
Microprocessors and Microsystems 89 (2022) 104441

Available online 12 January 2022
0141-9331/© 2022 Elsevier B.V. All rights reserved.

Review of ASIC accelerators for deep neural network

Raju Machupalli, Masum Hossain, Mrinal Mandal *

Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada

A R T I C L E I N F O

Keywords:
Deep neural network
Hardware accelerator
Neural processor
Domain specific accelerator
ASIC

A B S T R A C T

Deep neural networks (DNNs) have become an essential tool in artificial intelligence, with a wide range of ap-
plications such as computer vision, medical diagnosis, security, robotics, and autonomous vehicle. The DNNs
deliver the state-of-the-art performance in many applications. The complexity of the DNN models generally
increases with application complexity and deployment of complex DNN models requires high computational
power. General-purpose processors are unable to process complex DNNs within the required throughput, latency,
and power budget. Therefore, domain-specific hardware accelerators are required to provide high computational
resources with superior energy efficiency and throughput within a small chip area. In this paper, existing DNN
hardware accelerators are reviewed and classified based on the optimization techniques used in their imple-
mentations. Each optimization technique generally improves one or more specific performance parameter(s). For
example, the hardware optimized for sparse DNNs may provide poor performance for dense DNNs in terms of
power and throughput. Therefore, understanding the tradeoff between different hardware accelerators helps to
identify the best accelerator model for application deployment. We identify three major areas, ALU, dataflow,
and sparsity, in hardware architectures having the potential to improve the overall performance of an acceler-
ator. Existing hardware accelerators for inference are broadly classified into these three categories. As there is no
standard model or performance metrics to evaluate the efficiency of the new DNN hardwares in the literature, the
classification model can help to identify appropriate performance parameters and benchmark accelerators.

1. Introduction

Artificial intelligence is the ability of a system to think, learn, and
react like humans without explicit programming. The human brain
consists of billions of neurons connected in a complex structure with
operational efficiency. Similarly, the creation of an intelligent model
requires a large number of well-connected computing units (or small
building blocks) and enough examples to train the model. Due to the
availability of large quantity of data and computing resources in recent
time, the creation of intelligent machine is realizable. Machine learning
(ML) is a subsection of artificial intelligence in which a mathematical
model is trained over many examples to solve a new problem. Deep
neural networks (DNNs) are subsections of ML with a deep network
structure and shared weights (filters).

The DNNs have been successfully applied to many problems, such as
computer vision [1], robotics [2], security [3], medical diagnosis [4],
and self-driving car [5]. Most DNNs are based on the convolutional
neural networks (CNN) where output feature maps are typically gener-
ated by convolving input feature maps with 3D filters. Recent DNN

models have been shown to surpass human performance in some ap-
plications. The performance improvements typically come with the
increased complexity of the DNNs. As seen in Table 1, the classification
of a small size image (e.g., 227 × 227 pixels) requires billions of arith-
metic operations (i.e., multiplications and additions). The
MCN-MobileNet has 4.19 million parameters (weights) and requires
0.58 billion operations to classify an image. A large size VGG-19 DNN
model requires about 20 billion operations per classification. The
general-purpose processors, like CPU, are unable to provide such huge
computing power with required latency. To deploy the DNNs in
real-time applications, the embedded processors must have high
throughput and low power consumption. Therefore, the demand for
domain-specific accelerators is increasing in recent times as these ac-
celerators can provide superior performance at higher energy efficiency.

There are two main phases in DNNs: training and prediction (or
inference). In the training mode, an example input with a known
outcome is applied to the model to learn its internal parameters. In the
prediction (or inference) mode, the possible outcome is calculated based
on the input test data. Training typically requires high precision

* Corresponding author.
E-mail address: mmandal@ualberta.ca (M. Mandal).

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

https://doi.org/10.1016/j.micpro.2022.104441
Received 30 October 2020; Received in revised form 2 November 2021; Accepted 27 November 2021

mailto:mmandal@ualberta.ca
www.sciencedirect.com/science/journal/01419331
https://www.elsevier.com/locate/micpro
https://doi.org/10.1016/j.micpro.2022.104441
https://doi.org/10.1016/j.micpro.2022.104441
https://doi.org/10.1016/j.micpro.2022.104441
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2022.104441&domain=pdf

Microprocessors and Microsystems 89 (2022) 104441

2

numerical representation while low precision representation may be
enough for inference [7–10]. Generally, training is done using high
power GPUs and data centers. The precision and size of the trained DNN
models can be reduced significantly with negligible (<1%) change in the
accuracy for inference [11]. In real-time deployment, the trained DNNs
need to operate in inference mode only if there is no change in appli-
cation requirements. Therefore, hardware accelerators for inference
mode are more important than for training. Therefore, this paper is
mainly focused on the inference mode, and all discussions are subject to
inference mode of operation.

Globally, a large number of researchers, in both academia and in-
dustry are working towards developing optimized hardware for DNNs
inference. DNN accelerators are developed using FPGAs, GPUs, and
ASICs. GPUs come with a massively parallel compute units and process
DNN computations in parallel. GPUs are power hungry, and this limits
their applications in embedded systems. FPGAs have high performance
per watt and can be configurable in the fields. FPGAs are often used to
prototype and validate the design. ASICs are custom designed for spe-
cific application with optimum speed and power consumption. ASIC has
more applications at embedded devices. ASIC implementation takes
longest development cycle compared to GPUs and FPGAs and have no
flexibility after design. Talib et al. [76] reviewed several hardware ac-
celerators for machine learning using FPGA, GPU and ASIC platforms
and discussed the advantages of each platform over other platforms. Guo
et al. [60] surveyed several FPGA-based neural network accelerator
designs and summarized the methods used for the design automation.
The FPGA allows less control and flexibility over the multiplication and
accumulation (MAC) unit design, which typically limits the exploration
of the MAC variants. Li et al. [61] presented an overview of the GPU,
FPGA and ASIC based accelerators and a detailed explanation of the
DianNao [30] family of accelerators. This has motivated significant
progress in the ASIC accelerators after the [61] survey. Camus et al. [12]
analyzed the precision scalable MAC units from different accelerators
and discussed their benefits in different scenarios. Although, the MAC
unit is an important block in the DNN accelerator design to improve the
performance, the MAC alone cannot define the overall performance.
Hence, along with the MAC unit some other factors in the accelerators
are to be analyzed. The MAC utilization depends on the data flow and
on-chip memory. An efficient architecture should have 100% MAC uti-
lization. Reuther et al. [13] discussed existing ML accelerators based on
peak performance vs. power scatter plot. The accelerators are broadly
categorized into six types based on the region in the plot. The factors
causing variation in the performance of different accelerators are not
well explained in [13].

Du et al. [59] presented an overview of self-aware neural network
systems, where a system can predict and adapt dynamics in network
parameters such as precision, sparsity and network structure based on
the input data. The self-aware techniques can significantly improve the
accelerators throughput and energy efficiency, but the accelerators
should have some flexibility. For example, a DNN with a variable pre-
cision requirement at different layers need a variable precision MAC to

adapt and save energy. The survey did not include much information on
the implementation techniques to incorporate the flexibility in accel-
erator implementation and how it affects the overall performance. Sze
et al. [7] provided an overview of the DNN development platforms,
optimization algorithm, accelerator implementations and benchmarks.
The paper has detailed explanation of three different dataflow methods
but does not include all recent advances in the arithmetic logic unit and
sparsity exploration. Chen et al. [35] reviewed several recent DNN ac-
celerators based on their application and technologies used (e.g.,
ReRAM, Hybrid Memory Cube). Most surveys provide the architectural
and performance improvements of existing DNN accelerators, but it
would be helpful to analyze the architectures in a generalized
framework.

The existing literatures classify the different DNN accelerators based
on their implementation techniques or applications. For example, the
accelerators in [35] are reviewed based on architectures (e.g.,
stand-alone, or co-processor-based) or technologies used (e.g., Re-RAM,
HMC). Similarly, the accelerators in [13] are classified based on the peak
power versus performance tradeoff. In the DNN literature, we identify
three major areas for improvements in the DNN architecture: Arithmetic
logic unit, dataflow, and sparsity. In this paper, we present a compre-
hensive review of the ASIC accelerators for the DNN architectures. The
state-of-the-art accelerators are classified into three broad categories (i.
e., ALU, data flow, and sparsity based) based on their architectural
differences. This broad classification can provide more insights to
develop generic DNN architectures. Additionally, we have added a
fourth section that captures a recent trend of analog-digital hybrid
digital implementation for faster computation.

The organization of the paper is as follows. Section II presents the
background information and performance criteria of hardware archi-
tectures. Section III presents a comprehensive review of the DNN
hardware architectures and their classification. Section IV presents
evaluation methods and observations in existing accelerators, followed
by the conclusions in Section V.

2. Background

The superior performance of DNNs generally comes at the cost of
high computations. For example, AlexNet [1] which won the ImageNet
challenge [14] in 2012, has 61 M parameters and requires 727 M MAC
operations per image classification. Large DNNs may require billions of
MAC operations per inference as shown in Table 1. Performing large
number of operations sequentially affect the throughput. Existing
general-purpose processors (GPPs) may be unable to provide the
required computational power and throughput within a low power
budget. The GPUs can provide high computational speed but consumes a
large amount of power. GPUs can therefore be used at servers where the
computational speed is more important than the power requirement.
Domain-specific accelerators (e.g., ASICs) are known to provide high
energy efficiency (around 1~10 TOPs/W). The FPGAs have less energy
efficiency but have the advantage of reconfigurability.

Real-time deployment of DNN is constrained by energy efficiency
and throughput of embedded processors to maximize the battery life.
For example, a typical mobile phone has a 2–3 Ah (5 V) battery life (i.e.,
15 Wh) and the DNN processing power should be only a fraction of the
maximum available power. For real-time data processing, the processor
should have the throughput equal to the data collection frame rate (e.g.,
camera frame rate). Fortunately, there is no interdependency among
outputs (i.e., in the same layer output or feature map) in a DNN layer.
Therefore, parallel implementation of large MAC units can increase the
throughput. An example of the DNN accelerator implementation based
on Parallel MAC units is shown in Fig. 1. In general, the size of the
accelerator in silicon and power requirement are directly proportional to
the number of MAC units (working in parallel) and on chip memory.
Note that the DNN specific accelerators will have an array of processing
elements (PEs) connected to its neighbors. Each PE contains one to

Table 1
Parameter’s size and number of operations required for different DNN models
[6].

Model Input size PARAMETERS SIZE (millions) Operations (GOPs)

AlexNet 227 × 227 61.07 0.73
Squeezenet 224 × 224 1.31 0.84
VGG-16 224 × 224 138.41 16
VGG-19 224 × 224 143.65 20
GoogleNet 224 × 224 13.36 2
Resnet-18 224 × 224 11.79 2
Resnet-152 224 × 224 60.29 11
Inception-V3 299 × 299 23.85 6
Densenet-201 224 × 224 20.18 4
MCN-mobileNet 224 × 224 4.19 0.58

R. Machupalli et al.

Microprocessors and Microsystems 89 (2022) 104441

3

several MAC units connected in such a way that matrix multiplication
can be performed with a single instruction. The MAC unit contains a
control unit to configure the operation to multiplication or addition or
both and register files to store the local parameters and intermediate
results. To increase the on-chip storage, the global and local buffer
memory blocks are implemented along with PEs.

The cost of the individual MAC units can be reduced with lower bit-
length/precision of the MAC units. Energy and area consumption of
multiply and add circuits for 4 different precisions are shown in Table 2.
An 8-bit fixed point (FIX) add circuit occupies 116x less area and con-
sumes 30x less energy (in picojoules) than a 32-bit floating-point (FL)
adder. For multiplication, an 8-bit fixed point circuit consumes 18.5x
less energy and occupies 27.3x less area than a 32-bit floating-point.
Approximately, energy and area of fixed-point circuits scale linearly
for add, quadratically for multiply, with the number of bits [15].

