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Abstract—The performance of needle-based interventions
depends on the accuracy of needle tip positioning. Here, a
novel needle steering strategy is proposed that enhances
accuracy of needle steering. In our approach the surgeon is in
charge of needle insertion to ensure the safety of operation,
while the needle tip bevel location is robotically controlled to
minimize the targeting error. The system has two main
components: (1) a real-time predictor for estimating future
needle deflection as it is steered inside soft tissue, and (2) an
online motion planner that calculates control decisions and
steers the needle toward the target by iterative optimization
of the needle deflection predictions. The predictor uses the
ultrasound-based curvature information to estimate the
needle deflection. Given the specification of anatomical
obstacles and a target from preoperative images, the motion
planner uses the deflection predictions to estimate control
actions, i.e., the depth(s) at which the needle should be
rotated to reach the target. Ex-vivo needle insertions are
performed with and without obstacle to validate our
approach. The results demonstrate the needle steering
strategy guides the needle to the targets with a maximum
error of 1.22 mm.

Keywords—Medical robotics, Needle steering, Motion plan-

ning, Homotopy analysis method.

INTRODUCTION

Robotics-assisted needle adjustment can be used to
steer the needle inside the tissue and enhance accuracy
of percutaneous needle insertions. The term ‘‘needle
steering’’ implies control of the needle tip deflection
and changing the direction of the needle tip trajectory
as the needle is being inserted by means of inputs such
as needle insertion velocity, lateral manipulation of the

needle base, or axial rotation of the beveled-tip needle3

(see Fig. 1).
Modeling of needle-tissue interaction makes it pos-

sible to steer flexible needles from outside the body to
reach specified targets inside the body. Prediction of
the needle deflection in soft tissue has been the topic of
significant research efforts.8,14,22,25 Webster et al.
developed a nonholonomic kinematics-based model
for steering flexible bevel-tipped needles.25 The model
assumes that the needle tip trajectory has a constant
radius of curvature. Goksel et al. developed three dif-
ferent needle models based on beam theories.5 Yan
et al. modelled needle interaction with the tissue as a
beam connected to a series of springs.26 Misra et al.
used an energy-based formulation for a beam that is in
contact with a nonlinear hyperplastic tissue to simulate
needle steering.14 From our group, Khadem et al. used
a dynamic beam theory to develop a model relating
needle tip position to insertion velocity.8

The nonholonomic kinematic model has been
widely used for developing needle steering strategies
and controlling needle deflection. Roesthuis et al.
modified the model by accounting for the tissue cutting
angle and used the model for control of the needle
deflection.19 Rucker et al. proposed a sliding mode
control method based on the kinematics-based
model.21 Employing the well-known kinematics-based
model, researchers have shown that the curvature of
the needle path can be controlled through duty-cycled
spinning of the needle during insertion.12 Using duty-
cycling, the needle deflection curvature is related to the
insertion velocity.16 Vrooijink et al. developed a needle
steering system that uses 2D ultrasound images to
estimate the needle pose and an RRT motion planner
that computes a feasible needle path toward the target
based on the needle pose estimation.23 Khadem et al.
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used the mechanics-based model and developed an
image-guided model predictive controller for 2D nee-
dle steering.7 Moreira et al. developed an experimental
model of needle curvature as a function of tissue
stiffness by fitting an exponential curve to experimental
data. The model was capable of simulating non-con-
stant deflection curvature and was used for fully ro-
botic needle insertion.15

The performance of model-based controllers highly
relies on accurate models for precise needle position
prediction. The widely used kinematic model assumes
that as the needle is inserted, it moves on a constant
curvature path, which is not always the case.13 Previ-
ous studies have shown that when the kinematic model
is applied to path planning and control in soft tissues,
there are non-negligible deviations between the model
and experimental data due to tissue inhomogeneity or
uncertainty in the nominal values of the model
parameters.18 Also, the needle tip deflection depends
on the insertion velocity. Thus, the accuracy of the
kinematics-based model, identified for a fixed insertion
velocity, decreases as the insertion velocity is increased.
Also, all the previous studies have only considered the
fully robotic needle insertion.1,7,11,16,23 In fully robotic
needle steering the goal is to calculate a needle steering
control input (mainly needle axial rotation) assuming
the rest of the inputs are fixed at known values such
that needle targeting accuracy is improved. A possible
intermediate step between manual and fully-robotic
insertion is semi-manual needle insertion, in which
automatic robot-assisted adjustments are performed to
one of the control inputs while other inputs are directly
applied by the surgeon. For instance, the surgeon is in
charge of needle insertion in the interest of ensuring the
safety of the operation and to maintain continuous
engagement, while the needle tip bevel location is
controlled robotically.

Objective and Contribution

In this paper, we propose a novel semi-automated
strategy for steering needles in soft tissue, which can be
used to target a specific point and maneuver the needle
tip around an obstacle. Other contributions of this
paper include: (1) an adaptive real-time needle deflec-
tion predictor developed using the homotopy analysis
method (HAM). The predictor accounts for 180� nee-
dle axial rotations and changes in the needle deflection
radius of curvature due to factors such as tissue
inhomogeneity and varying insertion velocity. (2) A
novel online motion planner that is informed by the
predictions of the HAM-based predictor and auto-
matically rotates the needle while the needle is manu-
ally inserted to reach the desired target. The planner is
also used to maneuver the needle tip around an
obstacle, which extends the use of needle-based inter-
ventions to deeper or more difficult-to-reach targets.

