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Abstract: Skin lesion segmentation is a primary step for skin lesion analysis, which can benefit the
subsequent classification task. It is a challenging task since the boundaries of pigment regions may
be fuzzy and the entire lesion may share a similar color. Prevalent deep learning methods for skin
lesion segmentation make predictions by ensembling different convolutional neural networks (CNN),
aggregating multi-scale information, or by multi-task learning framework. The main purpose of
doing so is trying to make use of as much information as possible so as to make robust predictions.
A multi-task learning framework has been proved to be beneficial for the skin lesion segmentation
task, which is usually incorporated with the skin lesion classification task. However, multi-task
learning requires extra labeling information which may not be available for the skin lesion images.
In this paper, a novel CNN architecture using auxiliary information is proposed. Edge prediction,
as an auxiliary task, is performed simultaneously with the segmentation task. A cross-connection
layer module is proposed, where the intermediate feature maps of each task are fed into the subblocks
of the other task which can implicitly guide the neural network to focus on the boundary region of
the segmentation task. In addition, a multi-scale feature aggregation module is proposed, which
makes use of features of different scales and enhances the performance of the proposed method.
Experimental results show that the proposed method obtains a better performance compared with
the state-of-the-art methods with a Jaccard Index (JA) of 79.46, Accuracy (ACC) of 94.32, SEN of 88.76
with only one integrated model, which can be learned in an end-to-end manner.

Keywords: skin lesion segmentation; convolutional neural networks; auxiliary task learning;
edge prediction

1. Introduction

The skin is the largest organ of the human body. When the skin cells become disor-
dered and grow out of control, they can develop into skin cancers and may spread to other
body parts. Skin cancer is the most prevalent cancer worldwide. Among all the types of
skin cancers, melanoma is the most aggressive kind of skin cancer, whose incidence has
risen rapidly over the last 30 years [1]. The best way to treat melanoma is its detection at
an early stage. Specifically, the five-year relative survival rate for melanoma is 98% for
the localized stage and drops to about 14% in the latest stage. Therefore it is critical to
detect melanoma in a timely and accurate manner. To detect melanoma or the suspected
skin lesions, dermoscopy imaging is used to detect the pigmented skin lesions. It is a
non-invasive technique and is used as a primary step for the detection of suspected skin
lesions. The dermoscopic images have a high resolution and enhanced visualization ability,
which allow dermatologists to examine the skin lesions with naked eyes. However, the de-
cision process is tedious, requires a great depth of expert knowledge, and is biased towards
different dermatologists’s interpretation. Previous research has shown that melanoma
detection based on convolutional neural networks (CNN) can obtain performance on par
with that of dermatologists’ [2], which implies the potential for automatic skin lesion anal-
ysis. In addition, with the recent advances in image capturing and processing capabilities
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in smartphones, the acquisition of dermoscopic images using cellular phones has become
very popular. Together with the automatic analysis methods, it can be a powerful tool that
can provide a user-friendly intelligent interface and a possible telemedicine solution for
melanoma screening outside the clinic [3,4]. Therefore, automatic analysis of skin lesions
has become an important step in computer-aided diagnosis [5].

Numerous clinical metrics based on the appearance of local color and texture patterns
for the detection of melanoma have been proposed using dermoscopy images, such as
ABCDE rules [6,7], seven-point checklist [8] and classical pattern analysis [9]. The ABCDE
rules provide an easy and general framework for dermatologists and patients to identify
potential melanoma, which are defined as Asymmetry, Border irregularity, Color that is not
uniform, Diameter greater than 6mm, and Evolving lesions (size, shape, or color). Typically,
the borders of melanoma tend to be uneven and may have scalloped or nothed edges,
that are vaguely defined. Therefore, skin lesion segmentation is usually performed first in
order to get the boundary information or regions of interest (ROI), which has been proved
beneficial for the subsequent classification or detection task [10,11].