Reduction in the MAC precision can save both the computation and
storage requirements. Therefore, the impact of low precision on the
accuracy of DNN models has been explored in literature, mainly with
respect to quantization [9, 11, 17]. In most DNNs, quantization of
weights and activations to less than 16-bit integers can still provide
accuracy similar to that of a 32-bit floating-point [17–19]. Linear
quantization to 8-bit fixed-point numbers benefits the hardware imple-
mentation of the MAC unit, as shown in Table 2. Both energy con-
sumption and silicon footprint increase with the increase in precision
when changed from fixed point to floating representation. In Binary
network [20], weights and activations are quantized to binary values +1
or -1. Binarization of the network will simplify the multiplication into
the XOR operation. Ternary network [21] quantizes the parameters to
three levels: -1, 0, and +1. But applications of Binary and Ternary net-
works are limited.

Depending on the application requirements, the arithmetic

operations in a DNN network may be implemented using different bit
precisions. Also, there exist models whose optimized bit length varies
one layer to the next layer. For example, for a 5-layer Convnet (with 3
convolutional and 2 fully connected layers), the optimized bit length
requirement for the 5 layers has been found to be 8–7–7–5–5 bits [22].
In other words, there is no standard precision requirement that is
optimal for all layers or models. Therefore, a flexible DNN hardware
accelerator (or the associated MAC units) should be able to support all
possible bit precisions. For lower precision computations, multiple op-
erations can be performed with a single MAC unit by hardware reuse or
sub-word parallel processing. With hardware reuse, the overall
throughput or peak performance of an accelerator can be improved for
lower precision layers or models. For example, the Tesla T4 [23] GPU
can be configured to four precisions: 4-bit, 8-bit, FP16/FP32-mixed and
FP32. Tesla T4 achieved the highest speed at the lowest precision (4-bit).
The throughput increases at the cost of reduced precision. The peak
performance is typically expressed in arithmetic operations per sec
(OPS), and it primarily depends on the available MAC units. In a variable
precision MAC unit, additional control unit is required to configure the
MAC unit into multiple sub-MACs or bit length. The overall size of the
MAC unit increases with flexibility (in precision). In other words, the
MAC density (i.e., MAC units per unit area) decreases with an increase in
flexibility [12]. Therefore, there is a tradeoff between MAC’s flexibility
and density.

Having a large array of MAC units with a variable bit precision can
fulfill the DNN processing requirement in terms of computations. But
just having a large array of MAC units does not improve the throughput.
To provide operands to all MAC units in a large array, higher memory
bandwidth (BW) is required. After a certain point of arithmetic intensity,
the memory bandwidth of an accelerator will determine the overall
throughput. Fig. 2 shows the estimated roofline model for DNN infer-
ence on four different embedded platforms. Arithmetic intensity (AMI)
also commonly referred to as the operational intensity or compute-to-
communication ratio is expressed as the number of arithmetic opera-
tions performed per byte of off-chip memory traffic (expressed in op-
erations/byte). The arithmetic performance of the hardware depends on
the AMI as well as the data access rate from the external memory. In
other words, the arithmetic performance can be expressed as follows:

ArithmeticPerformance = min(PP,AMI × BW) (1)

Fig. 1. Block diagram of a generic DNN architecture.

TABLE 2
Resource consumption of MAC units at different precisions [16].

operation/precision Energy (pJ) Area (μm2)

MUL ADD MUL ADD

8-bit FIX 0.2 0.03 282 36
32-bit FIX 3 0.1 3497 137
16-bit FL 1.1 0.4 1640 1360
32-bit FL 3.7 0.90 7700 4184

R. Machupalli et al.

Microprocessors and Microsystems 89 (2022) 104441

4

where BW is the memory bandwidth and PP is the peak performance. It
is observed in Fig. 2 that the arithmetic performance increases initially
with an increase in the AMI until peak performance (PP) is reached.
After achieving the PP, any further increase in the AMI does not increase
the performance. It is observed that the arithmetic performance is
memory-bound when the AMI is to the left of the break point and is
compute-bound when the AMI is to the right [24].

The Arithmetic performance of the hardware typically depends on
the PP, AMI, and memory bandwidth. Resources available on the chip
defines the PP of the hardware. Arithmetic intensity depends on the
dataflow structure implemented and available on-chip memory. Note
that an external memory operation is energy and time-consuming.
Hence, the hardware should run at a minimum bandwidth to save en-
ergy. With minimum bandwidth, the arithmetic performance of hard-
ware can be increased with increased AMI. As seen in Fig. 2, the
arithmetic performance increases with an increase in the AMI in the
linear region of the curves (as the PP and BW are constant). The AMI can
vary through the data flow structure. Therefore, the dataflow structure
should be optimized to achieve higher arithmetic performance for a
given available bandwidth.

To avoid the data read/write each time (in order to speed up the
computation and reduce energy consumption, and to increase the AMI),
the read data must be used as much as possible within the chip before
writing it back to the memory. Fortunately, the convolution layers in
DNNs have this data reuse options. For example, a single filter is reused
to calculate all pixels in an output feature map. Therefore, reading co-
efficients of a filter once is enough. But keeping all filter coefficients at
each MAC unit is a resource (i.e., memory) consuming option. To reduce
the overall energy cost of data movement, several levels of memory (e.g.,
global buffer, local buffer, registers) can be implemented in hardware. A
rough estimation of the available memory size, latency, and energy
consumption per operations at different levels are shown in Table 3 [7].

The global buffer (with a size of hundreds of kilobytes) connects to
DRAM, and local buffer dedicated to a few processing elements (PE).
Read/write data from Global buffer to a MAC consumes around six times
more energy and 40x latency than read/write from register files. Reg-
ister files (RF) corresponding to a MAC unit of a PE are connected to a
local buffer and consumes the least amount of energy to read/write the
data. The advantage of the local buffer is limited by its available size.
The energy consumption and access time increase from low-level
memory (Registers) to high-level memory (Global buffer).

In a DNN, the output of a convolution or fully connected layer goes
through an activation function. The Rectified Linear Unit (ReLU) is a
nonlinear activation function widely used in DNNs (Sigmoid is another
widely used activation function), which maps the output value of a
feature map as follows.

y =

{
x x ≥ 0
0 x < 0 (2)

where x is the input and y is the output of the activation function. It is
observed that the negative output values are truncated to zero by the

Fig. 2. Comparison of the roofline models for DNN inference [24].

Table 3
Memory hierarchy in a general accelerator, and its approximate performances
[7].

Memory
level

Access time
(approx. cycles)

Available
capacity

Energy consumption
(normalized)

Registers 1 >0.5 KBs 1x (Refence)
PEs cache 2–4 ~1–10 KBs 2x
Local buffer 10 ~100 KBs 4x
Global

buffer
40 ~10 MBs 6x

Main
memory

200 In GBs 200x

R. Machupalli et al.

Microprocessors and Microsystems 89 (2022) 104441

5

activation function. This truncation can make the output values sparse.
It has been shown that the AlexNet has a sparsity between 19% to 63%,
where the sparsity is defined as the percentage of the data (e.g., feature
maps, filter coefficients) that are zero. The sparsity in a DNN has been
exploited by several researchers to increase the throughput and reduce
power consumption.

The DNN model size (i.e., the number of the DNN weights) can be
reduced through pruning without affecting the model accuracy. The
pruning eliminates insignificant connections or weights (i.e., making the
insignificant weights zero) in a DNN. Note that multiplication with a
very small value operand results in insignificant value that are not likely
to alter the outcome. This observation makes the case for opportunistic
energy savings by eliminating insignificant multiplications. The DNN
architectures can therefore be designed to skip multiplications with
zeros, which is known as zero skipping.

If a hardware can skip zero multiplication, sparsity in data and zero
weights cumulatively reduce the computing power requirement. Higher
speed can also be achieved by exploring sparsity in data. To exploit the
sparsity further, the storage requirement can be reduced by encoding the
sparse data. The compression techniques may vary from simple run-
length coding to compressed sparse column (CSC) or compressed
sparse row (CSR) [25]. Compression techniques however need addi-
tional encode and decode modules in the hardware.

Based on the above discussion, it can be inferred that an efficient
hardware accelerator must be optimized for low precision, best data
flow, and be flexible for varying precision and sparse models. As can be
expected, there is a tradeoff between flexibility and optimized archi-
tectures. An architecture optimized for sparse models will affect the
throughput on dense models. Accelerators optimized for the convolu-
tional layer may not perform well on a fully connected layer due to the
data reusability. In a convolutional layer, weights are reused but in fully
connected layers input features are reusable for optimal performance.
Overall, efficient hardware for DNNs should have scalable precision to
support different DNN models, optimized data flow structure to increase
the arithmetic intensity, and should utilize the sparsity.

3. Hardware classification

The deployment of DNNs in real-time applications requires low
power and high throughput DNN accelerators. Many efficient DNN
accelerator architectures have been proposed over the last decade to
reflect versatile effort to improve the overall performance of the DNNs.
Domain-specific accelerators will always have a scope to improve the
overall performance by customizing architectures towards a specific
application. Even the accuracy requirement of the same application can
make a difference in the DNN complexity. A generalized DNN acceler-
ator architecture should have the flexibility to work on different models
at the optimum performance.

The DNN architectures can be broadly divided into three categories
based on the area in which the architecture has been primarily opti-
mized. These three areas are Arithmetic logical unit (ALU), Dataflow,
and Sparsity. In the ALU category, the basic building block, i.e., the MAC
units (or an array of MAC units) are modified such that the accelerator
can have large computing resources and flexibility to achieve the
optimal performance with variable bit precision. In the Dataflow cate-
gory, the parameters (e.g., weights, activations, partial sums) are
managed such that the overall (intra chip) data movement energy is
reduced, and high arithmetic intensity (Ops/Byte) can be achieved. In
the Sparsity category, the unstructured sparse data is managed such that
the matrix multiplication units (e.g., a 2-D array of MAC units) can avoid
the zero multiplications effectively. A comprehensive review of the DNN
architectures based on these three criteria is presented in the following.

3.1. ALU based accelerators

Computation hungry DNN algorithms require a huge amount of

computing hardware resources. Large arrays of PEs are typically
implemented in parallel to improve the computational power of a pro-
cessor. Graphical Processor Units (GPUs) have thousands of PEs in
parallel. Hence, the GPUs are widely used as accelerators for DNNs. The
GPUs can provide the throughput requirement but consumes high en-
ergy. The energy consumption of a MAC unit can be reduced by
decreasing the bit length. Therefore, low precision DNN accelerator
architectures have been proposed for DNN inference.

Chen et al. [26] proposed an architecture, known as DianNao ar-
chitecture, with Neuron flow unit (NFU) as the basic arithmetic building
block. An NFU has 16 neurons, with each neuron having sixteen 16-bit
fixed-point multipliers in stage 1 and 15 adders in a tree structure at
stage 2 to add the multiplication results. Stage 3 has an activation layer.
DianNao has three memory blocks input buffer, output buffer and syn-
apse buffer to store inputs, outputs, and weights respectively. Based on
the DianNao architecture, a series of accelerators DaDianNao [27],
ShiDianNao [28], PuDianNao [29] have been proposed by improving
the NFU unit as well as dataflow. The DianNao family can provide 450x
speedup and 150x reduction in energy with 64-chips over a GPU [30].
Although, the Diannao family provides a good speed-up, it does not
support variable precision. Running a 4 or 8-bit DNN Model will
consume energy as high as the 16-bit model.

