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Abstract
The human visual system (HVS) can effectively recognize objects in complex natural scenes with high speed and accuracy.
Many models have been proposed based on HVS among which HMAX is one of the superior models. In HMAX, the random
extraction of a large volume of training samples, called patches, has two drawbacks. First, patches frombackground, in addition
to high computational cost, can produce wrong output. Second, patches with low information from objects may provide poor
performance. In this paper, an optimum method, with two steps, is proposed to select patches with high discriminative
information. First, a pool of patches is extracted from objects based on an unsupervised object detection method. Second,
patches with high discriminative information were selected from the pool based on patch ranking. Further, complement of
optimum patch for each class is considered as a new patch for other classes to increase the recognition rate. Experimental
results with Caltech5, Caltech101 and Graz-01 databases show that the proposed model provides a significant performance
improvement over the HMAX and other state-of-the-art models, in terms of speed, sensitivity, specificity and classification
accuracy.

Keywords Classification · Unsupervised object detection · Human visual system · HMAX · Optimum patch

1 Introduction

Object recognition has proven to be a challenge for computer
vision which has numerous range of applications, e.g., medi-
cal image, data Hiding, surveillance, agriculture and vehicle
recognition [1–5]. It should respond invariably to objects
from within-class and differently to objects from between-
class [6]. Thehumanvisual system (HVS) is able to recognize
objects easily in a cluttered scene in a fraction of second,
while the most powerful computer systems are generally not
capable of doing so. The HVS is very efficient in the object
recognition and is the ultimate evaluator of any recognition
performance. Because humans outperform the best machine
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vision systems, building a system that emulates object recog-
nition by the HVS has always been a desirable but elusive
goal [7].

Due to the enormous complexity of the HVS and intri-
cate connections in the visual pathway [8,9], computational
modeling of HVS for object recognition directly from its
overall anatomy and physiology is difficult. One way to over-
come this limitation is modeling of subsystems [10] and
their combination based on the HVS structure [11]. Based on
experiment with cat’s [12] and monkey’s cortex [13], Hubel
and Wiesel proposed a functional model of visual pathway
in HVS. Riesenhuber et al. [14] and Serre et al. [7] extended
Hubel andWiesel’swork and introduced a hierarchicalmodel
(HMAX) for object recognition with four modules: S1, C1,
S2 and C2. The HMAX is one of the superior models in the
field of object recognition inspired by hierarchical structure
of the HVS with various applications, e.g., real-time visual
tracking, face recognition, line segment perception and med-
ical imaging [16–19]. Many recently proposed HVS models
are improvements of the HMAX model [20–22].

Theriault et al. [23] proposed an extended coding and
pooling in the HMAX model. In this model, HMAX is
improved by integrating the local filters at the first level and
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more complex filters at the last level. Lu et al. [24] proposed a
dominant orientation patchmatching for HMAX (henceforth
referred to as the DHMAX model). In this model, HMAX
model is improved by calculating the dominant orientation of
the selected patches and implementing patch-to-patchmatch-
ing.

Norizadeh et al. [25] proposed enhanced model with
combination of SIFT algorithm and HMAX model (hence-
forth referred to as the SHMAX model). Their proposed
model consists of two levels of improvement. The first level
is increasing the speed of S2 module by comparing the
extracted patches with only a few informative patches of
input images (rather than the whole image). The second one
is selecting the discriminative and distinctive patches in the
training stage to increase classification accuracy.

Sufikarimi et al. [15] proposed a HVS-inspired model for
object recognition in HMAX (henceforth referred to as the
HHMAX model). Human vision intelligently extracts the
useful features from information such as corners and edges.
These parts of an image are very informative because if they
are removed from the image, the HVS cannot recognize the
object. They implemented this important information in the
HHMAX model.

As HMAX is a hierarchical model with separated mod-
ules, some recent works have improved these modules
[26,27]. Amajor problemwith the HMAXmodel is the patch
extraction in a randomwaywhich extracts two kinds of prob-
lematic patches. First, patches from background can produce
wrong output. Second, patches with low information from
object may provide poor performance.