MATERIALS AND METHODS

In this section, the details of the proposed semi-
automated needle steering strategy are presented. This
includes the derivation of the equations for the HAM-
based needle deflection predictor, the method pro-
posed for ensuring rapid convergence of the predic-
tions, and the online needle motion planner for
steering needle in soft tissue.

HAM-Based Needle Deflection Prediction

HAM is a mathematical technique to solve nonlin-
ear ordinary/partial differential equations.10 This
method is based on the concept of homotopy, a fun-
damental concept in topology and differential geome-
try. A homotopy describes a continuous variation or

FIGURE 1. (a) A schematic of needle insertion in brachytherapy. The surgeon inserts long flexible needles through the patient’s
perineum in order to deliver radioactive seeds within the prostate gland. The uneven distribution of forces at the asymmetric
beveled tip of the needle causes the needle to deflect from a straight path during the insertion. (b) A schematic of needle and inputs
used to control needle deflection including needle insertion velocity, lateral manipulation of the needle base, tissue manipulation,
and changing the orientation of the beveled tip by axially rotating the needle.
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deformation. For instance, a circle can be continuously
deformed into an ellipse. Such a deformation is called a
homotopy between the two functions describing the
circle and the ellipse. We will use the concept of HAM
to estimate the continuous deformation of needle as it
is being inserted into the tissue.

First, we assume that the needle curvature belongs
to a certain homotopy. Next, we develop the equations
governing the deformation of the homotopy. Finally,
real-time visual feedback from the ultrasound images
are used to select the best curve from the homotopy
and use that to predict the needle deflections in future
steps. A brief introduction to the HAM is presented in
the following.

Let us consider a nonlinear differential equation

N ½yðxÞ� ¼ fðxÞ;B½y; y0� ¼ 0 ð1Þ

N is a nonlinear operator that represents a nonlinear
equation, x denotes the independent variable, prime
denotes differentiation with respect to x, yðxÞ is an
unknown function, fðxÞ is a known analytic function,
and B is a boundary operator defining the boundary
conditions. By means of the homotopy method one
can construct the so-called zero-order deformation
equation as

ð1� qÞL½yðxÞ � y0ðxÞ� ¼ c0q N ½yðxÞ� � fðxÞ½ � ð2Þ

where q 2 ½0; 1� is the homotopy parameter, c0 6¼ 0 is a
convergence-control parameter, L is an auxiliary linear
operator, and y0ðxÞ is the initial guess of yðxÞ. One has
great freedom to choose the auxiliary linear operator L
in HAM.9 From (2), we have

yðxÞ ¼ y0ðxÞ when q ¼ 0

N½yðxÞ� ¼ fðxÞ when q ¼ 1
ð3Þ

Thus, as q increases from 0 to 1, the homotopy con-
tinuously deforms from the initial guess to the solution
of the original nonlinear equation in (1). So, the
solution yðxÞ depends on the homotopy parameter and
can be expressed more accurately as yðx; qÞ. Expanding
yðx; qÞ using Maclaurin series with respect to q, one
has

yðx; qÞ ¼ y0ðxÞ þ
Xþ1

n¼1

ynðxÞqn ð4Þ

where

ynðxÞ ¼ Dn½yðx; qÞ� ¼
1

n!

@nyðx; qÞ
@qn

����
q¼0

ð5Þ

Dn½�� is called the nth-order homotopy derivative
operator. The series in (4) converges at q ¼ 1. Then we
have the mth-order homotopy-approximation of the
solution to the nonlinear equation as

ŷðxÞ � y0ðxÞ þ
Xm

n¼1

ynðxÞ ð6Þ

In order to calculate ynðxÞ (n ¼ 1; . . . ;m) in (6), we
differentiate (4) n times with respect to q. Then divid-
ing by n! and setting q ¼ 0, we get the nth-order
deformation equation

L½ynðxÞ � vnyn�1ðxÞ� ¼ c0Dn�1 N ½yðxÞ� þ ð1� vnÞfðxÞ½ �
ð7Þ

where

vnðxÞ ¼
0; if n � 1
1; if n>1

�
ð8Þ

ynðx; tÞ (for n � 1) in (7) is linear with linear
boundary conditions that come from the original
problem and can be easily solved in real-time. Using
(7) one can successively obtain homotopy approxi-
mation of the solution of the nonlinear differential
equation in (1).