To save the energy at lower precision, the Dynamic Voltage, Accu-
racy and Frequency Scaling (DVAFS) MAC based CNN architecture
(ENVISION) has been proposed in [31]. In DVAFS, all run-time adapt-
able parameters influencing power consumption: activity (α), frequency
(f) and voltage (V) are scalable. The dynamic power consumption at
constant throughput is given by [31]

PDVAFS =
α
k1

C
f
N

(
α
k2

)2

(3)

where k1, k2 and N are scaling factors of switching activity, voltage, and
level of parallelism, respectively. For lower precision, the switching
activity can be reduced by masking lower LSBs at the inputs of the MAC
units. For example, as shown in Fig. 3, the configuration of 8b-MAC to
4b-MAC leaves a portion of the MACs unused. The unused region can be
masked to reduce the switching activity. The reduced precision MAC (4b
or 2b) will have shorter critical path than the full precision MAC (8b).
The shorter critical path can help to increase the operation frequency or
to reduce the input voltage for energy efficiency. With sub-word parallel
processing, one MAC unit at full precision (8b) can be configured to
more than one MAC units of lower precision. As seen in Fig. 3, one 8b-
MAC can be configured to two 4b-MACs or four 2b-MACs. At constant
throughput, the sub-word parallel processing helps to reduce the oper-
ating frequency (1 MAC/clock at 8-b precision, 2 MACs/clock at 4-b
precision and 4 MACs/clock at 2-b precision). The reduced switching
activity, frequency and voltages have been explored to increase the
overall energy efficiency in the DVAFS. The energy efficiency is further
improved by modulating the body bias (BB) in an FDSOI technology
[31]. The body bias permits tuning of the dynamic vs. leakage power
balance while considering the computational precision. On average
0.26–10 TOPS/W peak efficiency is reported (implemented in 28 nm
FDSOI technology). Note that processing at the full precision (i.e., 8 bit)
with DVAFS comes at a slightly higher energy and area penalty
(compared to 8-bit standard precision) due to additional control cir-
cuitry for configuration and larger register.

Shin et al. [32] proposed a Deep Neural Processing Unit (DNPU)
architecture for general DNN models using reconfigurable MAC with
sub-word parallel processing (SWP) approach on one operand. In SWP,
parts of bits processed separately using the lower precision MACs and
results are combined to get full results, as shown in Fig. 4. In Fig. 4(a),
both activation (A) and weight (W) have 8-bit precisions and W is rep-
resented as two 4-bit subwords. The SWP architecture generates 16-bit
multiplication output by combining the two sub results. In Fig. 4(b), A
has 8-bit precision, but W represents two independent 4b words, and the

R. Machupalli et al.

Microprocessors and Microsystems 89 (2022) 104441

6

Fig. 3. Implementation of variable symmetric precision (8bx8b, 4bx4b, 2bx2b) MAC unit using the DVAFS architecture. In Green regions DVAFS techniques are used.
Average throughput is one multiplication and accumulation (one 8b or two 4b or four 2b) per cycle [12].

Fig. 4. Sub-word parallel (SWP) architecture, (a) use of two 8bx4b MAC units to perform one 8bx8b operation, (b) Two 8bx4b MAC operations implemented
in parallel.

Fig. 5. Bit-serial MAC configured as (a) 8bx8b MAC unit, (b) 8bx4b MAC unit, and (c) 8bx2b MAC unit (Weight only scaling).

R. Machupalli et al.

Microprocessors and Microsystems 89 (2022) 104441

7

SWP generates two 12-bit multiplication outputs. In other words, the
DNPU architecture allows the fixed precision on one operand (A) and the
variable precision on the other (W). The DNPU reported 8.1 TOPS/W
energy efficiency (with 4-bit precision) on 65 nm CMOS technology.
Although, the DNPU architecture exposed the SWP for only one
operand, the SWP can be exposed in both operands using a DVAFS like
architecture shown in Fig. 3.

Lee et al. [33] proposed the Unified Neural Processing Unit (UNPU)
architecture using a bit-serial MAC unit. Schematic of a Weight only
bit-serial MAC unit is shown in Fig. 5. The Bit serial MAC requires just an
adder and a shift register and does not require multiplication. In each
clock cycle, one bit of weight (LSB bit first) is supplied, and activation is
added to shifted value of the previous cycle partial product. The number
of cycles required to finish a MAC operation depends on the weight
precision. For an 8-bit precision weight value, eight clock cycles are
required to perform the MAC operation as shown in Fig. 5(a). Four and
two clock cycles for 4-bit and 2-bit weights respectively as shown in
Fig. 5(b) and (c). The architecture supports any weight bit precision
from 1b to 16b and reported 1.43× higher power efficiency for a con-
volutional layer at 4b weight compared to the DNPU.

Alternatively, to reduce the power and area consumption of multi-
pliers, approximate multiplier or logarithmic multiplier have been
proposed. Note that the neural networks and their associated applica-
tions are known for exhibiting intrinsic resilience to errors, which makes
them appropriate candidates for approximate computations. A review
on effect of approximate multipliers on the DNN performance can be
found in [71]. Ansari et al. [70] proposed an improved logarithmic
multiplier (ILM) that rounds both inputs to their nearest powers of two
by using a nearest-one detector (NOD) circuit. The MNIST and CIFAR-10
dataset classification using ILM showed up to 21.85% reduction in en-
ergy consumption and 1.4% improvement in classification accuracy.

Note that the MAC optimization presented above is primarily based
on binary number system. A few accelerators have been proposed based
on non-conventional number systems, e.g., the residual number system
(RNS) and Posit numbers. Posit numbers have better dynamic range and
are suitable to represent weights in DNN with lower bit precision. Car-
michael et al. [73] proposed Deep positron, and DNN architecture based
on posit number system and evaluated its robustness at low precision
(<8-bits). The residual number system is represented by k integers {m1,
m2, … mk}, called moduli which should be relatively prime by each
other. In the RNS, an integer value, X is represented with residues {r1, r2,
… rk} where ri = |X|mi. Any arithmetic operation in the RNS is equal to
the same operation on residues. For example, for two numbers (in RNS)
x1 = {a1, a2, a3} and x2 = {b1, b2, b3}, x1+x2 can be calculated as {a1+ b1,
a2+ b2, a3+ b3}. In RNS, any arithmetic operation can be break down to
same operation on residues which are represented with lower precision
than actual binary number. It reduces the bit precision requirement at
the cost of increased number of computations. In digital domain, the
RNS can improve the speed and reduce the energy in high precision
computations. Olsen et al. [75] implemented RNS based matrix multi-
plication to accelerate neural network processing on FPGA and achieved
7–9x speed compared to the 32-bit fixed-point implementation. The
reduction in the precision requirement is very helpful in analog domain
implementation where higher precision MACs have some limitations
with their non-linear and hysteretic behavior. Samimi et al. [72] pro-
posed RESnet accelerator in analog domain with RNS. The RNS-based
RESnet consumes 145.5× less energy and obtains 35.4× speedup as
compared to NVIDIA GPU GTX 1080. Accelerators with emerging
technologies are discussed further in section III D.

3.2. Dataflow accelerator

The focus of the data flow accelerators is on data management to
reduce the off-chip memory read-write. Spatial and Temporal architec-
tures are well studied for data reusability. Efficiency of dataflow accel-
erators can be measured with arithmetic intensity, number of operations

performed per byte of off-chip memory read. The dataflow can be
optimized by reusing the parameters in different layers wherever
possible. For example, in a convolutional layer, both weights and acti-
vations can be reused. Each neuron has unique weights in a fully con-
nected layer, and hence weights cannot be reused but input data (i.e.,
feature maps) can be reused. The reusable parameters are stored in local
registers so that data movement between a MAC and higher-level
memory can be reduced.

For a MAC unit, three memory reads (i.e., weight, activation, and
partial sum), and one memory write (i.e., updated partial sum) are
required. One of the parameters (e.g., weight) can be stored locally in a
register file and can be reused for the next few calculations. The pa-
rameters stored differ from architecture to architecture based on the
data flow structure implemented. There are 4 major types of data flow
structures to manage the input/output data of a MAC in a DNN: No local
reuse (NLR), Weight stationary (WS), Output stationary (OS), and Row
stationary (RS). In NLR, all memory operations are performed directly
from the main memory (e.g., DRAM). In WS, the weights are stored in
the RF (i.e., local memory). In OS, the partial sum outputs are stored in
the RF to reduce read and write operations. In RS, a row of filter weights
is stored in the RF.

Google has developed the Tensor Processing unit (TPU) accelerator
for efficient implementation of machine learning techniques. The TPU
architecture [34] has a systolic array of 256 × 256 MAC units as a matrix
multiplication unit. The implemented systolic array structure is basically
a 2D single instruction multiple data (SIMD) architecture with special-
ized weight-stationary dataflow [35]. The block diagram of TPU is
shown in Fig. 6. The weights can be fetched directly from DRAM and
stored in the weight FIFO (First-In-First-Out) register. Input activations
from the external memory or previous layer results are stored in the
unified local buffer. Systolic data setup block is used to rearrange the
input data such that convolution can be performed on a matrix multiply
unit. The first version of TPU, known as TPU1, focused on the inference
tasks, and has been deployed in Google’s datacenter since 2015. TPU2,
also known as Cloud TPU, has been used for both training and inference
in the datacenter. TPU2 also adopted a systolic array and introduced
vector-processing units.

The SCNN (sparse CNN) accelerator proposed by Parashar et al. [36]
uses a dot product dataflow termed as
PlanarTiled-InputStationary-CartesianProduct (PT-IS-CP). The Carte-
sian Product (CP) term indicates the implementation of MAC units in a
PE such that a full Cartesian Product of weights and activations (W× A)
are calculated. The CP implementation maximizes the spatial reuse. The
Input stationary (IS) term indicates that activations are reused at the PEs
by storing it in a local memory. The Planer Tile defines distribution of
data across PEs. In SCNN, activations and weights are partitioned into
smaller tiles and distributed across the PEs.

In the output stationary (OS) dataflow, the partial sums are stored in
the local register files. The OS works well with the fully connected layers
as each neuron output depends on all input activtions. Instead of
multiplying all inputs with the corresponding weights (which may be a
few hundred), in each clock cycle, a few inputs (e.g., K) are multiplied
with weights and the partial sum is stored locally. The entire operations
will require N/K clock cycles where N is the number of inputs. Shi-
DianNao [28], an example of OS dataflow, was implemented for K=16.

Chen et al. [37] proposed a row stationary (RS) dataflow-based
accelerator called Eyeriss that minimizes the data movement energy on
a spatial architecture. Note that in the RS dataflow, a row of operands (i.
e., input, weights and partial sums corresponding to a PE) are stored in
the RF. A schematic of row stationary dataflow in Eyeriss is shown in
Fig. 7. Inputs are reused across the PEs connected in diagonally. The
partial sums are accumulated in vertical direction. Each PE has local
registers to store at least one row of weights and activations, one MAC
unit and controller. The controller is responsible for the temporal reuse
of MAC units to perform 1-D convolution. Implementation of 1-D
convolution using the RS dataflow in a PE is shown in Fig. 8. Large

R. Machupalli et al.

Microprocessors and Microsystems 89 (2022) 104441

8

portion of RF is allocated to the weights. A row of input vector is reused
to calculate the partial sums of multiple output feature maps. Fig. 8
shows how the same PE can be used to calculate multiple output features
by reusing the input data. It has been shown that the RS dataflow is more
energy efficient than the existing dataflows [37] in both convolutional

(1.4–2.5×) and fully connected layers (at least 1.3× for batch size>16).
To support a wide variety of DNN models and further increase in the
resource utilization, an improved version of Eyeriss is proposed in [38]
called Eyeriss V2. The Eyeriss V2 introduces a highly flexible on-chip
network, called hierarchical mesh, which can adapt to different

Fig. 6. Block diagram of a tensor processing unit (TPU) [34].

Fig. 7. Schematic of row stationary dataflow.