In this paper, a novel patch selection method is intro-
duced by combining unsupervised object detection and patch
ranking to select optimum patch (P). Two main contribu-
tions are introduced to solve mentioned problems. First, a
pool of patches is extracted from the objects based on unsu-
pervised object detection. After C1 module, the produced
images are invariant to scale, and patches are extracted from
them. All images in within-class involve similar objects, and
because of their invariance to the objects, extracted patches
from objects have high similarity with images from within-
class rather than images from between-classes. Comparison
of these similarities is used to define an evaluation metric
(PN) for extracting patch and producing pool of patches
from objects. Second, patches with high discriminative infor-
mation are selected from the pool based on patch ranking.
Beside similarity of patch to images from within-class, its
dissimilarity to images from between-class is used to define
an evaluation metric (PR) for patch ranking. Selected opti-
mum patch (P) has the best similarity with images from
within-class; as a result, its complement (1–P) has the highest
dissimilarity with images from within-class. It is considered
as a newpatch for other classes to producemaximumdistance
in matching and raise classification accuracy.

Fig. 1 Simplified schematic for original HMAX model

2 HMAXmodel

A schematic of the HMAX model is shown in Fig. 1. The
HMAX model has four modules: S1, C1, S2 and C2. In the
training stage, after the C1 module, patches with different
sizes and orientations are extracted randomly. These stored
patches are used in the testing stage.

2.1 S1module

This module emulates the activity of simple cells in the cor-
tex. It applies Gabor filters of different sizes and orientations.
Let a set of Gabor filters gσ,λ,θ be defined as EQ. 1:

gσ,λ,θ (x, y) = exp

(
x20 + γ y20

2δ2

)
cos

(
2πx0

λ

)

x0 = x cos(θ) + y sin(θ)

y0 = y cos(θ) − x sin(θ)

(1)

where the parameters γ, σ, θ , and λ are the aspect ratio,
effective width, orientation and wavelength of the Gabor fil-
ter, respectively. HMAX uses 16 Gabor filters with different
sizes. Outputs of this module are obtained by convolving the
input image (I) with a set of Gabor filters gσ,λ,θ shown in
Eq. (2):

S1l,θ = gσ,λ,θ ∗ I (2)

where l refers to the number of outputs (from 1 to 16).

2.2 C1module

This module emulates the activity of complex cells in the
cortex. It takes the max over different scale outputs produced
by the S1 module for scale invariance. These images are
segmented into blocks of size Ns×Ns and with overlap ofΔs

(in each direction) between blocks. Each pixel of the output
of C1 module is equal to the maximum of two corresponding
blocks (in two consecutive Ns×Ns scale images). For every
two adjacent scales, there is one band (B1 to B8). Therefore,
the C1 module produces a total of 32 images (corresponding
to four orientations and eight bands).
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Fig. 2 Example of S2 outputs. The first column shows three original
images Boat1, Boat2 (from the schooner class) and Car-side (from car-
side class) from the Caltech101 database. The second column shows

the C1 outputs corresponding to each given image. Columns 3–6 are
Euclidean distance between local block of C1 image and slid patches
from the Boat1 image with different sizes

2.3 S2module

This module calculates the similarity between C1b,θ and the
extracted patches. Each patch (Pi) is slid across an intermedi-
ate output image C1b,θ , and the similarity between the local
C1b,θ block (X) and Pi is calculated using Eq. (3):

S2 = exp(−β‖X − Pi‖2) (3)

where the parameterβ(>0) defines the sharpness of the expo-
nential function and‖.‖ is theEuclidian norm.A fewexample
outputs of the S2 module are shown in Fig. 2. In the first col-
umn, three original images from two classes of Caltech101
database are shown. In the second column, outputs of the C1
module for given images are shown. Other columns show
Euclidean distance between local block of each C1 image
and slid patches with different sizes from the Boat1 image
with.

2.4 C2module

In this module, to find the best matching, the maximum value
of the S2 module is calculated as features for each input
image. By calculating this maximum, the similarity between
extracted patch and input image is obtained as a C2 outputs.
In Fig. 2, extracted patches are from Boat1. Maximum value
of S2 outputs (columns 3 to 6) is C2 outputs. C2 output for

Boat1 is 1 (exact matching) and for Boat2 is more than car-
side. (Within-class is more than between-class.)