Now we use the HAM for predicting needle
deflection. Let us assume j is the signed curvature of
the needle tip trajectory and x is the insertion depth. If
the needle deflection is given in Cartesian coordinates
as yðxÞ, then from basic geometry we have

j ¼ y00ðxÞ
ð1þ y02ðxÞÞ

3
2

ð9Þ

During insertions, the ultrasound probe acquires
transverse images of the needle tip (see Fig. 1a). We
use the method presented by Wain et al. to estimate
the needle tip trajectory and its curvature (j) from the
ultrasound images.24 The sign of j corresponds to the
needle tip orientation and changes after each 180�
axial rotation of the needle. Having an approximation
of the curvature, using (9) we can define the general
nth-order deformation equation governing the defor-
mation of the needle and use the HAM method to
calculate the needle tip deflection. We can rewrite (9)
as

N½yðxÞ� : ¼ y002ðxÞ � sgnðjÞj2½3y02ðxÞ þ 3y04ðxÞ
þ y06ðxÞ� ¼ sgnðjÞj2

ð10Þ

subject to the initial conditions

yð0Þ ¼ Y0; y0ð0Þ ¼ Y0
0 ð11Þ

where sgnð�Þ is the sign function. Y0 is the initial
deflection of the needle tip and Y0

0 is the first derivative

of the needle deflection, both evaluated at x ¼ 0. Y0
0

corresponds to the initial angle of the needle tip with
respect to the insertion axis. Y0 is equal to zero at the

Semi-Automated Needle Steering in Biological Tissue



beginning of the insertion. However, after each needle
rotation it is updated to the needle tip deflection
immediately prior to rotation. The same approach is
used for Y0

0.

To solve (10) and (11) by means of the homotopy
analysis method, we choose the initial approximation
of the needle deflection using the kinematics model of
needle steering as:25

y0ðxÞ ¼ r�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � x2

p
ð12Þ

where r ¼ 1=j is an initial approximation of the needle
radius of curvature. Expanding (12) using binomial
series gives

y0ðxÞ ¼
x2

2r
þ x4

8r3
þ x6

16r5
þ � � � ð13Þ

Neglecting terms of orders higher than three and
modifying (13) based on the initial conditions in (11),
we obtain the initial approximation of deflection
(y0ðxÞ) as

y0ðxÞ ¼
j
2
x2 þ Y0

0xþ Y0 ð14Þ

Note that the above equation satisfies the initial con-
ditions in (11) and gives a linear approximation of the
needle deflection based on the kinematics-based model
of needle steering.

Next, we choose the auxiliary linear operator as
L½yðxÞ� ¼ y00ðxÞ. Inserting (10), (14) into (7), we con-
struct the zeroth-order deformation equation as

y00nðxÞ � vny
00
n�1ðxÞ ¼ c0Dn�1½y002ðxÞ � sgnðjÞj2ðxÞ

3y02 þ 3y04 þ y06
� �

� sgnðjÞj2ðxÞð1� vnÞ�
ð15Þ

subject to initial conditions

ynð0Þ ¼ 0; y0nð0Þ ¼ 0 ð16Þ

In (15), n determines the order of approximation.
Solving (15), we can successively obtain a homotopy
approximation of the needle deflection. The first three
approximations are

y0ðxÞ ¼
j
2
x2 þ Y0

0xþ Y0;

y001ðxÞ ¼ c0 y0020 � j2 3y020 þ 3y040 þ y060 þ 1
� �� �

;

y002ðxÞ ¼ y001 þ c0 2y000y
00
1 � j2 6y00y

0
1 þ 12y030 y

0
1 þ 6y050 y

0� �� �

ð17Þ

Note that based on (16), the integration constants for
solving the above equations are zero. Following the
above approach, the approximate nth-order solution
of the deformation equation for n � 1 is

ynðxÞ ¼
Z x

0

Z x

0

vny
00
n�1ðxÞ þ c0

Xn�1

k¼0

y00ky
00
n�k�1

(

þ c0sgnðjÞj2½ðvn � 1Þ � 3
Xn�1

k¼0

y0ky
0
n�k�1

� 3
Xn�1

k¼0

y0n�k�1

Xk

m¼0

y0k�m

Xm

j¼0

y0m�jy
0
j

�
Xn�1

k¼0

y0n�k�1

Xk

m¼0

y0k�m

Xm

j¼0

y0m�j

Xj

p¼0

y0j�p

Xp

l¼0

y0p�ly
0
l�
)
dx

ð18Þ

From (17) we infer that the predictor starts by pre-
dicting the needle deflection using the linearized kine-
matics-based model (our initial approximation). Then,
it implements the approximate curvature acquired
from the ultrasound images (j) to enhance the needle
deflection estimation. The proposed adaptive predictor
enhances the needle deflection prediction by improving
upon a function from the homotopy defined by the
zero-order deformation equation in (15) based on
ultrasound image feedback. The final needle deflection
prediction is robust against noise in the ultrasound-
based deflection feedback because it belongs to a
homotopy group their deformation is restricted by the
zeroth-order deformation equation. Another advan-
tage of HAM is that its performance and convergence
is independent of any small/large scale parameters;9

note that as the straight needle deflects during the
insertion, its radius of curvature varies from 1 to a
finite value. The HAM-based method is independent of
the size of the nonlinear equation parameters.

All the nth-order deformation equations given by
(18) are linear and easy to solve. Also, the only
parameters of the predictor are the initial estimate of
curvature of the needle (j) and the initial angle of the
needle (Y0ð0Þ), which can be approximated using a few
trial needle insertions. However, experimental results
will show that the predictor’s performance is robust
against uncertainty in the initial value of r.