R. Machupalli et al.

Microprocessors and Microsystems 89 (2022) 104441

9

amounts of data reuse and bandwidth requirements of different data
types. Eyeriss V2 reports 12.6× faster and 2.5× more energy efficiency
than Eyeriss running the MobileNet. Venkatesan et al. [66] proposed
multi-level weight-output stationary dataflows: Weight Stationar-
y–Local Output Stationary (WS-LOS) and Output Stationary–Local
Weight Stationary (OS-LWS). The advantages of these dataflows over the
IS, WS and OS dataflows are also discussed. An automated framework,
MAGNet, to generate an accelerator for a neural network has been
proposed in [66]. Using this framework, an accelerator can achieve up to
40 fJ/op and 2.8TOPS/mm2 in a 16 nm FinFET technology.

In most of the DNN accelerators, the layers are iteratively processed.
However, by processing each layer to completion, the accelerator must
use off-chip memory to store intermediate data between layers as the
intermediate data is too large to fit on chip. Alwani et al. [39] explored
the dataflow across layers and proposed the Fused-layer CNN

accelerator. In Fused-layer accelerator, neurons in multiple layers which
depend on generated intermediate data are processed once. It increases
the data reuse across the layers. The data dependency between two
layers can be seen in Fig. 9. Layer 1 output features (Tile 1′ and 2′) can be
further processed to generate the layer 2 outputs, which avoids the
storage requirement and memory read-write operations for layer 1
output features (Tile 1′ and 2′). For example, Tile 1 input data processed
through layer 1 generates Tile 1′ data. Instead of storing the Tile 1′ data
in global or external memory, the layer 2 computations can be per-
formed to generate the green pixels (layer 2 output). To generate the red
pixels at layer 2, only small amount of data needs to be read from the
higher-level memory. The overlapped data can be reused by storing in
the local memories. Fused-layer method avoids the storage requirement
of intermediate results (layer 1 outputs) externally. If multiple pro-
cessors run in parallel, the intermediate results can be reused across the

Fig. 8. Implementation of row stationary dataflow on Eyeriss architecture. (a) 1-D convolution between first row of filter 1(Filter1, row1) and input feature map 1
(Ifmap1). (b) 1-D convolution between first row of filter 2 (Filter2, row1) and input feature map 1 (Ifmap1). (c) 1-D convolution between first row of filter 3(Filter3,
row1) and input feature map 1 (Ifmap1).

Fig. 9. Example of fusing two convolutional layers.

R. Machupalli et al.

Microprocessors and Microsystems 89 (2022) 104441

10

processors without read/write to external memory. Based on this prin-
ciple, Shao et al. [64] proposed the SIMBA accelerator based on a
Multi-chip-module (MCM). In the MCM, small chiplets (i.e., small chips)
are integrated at the package level. Each chiplet has 4 × 4 PE array with
weight stationary dataflow. The SIMBA integrates 36-chiplets, each with
4 TOPS peak performance, to achieve up to 128 TOPS peak and 6.1
TOPS/W [64].

3.3. Sparsity based accelerators

The computational and memory requirement of a DNN model can be
reduced through pruning without significant loss of accuracy. In prun-
ing, at the time of training, any insignificant weights are set to zero. The
pruned weights (or zeros) can be in regular structure or random. In
regular structure pruning, also call structured sparsity, a neuron will be
removed (i.e., all the weights connected to the neuron are set to zero).
The pruning in structure sparsity can be at the level of neuron, filter, or
channel of filter. In unstructured pruning, all the insignificant weights,
which are random across the weight tensor are set to zero. The un-
structured pruning is simple, it can be done just by adding a regulari-
zation to the training algorithm. But, due to unpredictable zero patterns
in the unstructured sparse model, it requires complicated hardware
design to compress the non-zero weights and skip zero multiplications.
Over the time, researchers found complex algorithms for structured
pruning where a complete neuron, filter or channel of filters are
removed. The architectures for structured sparsity are comparatively
simpler.

Albericio et al. [40] proposed the Cnvlutin architecture to exploit the
sparsity in feature maps. Computation with zeros in the inputs are
eliminated by indexing the input data. Non-zero input data along with
index value are supplied to compute unit. Based on index value, the
compute unit selects the corresponding weight from filters and performs
multiplication. The controller fills the index buffer on the fly such that it
does not consume extra clock cycle. To further increase the acceleration,
Cnvlutin prunes near-zero outputs during inference to increase the
sparsity of the next layer’s input data. Experiments with several CNNs,
including AlexNet, GoogleNet, and VGG-19, showed 1.2–1.6×
throughput increases over DaDianNao [27] without any loss in accuracy
on ImageNet data. The Cnvlutin reported an area overhead of 4.5% over
DaDianNao. Judd et al. [41] proposed Cnvlutin-2 architecture, an
extension of Cnvlutin by exploring both input and weight sparsity.
Cnvlutin-2 is further optimized to reduce the memory bandwidth.

Eyeriss [42] also explored the sparsity in inputs to reduce the energy
consumption. MAC units corresponding to the zero inputs are inacti-
vated by gating method (disable). The gating method saves the energy
but does not increase the throughput. Eyeriss V2 [38] can process the
sparse data directly in the compressed format for both the weights and
activations, and therefore is able to improve both processing speed and
energy efficiency with sparse models.

Han et al. [25] deep compressed the model by pruning the redundant
connections and by enabling multiple connections sharing the same
weight. Deep compression uses threshold-based pruning, quantization
and Huffman coding techniques to reduce the overall size of the model
to fit on the chip memory. Han et al. [43] proposed an energy efficient
inference engine (EIE) to accelerate deep compressed model’s inference.
To exploit the sparsity and reduce the memory bandwidth, the data is
compressed using a variation of the compressed sparse column (CSC)
format. For each column Mj of matrix M, a vector v that contains the
non-zero weights, and another equal length vector z that encodes the
number of zeros before the corresponding entry in v, are stored. Each
entry of v and z is represented by a four-bit value. If more than 15 zeros
appear before a non-zero entry, then a zero is added in vector v. For
example, the following column [0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 3] is encoded as v = [1, 2, 0, 3], z = [2, 0, 15, 2]. Weight
matrix distributed across the PEs and stored in a compressed format. The
EIE performs the sparse matrix × sparse vector operation by scanning

vector a (activations) to find its next non-zero value aj and broadcasting
aj along with its index j to all PEs. Each PE then multiplies aj by the
non-zero elements in column Wj. Compared with DaDianNao, the EIE
has 2.9x, 19x and 3x better throughput, energy efficiency and less area,
respectively [43].

Parashar et al. [36] proposed the SCNN accelerator for
compressed-sparse convolutional neural network. Weights and activa-
tions are compressed with variants of the CSR methods used in [43]. For
example, as shown in Fig. 10, filter of 3 × 3 are compressed into data
vector (row wise), containing non-zero filter values and index vector. In
the index vector, the first value represents the number of non-zero ele-
ments in the data vector followed by the number of zeros before each
value in the corresponding data vector. Multiplication between com-
pressed weights and activations are performed like dense matrix
multiplication. The output activation’s index is calculated based on the
input’s and weight’s index at accumulation buffers using cross bar
connections. The SCNN accelerates a CNN by 2.7x, while still being 2.3x
more energy efficient (compared to the uncompressed network).

With zero skipping implementation for sparse models, small to large
percentage of MAC units may be end up in the inactive state to syn-
chronize with other PEs. Zhang et al. [45] used parallel associative
search to maximize the even distribution of data across the MAC units
and implemented in SNAP accelerator. The SNAP maintains an average
75% hardware utilization. Similarly, Lee et al. [57] proposed the LNPU
architecture for sparse DNN model learning. The LNPU has input load
buffer module which distributes the workload evenly to the PEs ac-
counting for irregular sparsity. The overall MAC utilization increased in
the LNPU. Lin et al. [58] proposed a Dual-core deep learning accelerator
based on compression, zero skipping and Fused-layer techniques.

Zhang et al. [44] proposed the Cambricon-X architecture to exploit
the sparsity in filter weights by adding a buffer control module. The
buffer control module includes an indexing module that selects and
transfers the useful input neurons (neurons corresponding to non-zero
weights in the filter) to PE. A PE stores the compressed filter weights
locally and performs the computation asynchronously. Cambricon-X
reported 7.23x speedup and 6.43x energy saving against the DianNao
accelerator.

The architectures presented above are unstructured sparsity based
but the unstructured sparsity in weights need complex decode module to
decompress the weights and calculate the respective activation indices.
Based on this observation, Zhou et al. [65] showed that pruning block of
weights in a DNN model reduces the irregularity in weight sparsity.
Zhou et al. [65] proposed the Cambricon-S accelerator that uses struc-
tured sparsity in weights and encoded to achieve higher compression
ratio. Cambricon-S reported 1.71× speed and 1.37× energy efficiency
compared to the Cambricon-X.

3.4. Hybrid implementation techniques

With increasing complexity in the neural network architectures, the
required computing power far exceeds what is achievable with today’s
technology [67]. Hence alternative technologies like analog computa-
tion, photonic and quantum computing are being explored. The new
technologies are mostly applied at the ALU level in DNN accelerators to
improve the speed and energy efficiency. Therefore, this section (i.e.,
Section D) can be seen as an extension to the ALU based accelerator
classification (section III A).

In ML hardware implementation, the processor-memory bandwidth
is often the main bottleneck that limits the achievable energy efficiency.
Due to the interconnect loss and signal integrity issues, the data transfer
is not as efficient as the data processing. Note that the technologies are
optimized for either data processing (Processor technology) or storage
(memory Technology). Therefore, DRAM ICs are used for storage and
processor ICs are used for processing. Bringing them closer through
advanced packaging can reduce energy penalty due to the data move-
ment. But Processing near memory or Process in memory (PIM) can

R. Machupalli et al.

Microprocessors and Microsystems 89 (2022) 104441

11

reduce the data movement. The hybrid memory cube (HMC) is a tech-
nology that lets vertical integration of DRAM memories on logic circuits
and enables near data processing. Neurocube [62] and Tetris [63] are
two DNN accelerators based on HMC. Given that the DRAM ICs are
optimized for the data storage they are few generations behind the logic
CMOS devices in terms of computational efficiency. Therefore, analog
computation can be an attractive alternative to conventional digital
computation. For instance, the multiplication can be directly integrated
into the bit-cells of an SRAM array [7].

In recent years, memristors (or programmable resistive elements),
show promising performance improvements. In memristors, weight
values are stored as resistor’s conductance and multiplication is per-
formed based on Ohm’s law

i = G × V (4)

where V is the input voltage, G is the resistor’s conductance, and i is the

output current equivalent to the multiplication result. Fig. 11 shows a
schematic of the memristor crossbar in which currents in a column are
added together. Using the Kirchhoff’s current law, the resulting current
(I) can be expressed as follows.

Ij =
∑

k
ik,j (5)

Substituting the i value from Eq. (4), we obtain

Ij =
∑

k
Gj,k × Vk. (6)

The output current Ij in Eq. (6) is equivalent to a neuron output in the
neural network. Therefore, the memristor crossbar can be used to
implement neural networks. Fig. 11 shows memristor implementation of
a vector matrix multiplication, (V × W). The digital input X is converted
into an analog input V using a DAC converter. The weight values W are
programmed as resistor’s conductance. The output currents are

Fig. 10. Weight compression in the SCNN accelerator.

Fig. 11. Resistive memory crossbar implementing vector-matrix multiplication Y = X ∗ G . V denotes input voltage vector (analog equivalent of X); G denotes
conductance of memory equivalent to weights, and I denote the resultant output currents (analog equivalent of Y). DAC: Digital to Analog conversion block, ADC:
Analog to Digital conversion block.

R. Machupalli et al.

Microprocessors and Microsystems 89 (2022) 104441

12

converted back to digital domain using ADC converters. The resistive
crossbar implementation can reduce the data movement energy.