3 Proposedmodel

In the proposed model, a new module, Optimum Patch
Selection (OPS), is introduced to select patches with high
discriminative information from objects in HMAX (hence-
forth referred to as OMAX) for object recognition in natural
images. Natural images consist of cluttered background that
makes object recognition a challenge [28]. Two main con-
tributions for patch selection in this proposed module are
introduced: first, the patch extraction from objects based on
unsupervised object detection to produce a pool of patches
and second, patch selectionwith the best discriminative infor-
mation from the pool based on patch ranking as an optimum
patch (P). As an optimum patch, P has the best similarity
with images from within-class and its complement has the
highest dissimilarity with images from within-class. There-
fore, its complement is considered as a new patch for other
classes to produce maximum distance in matching and raise
classification accuracy. A schematic of the proposed model
is shown in Fig. 3.
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Fig. 3 Schematic of proposed model

3.1 OPSmodule

In natural images, detecting objects from the background
and then extracting patches from them are difficult [29]. This
module is introduced to select patches with two main prop-
erties: first, belonging to objects and second, involving high
discriminative information. To define an evaluation metric
based on a novel unsupervised object detection for the first
property (i.e., extracting patches from the object), it is con-
sidered that all images from each class are involved the same
object [30]. As mentioned before,C1b,θ outputs are invari-
ant to scale. Patches from the object have more similarity
with images from within-class (C2w-c) than with images
from between-classes (C2b-c). In this condition, a patch with
high probability belongs to object; otherwise, that with high
probability belongs to background and produces wrong out-
puts. Assume that the number of classes are NC and each
class involve NT images and evaluation metric (PNscore)
is calculated for extracted patches from nt th training image
from ncth class. So there are (NT-1) images in within-class
and (NC-1)NT images in between-classes to compare with
patches extracted from selected image. For each patch, simi-
larity with each image fromwithin-class should be compared
with similarity with all images from between-classes. Eval-
uation metric (PNscore) for each patch is defined as Eq. (4):

PNscore(k,m, n) =
{
1; C2w−c(k) > C2b−c(m, n)

0; otherwise
(4)

where index k is the image number from within-class (from
1 to NT, k �= nt), index m is the number of between-classes
(from 1 to NC, m �= nc), and n is the number of images in
between-classes (from 1 to NT). After calculating PNscore,
the probability of belonging patches to object (PN) can be
calculated. Let PN be the sum of all elements of PNscore
matrix. The normalized PN is calculated using Eq. (5).

PN =
∑NT

k=1,�=nt
∑NC

m=1,�=nc
∑NT

n=1 PNscore(k,m, n)

(NT − 1)(NC − 1)NT
(5)

By defining a desirable threshold (thr), a pool of patches from
an object is made based on unsupervised object detection.
These patches havePNwith a higher value than the threshold
(thr < PN ≤ 1) and with high probability are from objects.

To define an evaluation metric based on patch ranking for
the second property (selecting patches with high discrimi-
native information from the pool), beside PN, the distance

between similarity of patch with images from within-class
and between-class is vital for classification [31]. More dis-
tance between these two similarities produces more distance
between features and so produces higher classification accu-
racy rate. For each patch, evaluation metric to define this
distance is comparison of its similarity to all images from
within-class with similarity to all images from between-
classes. This distance is defined as selection value (SV)
obtained using Eq. (6).

SV =
∑NT

k=1,�=nt C2w−c(k)∑NC
m=1,�=nc

∑NT
n=1 C2b−c(m, n)

(6)

Finally, for calculating the patch ranking (PR) for discrim-
inative information, both SV and PN are used in formula
obtained using Eq. (7):

PR = 2α(PN−1)SV (7)

where α is a constant (in our simulation α = 100). By con-
sidering PR as a chance for selecting, the best patches are
selected by using a Roulette wheel. All steps for producing
pool of patches from objects based on unsupervised object
detection and calculating patch ranking are given in Algo-
rithm 1.

