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A B S T R A C T   

Deep neural networks (DNNs) have become an essential tool in artificial intelligence, with a wide range of ap
plications such as computer vision, medical diagnosis, security, robotics, and autonomous vehicle. The DNNs 
deliver the state-of-the-art performance in many applications. The complexity of the DNN models generally 
increases with application complexity and deployment of complex DNN models requires high computational 
power. General-purpose processors are unable to process complex DNNs within the required throughput, latency, 
and power budget. Therefore, domain-specific hardware accelerators are required to provide high computational 
resources with superior energy efficiency and throughput within a small chip area. In this paper, existing DNN 
hardware accelerators are reviewed and classified based on the optimization techniques used in their imple
mentations. Each optimization technique generally improves one or more specific performance parameter(s). For 
example, the hardware optimized for sparse DNNs may provide poor performance for dense DNNs in terms of 
power and throughput. Therefore, understanding the tradeoff between different hardware accelerators helps to 
identify the best accelerator model for application deployment. We identify three major areas, ALU, dataflow, 
and sparsity, in hardware architectures having the potential to improve the overall performance of an acceler
ator. Existing hardware accelerators for inference are broadly classified into these three categories. As there is no 
standard model or performance metrics to evaluate the efficiency of the new DNN hardwares in the literature, the 
classification model can help to identify appropriate performance parameters and benchmark accelerators.   

1. Introduction 

Artificial intelligence is the ability of a system to think, learn, and 
react like humans without explicit programming. The human brain 
consists of billions of neurons connected in a complex structure with 
operational efficiency. Similarly, the creation of an intelligent model 
requires a large number of well-connected computing units (or small 
building blocks) and enough examples to train the model. Due to the 
availability of large quantity of data and computing resources in recent 
time, the creation of intelligent machine is realizable. Machine learning 
(ML) is a subsection of artificial intelligence in which a mathematical 
model is trained over many examples to solve a new problem. Deep 
neural networks (DNNs) are subsections of ML with a deep network 
structure and shared weights (filters). 

The DNNs have been successfully applied to many problems, such as 
computer vision [1], robotics [2], security [3], medical diagnosis [4], 
and self-driving car [5]. Most DNNs are based on the convolutional 
neural networks (CNN) where output feature maps are typically gener
ated by convolving input feature maps with 3D filters. Recent DNN 

models have been shown to surpass human performance in some ap
plications. The performance improvements typically come with the 
increased complexity of the DNNs. As seen in Table 1, the classification 
of a small size image (e.g., 227 × 227 pixels) requires billions of arith
metic operations (i.e., multiplications and additions). The 
MCN-MobileNet has 4.19 million parameters (weights) and requires 
0.58 billion operations to classify an image. A large size VGG-19 DNN 
model requires about 20 billion operations per classification. The 
general-purpose processors, like CPU, are unable to provide such huge 
computing power with required latency. To deploy the DNNs in 
real-time applications, the embedded processors must have high 
throughput and low power consumption. Therefore, the demand for 
domain-specific accelerators is increasing in recent times as these ac
celerators can provide superior performance at higher energy efficiency. 

There are two main phases in DNNs: training and prediction (or 
inference). In the training mode, an example input with a known 
outcome is applied to the model to learn its internal parameters. In the 
prediction (or inference) mode, the possible outcome is calculated based 
on the input test data. Training typically requires high precision 
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numerical representation while low precision representation may be 
enough for inference [7–10]. Generally, training is done using high 
power GPUs and data centers. The precision and size of the trained DNN 
models can be reduced significantly with negligible (<1%) change in the 
accuracy for inference [11]. In real-time deployment, the trained DNNs 
need to operate in inference mode only if there is no change in appli
cation requirements. Therefore, hardware accelerators for inference 
mode are more important than for training. Therefore, this paper is 
mainly focused on the inference mode, and all discussions are subject to 
inference mode of operation. 

Globally, a large number of researchers, in both academia and in
dustry are working towards developing optimized hardware for DNNs 
inference. DNN accelerators are developed using FPGAs, GPUs, and 
ASICs. GPUs come with a massively parallel compute units and process 
DNN computations in parallel. GPUs are power hungry, and this limits 
their applications in embedded systems. FPGAs have high performance 
per watt and can be configurable in the fields. FPGAs are often used to 
prototype and validate the design. ASICs are custom designed for spe
cific application with optimum speed and power consumption. ASIC has 
more applications at embedded devices. ASIC implementation takes 
longest development cycle compared to GPUs and FPGAs and have no 
flexibility after design. Talib et al. [76] reviewed several hardware ac
celerators for machine learning using FPGA, GPU and ASIC platforms 
and discussed the advantages of each platform over other platforms. Guo 
et al. [60] surveyed several FPGA-based neural network accelerator 
designs and summarized the methods used for the design automation. 
The FPGA allows less control and flexibility over the multiplication and 
accumulation (MAC) unit design, which typically limits the exploration 
of the MAC variants. Li et al. [61] presented an overview of the GPU, 
FPGA and ASIC based accelerators and a detailed explanation of the 
DianNao [30] family of accelerators. This has motivated significant 
progress in the ASIC accelerators after the [61] survey. Camus et al. [12] 
analyzed the precision scalable MAC units from different accelerators 
and discussed their benefits in different scenarios. Although, the MAC 
unit is an important block in the DNN accelerator design to improve the 
performance, the MAC alone cannot define the overall performance. 
Hence, along with the MAC unit some other factors in the accelerators 
are to be analyzed. The MAC utilization depends on the data flow and 
on-chip memory. An efficient architecture should have 100% MAC uti
lization. Reuther et al. [13] discussed existing ML accelerators based on 
peak performance vs. power scatter plot. The accelerators are broadly 
categorized into six types based on the region in the plot. The factors 
causing variation in the performance of different accelerators are not 
well explained in [13]. 

Du et al. [59] presented an overview of self-aware neural network 
systems, where a system can predict and adapt dynamics in network 
parameters such as precision, sparsity and network structure based on 
the input data. The self-aware techniques can significantly improve the 
accelerators throughput and energy efficiency, but the accelerators 
should have some flexibility. For example, a DNN with a variable pre
cision requirement at different layers need a variable precision MAC to 

adapt and save energy. The survey did not include much information on 
the implementation techniques to incorporate the flexibility in accel
erator implementation and how it affects the overall performance. Sze 
et al. [7] provided an overview of the DNN development platforms, 
optimization algorithm, accelerator implementations and benchmarks. 
The paper has detailed explanation of three different dataflow methods 
but does not include all recent advances in the arithmetic logic unit and 
sparsity exploration. Chen et al. [35] reviewed several recent DNN ac
celerators based on their application and technologies used (e.g., 
ReRAM, Hybrid Memory Cube). Most surveys provide the architectural 
and performance improvements of existing DNN accelerators, but it 
would be helpful to analyze the architectures in a generalized 
framework. 

The existing literatures classify the different DNN accelerators based 
on their implementation techniques or applications. For example, the 
accelerators in [35] are reviewed based on architectures (e.g., 
stand-alone, or co-processor-based) or technologies used (e.g., Re-RAM, 
HMC). Similarly, the accelerators in [13] are classified based on the peak 
power versus performance tradeoff. In the DNN literature, we identify 
three major areas for improvements in the DNN architecture: Arithmetic 
logic unit, dataflow, and sparsity. In this paper, we present a compre
hensive review of the ASIC accelerators for the DNN architectures. The 
state-of-the-art accelerators are classified into three broad categories (i. 
e., ALU, data flow, and sparsity based) based on their architectural 
differences. This broad classification can provide more insights to 
develop generic DNN architectures. Additionally, we have added a 
fourth section that captures a recent trend of analog-digital hybrid 
digital implementation for faster computation. 

The organization of the paper is as follows. Section II presents the 
background information and performance criteria of hardware archi
tectures. Section III presents a comprehensive review of the DNN 
hardware architectures and their classification. Section IV presents 
evaluation methods and observations in existing accelerators, followed 
by the conclusions in Section V. 