The resistive memory can be implemented using different technol-
ogies such as Resistive RAM (ReRAM), Phase Charged Memory (PCM),
floating-gate charged-trap memory, SpinTransfer Torque Magnetic
Random-Access Memory (STTMRAM), and Ferroelectric Field-Effect
Transistor (FeFET) [46]. The ReRAM is a popular technology used in
resistive crossbar array implementation for neural networks. The two
major limitations of this technology are small tunable conductance
range and parasitic voltage drop across the array. But more importantly,
their non-linear and hysteretic behavior limits their usage for applica-
tions where higher precision would be needed. Ultimately, to interface
with the digital part of the CNN, we need a DAC to convert the digital
input to analog voltage and an ADC to convert the summation output
voltage/current to digital. Accuracy of such MAC units are limited by the
ADC and DAC resolutions as well as other circuit noises. The conduc-
tance range and noise levels define the weight precision, and eight-bit
weight precision remains at the upper limit using a single non-volatile
memory device [46]. The low precision parameters can still produce
similar accuracy in inference, but generally not sufficient for training.
The conductance is always positive, and hence only positive weights can
be implemented. For negative valued weights, w, two weights w1 and w2
whose difference equal to w (w = w1 − w2) are implemented and
resulting output currents are subtracted. A few proposed analog NN
architectures are PRIME [47], ISAAC [48], Memristive Boltzmann ma-
chine [49], Newton [50], PUMA [68] and mCNN [51].

In some mixed-signal accelerators, the computational units are
partially implemented in the analog domain. Cao et al. [52] proposed a
hybrid-digital-mixed-signal computing platform using Time-Division
Mixed Signal (TD-MS) multiplier. It uses 5b TD-MS multiplier and ex-
tends to higher precision (6 to 8- bits) using shift and add. Bankman
et al. [53] proposed a mixed signal binary CNN processor which per-
forms multiplication in digital domain and summation using switched
capacitor neuron. The weights and input data are represented in binary
form hence multiplication in digital domain is efficient. Detailed reviews
on analog neural network accelerators can be found in [69, 74].

Similar to the memristors, the digital data in these analog accelera-
tors has to be converted into analog using DAC before processing in
analog domain. After processing, the result has to be converted back to
digital domain using an ADC. The DAC and ADC converters consume
more energy with increase in precision. For higher precision data, en-
ergy consumed by converters can nullify the advantage gained with
analog computations and the overall performance may degrade
compared to the digital domain. The MAC unit does not always need the
ADC or DAC elements, but in most cases the non-idealities of the analog
MAC require digital calibration and correction that mandates ADC and
DACs.

Similar to analog accelerators, photonic accelerators are also being
explored to enable faster computation with improved energy efficiency
[67]. Detail discussion on such solutions is beyond the scope of this
manuscript. However, these solutions also face the same resolution
challenge as other analog solutions that limits their usage to certain
applications.

4. Evaluation

In this section, we present the performance evaluation of a few
selected architectures. Most existing research works use measures such
as chip area, throughput, latency and power efficiency for performance
comparison. An accelerator proposed for a specific DNN model (e.g.,
sparsity, kernel size) may not translate its benefits to other DNN models.
For example, the performance of sparsity-based accelerators signifi-
cantly degrades on the denser models due to the presence of additional
encode and decode modules. Similarly, the weight stationary data flow
typically performs better on the convolutional layers compared to the
fully connected layers because of weight reusability in the convolutional

layers. Similar performance trend is observed in the variable precision
accelerators (ALU-based) where both the latency and the power con-
sumption increase compared to the fixed precision accelerators on a
DNN model running at full precision. Therefore, it is important to un-
derstand the advantage and drawbacks of each method of accelerator
implementation (e.g., ALU-based, RS, WS, OS and sparsity-based
accelerators).

Parashar et al. [54] proposed a software framework, known as
Timeloop, to estimate the energy efficiency of an accelerator architecture
on different workloads without physical implementation. It is claimed
that the Timeloop framework can give over 95% accuracy compared to
the actual physical implementation of hardware. Therefore, Timeloop
framework is used to measure the performance of few architectures.
Before considering Timeloop, the framework performance on Eyeriss
architecture with AlexNet layer 1 workload is verified with manual
calculations, the difference is within 5%. Manual calculation uses
similar method proposed by Yang [55]. The workload (AlexNet layer 1)
is mapped manually on Eyeriss architecture. The parameters (inputs,
weights, and partial sums) are stored across the memory hierarchy
(DRAM, global buffer, and RF files) such that minimum data read-write
operations (or maximum data reuse) are performed. The final output is
written back to DRAM. The number of memories read or write opera-
tions of each parameter at all levels of memory hierarchy are counted. In
the calculation, we consider that the 16-bit MAC consumes 2.20pJ per
operation (obtained from the Timeloop software). Note that the energy
consumed for read/write operation at different level of memory is
calculated based on 45 nm CMOS technology [54]. Energy required to
read data from RF is assumed to be equal to one MAC operation. The
manual calculations require 840 μJ to process AlexNet layer 1 on Eye-
riss, and the Timeloop reports 866 μJ. The advantage of using the
Timeloop framework is the optimal mapping of workload on an archi-
tecture. Therefore, we will be using the Timeloop framework to evaluate
the performance.

In a DNN model, the size of parameters varies from layer to layer. Let
I, W and O denote the size of the inputs, weights and outputs of a
convolution layer. In general, O > I, W in the initial few layers. This is
because a large number of feature maps (typically known as depth of the
layer) are generated at the initial layers. In the later layers, the size of
output features O is reduced. Hence, in the last layers, W >> O in
general.

The size of parameters can affect the performance of an architecture.
Therefore, five different convolutional workloads, which can generalize
to a broad range of workloads (with different filter size, convolution
stride, etc.) are considered for evaluation in this section. The configu-
ration of these five workloads is shown in Table 4. The workload,
calculated as number of computations in a layer, increases from CONV1
to CONV5.

Using the Timeloop framework, the energy performance of three
different architectures on the five workloads are calculated. The three

Table 4
Example of five workload configurations in terms of Input (I), Output(O) and
Weight(W) sizes. TOTAL-PARAM: Total number of Parameters, I+W+O, (in
millions). TOTAL-COMPUT: Total number of computations (in millions).

Para-
meters

CONV1 CONV2 CONV3 conv4 Conv5

Input (I) 225 ×
225 × 3

227 × 227
× 3

64 × 64 ×
128

17 × 17 ×
256

33 × 33
× 96

Weights
(W)

5 × 5 × 3
× 96

11 × 11 ×
3 × 96

1 × 1 ×
128 × 256

3 × 3 ×
256 × 384

3 × 3 ×
96 × 256

Output (O) 111 ×
111 × 96

55 × 55 ×
96

64 × 64 ×
256

15 × 15 ×
384

31 × 31
× 256

Strides 2 4 1 1 1
Total-

PARAM
1.34 0.47 1.6 1.04 0.57

TOTAL-
comput

88 105 134 199 212

R. Machupalli et al.

Microprocessors and Microsystems 89 (2022) 104441

13

architectures considered are Row Stationary (RS), Weights Stationary
(WS) and Output Stationary (OS) architectures with the same number of
resources (e.g., MACs and memory) available. The allocated resources
are based on the existing hardware accelerator EYERISS [42]. The
available on chip global buffer is set to 128 KB and 256 (16 × 16) PEs,
and the local buffer at each PE is 440 bytes. The local buffer is used to
store weights, and partial outputs in the RS, WS and OS architectures. In
the RS architectures, the local buffer is partitioned into 3 parts and is
used to store inputs, weights and outputs. In WS, the local buffer is used
to store only weights whereas OS architectures store only partial out-
puts. The latency is calculated based on the number of clock cycles
required to process. The clock frequency is set to 200 MHz (with 45 nm
CMOS technology).

Two performance parameters, latency and energy are calculated for
all three architectures on 5-different workloads using the Timeloop
framework and results are shown in Fig. 12. In the Timeloop framework,
the mapper (e.g., a compiler) searches for the optimum map of the
workload on the architecture. The search algorithm requires the per-
formance criteria to select the best match. We choose latency and energy
as the optimization criteria. In Fig. 12(a), the amount of computation
increases monotonically from CONV1 to CONV5, but the energy con-
sumption of the architectures does not always increase with computa-
tions. This is because data transfer contributes a significant part of the
total energy. For example, between CONV4 and CONV5, there is a small
reduction in the total energy consumption despite increased computa-
tion due to less data transfer. Therefore, energy efficiency of an archi-
tecture depends on both computations and parameters’ size. From
Fig. 12(b) and (c), it can be observed that the RS architecture has the
lowest latency (combining all layers) and the WS architecture consumes
the least energy.

The dataflow efficiency depends on how much the parameters are
reused within the local memory once read from the external memory. In
convolution operation, the filter properties (height (R), width (S) and
channel (C)) define the data reusability. For example, in a convolution
with a 3 × 3 size filter, one input can be reused to calculate nine partial
products (with nine weights) corresponding to nine outputs. Therefore,
the performance of the RS, WS and OS dataflows are evaluated with
filter size as shown in Fig. 13. In this figure, the workload of CONV5 is
being varied by changing the filter size from 1 × 1 to 11 × 11.

The total computations increase with the filter size and require more
energy to process. From Fig. 13, it can be observed that energy con-
sumption increases with filter size for all the architectures. But the en-
ergy consumption of the RS and OS architectures increases more
compared to that of the WS architecture. To understand the energy
variation, we looked at energy consumption of DRAM, global buffer,
local buffer access and MAC unit per computation. The MAC unit and
local buffer consumes similar energy across the filters. The DRAM and
global buffer access energy varies with filter size as shown in Fig. 14. For
filter 1 × 1, the WS and RS architectures consume similar amount of
energy (as seen in Figs. 13 and 14) because when filter size is 1 × 1, the
weight reuse is similar in both the architectures. The input data reus-
ability increases with the filter size but requires more local memory to
store the filter weights. In the WS architecture, the local memory is
allocated primarily for the filter weights and can store all weights for
even large size (11 × 11) filter. Therefore, the DRAM access energy per
computation decreases for the WS with increasing filter size as shown in
Fig 14. The local memory is primarily allocated for the partial products
in the OS architecture and shared with all three parameters in the RS.
The OS and RS architectures may not have sufficient space in the local
memory for large size filters and hence the increased data reusability
with filter size does not significantly affect the DRAM access energy as
shown in Fig. 14. The WS architecture requires less DRAM and global
memory access energy, which means it maximizes the data reuse with-
ing the local memory and requires fewer access to the higher level
memory. Therefore, the WS consumes less energy among all architec-
tures with filter size increase as shown in Fig. 13.

The MAC utilization of the RS varies with the filter size as shown in
Fig. 14 (see the dotted lines). In RS architecture, the PEs are connected in
such a way that the inputs are reused in diagonal PEs and partial sums
are accumulated across vertically connected PEs as shown in Fig. 7 (the
directions can be configured). When mapping the workload on PE array,
a few PEs may end up unallocated. For example, in mapping 3 × 3 filter
on four PEs, three rows of filters can be stored in three PEs and accu-
mulate the partial products to get the convolution output. The fourth PE
is unused, and it can be used to calculate the next output, but the partial
product must be stored in the memory and be read in the next cycle.
Additional energy required for the partial product memory read-write
can defeat the advantage of using the fourth PE. Therefore, only three
PEs are used for calculations and the fourth one left ideally. As only
three PEs are effectively utilized, more clock cycles are required to
complete the convolution. To fully utilize the PEs in the RS dataflow, the
array size should be in multiples of the filter size. In this experiment, the
PE array size is 16 × 16 which is not multiples of 3, 5, 7, 11 (i.e., the
filter size). Therefore, the MAC utilization of RS dataflow is varying with
the filter size (see the dotted green line in Fig. 13). The decrease in MAC
utilization increases the latency as shown in Fig. 13. For filter size from 5
to 11, the latency of the RS increases more compared to the WS or OS
because of the drop in the MAC utilization. The latency difference be-
tween the RS and WS/OS architectures is small (~0.8) at filter size 5
compared to the difference (~1.4) at filter size 3 because of the increase
in the MAC utilization for RS.