The convergence control parameter (c0) in (18)
guarantees convergence of the approximations to the
original solution (10). In the next section, we quantify
the performance of the proposed needle deflection
predictor and propose a semi-analytical approach to
calculate the optimal convergence-control parameter
(c0) that ensures rapid convergence of the deflection
predictions to the actual value.

Rapid Convergence of Predictions

In the following, we use a semi-analytic method to
estimate the optimal convergence-control parameter

KHADEM et al.



(c0). In order to choose a proper value of c0, we use the
mean squared residual defined by

Emðc0Þ ¼
1

Nþ 1

XN

k¼0

½Dmðxk; c0Þ�2 ð19Þ

where N is an integer, mðxk; c0Þ is the residual of the
governing nonlinear equation given by

Dmðxk; c0Þ ¼ ŷ002ðxÞ � j2ð3ŷ02ðxÞ þ 3ŷ04ðxÞ þ ŷ06ðxÞ þ 1Þ
ð20Þ

and ŷ is the homotopy approximation given by (6).
Emðc0Þ can be used as a measure of accuracy of the

proposed predictor.
Figure 2a shows the experimental needle deflection

during an insertion with the constant velocity of
5 mm s21, compared with the results of the homotopy-
based predictor for zero, 2nd, 4th, 8th, and 10th order
approximation. The initial radius of curvature for
predicting needle deflection (r) was arbitrary selected
to be 500 mm. Also, the convergence-control param-
eter (c0) is 2250. Emðc0Þ of approximation are shown

in Fig. 2b. Based on the results, the model prediction
converges to the actual value as the order of approxi-
mation increases. In order to investigate the effect of
c0, we plot Emðc0Þ with respect to c0 for the 3rd, 5th,
8th, and 10th order approximations. As can be seen in
Fig. 2c the predictions are convergent for any c0
between 2300 and 2150. This distance is typically
called the radius of convergence.

To further investigate the effect of c0 and estimate
the radius of convergence, we simulate a scenario in
which the radius of curvature is constant and the
kinematics-based model accurately predicts the needle
deflection. In this case, the needle tip deflection is given
by (12). The comparison of the exact needle tip
deflection at a depth of 140 mm with the 10th-order
approximations for different values of c0 is shown in
Fig. 2d. The results show that for a large radius of
curvature, high values of jc0j are non-convergent. Also,
the convergence radius of the needle tip deflection
becomes smaller as the needle radius of curvature de-
creases (or the curvature j increases). This motivates
us to define c0 as

FIGURE 2. Needle deflection during an insertion with a constant velocity of 5 mm s21. (a) Comparison of homotopy-based
predictions with c0 ¼ �250 for zero, 2nd, 4th, 8th, and 10th order approximation with experimental data. (b) Mean residual error
with respect to the order of approximation for c0 ¼ �250. 500 data points are used to estimate Em . (c) Mean residual error for the
3rd, 5th, 8th, and 10th order approximations with respect to the convergence-control parameter. (d) Comparison of exact solution
for the final needle tip deflection at a depth of 140 mm under the assumption of constant radius of curvature with the 10-th order
homotopy approximation for different values of c0.
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c�0 ¼ � a

j
ð21Þ

where c�0 is the optimal convergence-control parameter,
and based on the results of Figs. 2c and 2d, a is a
constant between 0.4 and 0.6. We can set the value of
jc�0j to be smaller than 300 to ensure convergence at

high radii of curvature.
Equation (21) can be understood more clearly by

comparing the 1st-order approximation of the predic-
tor with the kinematics-based model given in (14).
Once again, considering that the radius of curvature is
constant, from (13) we have the exact needle defor-
mation and from (17) we find the 1st-order approxi-
mation of needle deflection

yðxÞ ¼ x2

2r
þ x4

8r3
þ x6

16r5
þ � � � ;

ŷðxÞ ¼ y0ðxÞ þ y1ðxÞ ¼
1

2r
x2 þ Y0

0xþ Y0

þ c0
x4

4r4
þ x6

10r6
þ x8

48r8

	 

ð22Þ

Using (22) and comparing the 1st-order approxi-
mation of needle deflection (ŷðxÞ) with exact needle
deflection (yðxÞ), it can be inferred that the optimal c0
that ensures rapid convergence of the deflection pre-
dictions, should be a function of r or 1=j as described
by (21). Using (21), we can ensure rapid convergence of
the needle deflection predictions to the actual needle
deflection.

Online Motion Planner

In the proposed needle steering scheme, the sur-
geon inserts the needle while the robot axially rotates
the needle at appropriate depths to minimize target-

ing error. In most needle-based interventions such as
prostate brachytherapy, the target is typically defined
on a straight line starting at the entry point in tissue
and up to a certain depth. A grid template placed
outside the tissue is used to position the needle in a
fixed insertion plane that contains the target. Also,
the surgeon can use other control inputs such as
insertion velocity, lateral manipulation of the needle
base, and tissue palpation to compensate for out of
plane needle deflection. Hence, there is no need to
generate 3D trajectories and we will limit the motion
planner to the 2D insertion plane. Figure 3 shows a
block diagram of our closed-loop control algorithm
for needle steering.