2. Background 

The superior performance of DNNs generally comes at the cost of 
high computations. For example, AlexNet [1] which won the ImageNet 
challenge [14] in 2012, has 61 M parameters and requires 727 M MAC 
operations per image classification. Large DNNs may require billions of 
MAC operations per inference as shown in Table 1. Performing large 
number of operations sequentially affect the throughput. Existing 
general-purpose processors (GPPs) may be unable to provide the 
required computational power and throughput within a low power 
budget. The GPUs can provide high computational speed but consumes a 
large amount of power. GPUs can therefore be used at servers where the 
computational speed is more important than the power requirement. 
Domain-specific accelerators (e.g., ASICs) are known to provide high 
energy efficiency (around 1~10 TOPs/W). The FPGAs have less energy 
efficiency but have the advantage of reconfigurability. 

Real-time deployment of DNN is constrained by energy efficiency 
and throughput of embedded processors to maximize the battery life. 
For example, a typical mobile phone has a 2–3 Ah (5 V) battery life (i.e., 
15 Wh) and the DNN processing power should be only a fraction of the 
maximum available power. For real-time data processing, the processor 
should have the throughput equal to the data collection frame rate (e.g., 
camera frame rate). Fortunately, there is no interdependency among 
outputs (i.e., in the same layer output or feature map) in a DNN layer. 
Therefore, parallel implementation of large MAC units can increase the 
throughput. An example of the DNN accelerator implementation based 
on Parallel MAC units is shown in Fig. 1. In general, the size of the 
accelerator in silicon and power requirement are directly proportional to 
the number of MAC units (working in parallel) and on chip memory. 
Note that the DNN specific accelerators will have an array of processing 
elements (PEs) connected to its neighbors. Each PE contains one to 

Table 1 
Parameter’s size and number of operations required for different DNN models 
[6].  

Model Input size PARAMETERS SIZE (millions) Operations (GOPs) 

AlexNet 227 × 227 61.07 0.73 
Squeezenet 224 × 224 1.31 0.84 
VGG-16 224 × 224 138.41 16 
VGG-19 224 × 224 143.65 20 
GoogleNet 224 × 224 13.36 2 
Resnet-18 224 × 224 11.79 2 
Resnet-152 224 × 224 60.29 11 
Inception-V3 299 × 299 23.85 6 
Densenet-201 224 × 224 20.18 4 
MCN-mobileNet 224 × 224 4.19 0.58  
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several MAC units connected in such a way that matrix multiplication 
can be performed with a single instruction. The MAC unit contains a 
control unit to configure the operation to multiplication or addition or 
both and register files to store the local parameters and intermediate 
results. To increase the on-chip storage, the global and local buffer 
memory blocks are implemented along with PEs. 

The cost of the individual MAC units can be reduced with lower bit- 
length/precision of the MAC units. Energy and area consumption of 
multiply and add circuits for 4 different precisions are shown in Table 2. 
An 8-bit fixed point (FIX) add circuit occupies 116x less area and con
sumes 30x less energy (in picojoules) than a 32-bit floating-point (FL) 
adder. For multiplication, an 8-bit fixed point circuit consumes 18.5x 
less energy and occupies 27.3x less area than a 32-bit floating-point. 
Approximately, energy and area of fixed-point circuits scale linearly 
for add, quadratically for multiply, with the number of bits [15]. 

Reduction in the MAC precision can save both the computation and 
storage requirements. Therefore, the impact of low precision on the 
accuracy of DNN models has been explored in literature, mainly with 
respect to quantization [9, 11, 17]. In most DNNs, quantization of 
weights and activations to less than 16-bit integers can still provide 
accuracy similar to that of a 32-bit floating-point [17–19]. Linear 
quantization to 8-bit fixed-point numbers benefits the hardware imple
mentation of the MAC unit, as shown in Table 2. Both energy con
sumption and silicon footprint increase with the increase in precision 
when changed from fixed point to floating representation. In Binary 
network [20], weights and activations are quantized to binary values +1 
or -1. Binarization of the network will simplify the multiplication into 
the XOR operation. Ternary network [21] quantizes the parameters to 
three levels: -1, 0, and +1. But applications of Binary and Ternary net
works are limited. 

Depending on the application requirements, the arithmetic 

operations in a DNN network may be implemented using different bit 
precisions. Also, there exist models whose optimized bit length varies 
one layer to the next layer. For example, for a 5-layer Convnet (with 3 
convolutional and 2 fully connected layers), the optimized bit length 
requirement for the 5 layers has been found to be 8–7–7–5–5 bits [22]. 
In other words, there is no standard precision requirement that is 
optimal for all layers or models. Therefore, a flexible DNN hardware 
accelerator (or the associated MAC units) should be able to support all 
possible bit precisions. For lower precision computations, multiple op
erations can be performed with a single MAC unit by hardware reuse or 
sub-word parallel processing. With hardware reuse, the overall 
throughput or peak performance of an accelerator can be improved for 
lower precision layers or models. For example, the Tesla T4 [23] GPU 
can be configured to four precisions: 4-bit, 8-bit, FP16/FP32-mixed and 
FP32. Tesla T4 achieved the highest speed at the lowest precision (4-bit). 
The throughput increases at the cost of reduced precision. The peak 
performance is typically expressed in arithmetic operations per sec 
(OPS), and it primarily depends on the available MAC units. In a variable 
precision MAC unit, additional control unit is required to configure the 
MAC unit into multiple sub-MACs or bit length. The overall size of the 
MAC unit increases with flexibility (in precision). In other words, the 
MAC density (i.e., MAC units per unit area) decreases with an increase in 
flexibility [12]. Therefore, there is a tradeoff between MAC’s flexibility 
and density. 

Having a large array of MAC units with a variable bit precision can 
fulfill the DNN processing requirement in terms of computations. But 
just having a large array of MAC units does not improve the throughput. 
To provide operands to all MAC units in a large array, higher memory 
bandwidth (BW) is required. After a certain point of arithmetic intensity, 
the memory bandwidth of an accelerator will determine the overall 
throughput. Fig. 2 shows the estimated roofline model for DNN infer
ence on four different embedded platforms. Arithmetic intensity (AMI) 
also commonly referred to as the operational intensity or compute-to- 
communication ratio is expressed as the number of arithmetic opera
tions performed per byte of off-chip memory traffic (expressed in op
erations/byte). The arithmetic performance of the hardware depends on 
the AMI as well as the data access rate from the external memory. In 
other words, the arithmetic performance can be expressed as follows: 

ArithmeticPerformance = min(PP,AMI × BW) (1) 

Fig. 1. Block diagram of a generic DNN architecture.  

TABLE 2 
Resource consumption of MAC units at different precisions [16].  

operation/precision Energy (pJ) Area (μm2)

MUL ADD MUL ADD 

8-bit FIX 0.2 0.03 282 36 
32-bit FIX 3 0.1 3497 137 
16-bit FL 1.1 0.4 1640 1360 
32-bit FL 3.7 0.90 7700 4184  
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where BW is the memory bandwidth and PP is the peak performance. It 
is observed in Fig. 2 that the arithmetic performance increases initially 
with an increase in the AMI until peak performance (PP) is reached. 
After achieving the PP, any further increase in the AMI does not increase 
the performance. It is observed that the arithmetic performance is 
memory-bound when the AMI is to the left of the break point and is 
compute-bound when the AMI is to the right [24]. 

The Arithmetic performance of the hardware typically depends on 
the PP, AMI, and memory bandwidth. Resources available on the chip 
defines the PP of the hardware. Arithmetic intensity depends on the 
dataflow structure implemented and available on-chip memory. Note 
that an external memory operation is energy and time-consuming. 
Hence, the hardware should run at a minimum bandwidth to save en
ergy. With minimum bandwidth, the arithmetic performance of hard
ware can be increased with increased AMI. As seen in Fig. 2, the 
arithmetic performance increases with an increase in the AMI in the 
linear region of the curves (as the PP and BW are constant). The AMI can 
vary through the data flow structure. Therefore, the dataflow structure 
should be optimized to achieve higher arithmetic performance for a 
given available bandwidth. 