Algorithm 1: Calculating Selection Probability
Inputs: extracted patch (P) from image (I); all images from within
-class except I; all images from between-classes; threshold (thr); NC
(number of classes); NT (number of images in each class).
Output: discriminative information of patch as a Patch Ranking (PR)
if it belongs to object; zero if it do not belongs to object.
1 : sum(PNscore) ← 0;
2 : sum(C2w−c) ← 0;
3 : sum(C2b−c) ← 0;
4 : f or all images except I do
5 : sum(C2w−c) ← sum(C2w−c) + C2w−c
6 : sum(C2b−c) ← sum(C2b−c) + C2b−c
7 : i f C2w−c > C2b−c then
8 : sum(PNscore) ← sum(PNscore) + 1
9 : end
10 : end
11 : PN ← sum(PNscore)

(NT−1)(NC−1)NT
12 : i f PN > thr then
13 : PR ← 2α(PN−1) × sum(C2w−c)

sum(C2b−c)

14 : else
15 : PR ← 0
16 : end

AssumePi is the best selected patch in the proposedmodel
(PN=1 and SV is the highest), so it has the best similarity with
all images from i-class and its complement has the highest
dissimilarity with images from this class. In the proposed
model, this complement is considered as a new patch for
other classes to raise the distance between feature of classes.
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Fig. 4 Sample images from Caltech5 database

4 Experimental results

Three evaluation metrics of classification (sensitivity, speci-
ficity and classification accuracy) are used to evaluate pro-
posed model (OMAX) against HMAX [7], and three recent
models with the same framework with HMAX: DHMAX
[24], HHMAX [15] and SHMAX [25]. Results are reported
on three different image databases: Caltech5 [32], Cal-
tech101 [33] and Graz-01 [34].

4.1 Image databases

In this paper, Caltech5, Caltech101 and Graz-01 databases
are used for performance evaluation. All images are changed
from RGB to grayscale with size 140 × 140.

Caltech5: This database contains 3122 natural images
with 5 object classes and a background: frontal-face, motor,
rear-car, airplane, leaf and background. Leaf and motor are
considered as positive images and background as negative
images. Two sample images from each class are shown in
Fig. 4.

Caltech101: This database contains 9144 natural images
with 101 object classes and a background. Airplane and car-
side are considered as positive images and background as
negative images. Two sample images from each class are
shown in Fig. 5.

Graz-01: This database contains 1103 images with dif-
ferent objects such as bikes, people, motor and shoes. Bike
and people are considered as positive images and back-
ground images (no−bike−no− people) as negative images.
Two sample images from each class are shown in Fig. 6.

4.2 Evaluationmetrics

In this paper, support vector machine (SVM) is used to
classify the test images. As explained in proposed model,
many extracted patches are eliminated during producing
pool. Besides, many patches with low discriminative infor-
mation from the pool are eliminated. Furthermore, in some
bands and orientations there are no desirable patches based
on the proposed model and hence no patches are selected

Fig. 5 Sample images from Caltech101 database

Fig. 6 Sample images from Graz-01 database

in these cases. Therefore, the number of selected patches in
the proposed model is much less than the selected patches in
the original HMAX and other recent models with the same
framework. In other words, the proposedmodel increases the
speed of classification.

For classification performance evaluation, the following
quantitativemetrics (sensitivity (TPR), specificity (TNR) and
classification accuracy (Ac)) are used as Eq. (8):

TPR = TP

TP + FN

TNR = TN

FP + TN

Ac = TP + TN

TP + TN + FP + FN

(8)

Confusion matrix [35] is also used to evaluate the proposed
model. Besides confusion matrix, Kappa coefficient (κ) is
calculated as Eq. (9).

κ = N
∑NC

i=1 nii − ∑NC
i=1 ni+n+i

N 2 − ∑NC
i=1 ni+n+i

(9)

where nii is diagonal element of matrix, ni+ is sum of i th
row, n+i is sum of i th column, and finally, N is equal to the
total number of input images.
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Fig. 7 Classification accuracy
for each selected class. Top row:
Caltech5 database classification
accuracy (motor and leaf).
Middle row: Caltech101
database classification accuracy
(car-side and airplane). Bottom
row: Graz-01 database
classification accuracy (people
and bike)