The motion planner uses a graph-based search
algorithm known as the A� algorithm. Given the inputs
specified previously (e.g., target and obstacle loca-
tions), the motion planner computes a large number of
plans using the adaptive HAM-based deflection pre-
dictor and selects the best plan. The output of the
planner is the set of needle 180� rotation depth(s) that
will steer the needle tip to the target while avoiding
obstacles.

To design the online motion planner we present the
needle steering problem in the needle configuration
space, C. Assuming the needle moves in the 2D inser-
tion plane, the needle workspace is a Euclidean space

W ¼ R2. Let O1; . . . ;Op be the obstacles in the work-

space. It is assumed that both the geometry and posi-
tion of the obstacles are known from the preoperative
images. The motion planning problem is as follows:
given an initial and a target position of the needle tip in
W, find (if it exists) a path, i.e., a sequence of needle
axial rotations, that steers the needle between the ini-
tial and target positions while avoiding collisions with
the obstacles O1; � � � ;Op.

FIGURE 3. Overview of needle steering algorithm, which relies on an online motion planner for closed-loop steering of the needle
to the desired target while avoiding anatomical obstacles. As the surgeon pushes the needle in soft tissue using a robotic hand-
held instrument, the instrument automatically rotates the needle axially at appropriate depths in order to reach a desired target.
The desired target trajectory is obtained using the pre-operative images. The control actions, i.e., rotation depths, are calculated
iteratively by the motion planner, which is informed by the current deflection of the needle tip calculated in real-time from the
ultrasound images.
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We refer to the space of possible control actions
(i.e., depth(s) of needle rotation(s)), whose values
identify the configuration of the needle tip in the
workspace, as the configuration space, C. Considering
symmetry of rotation depths (e.g., rotations at depths
of 40 and 80 mm are equal to rotations at 80 and
40 mm) the configuration space is an n-dimensional
simplex, where n is the number of axial rotations. For
instance, if the maximum allowable number of rota-
tions is 3, the configuration space forms a tetrahedron.

Figures 4a and 4b show the workspace and the
configuration space for maximum of 3 rotations,
respectively.

The motion planner searches through the configu-
ration space to find a sequence of control actions that
steers the needle toward the target position while
avoiding collisions. In order to solve the planning
problem we decompose the configuration space into
several disjoint cells. Assuming the distance between
two consecutive rotations is at least 5 mm we can
decompose C into several smaller simplices shown in
Fig. 4b. This is a valid assumption since two close 180�
axial rotations are equal to one full rotation of the
needle tip and this action has no effect on needle
deflection.

In order to characterize paths that avoid collisions
between needle tip and obstacles, it is necessary to
build the image of the obstacles in the configuration
space. Assuming the obstacles are closed in W, we
define Cobs as the union of all subsets of the configu-
ration space that cause a collision. The free configu-
ration is the subset of C that does not cause a collision
and is given by Cfree ¼ C � Cobs. We build the Cobs
through an exhaustive offline search. To find the Cobs
we estimate the needle trajectory using the HAM-
based predictor at every node in the decomposed
configuration space. The boundary of Cobs is the locus
of configurations that put the needle in contact with an
obstacle.

Figure 4d shows the image of a circular obstacle in
C. The obstacle is 4 mm in diameter and is placed at
the depth of 70 mm between the initial entry point in
the tissue and the target at the depth of 140 mm. The
red area corresponds to a collision and the yellow area
is the area in the proximity of the obstacle and corre-
sponds to the needle tip passing the obstacle within a
minimum distance of less than 1 mm. The obstacle
proximity area is considered to be part of Cobs in order
to compensate for unpredictable motion of the obsta-
cle during the insertion.

FIGURE 4. Graphical representation of (a) needle workspace and (b) needle configuration space for a maximum of 3 axial
rotations and a maximum insertion depth of 140 mm. A sequence of rotations at depths of 20, 70, and 110 mm in the workspace
corresponds to a single point in the needle configuration space. Representative results of motion planning in the configuration
space (c) without an obstacle and (d) with a 4-mm circular obstacle positioned at the depth of 70 mm between the needle entry
point in the tissue and the target.
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Assuming that the initial guess for a configuration
in Cobs is Ns and the goal configuration that steers the
needle toward the target is Ng, planning a collision free

motion for the needle means generating a safe path
between Ns and Ng in Cfree. For this purpose we use a

graph-based search algorithm known as A�.4 A� visits
the nodes of the decomposed configuration space
iteratively starting from Ns, storing only the minimum
paths from Ns to the visited nodes in a tree T . The
algorithm employs a cost function FðNiÞ for each vis-
ited node during the search.

FðNiÞ ¼ GðNiÞ þHðNiÞ ð23Þ

where

GðNiÞ ¼ K dimðNiÞ;
HðNiÞ ¼ y� ytg

�� �� ð24Þ

HðNiÞ is the targeting cost function and is the Eu-
clidean distance between the final needle tip position y
and the target position ytg in the needle workspace,

calculated online using the HAM-based predictions
during the iterations. GðNiÞ is the cost of the path from
Nði�1Þ to Ni. G is equal to a constant, K, multiplied by

the number of rotations, dim(Ni). G increases as the
number of rotations increases. One of the goals of the
needle steering algorithm is to minimize the patient
operative trauma (i.e., tissue damage) by limiting the
number of needle axial rotations. The algorithm ad-
vances the tree toward the nodes that contain fewer
rotations, i.e., the nodes on the faces, edges, or vertices
of the n-dimensional simplex.