To avoid the data read/write each time (in order to speed up the 
computation and reduce energy consumption, and to increase the AMI), 
the read data must be used as much as possible within the chip before 
writing it back to the memory. Fortunately, the convolution layers in 
DNNs have this data reuse options. For example, a single filter is reused 
to calculate all pixels in an output feature map. Therefore, reading co
efficients of a filter once is enough. But keeping all filter coefficients at 
each MAC unit is a resource (i.e., memory) consuming option. To reduce 
the overall energy cost of data movement, several levels of memory (e.g., 
global buffer, local buffer, registers) can be implemented in hardware. A 
rough estimation of the available memory size, latency, and energy 
consumption per operations at different levels are shown in Table 3 [7]. 

The global buffer (with a size of hundreds of kilobytes) connects to 
DRAM, and local buffer dedicated to a few processing elements (PE). 
Read/write data from Global buffer to a MAC consumes around six times 
more energy and 40x latency than read/write from register files. Reg
ister files (RF) corresponding to a MAC unit of a PE are connected to a 
local buffer and consumes the least amount of energy to read/write the 
data. The advantage of the local buffer is limited by its available size. 
The energy consumption and access time increase from low-level 
memory (Registers) to high-level memory (Global buffer). 

In a DNN, the output of a convolution or fully connected layer goes 
through an activation function. The Rectified Linear Unit (ReLU) is a 
nonlinear activation function widely used in DNNs (Sigmoid is another 
widely used activation function), which maps the output value of a 
feature map as follows. 

y =

{
x x ≥ 0
0 x < 0 (2)  

where x is the input and y is the output of the activation function. It is 
observed that the negative output values are truncated to zero by the 

Fig. 2. Comparison of the roofline models for DNN inference [24].  

Table 3 
Memory hierarchy in a general accelerator, and its approximate performances 
[7].  

Memory 
level 

Access time 
(approx. cycles) 

Available 
capacity 

Energy consumption 
(normalized) 

Registers 1 >0.5 KBs 1x (Refence) 
PEs cache 2–4 ~1–10 KBs 2x 
Local buffer 10 ~100 KBs 4x 
Global 

buffer 
40 ~10 MBs 6x 

Main 
memory 

200 In GBs 200x  
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activation function. This truncation can make the output values sparse. 
It has been shown that the AlexNet has a sparsity between 19% to 63%, 
where the sparsity is defined as the percentage of the data (e.g., feature 
maps, filter coefficients) that are zero. The sparsity in a DNN has been 
exploited by several researchers to increase the throughput and reduce 
power consumption. 

The DNN model size (i.e., the number of the DNN weights) can be 
reduced through pruning without affecting the model accuracy. The 
pruning eliminates insignificant connections or weights (i.e., making the 
insignificant weights zero) in a DNN. Note that multiplication with a 
very small value operand results in insignificant value that are not likely 
to alter the outcome. This observation makes the case for opportunistic 
energy savings by eliminating insignificant multiplications. The DNN 
architectures can therefore be designed to skip multiplications with 
zeros, which is known as zero skipping. 

If a hardware can skip zero multiplication, sparsity in data and zero 
weights cumulatively reduce the computing power requirement. Higher 
speed can also be achieved by exploring sparsity in data. To exploit the 
sparsity further, the storage requirement can be reduced by encoding the 
sparse data. The compression techniques may vary from simple run- 
length coding to compressed sparse column (CSC) or compressed 
sparse row (CSR) [25]. Compression techniques however need addi
tional encode and decode modules in the hardware. 

Based on the above discussion, it can be inferred that an efficient 
hardware accelerator must be optimized for low precision, best data 
flow, and be flexible for varying precision and sparse models. As can be 
expected, there is a tradeoff between flexibility and optimized archi
tectures. An architecture optimized for sparse models will affect the 
throughput on dense models. Accelerators optimized for the convolu
tional layer may not perform well on a fully connected layer due to the 
data reusability. In a convolutional layer, weights are reused but in fully 
connected layers input features are reusable for optimal performance. 
Overall, efficient hardware for DNNs should have scalable precision to 
support different DNN models, optimized data flow structure to increase 
the arithmetic intensity, and should utilize the sparsity. 

3. Hardware classification 

The deployment of DNNs in real-time applications requires low 
power and high throughput DNN accelerators. Many efficient DNN 
accelerator architectures have been proposed over the last decade to 
reflect versatile effort to improve the overall performance of the DNNs. 
Domain-specific accelerators will always have a scope to improve the 
overall performance by customizing architectures towards a specific 
application. Even the accuracy requirement of the same application can 
make a difference in the DNN complexity. A generalized DNN acceler
ator architecture should have the flexibility to work on different models 
at the optimum performance. 

The DNN architectures can be broadly divided into three categories 
based on the area in which the architecture has been primarily opti
mized. These three areas are Arithmetic logical unit (ALU), Dataflow, 
and Sparsity. In the ALU category, the basic building block, i.e., the MAC 
units (or an array of MAC units) are modified such that the accelerator 
can have large computing resources and flexibility to achieve the 
optimal performance with variable bit precision. In the Dataflow cate
gory, the parameters (e.g., weights, activations, partial sums) are 
managed such that the overall (intra chip) data movement energy is 
reduced, and high arithmetic intensity (Ops/Byte) can be achieved. In 
the Sparsity category, the unstructured sparse data is managed such that 
the matrix multiplication units (e.g., a 2-D array of MAC units) can avoid 
the zero multiplications effectively. A comprehensive review of the DNN 
architectures based on these three criteria is presented in the following. 

3.1. ALU based accelerators 

Computation hungry DNN algorithms require a huge amount of 

computing hardware resources. Large arrays of PEs are typically 
implemented in parallel to improve the computational power of a pro
cessor. Graphical Processor Units (GPUs) have thousands of PEs in 
parallel. Hence, the GPUs are widely used as accelerators for DNNs. The 
GPUs can provide the throughput requirement but consumes high en
ergy. The energy consumption of a MAC unit can be reduced by 
decreasing the bit length. Therefore, low precision DNN accelerator 
architectures have been proposed for DNN inference. 

Chen et al. [26] proposed an architecture, known as DianNao ar
chitecture, with Neuron flow unit (NFU) as the basic arithmetic building 
block. An NFU has 16 neurons, with each neuron having sixteen 16-bit 
fixed-point multipliers in stage 1 and 15 adders in a tree structure at 
stage 2 to add the multiplication results. Stage 3 has an activation layer. 
DianNao has three memory blocks input buffer, output buffer and syn
apse buffer to store inputs, outputs, and weights respectively. Based on 
the DianNao architecture, a series of accelerators DaDianNao [27], 
ShiDianNao [28], PuDianNao [29] have been proposed by improving 
the NFU unit as well as dataflow. The DianNao family can provide 450x 
speedup and 150x reduction in energy with 64-chips over a GPU [30]. 
Although, the Diannao family provides a good speed-up, it does not 
support variable precision. Running a 4 or 8-bit DNN Model will 
consume energy as high as the 16-bit model. 

To save the energy at lower precision, the Dynamic Voltage, Accu
racy and Frequency Scaling (DVAFS) MAC based CNN architecture 
(ENVISION) has been proposed in [31]. In DVAFS, all run-time adapt
able parameters influencing power consumption: activity (α), frequency 
(f) and voltage (V) are scalable. The dynamic power consumption at 
constant throughput is given by [31] 

PDVAFS =
α
k1

C
f
N

(
α
k2

)2

(3)  

where k1, k2 and N are scaling factors of switching activity, voltage, and 
level of parallelism, respectively. For lower precision, the switching 
activity can be reduced by masking lower LSBs at the inputs of the MAC 
units. For example, as shown in Fig. 3, the configuration of 8b-MAC to 
4b-MAC leaves a portion of the MACs unused. The unused region can be 
masked to reduce the switching activity. The reduced precision MAC (4b 
or 2b) will have shorter critical path than the full precision MAC (8b). 
The shorter critical path can help to increase the operation frequency or 
to reduce the input voltage for energy efficiency. With sub-word parallel 
processing, one MAC unit at full precision (8b) can be configured to 
more than one MAC units of lower precision. As seen in Fig. 3, one 8b- 
MAC can be configured to two 4b-MACs or four 2b-MACs. At constant 
throughput, the sub-word parallel processing helps to reduce the oper
ating frequency (1 MAC/clock at 8-b precision, 2 MACs/clock at 4-b 
precision and 4 MACs/clock at 2-b precision). The reduced switching 
activity, frequency and voltages have been explored to increase the 
overall energy efficiency in the DVAFS. The energy efficiency is further 
improved by modulating the body bias (BB) in an FDSOI technology 
[31]. The body bias permits tuning of the dynamic vs. leakage power 
balance while considering the computational precision. On average 
0.26–10 TOPS/W peak efficiency is reported (implemented in 28 nm 
FDSOI technology). Note that processing at the full precision (i.e., 8 bit) 
with DVAFS comes at a slightly higher energy and area penalty 
(compared to 8-bit standard precision) due to additional control cir
cuitry for configuration and larger register. 