Convolution stride is another parameter which can affect the data-
flow. With stride greater than one, the input features may not be reus-
able in two neighboring output feature (pixels) computations. For
example, with stride one, six input pixel values (i23, i33, i43, i24, i34, i44)
out of nine can be reused for the next window as shown in Fig. 15(a). In
convolution with stride two, only three input pixel values (i24, i34, i44)
out of nine can be reused for the next window as shown in Fig. 15(b). On
the other hand, in convolution with stride three, there is no common
pixel data in the consecutive windows as shown in Fig. 15(c). Therefore,
the input data reusability depends on the stride value and there is no
reuse of input data in consecutive output feature calculations if the
stride value is more than the filter size.

Note that it is important to understand the efficiency of dataflow
architectures with stride variation. In this experiment, the stride size is
varied from 1 to 4 in the CONV4 workload. The total energy consump-
tion depends on the type of workload and filter size as shown in Figs. 12
(a) and 14. Hence, instead of comparing the total energy, the energy
normalized to stride one is compared in respective architectures. The
normalized energy here indicates the change in energy due to the change
in the stride value. The DRAM access energy increases by about 120% in
the WS architecture as stride value changes from 1 to 4 as shown in
Fig. 16. The DRAM access energy changes because of the change in the
input data reusability and may require reading the full window of input
data at each cycle as shown in Fig. 15. In the RS architecture, a row of
inputs is stored in the connected PEs and is used in the later computa-
tions if not in consecutive computations. Therefore, the DRAM access
energy changes more in the WS compared to the marginal change in the
RS. The total energy changes with DRAM access energy, more than 20%
increase in the WS and marginal change in the RS as shown in Fig. 16.
Therefore, for large stride values, the RS has better data reusability
compared to the OS and WS architectures.

Note that most of the accelerators reviewed in the previous section
varies in terms of the available MAC units, memory size, dataflow
implemented, and workload used. Therefore, energy and latency pa-
rameters are not sufficient to evaluate or compare the existing acceler-
ators. It is difficult and time-consuming to implement all existing
accelerators on the Timeloop framework, keeping the same amount of
resources, to obtain the performance metrics for comparison purpose. In
the ALU based accelerators, the MAC implementation enables the per-
formance improvement. Hence, the ALU based accelerators can be
evaluated by comparing single MAC units. Camus et al. [12] analyzed

R. Machupalli et al.

Microprocessors and Microsystems 89 (2022) 104441

14

Fig. 12. Performance of three different architectures. (a) energy consumption in different workloads. (b) architecture latency on all workloads. (c) architecture total
energy consumption.

R. Machupalli et al.

Microprocessors and Microsystems 89 (2022) 104441

15

precision scalable MAC units from different accelerators. Similarly, the
performance improvement in sparse-based accelerators is defined by the
sparse encoder and decoder modules. In order to observe the trend in
ALU and sparse based accelerators, power vs speed plot of a few accel-
erators are shown in Fig. 17. The data for Fig. 17 has been obtained from
repository [56]. In Fig. 17, the small size marks indicate the real time
performance and the large size marks indicate the peak performance.
The ALU based accelerators evaluated for at least two precisions are
considered. From Fig. 17, it is observed that the sparsity-based accel-
erators consume less power (star marks in Fig. 17). The advantage of
sparse architectures depends on the amount of sparsity in the input data.
For highly sparse data, the additional cost of encoder/decoder can be
overcome by the computational advantage (i.e., smaller number of MAC
operations after zero skipping). Running a dense model on a sparse
accelerator can degrade the performance. Therefore, it is important to
evaluate the sparse accelerator with varying sparsity (e.g., from 5% to

90%). The precision can also affect the power and speed of an archi-
tecture. Low precision accelerators provide high speed at lower power
(see the blue and red color marks in Fig. 16). In sub-word parallel ar-
chitectures, by running at half precision, the speed can be doubled at the
same amount of power [32, 33, 58] or power can be reduced at the same
speed [31]. The binary and INT4 precision architectures can achieve
high speed at low power but has limited applications.

5. Conclusions

Understand the factors affecting the performance on an DNN accel-
erator are important to develop an energy efficient accelerator. In this
study, three major areas ALU, dataflow and sparsity are identified as
potential areas to improve the overall performance of a DNN acceler-
ator. The existing architectures are classified into three categories.
Advantage and drawback of each category are discussed. Precision

Fig. 13. The RS, WS and OS performance with variation in filter size. Note that the Latency and MAC utilization in the OS and WS are same, and their plots coincide
(represented by the dotted blue line).

Fig. 14. Energy consumption and MAC utilization in the WS, OS and RS architectures for different filter size. R and S are the number of rows and columns,
respectively.

R. Machupalli et al.

Microprocessors and Microsystems 89 (2022) 104441

16

variable ALU can take advantage of subword parallel processing for low
precision DNN models to improve overall throughput or to reduce the
power requirement. But precision variable ALU comes with complex
configuration circuit. An efficient data flow can improve the arithmetic
intensity and memory bandwidth requirement. The dataflow efficiency
can vary from layer to layer or with filter size. The sparse models can
reduce the power requirement by skipping zero multiplication but in-
crease the latency per MAC operation. Three dataflow architectures are

evaluated. The dataflow efficiency depends on the workload. Hence, the
dataflow must be chosen based on the accelerator application. The
classification discussed in Section III will help the readers in choosing
the best technique at different levels in an architecture. An efficient DNN
accelerator should have variable precision ALU, flexible dataflow for all
types of layers in a DNN model and explore the sparsity with simple
control circuitry.

Fig. 15. Impact of the convolution strides on the input data reusability. (a), (b), (c) represent input feature maps with filters (colored boxes) imposed on it to indicate
consecutive convolution windows with stride values of 1, 2, and 3, respectively.

Fig. 16. Energy variation in the RS, WS and OS with stride variation for CONV4 workload.

R. Machupalli et al.

Microprocessors and Microsystems 89 (2022) 104441

17

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgement

We acknowledge the financial support of the Natural Sciences and
Engineering Research Council of Canada (NSERC) (Grant number
RGPIN-2020-05873).

References

[1] A Krizhevsky, I Sutskever, GE. Hinton, Imagenet classification with deep
convolutional neural networks, Adv. Neural Inf. Process. Syst. (2012) 1097–1105,
https://doi.org/10.1145/3065386, https://dl.acm.org/doi/.

[2] HA Pierson, MS. Gashler, Deep learning in robotics: a review of recent research,
Adv. Robot. 31 (16) (2017) 821–835, https://doi.org/10.1080/
01691864.2017.1365009.

[3] DS Berman, AL Buczak, JS Chavis, CL. Corbett, A survey of deep learning methods
for cyber security, Information 10 (4) (2019) 122, https://doi.org/10.3390/
info10040122.

[4] M Havaei, A Davy, D Warde-Farley, A Biard, A Courville, Y Bengio, C Pal,
PM Jodoin, Larochelle H. Brain tumor segmentation with deep neural networks,
Med. Image Anal. 35 (2017) 18–31, https://doi.org/10.1016/j.
media.2016.05.004.

[5] C Chen, A Seff, A Kornhauser, Xiao J. Deepdriving, Learning affordance for direct
perception in autonomous driving, in: In Proceedings of the IEEE International
Conference on Computer Vision, 2015, pp. 2722–2730, https://doi.org/10.1109/
ICCV.2015.312.

[6] S. Albanie, Convnet Burden, [Online] https://github.com/albanie/convnet-burden
, (last access: Oct. 19th, 2020).

[7] V Sze, YH Chen, TJ Yang, JS. Emer, Efficient processing of deep neural networks: a
tutorial and survey, in: Proceedings of the IEEE 105, 2017, pp. 2295–2329, https://
doi.org/10.1109/JPROC.2017.2761740.

[8] P Colangelo, N Nasiri, E Nurvitadhi, A Mishra, M Margala, K. Nealis, Exploration of
low numeric precision deep learning inference using intel® FPGAs, in: 2018 IEEE
26th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM), IEEE, 2018, pp. 73–80, https://doi.org/10.1109/
FCCM.2018.00020.

[9] S Hashemi, N Anthony, H Tann, RI Bahar, S. Reda, Understanding the impact of
precision quantization on the accuracy and energy of neural networks, in: In

Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017IEEE,
2017, pp. 1474–1479, https://doi.org/10.23919/DATE.2017.7927224.

[10] C Sakr, Y Kim, N. Shanbhag, Analytical guarantees on numerical precision of deep
neural networks, in: Proceedings of the 34th International Conference on Machine
Learning 70, 2017, pp. 3007–3016.

[11] P Gysel, M Motamedi, S. Ghiasi, Hardware-oriented approximation of
convolutional neural networks, in: Proc. of the 4th International Conference on
Learning Representations (ICLR), 2016 (arXiv:1604.03168).

[12] V Camus, L Mei, C Enz, M. Verhelst, Review and benchmarking of precision-
scalable multiply-accumulate unit architectures for embedded neural-network
processing, IEEE J. Emerg. Sel. Top. Circ. Syst. 9 (4) (2019) 697–711, https://doi.
org/10.1109/JETCAS.2019.2950386.

[13] A Reuther, P Michaleas, M Jones, V Gadepally, S Samsi, J. Kepner, Survey and
benchmarking of machine learning accelerators, in: In2019 IEEE High Performance
Extreme Computing Conference (HPEC), IEEE, 2019, pp. 1–9, https://doi.org/
10.1109/HPEC.2019.8916327.

[14] Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A,
Khosla A, Bernstein M, Berg AC. Imagenet large scale visual recognition challenge.
International journal of computer vision. 2015;115(3):211-52. https://doi.org/
10.1007/s11263-015-0816-y.

[15] Q Chen, C Xin, C Zou, X Wang, B. Wang, A low bit-width parameter representation
method for hardware-oriented convolution neural networks, in: IEEE 12th
International Conference on ASIC (ASICON), IEEE, 2017, pp. 148–151, https://doi.
org/10.1109/ASICON.2017.8252433.

[16] M. Horowitz, 1.1 Computing’s energy problem (and what we can do about it), in:
In2014 IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), IEEE, 2014, pp. 10–14, https://doi.org/10.1109/
ISSCC.2014.6757323.

[17] I Hubara, M Courbariaux, D Soudry, R El-Yaniv, Y. Bengio, Quantized neural
networks: training neural networks with low precision weights and activations,
J. Mach. Learn. Res. 18 (1) (2017) 6869–6898.

[18] B Jacob, S Kligys, B Chen, M Zhu, M Tang, A Howard, H Adam, D. Kalenichenko,
Quantization and training of neural networks for efficient integer-arithmetic-only
inference, in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 2704–2713, https://doi.org/10.1109/CVPR.2018.00286.

[19] S Wu, G Li, F Chen, L. Shi, Training and inference with integers in deep neural
networks, in: International Conference on Learning Representations, 2018 arXiv:
1802.04680.

[20] I Hubara, M Courbariaux, D Soudry, R El-Yaniv, Y. Bengio, Binarized neural
networks, Adv. Neural Inf. Process. Syst. (2016) 4107–4115.

[21] Li F, Zhang B, Liu B. Ternary weight networks. arXiv preprint arXiv:1605.04711.
2016 May 16.

[22] P Judd, J Albericio, T Hetherington, TM Aamodt, NE Jerger, A. Moshovos, Proteus:
exploiting numerical precision variability in deep neural networks, in: Proceedings
of the 2016 International Conference on Supercomputing, 2016, pp. 1–12, https://
doi.org/10.1145/2925426.2926294.