A pseudocode description of the motion planner
algorithm is given in Table 1. In the algorithm we
maintain two lists: OPEN and CLOSED. OPEN con-
sists of nodes that have been visited but not expanded,
meaning that the neighboring nodes have not been
explored yet. This is the list of pending tasks.
CLOSED consists of nodes that have been visited and
expanded (neighboring nodes have been explored al-
ready and included in the open list, if this was the
case). The ADJ ðNgÞ function in algorithm finds the

neighboring nodes that are directly connected to node
Ni in C:

The motion planner accepts the starting node Ns,
the minimum allowable cost function Fmin, and the
maximum run time s as inputs and calculates the target
node Ng corresponding to a sequence of rotation

TABLE 1. A pseudocode description of the motion planner algorithm.
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depths with an optimal cost function as the output.
Results of the simulation of the motion planner with
and without an obstacle are shown in Figs. 4c and 4d.
The goal is to steer the needle from an initial depth of 0
toward a target placed at a depth of 140 mm. In the
simulations, the maximum allowable number of rota-
tions is 3 and we used the HAM-based predictor with
constant curvature j ¼ 0:002 mm. The starting point is
at 0 depth and the run time is set to 1 s. The final
targeting error for simulations with and without the
obstacle is 0.1 mm and 0.15 mm, respectively. The
optimal rotation depths are 25, 35, and 60 mm for
insertion without the obstacle and 45 and 125 mm for
insertion in the presence of the obstacle.

RESULTS

Several needle insertion experiments are performed
to verify the needle deflection predictor’s accuracy. In
order to perform needle insertion into soft tissue, the
setup shown in Fig. 5 is used. During the insertions,
the ultrasound probe follows the needle tip and ac-
quires transverse images of the needle tip in ex vivo
tissue. The method presented by Waine et al.24 is used
to estimate the needle deflection and radius of curva-

ture from the axial ultrasound images. The estimated
radius of curvature is used in the HAM-based predic-
tor to calculate needle deflection in future steps. Two
types of soft tissue are used in the experiments—ho-
mogeneous plastisol tissue and heterogeneous ex vivo
bovine tissue.

In the experiments an 18-gauge brachytherapy
needle is inserted to a total depth of 130 mm in the soft
tissue with and without axial rotation at different
insertion velocities. Figure 6 shows the representative
results for needle deflection in bovine tissue compared
to the initial prediction using the kinematics-based
model and the predictor estimations updated online.
The results are shown for three scenarios: insertions
with constant velocities of 5 (Fig. 6a) and 30 mm s21

(Fig. 6b) without axial rotation, and insertion at a
velocity of 5 mm s21 with rotation at a depth of
40 mm (Fig. 6c).

In order to identify the kinematics-based model
parameters, the needle is inserted in soft tissue at 10
different insertion velocities between 5 and 50 mm s21,
which is in the range of clinical needle insertions.17

Later the method proposed by Webster et al.25 is used
to estimate the mean, maximum, and minimum cur-
vature (j) and initial insertion angle (Y0ð0Þ). These
values are reported in Table 2. The mean curvature
and initial angle are used for initial prediction (dashed
line in Fig. 6).

Table 3 compares the experimental and model pre-
dictions of the tip deflection values. According to the
results given in Table 3 and shown in Figs. 6a, 6b, and
6c, the adaptive needle deflection predictor is more
accurate than the kinematics-based model. The kine-
matics-based model’s accuracy decreases as insertion
velocity is increased. This is mainly due to the fact that
the model considers a constant, velocity-independent
radius of curvature for the needle tip trajectory and
neglects the effects of tissue in-homogeneity, friction
along the needle shaft, and velocity-dependent cutting
force on tip deflection.

However, it is evident that the adaptive closed-loop
predictor is more accurate because it implements the
real-time image-based feedback of the needle curvature
to compensate for unpredicted deviations from the
initial prediction. In order to compare the models more
precisely, the kinematics-based model prediction is
compared with the predictions of the HAM-based
predictor informed by the partial feedback of the
needle deflection. For instance, needle is inserted
40 mm in the tissue and the feedback of needle
deflection at the depth of 40 mm is used to predict
needle deflection up to the depth of 140 mm.