Shin et al. [32] proposed a Deep Neural Processing Unit (DNPU) 
architecture for general DNN models using reconfigurable MAC with 
sub-word parallel processing (SWP) approach on one operand. In SWP, 
parts of bits processed separately using the lower precision MACs and 
results are combined to get full results, as shown in Fig. 4. In Fig. 4(a), 
both activation (A) and weight (W) have 8-bit precisions and W is rep
resented as two 4-bit subwords. The SWP architecture generates 16-bit 
multiplication output by combining the two sub results. In Fig. 4(b), A 
has 8-bit precision, but W represents two independent 4b words, and the 
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Fig. 3. Implementation of variable symmetric precision (8bx8b, 4bx4b, 2bx2b) MAC unit using the DVAFS architecture. In Green regions DVAFS techniques are used. 
Average throughput is one multiplication and accumulation (one 8b or two 4b or four 2b) per cycle [12]. 

Fig. 4. Sub-word parallel (SWP) architecture, (a) use of two 8bx4b MAC units to perform one 8bx8b operation, (b) Two 8bx4b MAC operations implemented 
in parallel. 

Fig. 5. Bit-serial MAC configured as (a) 8bx8b MAC unit, (b) 8bx4b MAC unit, and (c) 8bx2b MAC unit (Weight only scaling).  
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SWP generates two 12-bit multiplication outputs. In other words, the 
DNPU architecture allows the fixed precision on one operand (A) and the 
variable precision on the other (W). The DNPU reported 8.1 TOPS/W 
energy efficiency (with 4-bit precision) on 65 nm CMOS technology. 
Although, the DNPU architecture exposed the SWP for only one 
operand, the SWP can be exposed in both operands using a DVAFS like 
architecture shown in Fig. 3. 

Lee et al. [33] proposed the Unified Neural Processing Unit (UNPU) 
architecture using a bit-serial MAC unit. Schematic of a Weight only 
bit-serial MAC unit is shown in Fig. 5. The Bit serial MAC requires just an 
adder and a shift register and does not require multiplication. In each 
clock cycle, one bit of weight (LSB bit first) is supplied, and activation is 
added to shifted value of the previous cycle partial product. The number 
of cycles required to finish a MAC operation depends on the weight 
precision. For an 8-bit precision weight value, eight clock cycles are 
required to perform the MAC operation as shown in Fig. 5(a). Four and 
two clock cycles for 4-bit and 2-bit weights respectively as shown in 
Fig. 5(b) and (c). The architecture supports any weight bit precision 
from 1b to 16b and reported 1.43× higher power efficiency for a con
volutional layer at 4b weight compared to the DNPU. 

Alternatively, to reduce the power and area consumption of multi
pliers, approximate multiplier or logarithmic multiplier have been 
proposed. Note that the neural networks and their associated applica
tions are known for exhibiting intrinsic resilience to errors, which makes 
them appropriate candidates for approximate computations. A review 
on effect of approximate multipliers on the DNN performance can be 
found in [71]. Ansari et al. [70] proposed an improved logarithmic 
multiplier (ILM) that rounds both inputs to their nearest powers of two 
by using a nearest-one detector (NOD) circuit. The MNIST and CIFAR-10 
dataset classification using ILM showed up to 21.85% reduction in en
ergy consumption and 1.4% improvement in classification accuracy. 

Note that the MAC optimization presented above is primarily based 
on binary number system. A few accelerators have been proposed based 
on non-conventional number systems, e.g., the residual number system 
(RNS) and Posit numbers. Posit numbers have better dynamic range and 
are suitable to represent weights in DNN with lower bit precision. Car
michael et al. [73] proposed Deep positron, and DNN architecture based 
on posit number system and evaluated its robustness at low precision 
(<8-bits). The residual number system is represented by k integers {m1, 
m2, … mk}, called moduli which should be relatively prime by each 
other. In the RNS, an integer value, X is represented with residues {r1, r2, 
… rk} where ri = |X|mi. Any arithmetic operation in the RNS is equal to 
the same operation on residues. For example, for two numbers (in RNS) 
x1 = {a1, a2, a3} and x2 = {b1, b2, b3}, x1+x2 can be calculated as {a1+ b1, 
a2+ b2, a3+ b3}. In RNS, any arithmetic operation can be break down to 
same operation on residues which are represented with lower precision 
than actual binary number. It reduces the bit precision requirement at 
the cost of increased number of computations. In digital domain, the 
RNS can improve the speed and reduce the energy in high precision 
computations. Olsen et al. [75] implemented RNS based matrix multi
plication to accelerate neural network processing on FPGA and achieved 
7–9x speed compared to the 32-bit fixed-point implementation. The 
reduction in the precision requirement is very helpful in analog domain 
implementation where higher precision MACs have some limitations 
with their non-linear and hysteretic behavior. Samimi et al. [72] pro
posed RESnet accelerator in analog domain with RNS. The RNS-based 
RESnet consumes 145.5× less energy and obtains 35.4× speedup as 
compared to NVIDIA GPU GTX 1080. Accelerators with emerging 
technologies are discussed further in section III D. 

3.2. Dataflow accelerator 

The focus of the data flow accelerators is on data management to 
reduce the off-chip memory read-write. Spatial and Temporal architec
tures are well studied for data reusability. Efficiency of dataflow accel
erators can be measured with arithmetic intensity, number of operations 

performed per byte of off-chip memory read. The dataflow can be 
optimized by reusing the parameters in different layers wherever 
possible. For example, in a convolutional layer, both weights and acti
vations can be reused. Each neuron has unique weights in a fully con
nected layer, and hence weights cannot be reused but input data (i.e., 
feature maps) can be reused. The reusable parameters are stored in local 
registers so that data movement between a MAC and higher-level 
memory can be reduced. 

For a MAC unit, three memory reads (i.e., weight, activation, and 
partial sum), and one memory write (i.e., updated partial sum) are 
required. One of the parameters (e.g., weight) can be stored locally in a 
register file and can be reused for the next few calculations. The pa
rameters stored differ from architecture to architecture based on the 
data flow structure implemented. There are 4 major types of data flow 
structures to manage the input/output data of a MAC in a DNN: No local 
reuse (NLR), Weight stationary (WS), Output stationary (OS), and Row 
stationary (RS). In NLR, all memory operations are performed directly 
from the main memory (e.g., DRAM). In WS, the weights are stored in 
the RF (i.e., local memory). In OS, the partial sum outputs are stored in 
the RF to reduce read and write operations. In RS, a row of filter weights 
is stored in the RF. 

Google has developed the Tensor Processing unit (TPU) accelerator 
for efficient implementation of machine learning techniques. The TPU 
architecture [34] has a systolic array of 256 × 256 MAC units as a matrix 
multiplication unit. The implemented systolic array structure is basically 
a 2D single instruction multiple data (SIMD) architecture with special
ized weight-stationary dataflow [35]. The block diagram of TPU is 
shown in Fig. 6. The weights can be fetched directly from DRAM and 
stored in the weight FIFO (First-In-First-Out) register. Input activations 
from the external memory or previous layer results are stored in the 
unified local buffer. Systolic data setup block is used to rearrange the 
input data such that convolution can be performed on a matrix multiply 
unit. The first version of TPU, known as TPU1, focused on the inference 
tasks, and has been deployed in Google’s datacenter since 2015. TPU2, 
also known as Cloud TPU, has been used for both training and inference 
in the datacenter. TPU2 also adopted a systolic array and introduced 
vector-processing units. 