Fig. 17. Performance of DNN architectures with different precision and sparsity levels. The sparsity-based accelerators are denoted with star mark and dense models
with plus sign. Small size mark indicates real-time performance and large size mark indicates peak performance.

R. Machupalli et al.

https://doi.org/10.1145/3065386
https://doi.org/10.1080/01691864.2017.1365009
https://doi.org/10.1080/01691864.2017.1365009
https://doi.org/10.3390/info10040122
https://doi.org/10.3390/info10040122
https://doi.org/10.1016/j.media.2016.05.004
https://doi.org/10.1016/j.media.2016.05.004
https://doi.org/10.1109/ICCV.2015.312
https://doi.org/10.1109/ICCV.2015.312
https://github.com/albanie/convnet-burden
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/FCCM.2018.00020
https://doi.org/10.1109/FCCM.2018.00020
https://doi.org/10.23919/DATE.2017.7927224
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0010
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0010
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0010
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0011
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0011
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0011
https://doi.org/10.1109/JETCAS.2019.2950386
https://doi.org/10.1109/JETCAS.2019.2950386
https://doi.org/10.1109/HPEC.2019.8916327
https://doi.org/10.1109/HPEC.2019.8916327
https://doi.org/10.1109/ASICON.2017.8252433
https://doi.org/10.1109/ASICON.2017.8252433
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1109/ISSCC.2014.6757323
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0017
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0017
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0017
https://doi.org/10.1109/CVPR.2018.00286
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0019
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0019
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0019
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0020
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0020
https://doi.org/10.1145/2925426.2926294
https://doi.org/10.1145/2925426.2926294

Microprocessors and Microsystems 89 (2022) 104441

18

[23] NVIDIA T4, Tensor core GPU, (Online) https://www.nvidia.com/en-us/data
-center/tesla-t4/(last access: Oct. 19th, 2020).

[24] E Wang, JJ Davis, R Zhao, HC Ng, X Niu, W Luk, PY Cheung, GA. Constantinides,
Deep Neural Network Approximation for Custom Hardware: Where We’ve Been,
Where We’re Going, ACM Comput. Surv. 52 (2) (2019) 1–39, https://doi.org/
10.1145/3309551.

[25] S Han, H Mao, WJ. Dally, Deep compression: Compressing deep neural networks
with pruning, trained quantization and Huffman coding, in: Proc. of the 4th
International Conference on Learning Representations (ICLR), 2016 (arXiv:
1510.00149).

[26] T Chen, Z Du, N Sun, J Wang, C Wu, Y Chen, O. Temam, Diannao: A small-footprint
high-throughput accelerator for ubiquitous machine-learning, ACM SIGARCH
Comput. Architect. News 42 (1) (2014) 269–284, https://doi.org/10.1145/
2644865.2541967.

[27] Y Chen, T Luo, S Liu, S Zhang, L He, J Wang, L Li, T Chen, Z Xu, N Sun, O. Temam,
Dadiannao: a machine-learning supercomputer, in: 2014 47th Annual IEEE/ACM
International Symposium on Microarchitecture, 2014, pp. 609–622, https://doi.
org/10.1109/MICRO.2014.58.

[28] Z Du, R Fasthuber, T Chen, P Ienne, L Li, T Luo, X Feng, Y Chen, Temam
O. ShiDianNao, Shifting vision processing closer to the sensor, in: Proceedings of
the 42nd Annual International Symposium on Computer Architecture, 2015,
pp. 92–104, https://doi.org/10.1145/2749469.2750389.

[29] D Liu, T Chen, S Liu, J Zhou, S Zhou, O Teman, X Feng, X Zhou, Y. Chen,
Pudiannao: A polyvalent machine learning accelerator, ACM SIGARCH Comput.
Architect. News 43 (1) (2015) 369–381, https://doi.org/10.1145/
2786763.2694358.

[30] Y Chen, T Chen, Z Xu, N Sun, O. Temam, DianNao family: energy-efficient
hardware accelerators for machine learning, Commun. ACM 59 (11) (2016)
105–112, https://doi.org/10.1145/2996864.

[31] B Moons, R Uytterhoeven, W Dehaene, M. Verhelst, 14.5 envision: a 0.26-to-
10tops/w subword-parallel dynamic-voltage-accuracy-frequency-scalable
convolutional neural network processor in 28nm FDSOI, in: In2017 IEEE
International Solid-State Circuits Conference (ISSCC), IEEE, 2017, pp. 246–247,
https://doi.org/10.1109/ISSCC.2017.7870353.

[32] D Shin, J Lee, J Lee, HJ. Yoo, 14.2 DNPU: An 8.1 TOPS/W reconfigurable CNN-
RNN processor for general-purpose deep neural networks, in: IEEE International
Solid-State Circuits Conference (ISSCC), 2017, pp. 240–241, https://doi.org/
10.1109/ISSCC.2017.7870350.

[33] J Lee, C Kim, S Kang, D Shin, S Kim, HJ Yoo, UNPU: A 50.6 TOPS/W unified deep
neural network accelerator with 1b-to-16b fully-variable weight bit-precision, in:
IEEE International Solid-State Circuits Conference-(ISSCC), 2018, pp. 218–220,
https://doi.org/10.1109/ISSCC.2018.8310262.

[34] NP Jouppi, C Young, N Patil, D Patterson, G Agrawal, R Bajwa, S Bates, S Bhatia,
N Boden, A Borchers, R. Boyle, In-datacenter performance analysis of a tensor
processing unit, in: Proc. of the 44th Annual International Symposium on
Computer Architecture, 2017, pp. 1–12, https://doi.org/10.1145/
3140659.3080246.

[35] Y Chen, Y Xie, L Song, F Chen, T. Tang, A survey of accelerator architectures for
deep neural networks, Engineering 6 (2020) 264–274, https://doi.org/10.1016/j.
eng.2020.01.007.

[36] A Parashar, M Rhu, A Mukkara, A Puglielli, R Venkatesan, B Khailany, J Emer,
SW Keckler, WJ. Dally, SCNN: an accelerator for compressed-sparse convolutional
neural networks, ACM SIGARCH Comput. Architect. News 45 (2) (2017) 27–40,
https://doi.org/10.1145/3140659.3080254.

[37] YH Chen, J Emer, V. Sze, Eyeriss: A spatial architecture for energy-efficient
dataflow for convolutional neural networks, ACM SIGARCH Comput. Architect.
News 44 (3) (2016) 367–379, https://doi.org/10.1145/3007787.3001177.

[38] YH Chen, TJ Yang, J Emer, V. Sze, Eyeriss v2: a flexible accelerator for emerging
deep neural networks on mobile devices, IEEE J. Emerg. Sel. Top. Circ. Syst. 9 (2)
(2019) 292–308, https://doi.org/10.1109/JETCAS.2019.2910232.

[39] M Alwani, H Chen, M Ferdman, P. Milder, Fused-layer CNN accelerators, in: 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
2016, pp. 1–12, https://doi.org/10.1109/MICRO.2016.7783725.

[40] J Albericio, P Judd, T Hetherington, T Aamodt, NE Jerger, A. Moshovos, Cnvlutin:
Ineffectual-neuron-free deep neural network computing, ACM SIGARCH Comput.
Architect. News 44 (3) (2016) 1–3, https://doi.org/10.1145/3007787.3001138.

[41] Judd P, Delmas A, Sharify S, Moshovos A. Cnvlutin2: Ineffectual-activation-and-
weight-free deep neural network computing. arXiv preprint arXiv:
1705.00125,2017.

[42] YH Chen, T Krishna, JS Emer, V. Sze, Eyeriss: an energy-efficient reconfigurable
accelerator for deep convolutional neural networks, IEEE J. Solid-State Circ. 52 (1)
(2016) 127–138, https://doi.org/10.1109/JSSC.2016.2616357.

[43] S Han, X Liu, H Mao, J Pu, A Pedram, MA Horowitz, WJ. Dally, EIE: efficient
inference engine on compressed deep neural network, ACM SIGARCH Comput.
Architect. News 44 (3) (2016) 243–254, https://doi.org/10.1145/
3007787.3001163.

[44] S Zhang, Z Du, L Zhang, H Lan, S Liu, L Li, Q Guo, T Chen, Y. Chen, Cambricon-x:
an accelerator for sparse neural networks, in: 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), IEEE, 2016, pp. 1–12,
https://doi.org/10.1109/MICRO.2016.7783723.

[45] JF Zhang, CE Lee, C Liu, YS Shao, SW Keckler, Z. Zhang, SNAP: A 1.67—21.55
TOPS/W sparse neural acceleration processor for unstructured sparse deep neural
network inference in 16nm CMOS, in: Symposium on VLSI Circuits, 2019,
pp. C306–C307, https://doi.org/10.23919/VLSIC.2019.8778193.

[46] TP Xiao, CH Bennett, B Feinberg, S Agarwal, MJ. Marinella, Analog architectures
for neural network acceleration based on non-volatile memory, Appl. Phys. Rev. 7
(3) (2020), 031301, https://doi.org/10.1063/1.5143815.

[47] P Chi, S Li, C Xu, T Zhang, J Zhao, Y Liu, Y Wang, Y. Xie, Prime: A novel processing-
in-memory architecture for neural network computation in reram-based main
memory, ACM SIGARCH Comput. Architect. News 44 (3) (2016) 27–39, https://
doi.org/10.1109/ISCA.2016.13.

[48] A Shafiee, A Nag, N Muralimanohar, R Balasubramonian, JP Strachan, M Hu,
RS Williams, V.ISAAC Srikumar, A convolutional neural network accelerator with
in-situ analog arithmetic in crossbars, ACM SIGARCH Comput. Architect. News 44
(3) (2016) 14–26, https://doi.org/10.1109/ISCA.2016.12.

[49] MN Bojnordi, E. Ipek, Memristive boltzmann machine: A hardware accelerator for
combinatorial optimization and deep learning, in: In2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA, IEEE, 2016,
pp. 1–13, https://doi.org/10.1109/HPCA.2016.7446049.

[50] A Nag, R Balasubramonian, V Srikumar, R Walker, A Shafiee, JP Strachan,
N. Muralimanohar, Newton: Gravitating towards the physical limits of crossbar
acceleration, IEEE Micro 38 (5) (2018) 41–49, https://doi.org/10.1109/
MM.2018.053631140.

[51] P Yao, H Wu, B Gao, J Tang, Q Zhang, W Zhang, JJ Yang, H. Qian, Fully hardware-
implemented memristor convolutional neural network, Nature 577 (7792) (2020)
641–646, https://doi.org/10.1038/s41586-020-1942-4.

[52] N Cao, M Chang, Raychowdhury A. 14.1 A 65nm 1.1-to-9.1 TOPS/W hybrid-
digital-mixed-signal computing platform for accelerating model-based and model-
free swarm robotics, in: IEEE International Solid-State Circuits Conference-(ISSCC),
2019, pp. 222–224, https://doi.org/10.1109/ISSCC.2019.8662311.

[53] D Bankman, L Yang, B Moons, M Verhelst, B. Murmann, An Always-On 3.8uJ/86%
CIFAR-10 mixed-signal binary CNN processor with all memory on chip in 28-nm
CMOS, IEEE J. Solid-State Circ. 54 (1) (2018) 158–172, https://doi.org/10.1109/
JSSC.2018.2869150.

[54] A Parashar, P Raina, YS Shao, YH Chen, VA Ying, A Mukkara, R Venkatesan,
B Khailany, SW Keckler, J. Emer, Timeloop: a systematic approach to dnn
accelerator evaluation, in: IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), IEEE, 2019, pp. 304–315, https://doi.org/
10.1109/ISPASS.2019.00042.

[55] TJ Yang, YH Chen, J Emer, V. Sze, A method to estimate the energy consumption of
deep neural networks, in: 51st Asilomar Conference on Signals, Systems, and
Computers, IEEE, 2017, pp. 1916–1920, https://doi.org/10.1109/
ACSSC.2017.8335698.