Automatic skin lesion segmentation is still a challenging task. For some skin lesions
with light pigment, the color and visual patterns of the pigment regions and the surround-
ing skin regions are very similar, resulting in fuzzy and unclear boundaries, which makes
the skin lesion segmentation task extremely difficult. In addition, the original dermoscopic
images are of high-resolution, which is resource-intensive and time-consuming for the
computers to process directly. Therefore, down-sampling is used first to reduce the image
size. Finer textures and subtlety are lost during this procedure, which makes it even harder
to differentiate the boundaries of these skin lesions. Moreover, the skin lesions also contain
items such as hairs, veins, color-makers, rulers and glues, which affect the color and texture
distribution of the skin lesions and impede successful learning. Figure 1 displays some
example images from the ISBI2017 dataset [12] for skin lesion analysis, where the ground
truth segmentation masks are marked using green contours. ISBI2017 dataset is one of
the most challenging datasets for skin lesion segmentation tasks. The images are collected
over different institutes and hospitals, and thus with different characteristics. As shown
in Figure 1, the boundaries of some skin lesion images are very fuzzy and the pigment
regions may share different visual patterns within the ROI. Hairs and color-makers are
also observed among some images, which adds to the difficulty of skin lesion segmen-
tation. The aforementioned problems make skin lesion segmentation a challenging task.
To address these problems, literature works that deploy different CNN architectures with
multi-scale information [11,13,14], or multi-task learning framework [15,16] have been
proposed for skin lesion segmentation. The core idea of these methods can be regarded as
trying to use as much information as possible to make robust predictions. However, these
strategies either introduce extensive extra parameters for training or require extra labeling
information, which may be inapplicable in practical situations.

In this paper, a novel CNN method that uses auxiliary information is proposed for
skin lesion segmentation. The proposed method can be trained in an end-to-end manner
without any pre-processing or post-processing steps. The contribution of this work is
two-fold:

• Edge prediction is leveraged as an auxiliary task for the skin lesion segmentation
task. The proposed method learns these two tasks simultaneously by two parallel
branches (edge prediction and segmentation mask prediction). The edge prediction
branch can guide the learned neural network to focus on the boundaries of the
segmentation masks. Up to the authors’ knowledge, this is the first work that utilizes
edge information to assist the skin lesion segmentation task. Note that the edge of a
segmentation mask can be obtained automatically by applying some contour detection
methods and hence no extra labeling effort is required for the proposed method.

• A cross-connection layer (CCL) module and a multi-scale feature aggregation (MSFA)
module are proposed in this paper. The interaction of different tasks is realized by
the CCL module. During the training process, the CCL module can implicitly guide



J. Imaging 2021, 7, 67 3 of 16

the learning of the two tasks jointly, and hence boost each task’s performance in turn.
Meanwhile, the MSFA module can make use of multi-scale information. Typically,
a prediction head is placed at the intermediate feature maps of each resolution for
both the edge prediction and segmentation prediction branch. The weights for the
feature maps of each resolution can be learned automatically during training.

Figure 1. Some example images from the ISBI2017 dataset for skin lesion segmentation. The ground
truth segmentation masks are marked using green contours. Fuzzy boundaries and distractions such
as hairs and color-marks are also witnessed.

The organization of the paper is as follows. Section 2 presents a review of the related
literature. Section 3 describes the proposed technique in detail. The experiment setup and
performance evaluation of the proposed technique is presented in Section 4. Analysis of
the results is presented in Section 5, followed by the conclusions in Section 6.

2. Related Works

Various skin lesion segmentation methods have been developed in literature, the
conventional methods include the thresholding-based methods [17], region-merging based
approaches [18], and active contour models [19–21]. Many traditional methods using
morphological operations along with the clustering techniques [22,23] have been proposed.
Jafari et al. [22] used K-means clustering to segment the skin lesion into the foreground
and background region. Similarly, Ali et al. [23] proposed to use Fuzzy C-means (FCM)
to perform skin lesion segmentation. Another popular class of approaches is the active
contour models [19–21], where the contour can evolve iteratively toward the boundaries of
pigment regions. After getting the candidate regions using thresholding methods, active
contour models driven by local histogram fitting energy [20] or multi-direction gradient
vector flow (GVF) snake [21] could be used to refine the course segmentation. However, tra-
ditional methods usually use complex pre-processing/post-processing techniques and may
involve many intermediate steps, which are data-dependent. Therefore, the performance
of traditional methods is highly dependent on these steps, and needs careful design when
dealing with different datasets. They will fail when the boundaries of pigment regions are
fuzzy and the skin conditions are complex.

