segemtation has the disadvantage that a substantial portion
of the needle needs to be captured in the image plane in
order for segmentation to work. From our group [1] used
RANSAC to robustly detect the needle from a complete set
of axial images, and to display the full 3D shape of the
needle in an off-line method. [2] and [3] outline a kinematic
model of needle motion based on the well-known bicycle
model. In this paper, we build on these methods using
particle filtering to solve for the parameters of the bicycle
model in the presence of measurement uncertainty in the
ultrasound images. Particle filters are widely used in signal
processing [4] and image processing [5] [6] to fit parameters
and characterize noise in model based systems.

The primary goal of this paper is to combine a kinematic
model of the brachytherapy needle with an image processing
routine that tracks the needle tip during insertion to build
a robust needle shape estimation system. Our proposed
algorithm predicts the shape of the entire needle based on
the observation of only a portion of the needle with the
assumption that the needle shape can be described in a single
2D plane. Using the needle shape information a clinician
will then be able to determine if the needle tip position, and
subsequently the deposited seed position, will be placed at a
satisfactory location. This allows corrective action to be taken
without withdrawing and fully reinserting the needle and
thereby reducing tissue damage. Additionally, by predicting
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Fig. 2: Original patient image

the needle shape and tip position, the TRUS ultrasound probe
can remain stationary after a pre-defined stopping point, thus
minimizing the effect of TRUS probe movement on needle
shape and final tip displacement. In the future, this needle
tracking and estimation routine will be used to inform a
needle steering control system.

For tracking and prediction the position of the needle
cross-section is segmented out of each of the 2D axial slices,
taken normal to the insertion direction of the of the needle.
The tracked needle cross section and the distance between
consecutive axial slices is incorporated by a particle filter to
update the parameters of a non-holonomic kinematic bicycle
model for each image slice. As the kinematic parameters are
being updated the predicted needle shape is used to augment
the needle tracking routine by determining a likely location
for the position of the needle cross-section in the current
and future axial slices. The error in the predicted needle
cross section location is the primary method through which
the particle filter updates the parameters of the kinematic
model. The kinematic model parameters are updated until a
pre-specified insertion depth and then the kinematic model
is used to predict the final shape of the fully inserted needle.

This paper will be organized as follows, Section II will go
over the needle segmentation and tracking routine. Section
III will cover the kinematic bicycle model of a needle, which
will be used for needle shape prediction. Section IV contains
the implementation of the particle filter that is used to update
parameters of the kinematic model of the needle in real
time. Section V gives the experimental setup to be used for
phantom tissue and clinical∗ images, and outlines the results
of the algorithm.

II. IMAGE PROCESSING
During the clinical and experimental procedures, ultra-

sound images are taken normal to the needle’s insertion
direction; see Fig 1. The method chosen to process the
images is based on the Lucas-Kanade tracking method [7].
Using the results of [8] and [9], an active tracking method
was devised in order to incorporate both the current imaging
data as well as information from the model prediction.

∗Approval for study granted from Alberta Cancer Research Ethics
Committee under reference 25837

Fig. 3: Variance image with selected template patch

The clinical axial images, Fig. 2, are taken exactly 5 mm
apart and the entire image set was captured after the needle
was fully inserted into the prostate. For the experimental
images, the probe was translated along the direction of needle
insertion in order to capture the needle tip cross section at 0.5
mm intervals. Given the assumptions in [2] that the needle
path perfectly follows the tip position as it is inserted, the
two imaging cases return the same information about needle
shape or equivalently needle tip location.

Our algorithm divides the image processing into a pre-
processing phase and a tracking phase. In the pre-processing
phase, the entire image is enhanced in order to increase the
signal-to-noise ratio. The desired signal is the brightness of
the image pixels corresponding to the needle cross section
and the noise is the brightness of the background pixels
representing the surrounding tissue. After pre-processing the
filtered image goes on to the tracking phase. The tracking
phase uses a template patch of pixels around the needle cross
section in the current image slice to determine the location of
the needle cross section in the subsequent image slice. The
region of interest that is searched to find the needle cross
section is informed by the predicted location of the needle
to limit the template matching search area.