[56] K. Guo, W. Li, K. Zhong, Z. Zhu, S. Zeng, S. Han, Y. Xie, P. Debacker, M. Verhelst, Y.
Wang. Neural Network Accelerator Comparison, [Online] https://nicsefc.ee.tsin
ghua.edu.cn/projects/neural-network-accelerator/(last access: Oct. 20, 2020).

[57] J Lee, J Lee, D Han, J Lee, G Park, Yoo HJ. 7.7, LNPU: A 25.3 tflops/w sparse deep-
neural-network learning processor with fine-grained mixed precision of fp8-fp16,
in: IEEE International Solid-State Circuits Conference-(ISSCC), 2019, pp. 142–144,
https://doi.org/10.1109/ISSCC.2019.8662302.

[58] CH Lin, CC Cheng, YM Tsai, SJ Hung, YT Kuo, PH Wang, PK Tsung, JY Hsu, WC Lai,
CH Liu, SY. Wang, 7.1 A 3.4-to-13.3 TOPS/W 3.6 TOPS dual-core deep-learning
accelerator for versatile AI applications in 7nm 5G smartphone SoC, in: In2020
IEEE International Solid-State Circuits Conference-(ISSCC), IEEE, 2020,
pp. 134–136, https://doi.org/10.1109/ISSCC19947.2020.9063111.

[59] Z Du, Q Guo, Y Zhao, T Zhi, Y Chen, Z. Xu, Self-aware neural network systems: a
survey and new perspective, in: Proceedings of the IEEE 108, 2020,
pp. 1047–1067, https://doi.org/10.1109/JPROC.2020.2977722.

[60] K Guo, S Zeng, J Yu, Y Wang, H Yang, [DL] A survey of FPGA-based neural network
inference accelerators, ACM Trans. Reconfig. Technol. Syst. 12 (1) (2019) 1–26,
https://doi.org/10.1145/3289185.

[61] Z Li, Y Wang, T Zhi, T. Chen, A survey of neural network accelerators, Front.
Comput. Sci. 11 (5) (2017) 746–761, https://doi.org/10.1007/s11704-016-6159-
1′′, https://doi.org/10.1007/s11704-016-6159-1.

[62] D Kim, J Kung, S Chai, S Yalamanchili, S. Mukhopadhyay, Neurocube: a
programmable digital neuromorphic architecture with high-density 3D memory,
ACM SIGARCH Comput. Architect. News 44 (3) (2016) 380–392, https://doi.org/
10.1145/3007787.3001178.

[63] H Lu, X Wei, N Lin, G Yan, X. Li, Tetris: re-architecting convolutional neural
network computation for machine learning accelerators, in: In2018 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD, IEEE, 2018, pp. 1–8,
https://doi.org/10.1145/3240765.3240855.

[64] YS Shao, J Clemons, R Venkatesan, B Zimmer, M Fojtik, N Jiang, B Keller,
A Klinefelter, N Pinckney, P Raina, SG. Tell, Simba: Scaling deep-learning inference
with multi-chip-module-based architecture, in: InProceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp. 14–27,
https://doi.org/10.1145/3352460.3358302.

[65] X Zhou, Z Du, Q Guo, S Liu, C Liu, C Wang, X Zhou, L Li, T Chen, Y. Chen,
S Cambricon, Addressing irregularity in sparse neural networks through a
cooperative software/hardware approach, in: 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO, IEEE, 2018, pp. 15–28.

[66] R Venkatesan, YS Shao, M Wang, J Clemons, S Dai, M Fojtik, B Keller, A Klinefelter,
N Pinckney, P Raina, Y. Zhang, Magnet: a modular accelerator generator for neural
networks, in: In2019 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), IEEE, 2019, pp. 1–8.

[67] TF De Lima, HT Peng, AN Tait, MA Nahmias, HB Miller, BJ Shastri, PR. Prucnal,
Machine learning with neuromorphic photonics, J. Lightw. Technol. 37 (5) (2019)
1515–1534.

[68] A Ankit, IE Hajj, SR Chalamalasetti, G Ndu, M Foltin, RS Williams, P Faraboschi,
WM Hwu, JP Strachan, K Roy, DS. Milojicic, PUMA: a programmable ultra-efficient

R. Machupalli et al.

https://www.nvidia.com/en-us/data-center/tesla-t4/
https://www.nvidia.com/en-us/data-center/tesla-t4/
https://doi.org/10.1145/3309551
https://doi.org/10.1145/3309551
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0025
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0025
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0025
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0025
https://doi.org/10.1145/2644865.2541967
https://doi.org/10.1145/2644865.2541967
https://doi.org/10.1109/MICRO.2014.58
https://doi.org/10.1109/MICRO.2014.58
https://doi.org/10.1145/2749469.2750389
https://doi.org/10.1145/2786763.2694358
https://doi.org/10.1145/2786763.2694358
https://doi.org/10.1145/2996864
https://doi.org/10.1109/ISSCC.2017.7870353
https://doi.org/10.1109/ISSCC.2017.7870350
https://doi.org/10.1109/ISSCC.2017.7870350
https://doi.org/10.1109/ISSCC.2018.8310262
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1016/j.eng.2020.01.007
https://doi.org/10.1016/j.eng.2020.01.007
https://doi.org/10.1145/3140659.3080254
https://doi.org/10.1145/3007787.3001177
https://doi.org/10.1109/JETCAS.2019.2910232
https://doi.org/10.1109/MICRO.2016.7783725
https://doi.org/10.1145/3007787.3001138
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1145/3007787.3001163
https://doi.org/10.1145/3007787.3001163
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.23919/VLSIC.2019.8778193
https://doi.org/10.1063/1.5143815
https://doi.org/10.1109/ISCA.2016.13
https://doi.org/10.1109/ISCA.2016.13
https://doi.org/10.1109/ISCA.2016.12
https://doi.org/10.1109/HPCA.2016.7446049
https://doi.org/10.1109/MM.2018.053631140
https://doi.org/10.1109/MM.2018.053631140
https://doi.org/10.1038/s41586-020-1942-4
https://doi.org/10.1109/ISSCC.2019.8662311
https://doi.org/10.1109/JSSC.2018.2869150
https://doi.org/10.1109/JSSC.2018.2869150
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/ACSSC.2017.8335698
https://doi.org/10.1109/ACSSC.2017.8335698
https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator/
https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator/
https://doi.org/10.1109/ISSCC.2019.8662302
https://doi.org/10.1109/ISSCC19947.2020.9063111
https://doi.org/10.1109/JPROC.2020.2977722
https://doi.org/10.1145/3289185
https://doi.org/10.1007/s11704-016-6159-1″
https://doi.org/10.1007/s11704-016-6159-1″
https://doi.org/10.1145/3007787.3001178
https://doi.org/10.1145/3007787.3001178
https://doi.org/10.1145/3240765.3240855
https://doi.org/10.1145/3352460.3358302
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0065
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0065
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0065
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0065
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0066
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0066
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0066
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0066
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0067
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0067
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0067
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0068
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0068

Microprocessors and Microsystems 89 (2022) 104441

19

memristor-based accelerator for machine learning inference, in: Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2019, pp. 715–731.

[69] TP Xiao, CH Bennett, B Feinberg, S Agarwal, MJ. Marinella, Analog architectures
for neural network acceleration based on non-volatile memory, Appl. Phys. Rev. 7
(3) (2020), 031301.

[70] MS Ansari, BF Cockburn, J. Han, An improved logarithmic multiplier for energy-
efficient neural computing, IEEE Trans. Comput. (2020).

[71] MS Kim, AA Garcia, H Kim, N. Bagherzadeh, The effects of approximate
multiplication on convolutional neural networks, IEEE Trans. Emerg. Top. Comput.
(2021).

[72] N Samimi, M Kamal, A Afzali-Kusha, M. Pedram, Res-DNN: A residue number
system-based DNN accelerator unit, IEEE Trans. Circ. Syst. Regul. Pap. 67 (2)
(2019) 658–671.

[73] Z Carmichael, HF Langroudi, C Khazanov, J Lillie, JL Gustafson, D Kudithipudi,
Deep positron: a deep neural network using the posit number system, in: In2019
Design, Automation & Test in Europe Conference & Exhibition (DATE), IEEE,
2019, pp. 1421–1426.

[74] H Tsai, S Ambrogio, P Narayanan, RM Shelby, GW. Burr, Recent progress in analog
memory-based accelerators for deep learning, J. Phys. D 51 (28) (2018), 283001.

[75] EB. Olsen, RNS Hardware matrix multiplier for high precision neural network
acceleration:" RNS TPU", in: In2018 IEEE International Symposium on Circuits and
Systems (ISCAS, IEEE, 2018, pp. 1–5.

[76] MA Talib, S Majzoub, Q Nasir, D. Jamal, A systematic literature review on
hardware implementation of artificial intelligence algorithms, J. Supercomput. 77
(2021) 1897–1938.

Raju Machupalli is pursuing his M.Sc. at the University of
Alberta, Canada. He completed his master’s in Integrated Cir-
cuit Technology from University of Hyderabad, India and
Bachelors in Electronics and Communications from JNTUH,
India in 2017 and 2014, respectively. His areas of interest
include VLSI, Embedded Systems, FPGA and ASIC based
Hardware accelerators for Machine Learning, Artificial Intel-
ligence, and Image Processing.

Masum Hossain received the B.Sc. degree from the
Bangladesh University of Engineering and Technology, Dhaka,
Bangladesh, in 2002, the M.Sc. degree from Queen’s Univer-
sity, Kingston, ON, Canada, in 2005, and the Ph.D. degree from
the University of Toronto, Toronto, ON, in 2010. From 2008 to
2010, he was with Analog and Mixed Signal Division, Gennum
Corporation, Burlington, ON, where he was involved in the
development of world’s highest capacity and most power effi-
cient cross point router solution. He was with Rambus Labo-
ratory, Sunnyvale, CA, USA, as a Senior Member of Technical
Staff, where he was involved in advanced equalization and
clock recovery techniques for highspeed interfaces. He has

spent several years in industrial research. In 2013, he joined the Department of Electrical
and Computer Engineering, University of Alberta, Edmonton, AB, Canada. Dr. Hossain was
a recipient of the Best Student Paper Award at the 2008 IEEE Custom Integrated Circuits
Conference and the Analog Device’s Outstanding Student Designer Award in 2010.

Mrinal Mandal is currently a Full Professor in the Department
of Electrical and Computer Engineering and is the Director of
the Digital Image Analysis Laboratory, University of Alberta,
Edmonton, AB, Canada. He has authored the book Multimedia
Signals and Systems (Springer) and coauthored the book
Continuous and Discrete Time Signals and Systems (Cambridge
University Press). His current research interests include medi-
cal image analysis, machine learning, image and video pro-
cessing, and VLSI architectures. He has published more than
200 papers in refereed journals and conferences and holds a U.
S. patent on wavelet transform architecture. He is currently the
Principal Investigator of projects funded by NSERC, Alberta

Innovates, and DSP Innovation. Prof. Mandal has been a past recipient of the Canadian
Commonwealth Fellowship and Humboldt Research Fellowship (Germany).

R. Machupalli et al.

http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0068
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0068
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0068
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0069
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0069
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0069
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0070
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0070
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0071
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0071
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0071
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0072
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0072
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0072
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0073
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0073
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0073
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0073
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0074
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0074
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0075
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0075
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0075
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0076
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0076
http://refhub.elsevier.com/S0141-9331(22)00016-3/sbref0076

	Review of ASIC accelerators for deep neural network
	1 Introduction
	2 Background
	3 Hardware classification
	3.1 ALU based accelerators
	3.2 Dataflow accelerator
	3.3 Sparsity based accelerators
	3.4 Hybrid implementation techniques

	4 Evaluation
	5 Conclusions
	Declaration of Competing Interest
	Acknowledgement
	References