The deep CNN models have achieved remarkable success in various computer vision
tasks [24–27], and have also achieved the state-of-the-art performance for the skin lesion
segmentation task. The basic CNN models generally use a sequence of convolution
and pooling operations. As the neural networks go deeper, more semantic and abstract
features (e.g., parts and shape) can be extracted using the learned kernels. Typically, for a
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classification neural network, the size of the output feature maps gradually decreases
(by subsampling). The output is a probability vector with values in the range [0, 1], whose
dimension equals the number of categories. This path can be called an encoding path,
where the images are encoded with semantic and abstract features as the neural network
goes deeper. The overall structure for the segmentation network is very similar to the
classification neural network, but usually with a decoding path, which aims at increasing
the resolution of output (by upsampling) so that the size of the output segmentation mask
equals the size of a given input image.

Based on the aforementioned introduction, the idea of treating the segmentation as
a classification task has been proposed for skin lesion analysis by Jafari et al. [28]. The
inputs are image patches of different scales centered at a certain pixel, and the ouput is
the prediction label of this pixel. In this case, the local context information of the pixel is
taken into consideration. However, this requires dense prediction as the proposed method
was based on the pixel-level prediction and more recent works use CNN with a decoding
path for the segmentation task. Ronneberger et al. proposed the well-known U-net [29],
which is very popular due to its success on medical image segmentation tasks. Some
methods based on the U-net [30–33] for melanoma segmentation and classification have
been proposed. For instance, Liu et al. utilized dilated convolution at the end of each
convolutional block of the original U-net to increase the receptive field of the proposed
method. Abhishek et al. [33] incorporated and selected different color bands based on
color transformations to further enhance the performance. Yuan et al. [34] proposed a
method based on the fully convolution-deconvolution method. A loss function based on
the Jaccard distance is used instead of the regular cross-entropy loss. Al-masni et al. [35]
proposed a full resolution convolutional neural network, where the proposed method
directly learned the full resolution features of each individual pixel of the input data by
not using the sub-sampling operation. Bi et al. [36] trained independent CNN model
for each known class to leverage the category information. A step-wise integration (PSI)
model based on the hierarchical evolving model was used to refine the segmentation
output. Sarker et al. [37] used dilated residual network with the pyramid pooling networks
for skin lesion segmentation. The combination of negative log-likelihood and endpoint
error loss is used to obtain sharp boundaries. Recently, Xie et al. [16] proposed a mutual
bootstrapping CNN method that performs the skin lesion segmentation and classification
simultaneously, and each task facilitates the other in a bootstrapping way. More specifically,
a coarse segmentation network is trained, and the predicted coarse mask is used to guide
the classification network. At the same time, class-specific localization maps generated via
the classification activation mapping (CAM) are concatenated into a U-Net-like network
for the prediction of the enhanced mask, which is more accurate than the coarse mask.

A recent technique named DEXTR (Deep Extreme Cut) [26] has shown that combining
the extreme points (corner points on the contours) with the original RGB images as the
input of CNN can improve the performance of instance segmentation of nature scenes [26].
However, [26] requires the input of extreme points, and the segmentation performance is
dependent on the quality of these points. Subsequent works have shown that the auxiliary
task, boundary/edge prediction, can help the instance segmentation task [38,39]. Based on
this motivation, an automatic skin lesion segmentation method that uses edge prediction as
an auxiliary task is proposed in this paper. Different from [38,39], a novel architecture that
is based on CCL and MSFA module is proposed in this paper. Details about the proposed
method are introduced in Section 3.