The SCNN (sparse CNN) accelerator proposed by Parashar et al. [36] 
uses a dot product dataflow termed as 
PlanarTiled-InputStationary-CartesianProduct (PT-IS-CP). The Carte
sian Product (CP) term indicates the implementation of MAC units in a 
PE such that a full Cartesian Product of weights and activations (W× A) 
are calculated. The CP implementation maximizes the spatial reuse. The 
Input stationary (IS) term indicates that activations are reused at the PEs 
by storing it in a local memory. The Planer Tile defines distribution of 
data across PEs. In SCNN, activations and weights are partitioned into 
smaller tiles and distributed across the PEs. 

In the output stationary (OS) dataflow, the partial sums are stored in 
the local register files. The OS works well with the fully connected layers 
as each neuron output depends on all input activtions. Instead of 
multiplying all inputs with the corresponding weights (which may be a 
few hundred), in each clock cycle, a few inputs (e.g., K) are multiplied 
with weights and the partial sum is stored locally. The entire operations 
will require N/K clock cycles where N is the number of inputs. Shi
DianNao [28], an example of OS dataflow, was implemented for K=16. 

Chen et al. [37] proposed a row stationary (RS) dataflow-based 
accelerator called Eyeriss that minimizes the data movement energy on 
a spatial architecture. Note that in the RS dataflow, a row of operands (i. 
e., input, weights and partial sums corresponding to a PE) are stored in 
the RF. A schematic of row stationary dataflow in Eyeriss is shown in 
Fig. 7. Inputs are reused across the PEs connected in diagonally. The 
partial sums are accumulated in vertical direction. Each PE has local 
registers to store at least one row of weights and activations, one MAC 
unit and controller. The controller is responsible for the temporal reuse 
of MAC units to perform 1-D convolution. Implementation of 1-D 
convolution using the RS dataflow in a PE is shown in Fig. 8. Large 
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portion of RF is allocated to the weights. A row of input vector is reused 
to calculate the partial sums of multiple output feature maps. Fig. 8 
shows how the same PE can be used to calculate multiple output features 
by reusing the input data. It has been shown that the RS dataflow is more 
energy efficient than the existing dataflows [37] in both convolutional 

(1.4–2.5×) and fully connected layers (at least 1.3× for batch size>16). 
To support a wide variety of DNN models and further increase in the 
resource utilization, an improved version of Eyeriss is proposed in [38] 
called Eyeriss V2. The Eyeriss V2 introduces a highly flexible on-chip 
network, called hierarchical mesh, which can adapt to different 

Fig. 6. Block diagram of a tensor processing unit (TPU) [34].  

Fig. 7. Schematic of row stationary dataflow.  

R. Machupalli et al.                                                                                                                                                                                                                            



Microprocessors and Microsystems 89 (2022) 104441

9

amounts of data reuse and bandwidth requirements of different data 
types. Eyeriss V2 reports 12.6× faster and 2.5× more energy efficiency 
than Eyeriss running the MobileNet. Venkatesan et al. [66] proposed 
multi-level weight-output stationary dataflows: Weight Stationar
y–Local Output Stationary (WS-LOS) and Output Stationary–Local 
Weight Stationary (OS-LWS). The advantages of these dataflows over the 
IS, WS and OS dataflows are also discussed. An automated framework, 
MAGNet, to generate an accelerator for a neural network has been 
proposed in [66]. Using this framework, an accelerator can achieve up to 
40 fJ/op and 2.8TOPS/mm2 in a 16 nm FinFET technology. 

In most of the DNN accelerators, the layers are iteratively processed. 
However, by processing each layer to completion, the accelerator must 
use off-chip memory to store intermediate data between layers as the 
intermediate data is too large to fit on chip. Alwani et al. [39] explored 
the dataflow across layers and proposed the Fused-layer CNN 

accelerator. In Fused-layer accelerator, neurons in multiple layers which 
depend on generated intermediate data are processed once. It increases 
the data reuse across the layers. The data dependency between two 
layers can be seen in Fig. 9. Layer 1 output features (Tile 1′ and 2′) can be 
further processed to generate the layer 2 outputs, which avoids the 
storage requirement and memory read-write operations for layer 1 
output features (Tile 1′ and 2′). For example, Tile 1 input data processed 
through layer 1 generates Tile 1′ data. Instead of storing the Tile 1′ data 
in global or external memory, the layer 2 computations can be per
formed to generate the green pixels (layer 2 output). To generate the red 
pixels at layer 2, only small amount of data needs to be read from the 
higher-level memory. The overlapped data can be reused by storing in 
the local memories. Fused-layer method avoids the storage requirement 
of intermediate results (layer 1 outputs) externally. If multiple pro
cessors run in parallel, the intermediate results can be reused across the 

Fig. 8. Implementation of row stationary dataflow on Eyeriss architecture. (a) 1-D convolution between first row of filter 1(Filter1, row1) and input feature map 1 
(Ifmap1). (b) 1-D convolution between first row of filter 2 (Filter2, row1) and input feature map 1 (Ifmap1). (c) 1-D convolution between first row of filter 3(Filter3, 
row1) and input feature map 1 (Ifmap1). 

Fig. 9. Example of fusing two convolutional layers.  
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processors without read/write to external memory. Based on this prin
ciple, Shao et al. [64] proposed the SIMBA accelerator based on a 
Multi-chip-module (MCM). In the MCM, small chiplets (i.e., small chips) 
are integrated at the package level. Each chiplet has 4 × 4 PE array with 
weight stationary dataflow. The SIMBA integrates 36-chiplets, each with 
4 TOPS peak performance, to achieve up to 128 TOPS peak and 6.1 
TOPS/W [64]. 

3.3. Sparsity based accelerators 

The computational and memory requirement of a DNN model can be 
reduced through pruning without significant loss of accuracy. In prun
ing, at the time of training, any insignificant weights are set to zero. The 
pruned weights (or zeros) can be in regular structure or random. In 
regular structure pruning, also call structured sparsity, a neuron will be 
removed (i.e., all the weights connected to the neuron are set to zero). 
The pruning in structure sparsity can be at the level of neuron, filter, or 
channel of filter. In unstructured pruning, all the insignificant weights, 
which are random across the weight tensor are set to zero. The un
structured pruning is simple, it can be done just by adding a regulari
zation to the training algorithm. But, due to unpredictable zero patterns 
in the unstructured sparse model, it requires complicated hardware 
design to compress the non-zero weights and skip zero multiplications. 
Over the time, researchers found complex algorithms for structured 
pruning where a complete neuron, filter or channel of filters are 
removed. The architectures for structured sparsity are comparatively 
simpler. 

Albericio et al. [40] proposed the Cnvlutin architecture to exploit the 
sparsity in feature maps. Computation with zeros in the inputs are 
eliminated by indexing the input data. Non-zero input data along with 
index value are supplied to compute unit. Based on index value, the 
compute unit selects the corresponding weight from filters and performs 
multiplication. The controller fills the index buffer on the fly such that it 
does not consume extra clock cycle. To further increase the acceleration, 
Cnvlutin prunes near-zero outputs during inference to increase the 
sparsity of the next layer’s input data. Experiments with several CNNs, 
including AlexNet, GoogleNet, and VGG-19, showed 1.2–1.6×
throughput increases over DaDianNao [27] without any loss in accuracy 
on ImageNet data. The Cnvlutin reported an area overhead of 4.5% over 
DaDianNao. Judd et al. [41] proposed Cnvlutin-2 architecture, an 
extension of Cnvlutin by exploring both input and weight sparsity. 
Cnvlutin-2 is further optimized to reduce the memory bandwidth. 

Eyeriss [42] also explored the sparsity in inputs to reduce the energy 
consumption. MAC units corresponding to the zero inputs are inacti
vated by gating method (disable). The gating method saves the energy 
but does not increase the throughput. Eyeriss V2 [38] can process the 
sparse data directly in the compressed format for both the weights and 
activations, and therefore is able to improve both processing speed and 
energy efficiency with sparse models. 