Each image Ik is captured at a discrete time step k.
Here we will define the pixel brightness, or intensity, to
be Ik(px, py) at each point px, py in the image. The pre-
processing stage calculates the variance image Vk in order
to increase the brightness of the needle cross section pixels
with respect to the average background pixel brightness. The
formula for intensity of the variance image pixels Vk(px, py)
is given as follows,

Vk(px, py) =
(
Ik(px, py)− Ik

)2
(1)

where Ik is the average pixel intensity of the image. The
intensity of the variance image was normalized to be with 0
to 1 in our implementation by dividing each of the variance
pixels Vk(px, py) by largest value of Vk(px, py) in the
variance image. The result of this operation on Fig 2 is shown
in Fig 3.

The next phase of the image processing routine is to
localize the needle in each variance image. The center point
of the needle cross section will be used as the needle location
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Fig. 4: Nonholonmic bicycle model of needle motion in 3D

in the axial image slice and is referred to as Ick. For the first
axial image slice, at time step k0, a user will manually select
a point Ic0 that corresponds to center of the needle cross
section in that slice. A template patch of pixels It0 is created
around the needle cross section with height h and width w;
Fig 3. This template It is compared to the variance image of
the subsequent axial slice using normalized cross correlation
(NCC) [9]. The best match, with respect to NCC value, is
used to localize the center of the needle cross section, Ick,
in that image. Due to the variation in needle cross section
intensity and appearance across all of the axial slices the
template patch It is updated for each frame and consists of
the values of the variance image around the center of the
needle cross section.

In order to speed up template matching we restrict the
NCC calculations to be within a region of interest of height
2h and width 2w. Nominally the region of interest is centred
around the kinematic model prediction of the needle cross
section location. For the first 10 mm of the needle insertion,
however, the region of interest is centred around the previous
needle cross section center Ick−1. After the needle inserted
past the 10 mm depth the mean value from the particle filter
is used in the kinematic bicycle model to predict the needle
shape. The predicted location of the needle cross section in
the current axial slice is used as the center of the region
of interest. Note that the position of Ick in px, py is scaled
using a predetermined pixel

mm ratio for the x and y axis before
being input into the particle filtering routine, to be described
in the Sec IV.

III. KINEMATIC MODEL

The model to be used in this paper is the kinematic bicycle
model presented in the context of needle modleing in [2]
and [3]. This model approximates the motion of a needle
cutting through tissue as a constant curvature motion that is
dependent on the angle of the bicycles’ front wheel β and
the distance ` between the two bicycle wheels, see Fig 4. For
use in this paper, the parameters of the bicycle model will be
initialized and updated as described in Section IV. Using the
state space formulation of the kinematic bicycle model, the
states of the system are given by Xk|k = [x, y, z, θ, φ]T ,
where x, y and z are the coordinates of the needle tip
at time step k, θ is the angle of the needle tip at time
k, and φ is the rotation angle about the z axis for the
plane that contains the needle deflection. The value of φ
will be considered to be constant throughout the insertion

procedure. The control inputs to the state space system are
given by Uk|k = [α, β]T , where α is the needle insertion
distance along the z direction per time step. We consider the
needle bevel angle β to be alternating between a positive and
negative constant, corresponding to a rotation of the needle
bevel of 180◦ about the z axis. The value of β is the rate of
change of needle tip angle θ per time step.

The state-space equation of the non-holonomic bicycle
model in 3D is given as

Xk+1|k = I5Xk|k +


sin(θ) sin(φ) 0
sin(θ) cos(φ) 0

cos(θ) 0
0 1
0 0

Uk|k (2)

where I5 is the five-by-five identity matrix. The values of
` and β can be used to determine a radius of curvature R
about a center of motion defined in general as xc, yc, zc in
3D space, where R = `

sin(β) . Given the value of φ, we are
able to define a new 2D coordinate system u, v, Fig 5, that
will be used to represent the in-plane motion of the needle
tip. Here u will be the coordinate that represents the in-plane
deflection of the needle shape and v will be parallel to the
insertion direction of the needle, making it equivalent to z
in the general coordinate system.