3. Methodology

In this section, details of the proposed method are presented. Given an input skin
lesion image, the proposed method will simultaneously predict the segmentation mask
and its corresponding edge (contour) during training. During the testing phase, only the
segmentation mask is used for prediction. A schematic diagram of the proposed method
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is shown in Figure 2. It is observed that there are three main modules: CNN backbone,
CCL and MSFA modules. Details of these modules are introduced in the following sections.

Figure 2. Schematic diagram for the proposed method. Edge prediction is used as an auxiliary task to
help the segmentation task. Two parallel branches with the cross-connection layer (CCL) module are
implemented so that the two tasks can interact with each other and boost each other’s performance
in turn. A multi-scale feature aggregation (MSFA) module is used to aggregate information from
feature maps of different scales.

3.1. CNN Backbone

As shown in Figure 2, an input image first goes through a CNN backbone structure
to generate the intermediate feature maps F for the subsequent edge prediction and
segmentation mask prediction. In this paper, ResNet-101 [24] and Pyramid pooling module
(PPM) [40] are used as the backbone structure for the proposed method, which can be
regarded as a strong baseline model for the skin lesion segmentation task. The input images
are resized to 448 × 448 before being fed into the CNN. To obtain a reasonable feature
resolution for F, we modify the Conv4 layer in the ResNet-101 with a stride of 1, dilate rate
of 2 following [26]. In this case, the resolution of the Conv4 layer will not decrease. Details
about the architecture of the proposed method are shown in Table 1. Especially, [1 × 1, 64]
indicates the filter size is 1 × 1, and the number of filters (which equals to the number of
output feature maps) is 64. [ . ]× 3 means the operation inside the block is applied three
times sequentially. Stride is set to be 1 and zero-padding is performed so that the resolution
of the output feature maps remains the same. The PPM module [40] can utilize the context
information of different resolutions and has been widely used as a plug-and-play tool. The
same setting as [40] has been used, except that we had set the number of output channels
to be 128. Specifically, the PPM fuses features under four different pyramid scales, with bin
sizes of 1× 1, 2× 2, 3× 3 and 6× 6, respectively. Therefore, the input of the PPM module is
the output feature maps of Conv4 layer with size [1024, 56, 56], where 1024 is the number of
channels and the spatial size of the feature maps is 56 × 56. The output of the PPM module
is feature maps of size [128, 56, 56]. For more implementation details of the PPM module,
one can also refer to [26].



J. Imaging 2021, 7, 67 6 of 16

Table 1. Architecture of the proposed method. The input image size is 448 × 448.

Layer Name Output Size Output Channel
Dimension Operations

Conv1 224 × 224 64
[

7 × 7, 64, stride 2
3 × 3, max pool, stride2

]

Conv2 112 × 112 256

 1 × 1, 64
3 × 3, 64
1 × 1, 256

× 3

Conv3 56 × 56 512

1 × 1, 128
3 × 3, 128
1 × 1, 512

× 4

Conv4 56 × 56 1024

 1 × 1, 256
3 × 3, 256
1 × 1, 1024

× 23

F 56 × 56 128 PPM [26]