Figures 6d and 6e show the error of the homotopy-
based predictions for different prediction horizons. In
the experiments the needle is inserted to a total depth

FIGURE 5. The needle steering assistant for semi-automated
needle insertion.20 As the surgeon pushes the device and the
needle, the device automatically rotates the needle axially at
appropriate positions in order to reach a desired target. The
surgeon can also control needle rotation manually using the
control console. The probe of the ultrasound machine (So-
nixTouch, Ultrasonix, BC, Canada) is automatically moved to
follow surgeon’s hand and provide images of the needle tip. A
standard 18-gauge brachytherapy needle (Eckert & Ziegler
BEBIG Inc., Oxford, CT, USA). Plastisol-based and ex vivo
bovine tissue used in the experiments. The plastisol tissue is
made of 80% (by volume) liquid plastic and 20% plastic soft-
ener (M-F Manufacturing Co., USA). The stiffness of the
plastisol tissue, estimated through indentation tests, is
35 kPa. The elasticity of the synthetic tissue is similar to what
is found in animal tissue.2 Bovine tissue is embedded in ge-
latin to ensure good acoustic contact between the ultrasound
probe and the tissue and reduce the noise in the ultrasound
images.
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of 140 mm. Therefore, a prediction horizon of 100 mm
corresponds to updating the model up to a depth of
40 mmand then using it to predict needle deflection over
the next 100 mm. A prediction horizon of 140 mm
corresponds to the offline prediction using the kine-
matics-based model. It is evident that prediction accu-
racy decreases as the prediction horizon increases. Note
that we are using the optimal convergence-control
parameter calculated previously which ensures conver-
gence to the ultrasound-based estimated curvature and
because the predictor uses the kinematics-based model
for initial prediction, themodel error is guaranteed to be
less than the kinematics-based model for any prediction
horizon. The maximum RMSE is 1.3 mm correspond-
ing to the final tip prediction error of 1.05 mm.

We performed several experiments to evaluate the
performance of the online motion planner. The needle is
inserted by hand while the motion planner controls the
needle axial rotation. The maximum run time for the
planner is set to 1 s and themaximum allowable number
of rotations during each run is set to 3. The total depth of

insertion is 140 mm, which is in the range of clinical
needle insertions.17 Two virtual scenarios are used in the
experiments per each tissue type and we executed our
system 10 times for each experimental scenario:

(1) The needle is steered to reach a target placed at a
depth of 140 mm.This is similar to needle insertion
in brachytherapy, where the needle should be
inserted along a straight line within the tissue.

(2) A 4 mm circular obstacle is positioned at a depth
of 70 mm between the needle entry point in the
tissue and the target. The needle is steered to
reach a target at the depth of 140 mm while
avoiding the obstacle. The target diameter is
selected to be 2 mm.

The representative results for scenario (1) and (2) in
two different types of tissue are shown in Fig. 7. The
experimental results are summarized in Table 4. The
maximum targeting error in the first and second
scenario are 1.08 and 1.22 mm, respectively, both for
insertions in ex vivo tissue. Also, the maximum out of
plane deflection is 0.87 and occurs in the ex vivo
heterogeneous tissue.

DISCUSSION

In this paper, we present an adaptive real-time pre-
dictor based on the homotopy analysis method for
estimation of future needle deflections as the needle is

FIGURE 6. Results of experimental validation of the deflection predictor. Comparison of measured needle deflection in ex vivo
needle insertions, HAM-based predictions, and initial prediction using Kinematics-based model at (a) Insertion velocity of 5 mm
s21, (b) Insertion velocity of 30 mm s21, and (c) Insertion velocity of 5 mm s21 with rotation at depth of 40 mm. (d) Comparison of
experimental data with HAM-based predictions with different prediction horizons. (e) RMSE of the homotopy based prediction for
different prediction horizons. Error bars denote the standard deviation of the RMSE for 6 different insertions.

TABLE 2. Identified parameters for the kinematics-based
model.

jmax (mm21) jmin (mm21) Y 0ð0Þ (rad)

Plastisol 2.9 9 1023 6.66 9 1024 0.074

Beef 2.03 9 1023 4.5 9 1024 0.051

Maximum curvature jmax , minimum curvature jmin , and maximum

of initial insertion angle Y 0ð0Þ.

KHADEM et al.



FIGURE 7. Representative experimental needle steering results for three trials per each insertion scenario and corresponding
controller input command (i.e., needle axial rotation), needle out- of-plane deflection, and insertion velocity. (a) Needle steering
without obstacle in plastisol tissue and ex vivo bovine tissue. (c) Needle steering with obstacle avoidance in plastisol and ex vivo
bovine tissue.

TABLE 3. Results of needle steering experiments and HAM-based predictions.

Plastisol Beef

e0 (mm) eend (mm) RMSE (mm) e0 (mm) eend (mm) RMSE (mm)

V = 5 (mm s21) 1.90 0.12 0.10 2.32 0.08 0.09

V = 10 (mm s21) 2.10 0.09 0.13 2.80 0.22 0.25

V = 30 (mm s21) 3.38 0.11 0.25 3.41 0.20 0.56

Rotation at 40 mm 1.09 0.24 0.30 1.78 0.53 0.17

Rotation at 40 and 80 mm 0.46 0.26 0.18 0.74 0.75 0.22

Insertions are performed at multiple insertion velocities without axial rotation and at an insertion velocity of 5 (mm21) with rotation(s).