The particle filter, outlined in Sec IV, requires that the
needle shape from the bicycle model be simulated many
times per frame. In order to reduce the state-space model
into a form that is more computationally efficient we derive
a piece-wise solution to the state space equation. This piece-
wise solution allows us to predict the needle shape based
on the parameters of the bicycle model. The needle shape is
given by tracing the path of the needle tip point P as the
needle is inserted into tissue. The piece-wise nature of the
solution is used to allow simulation of the needle path for
an arbitrary number of rotations. The equation of motion of
the needle tip point P is given by

u = uc(i)±
√

R2 − (v − vc(i))2 (3)

in the u, v coordinate system. Where the values of uc(i) and
vc(i) are the center of rotation for the circular needle motion.
The value i is used to allow for multiple centers of rotation
that correspond to rotating the needle by 180◦ about the v,
or equivalently z axis. The values of uc(i) and vc(i) can be
found through the following formula

uc(i) = ±R× cos(θ) + uturn(i)

vc(i) = ±R× sin(θ) + vturn(i)
(4)

where uturn(i) and vturn(i) are the values of u and v at the
moment when the needle is rotated 180◦. For uc(0) and vc(0)
corresponding to center of rotation at needle insertion, and
before rotation, the values of uturn(0) = 0 and vturn(0) =
0. Note that only a singular value of ±R is used in the
formulation, i.e. either a positive or negative R, and that this
corresponds to an convex or concave curvature of the needle
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Fig. 5: Needle Motion around Center of Rotation in u, v
Plane

which will be solved for in the subsection IV. The position
of the needle tip in the x, y, z coordinate system is

x = cos(φ)× u

y = sin(φ)× v

z = v

(5)

Using this equation we can have then simplified solving for
all of the model parameters into solving for the center of
rotation for each time step k, which will be done through the
use of the previous described image based needle tracking
routine and the particle filter, as will be described in the next
section.

IV. PARTICLE FILTERING

A particle filter will be used to solve for the model parame-
ters in Sec III. Given the low signal-to-noise ratio inherent in
ultrasound imaging, primarily due to poor spatial resolution,
the data returned from the image processing algorithm (see
Sec II) contains significant noise in the measured values of
x and y in each image plane. This noise, or jitter, affects
the ability to predict the values of β and θ in the state-space
bicycle model and has a large impact on the predicted needle
shape. The particle filter uses the piece-wise linear solution
of the bicycle model to compare multiple predictions of the
needle shape to noisy observations of the needle shape from
the image processing routine. The mean value of all of the
particle filter predictions is then used to predict the entire
shape of the needle at each time step k.

The goal of our estimator is to find the parameters of the
model before needle rotation at a specified depth D in the z
axis (or equivalently the v axis). From (5), it is clear that once
we have the value of φ, which we solve for using principal
component analysis, we are able to formulate a method to
fit those parameters on the 2D plane (u, v). We will define
the first point the needle passes through as the origin of the
coordinate system for the (u, v) plane, and therefore u0 = 0
and v0 = 0. Given that the depth of needle rotation is known,
we are able to use (3) and (4) to formulate the following
stochastic model of motion for the path of the needle

u = uc(0)±
√
R2 − (v − vc(0))2 (6)

where

R =
√
(uc(0)2 + vc(0)2) + ω1

θ0 = tan−1

(
vc(0)

uc(0)

)
+ ω2

ω1 = N (0, σ1)

ω2 = N (0, σ2)

(7)

The values of u and v describe the motion of the needle tip
point P in the (u, v) plane. Note that v ≤ D is the depth
of needle rotation, R is the center of circular motion of the
needle, θ0 is the initial value of θ when the needle is first
inserted and ω1 and ω2 are Gaussian noise with zero mean
and standard deviations σ1 and σ2 respectively.

The idea behind particle filtering is to use a large number
of particles, n, in order to estimate the probability density
function of a noise source. A weight is applied to each of the
particles w(n) in order to estimate the output of a function
at a time k in the presence of noise. Thus here we used
particle filtering to find the values of R and θ0 based on
the noisy observations along the needle path at time k. The
mean values of R and θ0 for all of the particles are used to
perform needle path prediction.