E_conv1/S_conv1 112 × 112 128

1 × 1, 128
3 × 3, 32
1 × 1, 128

× 1

E_conv2/S_conv2 224 × 224 128

1 × 1, 128
3 × 3, 32
1 × 1, 128

× 1

E_conv3/S_conv3 448 × 448 128

1 × 1, 128
3 × 3, 32
1 × 1, 128

× 1

3.2. Cross-Connection Layer (CCL)

The proposed method consists of two parallel branches to predict the edge and
segmentation mask. Interactions between these two branches are realized by feeding
each task’s intermediate feature maps as the inputs of the next sub-block of the other
task, which is referred to as the CCL in this paper. In this case, the edge information
is leveraged during the forward prediction of the foreground mask prediction, which
can implicitly regularize the mask boundary and make the model focus more on the
edges. Similarly, mask information which contains dense pixel information and contextual
information are also used to guide the learning of the edges of segmentation masks.
Specifically, the layers S_conv1, S_conv2, S_conv3, E_conv1, E_conv2, E_conv3 in CCL are
implemented using the residual block as shown in Figure 3a. S_conv1, S_conv2, S_conv3
are the sequential convolutional blocks of the Seg subnet, while E_conv1, E_conv2, E_conv3
are the sequential convolutional blocks of the Edge subnet. Implementation details of a
residual block are shown in Figure 3b. The residual block first uses 1 × 1 kernels to scale
the input feature maps. Afterward, 3 × 3 kernels are used and the number of channels
is shrunk to 32. The final output feature maps are of the same size as the input, which is
realized by using 1 × 1 kernels and setting the number of channels to be 128. Upsampling
by a factor of 2 is performed after each residual block to increase the resolution of feature
maps. The size of the output feature maps at layer S_conv3 and E_conv3 is 448 × 448,
which equals the input image size.
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(a) CCL (Cross-connection Layer) module

(b) Implementations of the Residual Block

Figure 3. Implementations of the CCL module. The inputs are feature maps F obtained from the backbone CNN. (a) shows
the implementation details of a Residual block in (b), and blocks with the same color indicate the same operation.

3.3. Multi-Scale Feature Aggregation (MSFA)

The MSFA module, shown in Figure 4a, is used to aggregate the feature maps from
each resolution and make the final prediction. It first uses the Conv block to generate
an output prediction map for feature maps at each resolution, which can be regarded as
the process to make predictions at a certain scale. The Conv block consists of standard
convolution operations: first, convolution with 3× 3 kernels (the number of channels is 128)
is performed. Batch normalization (BN) and rectified linear unit (RELU) are used afterward.
The output of the Conv is a feature map with depth one, which is obtained by convolving
with a 3 × 3 kernel. For instance, feature maps at layer S_conv1, S_conv2, S_conv3 are fed
into the MSFA module and three feature maps are generated at different scales via the
Conv block. To leverage the feature maps at a higher resolution more effectively, we also
generate the 4th feature map by directly convoluting Sconv3 with a 1 × 1 kernel. These four
predictions are then upsampled to 448 and are concatenated, resulting in feature maps of
size 4 × 448 × 448. Finally, these four prediction masks are convolved with 1 × 1 kernel to
aggregate these feature maps into one final prediction. The weight for the prediction of
each scale can be automatically learned in this case. Figure 4 shows the schematic of the
MSFA module for the Seg subnet, the schematic of the MSFA module for the edge subnet
is similar. For both segmentation and edge prediction, shared parameters are used in the
MSFA module, which encourages the prediction masks and edges to share a similar quality.
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(a) MSFA (Multi-scale feature aggregation) module

(b) Conv block of MSFA

Figure 4. Implementations of the MSFA module, where the segmentation branch is used as an example. The inputs are
feature maps of different scales from the segmentation branch, e.g., Sconv1, Sconv2, Sconv3. Four prediction masks are obtained
after some convolution and pooling operation. The final output is the weighted sum of these predictions which can be
automatically learned by 1 × 1 convolution.

The class-balanced cross entropy loss is used as the cost function for the segmentation
and the edge prediction task. The class-balanced cross entropy loss l of a prediction is
calculated using the following equation:

l = − 1
N

N

∑
n=1

[w1 × yn × log(hθ(xn)) + w0 × (1 − yn)× log(1 − hθ(xn))] (1)

where

N: number of pixels;
yn: target label for pixel n;
xn: input pixel n;
hθ : model with neural network weights θ;
w1: weight for foreground pixels;
w0: weight for background pixels;

The class balanced weight w1 and w0 are calculated by inverse class frequency:
w1 =

Nneg
N and w0 =

Npos
N . Nneg and Npos are the number of background and foreground

pixels of a ground truth mask, respectively. A parameter α is used to balance the loss of
these two tasks. The final loss function L is given by:

L = αLseg + Ledge (2)

where Lseg and Ledge are the loss for segmentation and edge prediction task over the entire
training data, respectively. Both Lseg and Ledge use Equation (1) to calculate the loss. For the
proposed method, we manually set α = 0.05 to make the Lseg and Ledge in a similar range
of values during training. The proposed method can be trained in an end-to-end manner.
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4. Experimental Results

In this section, we first present the implementation details of the proposed technique.
The dataset and evaluation metrics used are then described. Experiments regarding the
parameter setting and the ablation study are conducted to show the importance of the
parameter and each module. Finally, the performance of the technique is evaluated and
compared with the state-of-the-art techniques.