Han et al. [25] deep compressed the model by pruning the redundant 
connections and by enabling multiple connections sharing the same 
weight. Deep compression uses threshold-based pruning, quantization 
and Huffman coding techniques to reduce the overall size of the model 
to fit on the chip memory. Han et al. [43] proposed an energy efficient 
inference engine (EIE) to accelerate deep compressed model’s inference. 
To exploit the sparsity and reduce the memory bandwidth, the data is 
compressed using a variation of the compressed sparse column (CSC) 
format. For each column Mj of matrix M, a vector v that contains the 
non-zero weights, and another equal length vector z that encodes the 
number of zeros before the corresponding entry in v, are stored. Each 
entry of v and z is represented by a four-bit value. If more than 15 zeros 
appear before a non-zero entry, then a zero is added in vector v. For 
example, the following column [0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 3] is encoded as v = [1, 2, 0, 3], z = [2, 0, 15, 2]. Weight 
matrix distributed across the PEs and stored in a compressed format. The 
EIE performs the sparse matrix × sparse vector operation by scanning 

vector a (activations) to find its next non-zero value aj and broadcasting 
aj along with its index j to all PEs. Each PE then multiplies aj by the 
non-zero elements in column Wj. Compared with DaDianNao, the EIE 
has 2.9x, 19x and 3x better throughput, energy efficiency and less area, 
respectively [43]. 

Parashar et al. [36] proposed the SCNN accelerator for 
compressed-sparse convolutional neural network. Weights and activa
tions are compressed with variants of the CSR methods used in [43]. For 
example, as shown in Fig. 10, filter of 3 × 3 are compressed into data 
vector (row wise), containing non-zero filter values and index vector. In 
the index vector, the first value represents the number of non-zero ele
ments in the data vector followed by the number of zeros before each 
value in the corresponding data vector. Multiplication between com
pressed weights and activations are performed like dense matrix 
multiplication. The output activation’s index is calculated based on the 
input’s and weight’s index at accumulation buffers using cross bar 
connections. The SCNN accelerates a CNN by 2.7x, while still being 2.3x 
more energy efficient (compared to the uncompressed network). 

With zero skipping implementation for sparse models, small to large 
percentage of MAC units may be end up in the inactive state to syn
chronize with other PEs. Zhang et al. [45] used parallel associative 
search to maximize the even distribution of data across the MAC units 
and implemented in SNAP accelerator. The SNAP maintains an average 
75% hardware utilization. Similarly, Lee et al. [57] proposed the LNPU 
architecture for sparse DNN model learning. The LNPU has input load 
buffer module which distributes the workload evenly to the PEs ac
counting for irregular sparsity. The overall MAC utilization increased in 
the LNPU. Lin et al. [58] proposed a Dual-core deep learning accelerator 
based on compression, zero skipping and Fused-layer techniques. 

Zhang et al. [44] proposed the Cambricon-X architecture to exploit 
the sparsity in filter weights by adding a buffer control module. The 
buffer control module includes an indexing module that selects and 
transfers the useful input neurons (neurons corresponding to non-zero 
weights in the filter) to PE. A PE stores the compressed filter weights 
locally and performs the computation asynchronously. Cambricon-X 
reported 7.23x speedup and 6.43x energy saving against the DianNao 
accelerator. 

The architectures presented above are unstructured sparsity based 
but the unstructured sparsity in weights need complex decode module to 
decompress the weights and calculate the respective activation indices. 
Based on this observation, Zhou et al. [65] showed that pruning block of 
weights in a DNN model reduces the irregularity in weight sparsity. 
Zhou et al. [65] proposed the Cambricon-S accelerator that uses struc
tured sparsity in weights and encoded to achieve higher compression 
ratio. Cambricon-S reported 1.71× speed and 1.37× energy efficiency 
compared to the Cambricon-X. 

3.4. Hybrid implementation techniques 

With increasing complexity in the neural network architectures, the 
required computing power far exceeds what is achievable with today’s 
technology [67]. Hence alternative technologies like analog computa
tion, photonic and quantum computing are being explored. The new 
technologies are mostly applied at the ALU level in DNN accelerators to 
improve the speed and energy efficiency. Therefore, this section (i.e., 
Section D) can be seen as an extension to the ALU based accelerator 
classification (section III A). 

In ML hardware implementation, the processor-memory bandwidth 
is often the main bottleneck that limits the achievable energy efficiency. 
Due to the interconnect loss and signal integrity issues, the data transfer 
is not as efficient as the data processing. Note that the technologies are 
optimized for either data processing (Processor technology) or storage 
(memory Technology). Therefore, DRAM ICs are used for storage and 
processor ICs are used for processing. Bringing them closer through 
advanced packaging can reduce energy penalty due to the data move
ment. But Processing near memory or Process in memory (PIM) can 
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reduce the data movement. The hybrid memory cube (HMC) is a tech
nology that lets vertical integration of DRAM memories on logic circuits 
and enables near data processing. Neurocube [62] and Tetris [63] are 
two DNN accelerators based on HMC. Given that the DRAM ICs are 
optimized for the data storage they are few generations behind the logic 
CMOS devices in terms of computational efficiency. Therefore, analog 
computation can be an attractive alternative to conventional digital 
computation. For instance, the multiplication can be directly integrated 
into the bit-cells of an SRAM array [7]. 

In recent years, memristors (or programmable resistive elements), 
show promising performance improvements. In memristors, weight 
values are stored as resistor’s conductance and multiplication is per
formed based on Ohm’s law 

i = G × V (4)  

where V is the input voltage, G is the resistor’s conductance, and i is the 

output current equivalent to the multiplication result. Fig. 11 shows a 
schematic of the memristor crossbar in which currents in a column are 
added together. Using the Kirchhoff’s current law, the resulting current 
(I) can be expressed as follows. 

Ij =
∑

k
ik,j (5) 

Substituting the i value from Eq. (4), we obtain 

Ij =
∑

k
Gj,k × Vk. (6) 

The output current Ij in Eq. (6) is equivalent to a neuron output in the 
neural network. Therefore, the memristor crossbar can be used to 
implement neural networks. Fig. 11 shows memristor implementation of 
a vector matrix multiplication, (V × W). The digital input X is converted 
into an analog input V using a DAC converter. The weight values W are 
programmed as resistor’s conductance. The output currents are 

Fig. 10. Weight compression in the SCNN accelerator.  

Fig. 11. Resistive memory crossbar implementing vector-matrix multiplication Y = X ∗ G . V denotes input voltage vector (analog equivalent of X); G denotes 
conductance of memory equivalent to weights, and I denote the resultant output currents (analog equivalent of Y). DAC: Digital to Analog conversion block, ADC: 
Analog to Digital conversion block. 
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converted back to digital domain using ADC converters. The resistive 
crossbar implementation can reduce the data movement energy. 

The resistive memory can be implemented using different technol
ogies such as Resistive RAM (ReRAM), Phase Charged Memory (PCM), 
floating-gate charged-trap memory, SpinTransfer Torque Magnetic 
Random-Access Memory (STTMRAM), and Ferroelectric Field-Effect 
Transistor (FeFET) [46]. The ReRAM is a popular technology used in 
resistive crossbar array implementation for neural networks. The two 
major limitations of this technology are small tunable conductance 
range and parasitic voltage drop across the array. But more importantly, 
their non-linear and hysteretic behavior limits their usage for applica
tions where higher precision would be needed. Ultimately, to interface 
with the digital part of the CNN, we need a DAC to convert the digital 
input to analog voltage and an ADC to convert the summation output 
voltage/current to digital. Accuracy of such MAC units are limited by the 
ADC and DAC resolutions as well as other circuit noises. The conduc
tance range and noise levels define the weight precision, and eight-bit 
weight precision remains at the upper limit using a single non-volatile 
memory device [46]. The low precision parameters can still produce 
similar accuracy in inference, but generally not sufficient for training. 
The conductance is always positive, and hence only positive weights can 
be implemented. For negative valued weights, w, two weights w1 and w2 
whose difference equal to w (w = w1 − w2) are implemented and 
resulting output currents are subtracted. A few proposed analog NN 
architectures are PRIME [47], ISAAC [48], Memristive Boltzmann ma
chine [49], Newton [50], PUMA [68] and mCNN [51]. 

In some mixed-signal accelerators, the computational units are 
partially implemented in the analog domain. Cao et al. [52] proposed a 
hybrid-digital-mixed-signal computing platform using Time-Division 
Mixed Signal (TD-MS) multiplier. It uses 5b TD-MS multiplier and ex
tends to higher precision (6 to 8- bits) using shift and add. Bankman 
et al. [53] proposed a mixed signal binary CNN processor which per
forms multiplication in digital domain and summation using switched 
capacitor neuron. The weights and input data are represented in binary 
form hence multiplication in digital domain is efficient. Detailed reviews 
on analog neural network accelerators can be found in [69, 74]. 