As before, k is defined as the time that an image is taken
and we will consider all points k0, the first image in our set,
to kD, the point at time in which the needle is rotated. The
particle filter is updated with every image that is processed
(refer to Sec II) which defines a nominal sample time of 20
Hz. Given that the goal of the filtering is to determine the
parameters for the needle shape we allow the needle to be
inserted by 10 mm, denoted by time k10mm before updating
the particle weights so that some form of curvature can be
detected. This 10 mm section of points also allows for the
value of φ to be calculated through PCA so that the all of the
observed points in (x, y, z) can be transformed into points
p in (u, v). The implementation of our particle filter is as
follows

1) Initialize n particles randomly with each particle con-
taining a pair of values R(n) and θ0(n). A Gaussian
random distribution for the particles shall be used
where R(n) ∼ N (µR, σR) and θ0(n) ∼ N (µθ0 , σθ0),
for user defined values of µR, σR, µθ0 , and σθ0

2) At time step k10mm, choose p equidistant points, with
respect to their insertion depth v, that are in the set
{k0 : k10mm}

3) For each of the n particles determine the predicted
value of u, denoted by û, for the corresponding depth
v for all of the points p

4) For each particle n determine the L1 normed distance
between the predicted value and the actual value,
L1(u) = |u− û|

5) Find the values of R(n) and θ0(n) that have the
minimum L1 norm for each point p

6) Take the mean value of those minimum R(p) and θ0(p)
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Fig. 6: Inital distribution of R and θ0 particles and particle
convergence after 5 iterations
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Fig. 7: Decreasing tip prediction error with respect to depth
of prediction

7) Using a gain factor γ, update all other particles

R(n) = R(n)− γ(R(n)−R(p))

θ0(n) = θ0(n)− γ(θ0(n)− θ0(p))

8) Calculate the mean and standard deviation of R(n) and
θ0(n),these are the new values of values of µR, σR,
µθ0 , and σθ0

9) Remove c particles and replace them with c new
particles distributed according to the new mean and
standard deviation of R(n) and θ0(n)

10) Take the data from the next step k when it is available
and from the set {k0 : k} choose p equidistant points
and return to line 3, if k = kD then terminate returning
the mean values, µR and µθ0

For both the experimental and clinical image sets the
values of n = 500, p = 5, and c = 3 were used. The
Gaussian distributions for the intial randomization of the
particles were chosen to be R(n) ∼ N (1500, 600) and
θ0(n) ∼ N (0, 5). For this algorithm, we have based our
weighting updating methodology on the work of [6] such that
we avoid calculating the a priori and a posteriori probability
distributions of ω1 and ω2 in order to update the particle
weights. Instead, we modify the distributions of R(n) ∼
N (µR, σR) and θ0(n) ∼ N (µθ0 , σθ0) directly from needle
shape observation. One of the particular advantages to this
method is that by calculating the means, µR and µθ0 , and
standard deviations, σR and σθ0 , of our particle set we can
evaluate a confidence in our prediction in that the smaller
the standard deviation the closer to an ideal value the mean
is. Figure 6 shows the convergence of the filter particles at 5
iterations after k10mm, Fig 7 shows the decreasing error of
the tip prediction as the filter is iterated from k10mm to the
rotation depth kD = 80mm.

V. RESULTS
The ultrasound used for phantom tissue was an Ultrasonix

Touch with a 4DL14-5/38 Linear 4D transducer (Ultrasonix
Corp, Richmond, BC, Canada). The clinical ultrasound used
for the intra-procedure scans is a Sonoline Adara TRUS scan-
ner with an Endo PII probe (Siemens Medical Solutions USA
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Fig. 8: Needle Shape Prediction vs Acutal Needle Shape for
Needle Rotated at 60 mm in Beef Phantom

Inc., Malvern, PA, USA). For both the clinical procedure and
the phantom tissue insertions the needles used were 18-gauge
200 mm prostate seeding needles. (Eckert & Zielger BEBIG
GmbH, Berlin, Germany).

The ex-vivo tissue phantom was created using beef
chuck encased in gelatin. Beef was used to create a non-
homogeneous tissue phantom that more closely represents
the in-vivo human tissue in both mechanical properties as
well as ultrasound imaging characteristics.