4.1. Implementation Details

The proposed model is learned using the training data of ISBI2017, and the perfor-
mance is evaluated on the testing data. For training the proposed model, a dermoscopic
image (input), its corresponding ground-truth segmentation mask and edge (contour)
image (outputs) are required. The ground truth of the edge image can be automatically
obtained from the ground truth of the segmentation mask by contour detection technique.
During the training phase, online data augmentation is used to increase the number of
training images. Data augmentation techniques, including random horizontal and verticle
flipping, center cropping at random scale [0.75, 1.25], random rotation in the degree range
[−20, 20], ground truth cropping with zero-padding of 50 pixels, and an image deformation
method named Rigid Moving Least Squares [41] are used to generate more training images.
All the images are then rescaled to the size of 448 × 448. For training the proposed neural
network, we set the batch size to be 8 and train it for 30 epochs. Adam optimization
algorithm with an initial learning rate of 0.0001 is used, which decreases exponentially
with a learning rate decay γ = 0.9.

During the testing phase, only the segmentation mask is needed to evaluate the perfor-
mance of the proposed method. Test augmentation is also performed by rotating the input
test image by 90◦, 180◦, 270◦, flipping horizontally and vertically. Prediction of the original
image can be obtained by reverse operation of the predictions to the transformed images.
The average of these prediction outputs is then used as the final segmentation output.

The skin lesion segmentation method is implemented using PyTorch. All the exper-
iments were conducted on a server with an Intel Xeon Processor CPU and two GPUs of
Nvidia Tesla V100 with 16 GB memory.

4.2. Database

ISBI2017 for skin lesion detection [12] is used for the evaluation of the proposed
method. The images are collected from different institutes with different imaging instru-
ments, and are of various sizes, ranging from 767× 1022 to 4499× 6748. Severe illumination
variation and various artifacts (hairs, glue, color-marks, ruler) are witnessed in this dataset.
The number of images for the training set, validation set and test set is 2000, 600 and
150, respectively.

4.3. Evaluation Metrics

To evaluate the segmentation results, the Jaccard Index (JA), Dice Coefficient (DC),
Accuracy (ACC), Sensitivity (SE) and Specificity (SP) are used in this paper. These criteria
are defined as follows:

JA =
TP

TP + FP + FN
(3)

DC =
2 · TP

2 · TP + FP + FN
(4)

ACC =
TP + TN

TP + TN + FP + FN
(5)

SEN =
TP

TP + FN
(6)

SPE =
TN

TN + FP
(7)
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where TP (True Positive) is the number of foreground pixels being correctly classified
as foreground (interest region). TN (True Negative) is the number of background pixels
being correctly classified as background (skin region). FP (False Positive) is the number
of background pixels being wrongly classified as foreground. FN (False Negative) is the
number of foreground pixels being wrongly classified as background. JA represents the
ratio of overlapping area and the union area between the predicted segmentation mask
and the ground truth mask. DC is twice the overlapping area divided by the total number
of pixels in both images. Both metrics reflect how close the prediction mask is to the
ground truth mask. ACC represents the percentage of correctly classified pixels among
the total number of pixels. SEN represents the proportion of foreground pixels being
correctly segmented against the total number of foreground pixels while SPE represents
the proportion of background pixels being correctly segmented against the total number of
background pixels.

4.4. Parameter Setting of the Loss Function

As in Eqution (2), there is one important parameter α that balances the loss between the
segmentation task and the edge prediction task. To investigate the impact of α, experiments
regarding different values of the parameter α are conducted. We train the proposed model
using the training data of ISBI2017 and evaluate it on the testing data. The parameter α can
be critical to obtaining a good segmentation performance. Therefore, experiments using
different α with the values of 5 × 10−3, 0.05, 0.25, 0.5 are conducted. Experimental results
with different values of α are shown in Figure 5, where JA is used as the evaluation metric.
More results are provided in Table 2.