Similar to the memristors, the digital data in these analog accelera
tors has to be converted into analog using DAC before processing in 
analog domain. After processing, the result has to be converted back to 
digital domain using an ADC. The DAC and ADC converters consume 
more energy with increase in precision. For higher precision data, en
ergy consumed by converters can nullify the advantage gained with 
analog computations and the overall performance may degrade 
compared to the digital domain. The MAC unit does not always need the 
ADC or DAC elements, but in most cases the non-idealities of the analog 
MAC require digital calibration and correction that mandates ADC and 
DACs. 

Similar to analog accelerators, photonic accelerators are also being 
explored to enable faster computation with improved energy efficiency 
[67]. Detail discussion on such solutions is beyond the scope of this 
manuscript. However, these solutions also face the same resolution 
challenge as other analog solutions that limits their usage to certain 
applications. 

4. Evaluation 

In this section, we present the performance evaluation of a few 
selected architectures. Most existing research works use measures such 
as chip area, throughput, latency and power efficiency for performance 
comparison. An accelerator proposed for a specific DNN model (e.g., 
sparsity, kernel size) may not translate its benefits to other DNN models. 
For example, the performance of sparsity-based accelerators signifi
cantly degrades on the denser models due to the presence of additional 
encode and decode modules. Similarly, the weight stationary data flow 
typically performs better on the convolutional layers compared to the 
fully connected layers because of weight reusability in the convolutional 

layers. Similar performance trend is observed in the variable precision 
accelerators (ALU-based) where both the latency and the power con
sumption increase compared to the fixed precision accelerators on a 
DNN model running at full precision. Therefore, it is important to un
derstand the advantage and drawbacks of each method of accelerator 
implementation (e.g., ALU-based, RS, WS, OS and sparsity-based 
accelerators). 

Parashar et al. [54] proposed a software framework, known as 
Timeloop, to estimate the energy efficiency of an accelerator architecture 
on different workloads without physical implementation. It is claimed 
that the Timeloop framework can give over 95% accuracy compared to 
the actual physical implementation of hardware. Therefore, Timeloop 
framework is used to measure the performance of few architectures. 
Before considering Timeloop, the framework performance on Eyeriss 
architecture with AlexNet layer 1 workload is verified with manual 
calculations, the difference is within 5%. Manual calculation uses 
similar method proposed by Yang [55]. The workload (AlexNet layer 1) 
is mapped manually on Eyeriss architecture. The parameters (inputs, 
weights, and partial sums) are stored across the memory hierarchy 
(DRAM, global buffer, and RF files) such that minimum data read-write 
operations (or maximum data reuse) are performed. The final output is 
written back to DRAM. The number of memories read or write opera
tions of each parameter at all levels of memory hierarchy are counted. In 
the calculation, we consider that the 16-bit MAC consumes 2.20pJ per 
operation (obtained from the Timeloop software). Note that the energy 
consumed for read/write operation at different level of memory is 
calculated based on 45 nm CMOS technology [54]. Energy required to 
read data from RF is assumed to be equal to one MAC operation. The 
manual calculations require 840 μJ to process AlexNet layer 1 on Eye
riss, and the Timeloop reports 866 μJ. The advantage of using the 
Timeloop framework is the optimal mapping of workload on an archi
tecture. Therefore, we will be using the Timeloop framework to evaluate 
the performance. 

In a DNN model, the size of parameters varies from layer to layer. Let 
I, W and O denote the size of the inputs, weights and outputs of a 
convolution layer. In general, O > I, W in the initial few layers. This is 
because a large number of feature maps (typically known as depth of the 
layer) are generated at the initial layers. In the later layers, the size of 
output features O is reduced. Hence, in the last layers, W >> O in 
general. 

The size of parameters can affect the performance of an architecture. 
Therefore, five different convolutional workloads, which can generalize 
to a broad range of workloads (with different filter size, convolution 
stride, etc.) are considered for evaluation in this section. The configu
ration of these five workloads is shown in Table 4. The workload, 
calculated as number of computations in a layer, increases from CONV1 
to CONV5. 

Using the Timeloop framework, the energy performance of three 
different architectures on the five workloads are calculated. The three 

Table 4 
Example of five workload configurations in terms of Input (I), Output(O) and 
Weight(W) sizes. TOTAL-PARAM: Total number of Parameters, I+W+O, (in 
millions). TOTAL-COMPUT: Total number of computations (in millions).  

Para- 
meters 

CONV1 CONV2 CONV3 conv4 Conv5 

Input (I) 225 ×
225 × 3 

227 × 227 
× 3 

64 × 64 ×
128 

17 × 17 ×
256 

33 × 33 
× 96 

Weights 
(W) 

5 × 5 × 3 
× 96 

11 × 11 ×
3 × 96 

1 × 1 ×
128 × 256 

3 × 3 ×
256 × 384 

3 × 3 ×
96 × 256 

Output (O) 111 ×
111 × 96 

55 × 55 ×
96 

64 × 64 ×
256 

15 × 15 ×
384 

31 × 31 
× 256 

Strides 2 4 1 1 1 
Total- 

PARAM 
1.34 0.47 1.6 1.04 0.57 

TOTAL- 
comput 

88 105 134 199 212  
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architectures considered are Row Stationary (RS), Weights Stationary 
(WS) and Output Stationary (OS) architectures with the same number of 
resources (e.g., MACs and memory) available. The allocated resources 
are based on the existing hardware accelerator EYERISS [42]. The 
available on chip global buffer is set to 128 KB and 256 (16 × 16) PEs, 
and the local buffer at each PE is 440 bytes. The local buffer is used to 
store weights, and partial outputs in the RS, WS and OS architectures. In 
the RS architectures, the local buffer is partitioned into 3 parts and is 
used to store inputs, weights and outputs. In WS, the local buffer is used 
to store only weights whereas OS architectures store only partial out
puts. The latency is calculated based on the number of clock cycles 
required to process. The clock frequency is set to 200 MHz (with 45 nm 
CMOS technology). 

Two performance parameters, latency and energy are calculated for 
all three architectures on 5-different workloads using the Timeloop 
framework and results are shown in Fig. 12. In the Timeloop framework, 
the mapper (e.g., a compiler) searches for the optimum map of the 
workload on the architecture. The search algorithm requires the per
formance criteria to select the best match. We choose latency and energy 
as the optimization criteria. In Fig. 12(a), the amount of computation 
increases monotonically from CONV1 to CONV5, but the energy con
sumption of the architectures does not always increase with computa
tions. This is because data transfer contributes a significant part of the 
total energy. For example, between CONV4 and CONV5, there is a small 
reduction in the total energy consumption despite increased computa
tion due to less data transfer. Therefore, energy efficiency of an archi
tecture depends on both computations and parameters’ size. From 
Fig. 12(b) and (c), it can be observed that the RS architecture has the 
lowest latency (combining all layers) and the WS architecture consumes 
the least energy. 

The dataflow efficiency depends on how much the parameters are 
reused within the local memory once read from the external memory. In 
convolution operation, the filter properties (height (R), width (S) and 
channel (C)) define the data reusability. For example, in a convolution 
with a 3 × 3 size filter, one input can be reused to calculate nine partial 
products (with nine weights) corresponding to nine outputs. Therefore, 
the performance of the RS, WS and OS dataflows are evaluated with 
filter size as shown in Fig. 13. In this figure, the workload of CONV5 is 
being varied by changing the filter size from 1 × 1 to 11 × 11. 