Table 1 C2 output for HMAX
and OMAX for patches selected
from Boat1

Model Image class B1 B2 B3 B4 B5 B6 B7 B8

HMAX Boat2 0.853 0.901 0.863 0.832 0.906 0.828 0.875 0.842

Car-side 0.812 0.751 0.801 0.803 0.868 0.819 0.815 0.806

difference 0.041 0.15 0.062 0.029 0.038 0.009 0.06 0.036

OMAX Boat2 0.912 0.946 0.942 0.942 0.978 0.943 0.922 0.949

Car-side 0.643 0.593 0.632 0.591 0.547 0.587 0.701 0.666

Difference 0.269 0.353 0.31 0.351 0.431 0.356 0.221 0.283

Table 2 Confusion matrix on Caltech5 databases for TN = 50

Airplane Motor Rear-Car Leaf Faces

Airplanes 93.4 1.7 2.6 1.1 1.2

Motor 2.8 92.2 1.4 1.8 1.8

Rear-Cars 2.6 3.2 91.6 1.1 1.5

Leaf 2.1 2.6 4.3 89 2

Faces 2.9 2.1 3.5 3.1 88.4

4.3 Results

In order to determine the effect of the number of training
images on the classification accuracy, two object classes from
each database are selected (leaf and motor from Caltech5,
airplane and car-side from Caltech101, bike and people from
Graz-01). The object class is considered as positive, and the

background class is considered as negative. Proposed model
is trainedwith 10, 20, 30, 40 and50 images selected randomly
from each class. 70 images are selected randomly from each
class (except training image) as testing images. Classification
accuracy from these test images is shown in Fig. 7 versus
number of training images. All experiments are repeated ten
times, and the mean value is reported as the result. In all
simulations, thr has been set as 0.9. The proposed model
provides a superior performance in higher number of training
images.

Table 1 compares the C2 features of images shown in
Fig. 2. Selected patches are from Boat1, So the similarity
between these patches and other boat (image from within-
class: Boat2) should be more than the similarity between
them and car-side (image from between-class). For more
classification accuracy, the similarity (C2 features) for Boat2
should be more than the C2 features for car-side. (Larger dif-
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Table 3 Average performance comparison: proposed model with other models for TN = 50

Caltech5 (motor and leaf) Caltech101 (airplane and car-side) Graz-01 (people and bike)
TPR TNR Ac TPR TNR Ac TPR TNR Ac

HMAX 92.65 86.85 89.75 96.45 91.55 94 82.45 77.95 80.2

DHMAX 94.23 88.73 91.48 97.45 92.85 95.15 89 83.6 86.3

HHMAX 96.9 91.7 94.3 99.5 96.2 97.85 90.95 84.45 87.7

SHMAX 95.3 89.8 92.55 98.6 96.1 97.35 90.95 84.75 87.85

OMAX 97.73 94.23 95.98 99.7 98.8 99.25 92.05 85.85 88.95

ference is better for the classifier.) As shown in Table 1, the
difference between C2 features in proposed model is more
than the difference between C2 features in original HMAX
significantly.

Table 2 shows the confusion matrix for proposed model
on all classes of caltech5 database. For each class, 50 and 70
images are chosen randomly as training and testing images,
respectively. Results are for testing images. The best classi-
fication rate is for airplane. Because of their spatial shapes,
the optimum patches with larger distance from other classes
can be extracted. For evaluating Table 2, Kappa coefficient
is calculated (κ = 88.65%).

Table 3 lists the average performance of the proposed
model (OMAX) as well as existing models, HMAX [7],
DHMAX [24], HHMAX [15] and SHMAX [25]. Results are
average of two selected classes from each database, and the
number of training images is 50 (TN = 50). As shown, the
proposed model is clearly superior.

5 Conclusion

In this paper, an enhanced HMAXmodel based on optimum
patch selection is proposed to object recognition in natu-
ral images. A major limitation of the HMAX is its random
patch extraction. In the proposed model, an optimum patch
selection (OPS) module is introduced. The patch selection
is done in two steps. First, a pool of patches is extracted
using novel unsupervised object detection. Second, the opti-
mal patches with high discriminative information are then
selected using patch ranking. After selecting optimum patch,
its complement is considered as a new patch for other classes.
Experimental results on different databases show that the
proposed model provides a superior performance over the
state-of-the-art HMAX-based models.
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