Figure 5. Experiment results with different values of α on the test set.

As we can see from Figure 5, α = 0.05 presents the best performance regarding the JA.
Performance of the proposed method is relatively stable when the values of α are smaller
than 0.05, and it gradually decreases with increasing values of α. Especially, the JA drops
from 79.46 to 79.01 when the value of α increases from 0.05 to 0.5. This is consistent with
the motivation of the proposed method since a larger value of α indicates a weaker role
of edge prediction. In the extreme case, only the segmentation branch is updated and
learned during training when the parameter α is large enough. Therefore, in this paper,
we have used α = 0.05 to obtain a balanced segmentation loss and edge prediction loss.
Experimental results in Table 2 have also verified that the edge prediction can help the
segmentation task. The segmentation branch will focus more on the boundaries of the
pigment regions, which is usually crucial for successful segmentation.
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Table 2. Experimental results with different values of α on the test set.

α ACC DC SEN SP JA

0.005 94.17 87.14 88.77 95.56 79.43
0.05 94.32 87.13 88.76 96.51 79.46
0.25 94.33 87.09 88.06 96.40 79.30
0.5 94.11 86.78 89.25 93.39 79.01

The best performance corresponding to each metric is shown in bold.

4.5. Ablation Study

To show the effectiveness of the proposed method, an ablation study about the pro-
posed method on the ISBI2017 test data is conducted. We name the three yellow blocks
(in Figure 2) in the segmentation branch as the Seg Subnet. Similarly, the three green blocks
in the edge prediction branch are named the Edge Subnet. Results of the ablation study
are shown in Table 3. ResNet + PPM + Seg is the backbone CNN with a Seg subnet for the
segmentation task, which can be regarded as a strong baseline model for the skin lesion
segmentation task. JA is regarded as the main evaluation metric for the segmentation task
as in the literary works, which reflects the percentage of overlap between the prediction
mask and the ground-truth mask. A JA value of 77.01% is obtained for this baseline method.
By adding the Edge subnet, we further increase the JA by 0.57%, which verifies that the
auxiliary task (edge prediction) can benefit the segmentation mask. Our final model is
the proposed method with the Seg subnet, the Edge subnet and the MSFA module, which
obtains the best performance with a JA value of 79.46. An increase of 2.45% JA value is
observed for the proposed method compared with the baseline method, which verifies the
effectiveness of the proposed method. In addition to JA, the proposed method provides an
improvement of 1.16%, 1.92%, and 1.39% for ACC, DC and SP over the baseline method.

Table 3. Ablation study of the proposed method .

Method ACC DC SEN SP JA

ResNet + PPM + Seg 93.16 85.21 88.87 95.12 77.01
ResNet + PPM + Seg +

Edge 93.54 85.66 87.11 96.61 77.58

Proposed 94.32 87.13 88.76 96.51 79.46
The best performance corresponding to each metric is shown in bold.

4.6. Comparison with State-of-The-Art Methods

In this section, we compare the proposed method with other state-of-the-art methods
using the ISBI2017 test data. The experimental results are shown in Table 4. Since ISBI2017 is
a challenge dataset for skin lesion segmentation, ensembling techniques by using different
CNN models [34], post-processing [32,34,36] are widely used. In comparison, our method
only learns one model in an end-to-end manner without any pre-processing and post-
processing methods and still achieves the best performance with a JA of 79.46, ACC of
94.32, SEN of 88.76.

Table 4. Experimental results compared with state-of-the-art methods on ISBI2017 test data.