The total computations increase with the filter size and require more 
energy to process. From Fig. 13, it can be observed that energy con
sumption increases with filter size for all the architectures. But the en
ergy consumption of the RS and OS architectures increases more 
compared to that of the WS architecture. To understand the energy 
variation, we looked at energy consumption of DRAM, global buffer, 
local buffer access and MAC unit per computation. The MAC unit and 
local buffer consumes similar energy across the filters. The DRAM and 
global buffer access energy varies with filter size as shown in Fig. 14. For 
filter 1 × 1, the WS and RS architectures consume similar amount of 
energy (as seen in Figs. 13 and 14) because when filter size is 1 × 1, the 
weight reuse is similar in both the architectures. The input data reus
ability increases with the filter size but requires more local memory to 
store the filter weights. In the WS architecture, the local memory is 
allocated primarily for the filter weights and can store all weights for 
even large size (11 × 11) filter. Therefore, the DRAM access energy per 
computation decreases for the WS with increasing filter size as shown in 
Fig 14. The local memory is primarily allocated for the partial products 
in the OS architecture and shared with all three parameters in the RS. 
The OS and RS architectures may not have sufficient space in the local 
memory for large size filters and hence the increased data reusability 
with filter size does not significantly affect the DRAM access energy as 
shown in Fig. 14. The WS architecture requires less DRAM and global 
memory access energy, which means it maximizes the data reuse with
ing the local memory and requires fewer access to the higher level 
memory. Therefore, the WS consumes less energy among all architec
tures with filter size increase as shown in Fig. 13. 

The MAC utilization of the RS varies with the filter size as shown in 
Fig. 14 (see the dotted lines). In RS architecture, the PEs are connected in 
such a way that the inputs are reused in diagonal PEs and partial sums 
are accumulated across vertically connected PEs as shown in Fig. 7 (the 
directions can be configured). When mapping the workload on PE array, 
a few PEs may end up unallocated. For example, in mapping 3 × 3 filter 
on four PEs, three rows of filters can be stored in three PEs and accu
mulate the partial products to get the convolution output. The fourth PE 
is unused, and it can be used to calculate the next output, but the partial 
product must be stored in the memory and be read in the next cycle. 
Additional energy required for the partial product memory read-write 
can defeat the advantage of using the fourth PE. Therefore, only three 
PEs are used for calculations and the fourth one left ideally. As only 
three PEs are effectively utilized, more clock cycles are required to 
complete the convolution. To fully utilize the PEs in the RS dataflow, the 
array size should be in multiples of the filter size. In this experiment, the 
PE array size is 16 × 16 which is not multiples of 3, 5, 7, 11 (i.e., the 
filter size). Therefore, the MAC utilization of RS dataflow is varying with 
the filter size (see the dotted green line in Fig. 13). The decrease in MAC 
utilization increases the latency as shown in Fig. 13. For filter size from 5 
to 11, the latency of the RS increases more compared to the WS or OS 
because of the drop in the MAC utilization. The latency difference be
tween the RS and WS/OS architectures is small (~0.8) at filter size 5 
compared to the difference (~1.4) at filter size 3 because of the increase 
in the MAC utilization for RS. 

Convolution stride is another parameter which can affect the data
flow. With stride greater than one, the input features may not be reus
able in two neighboring output feature (pixels) computations. For 
example, with stride one, six input pixel values (i23, i33, i43, i24, i34, i44) 
out of nine can be reused for the next window as shown in Fig. 15(a). In 
convolution with stride two, only three input pixel values (i24, i34, i44) 
out of nine can be reused for the next window as shown in Fig. 15(b). On 
the other hand, in convolution with stride three, there is no common 
pixel data in the consecutive windows as shown in Fig. 15(c). Therefore, 
the input data reusability depends on the stride value and there is no 
reuse of input data in consecutive output feature calculations if the 
stride value is more than the filter size. 

Note that it is important to understand the efficiency of dataflow 
architectures with stride variation. In this experiment, the stride size is 
varied from 1 to 4 in the CONV4 workload. The total energy consump
tion depends on the type of workload and filter size as shown in Figs. 12 
(a) and 14. Hence, instead of comparing the total energy, the energy 
normalized to stride one is compared in respective architectures. The 
normalized energy here indicates the change in energy due to the change 
in the stride value. The DRAM access energy increases by about 120% in 
the WS architecture as stride value changes from 1 to 4 as shown in 
Fig. 16. The DRAM access energy changes because of the change in the 
input data reusability and may require reading the full window of input 
data at each cycle as shown in Fig. 15. In the RS architecture, a row of 
inputs is stored in the connected PEs and is used in the later computa
tions if not in consecutive computations. Therefore, the DRAM access 
energy changes more in the WS compared to the marginal change in the 
RS. The total energy changes with DRAM access energy, more than 20% 
increase in the WS and marginal change in the RS as shown in Fig. 16. 
Therefore, for large stride values, the RS has better data reusability 
compared to the OS and WS architectures. 

Note that most of the accelerators reviewed in the previous section 
varies in terms of the available MAC units, memory size, dataflow 
implemented, and workload used. Therefore, energy and latency pa
rameters are not sufficient to evaluate or compare the existing acceler
ators. It is difficult and time-consuming to implement all existing 
accelerators on the Timeloop framework, keeping the same amount of 
resources, to obtain the performance metrics for comparison purpose. In 
the ALU based accelerators, the MAC implementation enables the per
formance improvement. Hence, the ALU based accelerators can be 
evaluated by comparing single MAC units. Camus et al. [12] analyzed 
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Fig. 12. Performance of three different architectures. (a) energy consumption in different workloads. (b) architecture latency on all workloads. (c) architecture total 
energy consumption. 
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precision scalable MAC units from different accelerators. Similarly, the 
performance improvement in sparse-based accelerators is defined by the 
sparse encoder and decoder modules. In order to observe the trend in 
ALU and sparse based accelerators, power vs speed plot of a few accel
erators are shown in Fig. 17. The data for Fig. 17 has been obtained from 
repository [56]. In Fig. 17, the small size marks indicate the real time 
performance and the large size marks indicate the peak performance. 
The ALU based accelerators evaluated for at least two precisions are 
considered. From Fig. 17, it is observed that the sparsity-based accel
erators consume less power (star marks in Fig. 17). The advantage of 
sparse architectures depends on the amount of sparsity in the input data. 
For highly sparse data, the additional cost of encoder/decoder can be 
overcome by the computational advantage (i.e., smaller number of MAC 
operations after zero skipping). Running a dense model on a sparse 
accelerator can degrade the performance. Therefore, it is important to 
evaluate the sparse accelerator with varying sparsity (e.g., from 5% to 

90%). The precision can also affect the power and speed of an archi
tecture. Low precision accelerators provide high speed at lower power 
(see the blue and red color marks in Fig. 16). In sub-word parallel ar
chitectures, by running at half precision, the speed can be doubled at the 
same amount of power [32, 33, 58] or power can be reduced at the same 
speed [31]. The binary and INT4 precision architectures can achieve 
high speed at low power but has limited applications. 

5. Conclusions 

Understand the factors affecting the performance on an DNN accel
erator are important to develop an energy efficient accelerator. In this 
study, three major areas ALU, dataflow and sparsity are identified as 
potential areas to improve the overall performance of a DNN acceler
ator. The existing architectures are classified into three categories. 
Advantage and drawback of each category are discussed. Precision 

Fig. 13. The RS, WS and OS performance with variation in filter size. Note that the Latency and MAC utilization in the OS and WS are same, and their plots coincide 
(represented by the dotted blue line). 

Fig. 14. Energy consumption and MAC utilization in the WS, OS and RS architectures for different filter size. R and S are the number of rows and columns, 
respectively. 
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variable ALU can take advantage of subword parallel processing for low 
precision DNN models to improve overall throughput or to reduce the 
power requirement. But precision variable ALU comes with complex 
configuration circuit. An efficient data flow can improve the arithmetic 
intensity and memory bandwidth requirement. The dataflow efficiency 
can vary from layer to layer or with filter size. The sparse models can 
reduce the power requirement by skipping zero multiplication but in
crease the latency per MAC operation. Three dataflow architectures are 

evaluated. The dataflow efficiency depends on the workload. Hence, the 
dataflow must be chosen based on the accelerator application. The 
classification discussed in Section III will help the readers in choosing 
the best technique at different levels in an architecture. An efficient DNN 
accelerator should have variable precision ALU, flexible dataflow for all 
types of layers in a DNN model and explore the sparsity with simple 
control circuitry. 

Fig. 15. Impact of the convolution strides on the input data reusability. (a), (b), (c) represent input feature maps with filters (colored boxes) imposed on it to indicate 
consecutive convolution windows with stride values of 1, 2, and 3, respectively. 

Fig. 16. Energy variation in the RS, WS and OS with stride variation for CONV4 workload.  
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