The first set of results corresponds to the validation of
the particle filtering routine and model after a pre-defined
rotation depth (which was not captured in the clinical data) to
this end, the needle was inserted into the phantom tissue and
rotated at a specified depth. Fig 8 shows the measured needle
points and needle shape prediction for 6 needles, which were
rotated at a depths of 60 mm and 80 mm.

The second set of results corresponds to the validation of
the image processing routine along with particle filtering in
clinical data. 6 insertions were used to test that the image
processing in particular was successful in tracking the needle
position in TRUS images as well as to test the ability for
the model to perform successful prediction in real human
tissue. The same number of particles and noise parameters
for particle initialization was used for both set of results.
Being as there was no rotation in the clinical data set the
first 35 mm on insertion data was used to predict the entire
needle shape.

Two metrics were used to compare the accuracy of the
prediction. The first metric was tip error, the difference
between the final predicted tip displacement û and the
measured tip displacement in u, where TipError = |u− û|.
The second metric to evaluate the shape prediction accuracy
is the shape error that compares the absolute areas of the
measured and predicted needle shapes in mm 2. The shape
error is calculated using the following formula

ShapeError =

∫
|u− û|dv (8)
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Fig. 9: Needle Shape Prediction vs Acutal Needle Shape for
Clincal Image Dataset

TABLE I: Needle Path Prediction Accuracy

Data Set Tip Prediction Shape Prediction
Error (mm) Error (mm‘2)

Beef D60 0.497 ± 0.38 105.0 ± 15.1
Beef D80 0.125 ± 0.02 18.4 ± 5.0
Patient Data 0.44 ± 0.15 19.1 ± 9.6

Using our two metrics of prediction accuracy, in Table I
we can see that the more axial image information the particle
filter incorporates, corresponding to a larger rotation depth,
the more accurate the needle shape prediction. The needle
shape errors in the clinical data show that the kinematic
model and particle filtering routine work as well on real
human tissue as they do on phantom tissue.

The image processing and prediction routines were both
coded in Matlab 2015b (The Mathworks Inc, Natwick, MA,
USA) and ran on a single core of a Intel Core i7-3930K
running at 3.20 GHz (Intel Corporation, Santa Clara, CA,
USA). The values of Table II show that the image segmenta-
tion and particle filter update routines run in real-time in both
the ex-vivo and in-vivo datasets. The peak total processing
time, which corresponded to clinical image set, was 9.5 ms.
This peak value is well under the 50 ms total time available
for image processing and particle filtering, corresponding to
the 20 Hz image update frequency. As can be seen from
the combined results, our proposed image guided particle
filtering routine was able to successfully predict needle shape

TABLE II: Image segmentation and particle filtering update
time

Image Particle Filter Total
Data Set Processing Time Update Time Time

(ms/frame) (ms/frame) (ms/frame)

Beef D60 3.1 ± 0.2 2.8 ± 0.3 5.9 ± 0.4
Beef D80 3.1 ± 0.2 2.6 ± 0.4 5.7 ± 0.4

Patient Data 4.1 ± 0.3 2.4 ± 0.3 6.5 ± 0.3

of a needle inserted into either phantom or ex-vivo tissue in
real-time.

VI. CONCLUSION

In this paper, we have shown that combining a needle-
segmentation routine with a kinematic bicycle model allows
for the entire needle shape prediction based on the only on
the observation of a portion of the needle as it is inserted.
This routine works equally well on ex-vivo beef based
phantom tissue and in-vivo clinical images. Normalized cross
correlation is used in a template matching route to capture
needle position information in axial image slices. This needle
position information is input into a particle filtering routine
in order to extract the parameters needed to predict the
needle shape with a kinematic bicycle model. Both the final
needle tip position and needle shape are compared with the
measured needle shape to validate the prediction. In general
the needle tip position can be predicted with an average error
of less than 0.5 mm in both phantom and ex-vivo tissue.
This needle shape prediction is also used on-line to augment
the needle segmentation process by defining the center of
a region of interest for the template matching routine. In
future this work will be used to inform a needle steering
control routine in order to reduce or remove the needle tip
deflection at a desired depth or to inform a surgeon during the
brachytherapy procedure about the final shape of the needle
before it is fully inserted.
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