Method ACC DC SEN SP JA

Liu et al. [32] 93.00 84.00 82.90 98.00 75.20
Abhishek et al. [33] 92.22 83.86 87.06 95.16 75.70

Yuan et al. [34] 93.40 84.90 82.50 97.50 76.50
AI-Masni et al. [35] 94.03 87.08 85.40 96.69 77.11

Bi et al. [36] 94.08 85.66 86.20 96.71 77.73
Sarker et al. [37] 93.60 87.80 81.60 98.30 78.20

Proposed 94.32 87.13 88.76 96.51 79.46
The best performance corresponding to each metric is shown in bold.
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5. Discussion

In this section, a qualitative analysis of the performance of the proposed method
is also conducted. The final outputs of the segmentation and edge prediction branches
are displayed in Figure 6. As shown in Figure 6, the proposed method can segment the
pigment regions correctly in most cases. The first row displays the output predictions given
an input image, which is an easy case since the color contrast of the input image is high
between the foreground and the background region. Therefore, the proposed method can
detect the pigment region with high accuracy. The second, third and fourth rows present
the images with fuzzy boundaries and low contrast. In addition, the existence of glue is
also observed among these images, which will make it extremely difficult to identify the
boundaries. Output probability maps of the segmentation and edge prediction branches
become slightly fuzzy on the boundaries in these cases, but still with decent results. The
bottom row shows an input image with hairs and low contrast, which can affect the textures
of the skin lesions and prohibit successful learning. Nevertheless, the proposed method
still successfully segments the pigment regions. In other words, the proposed method is
robust to noisy items and obtains an overall good performance.

Figure 6. Output visualization of the proposed method. (a) input test image; (b) the corresponding
ground truth segmentation mask; (c) the output probability map of the segmentation prediction
branch; (d) the output probability map of the edge prediction branch.
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Figure 6 has shown some example images that have been successfully segmented.
To further analyze the performance of the proposed method, we also display some failed
cases in Figure 7. The first row displays the input test images, the second row shows
the corresponding ground truth segmentation mask, and the third row is the prediction
probability map of the segmentation mask. As we can see from the first two columns of
Figure 7, the proposed method generates larger feature maps than the ground truth masks,
which is mainly due to the existence of the glue and the unclear boundaries. They will
distract the proposed method and deteriorate the segmentation performance. In contrast,
outputs in the third and fourth columns show that the proposed method predicts smaller
segmentation masks than the ground truth masks. The learned model tends to treat the
dark area as the foreground regions (which is the most frequent cases for dermoscopic
images), and it fails when there are multiple colors scattered within the same lesions
in some difficult cases. For instance, the proposed method fails when the foreground
region contains a dark area surrounded by an area with light color, whose appearance
is more similar to the healthy skin region (see the last two columns of Figure 7). Such
phenomenon has also been found in previous works [42,43], which may be caused by the
scarce samples and it will be the focus of our future research. It is also worth noting that the
ground truths of the segmentation masks of ISBI2017 are labeled using different methods
(e.g., manual labeling, thresholding methods, interactive labeling methods). Therefore,
there are annotation disagreements among the labeled images, which have been described
in [44,45] and may hinder the learning of the proposed method.

Figure 7. Some examples about the failed cases for the proposed method. (a) the input test im-
ages; (b) the corresponding ground truth segmentation masks; (c) the probability map of the pro-
posed method.

6. Conclusions

In this paper, a novel convolutional neural networks (CNN) based method with
auxiliary task learning is proposed. Edge prediction, as an auxiliary task, is performed
simultaneously with the segmentation prediction to help the segmentation task. The
ground truth of the edge prediction task can be obtained automatically from the ground
truth segmentation masks by using a standard contour detection method, and hence no
extra labeling effort is required. A cross-connected layer (CCL) module is proposed, where
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the intermediate feature maps of each task are fed into the other task’s subblock, which
implicitly guides the neural networks to focus on the boundary region and boosts the
performance of the segmentation task. A multi-scale feature aggregation (MSFA) module
is proposed, which can automatically learn the final mask by aggregating the output of
different scales. An ablation study has shown the benefits of these proposed modules.
Experimental results with the ISBI2017 dataset have shown that the proposed method
outperforms the other state-of-art methods in terms of performance measures such as the
Jaccard index and accuracy.
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