Insertion velocity V, initial targeting error e0, final targeting error eend , and Root-mean-square error (RMSE) are listed. RMSE is calculated asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

t¼1

ðŷt � ŷÞ2=n
s

and is used as a measure of the differences between values predicted the models, ŷ , and the values actually observed in the

experiments, y , for n ¼ 100 data points.
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steered inside soft-tissue. Some of the features of the
proposed method are: (1) the model uses a depth-vary-
ing radius of curvature and is able to predict changes in
the needle curvature due to the variations in the insertion
velocity or tissue inhomogeneity. (2) As the straight

needle deflects, its radius of curvature varies from1 to a
finite value. The HAM based method is independent of
magnitude of radius of curvature and other parameters
of the model and predicts needle deflection with good
accuracy. (3) The only parameters of the predictor are
the average radius of curvature of the needle and the
initial angle of the needle with respect to the insertion
axis. The experimental results showed, the predictor
performance is robust against uncertainty in the initial
value of these parameters.

The predictor is implemented in a novel motion
planner that steers the needle inside the tissue toward a
predefined target. In contrast to existing systems, our
approach relies on a semi-automated needle steering
scheme. In our needle steering system the robot only
controls the needle axial rotation while the surgeon in-
serts the needle. The experimental results demonstrate
that our needle deflection predictor can accurately

FIGURE 7. continued.

TABLE 4. Results of needle steering experiments for
10 trials.

Plastisol Beef

1st Scenario 2nd Scenario 1st Scenario 2nd Scenario

rot 9 5 11 4

emax 0.87 1.05 1.08 1.22

emean 0.51 0.74 0.71 0.87

eout 0.41 0.55 0.68 0.81

Maximum number of axial rotations rot, mean targeting error emean ,

maximum targeting error emax , and mean of out of plane deflection

eout .
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estimate tip position in real-time and themotion planner
can steer the needle toward the target position with a
maximum in-plane error of 1.22 mm and maximum out
of plane error of 0.87. Many factors such as needle tor-
sional dynamics18 and tissue inhomogeneity can cause
needle out-of-plane deflection. In our human-in-the-
loop approach, the robot only controls needle axial
rotation. Thus, the surgeon can use other control inputs
such as insertion velocity,8 lateral manipulation of the
needle base,26 and tissue palpation3 to compensate for
out of plane needle deflection.

The maximum targeting error of the proposed
approach is 1.08 mm for needle insertion on a straight
line. In a recent study from our group, seed placement
accuracy in prostate brachytherapy is measured using
post-implant ultrasound images.6 1619 seeds using 357
strands were implanted in 15 patients’ prostate glands.
Of the 1619 seeds implanted, 1196 (73.87%) were
confidently identified in post-implant images. The
overall mean in-plane and out-of-plane displacements
were 13 and 15 mm, respectively, which is higher than
our proposed method. However, this error includes the
image processing error, error in registering images
before and after the surgery, and errors due to prostate
motion and deformation.

To furthermore elaborate the effectiveness of semi-
automated needle steering and for benchmarking our
controlled needle insertion strategy, we have per-
formed several fully automated and manual needle
insertions and compared the results with semi-auto-
mated needle insertion. Three scenarios are used in the
experiments and 10 trials were performed for each
experimental scenario:

(1) Fully automated needle insertion—Needle inser-
tion and rotation is controlled by a robot to reach
a desired target inside the tissue. The needle is
robotically inserted at velocities of 5, 20, and
50 mm/sec, which is in the range of clinical needle
insertion velocities.17

(2) Semi-automated approach—The surgeon is in
charge of needle insertion to ensure the safety of
the procedure, while the robot is in charge of
controlling the needle trajectory via axial rotations
of the needle. Insertions are performed using the
device shown in Fig. 5.

(3) Manual insertions—In manual needle insertions,
the surgeon inserts the needle using the hand-held
device shown in Fig. 5 and he can rotate the
needle 180 degrees axially by pressing a knob
located in the control console. Real time visual
image feedback of needle tip were provided to the
surgeon during the insertions. Manual insertions
are performed by a skilled brachytherapist.

In all scenarios, the needle is steered to follow a
straight line and reach a target at the depth of 140 mm
(similar to clinical needle insertions in brachytherapy).
Results are shown in Fig. 8.

Based on Fig. 8, human-in-the-loop strategy is
more accurate than manual. Figure 8c shows that

FIGURE 8. (a) A comparison between semi-automated nee-
dle steering and manual needle insertion. Averaged data for
10 trials are reported and the red bars denote the standard
deviation. (b) A comparison between fully automated needle
steering at different insertion velocities. Averaged data for 10
trials are reported and the red bars denote the standard
deviation. (c) Accuracy results for different needle insertion
scenarios. For each group, red line indicates median error,
blue box indicates 25th and 75th percentile, and whiskers
indicate minimum and maximum error.
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the standard deviation of the error of the proposed
approach is smaller than manual needle insertion.
This means our approach gives the same perfor-
mance at different trials. Also, the semi-automated
approach is more precise than fully automated
needle steering. Results demonstrated that the nee-
dle tracking error increases as the insertion velocity
increases. The reason is that the motion planner has
less time to compensate for tracking errors at higher
velocities. Also mean out-of-plane needle deflection
for fully automated needle insertion is 3.2 mm,
which is 260% more than the semi-automated out-
of-plane error. Based on the results, the proposed
approach shows more precision and repeatability
compared to conventional needle insertion strate-
gies.
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