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A B S T R A C T   

While deep learning models have demonstrated outstanding performance in medical image segmentation tasks, 
histological annotations for training deep learning models are usually challenging to obtain, due to the effort and 
experience required to carefully delineate tissue structures. In this study, we propose an unsupervised method, 
termed as tissue cluster level graph cut (TisCut), for segmenting histological images into meaningful compart
ments (e.g., tumor or non-tumor regions), which aims at assisting histological annotations for downstream su
pervised models. The TisCut consists of three modules. First, histological tissue objects are clustered based on 
their spatial proximity and morphological features. The Voronoi diagram is then constructed based on tissue 
object clustering. In the last module, morphological features computed from the Voronoi diagram are integrated 
into a region adjacency graph. Image partition is then performed to divide the image into meaningful com
partments by using the graph cut algorithm. The TisCut has been evaluated on three histological image sets for 
necrosis and melanoma detections. Experiments show that the TisCut could provide a comparative performance 
with U-Net models, which achieves about 70% and 85% Jaccard index coefficients in partitioning brain and skin 
histological images, respectively. In addition, it shows the potential to be used for generating histological an
notations when training masks are difficult to collect for supervised segmentation models.   

1. Introduction 

Histological examination of tissue pathology slides is the gold stan
dard for diagnosing and grading various cancers such as skin melanoma 
(Xu et al., 2017). Traditionally, pathologists visually examine cytolog
ical features and tissue distributions under a microscope to determine 
whether a glass slide contains any malignant region and if so, the ma
lignancy level. However, visual examinations performed by pathologists 
are typically subjective and prone to inter- and intra-observer variations. 
To achieve an objective judgement, quantitative image analysis using 
computerized methods is crucial. Histological image segmentation is 
usually the first step in quantitative analysis of tumor pathology slides 
that include heterogenous tissue components. For example, identifying 
melanoma regions from Ki-67 stained lymph node histological slides is 
the prerequisite in quantifying tumor proliferation index (Alheejawi 
et al., 2019; Xing et al., 2013). Distinguishing necrotic regions from 
lymphocytic infiltrations helps in constructing histological features for 

tumor subtype identification and patients’ survival prognosis (Saltz 
et al., 2018). Therefore, segmenting histological image into meaningful 
compartments plays a significant role in computer-aided diagnosis and 
grading system of cancers. 

In the literature, one category of histology image segmentations was 
based on pixel- or grid-level analysis. These studies first characterized 
each pixel or grid (i.e., a small image patch) of an image using low-level 
color/texture descriptors. The classifier was then applied to assign pixels 
or grids into different labels. The connected pixels or grids with the same 
label were considered to be the same tissue. Doyle et al. (2012) proposed 
to compute texture features around a neighborhood of every pixel, and 
then used Boosted Bayesian classifiers to detect cancerous regions in 
prostate biopsy images. Wang et al. (2009) proposed a method for 
squamous epithelium segmentation, which first divides the image into a 
number of blocks and then performs segmentation by using the SVM 
classifier with extracted texture features within small blocks. Man
ivannan et al. (2016) proposed a method to segment glands in colon 
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histopathology images, which first extracts grid-level features and then 
performs classification by using a structure learning approach. Since this 
category of techniques relies on pixel- or grid-level texture analysis, 
their performances are likely be affected by color variation and image 
noise. 

Another category of studies performed object-level analysis instead 
of pixel-level analysis for histological image segmentation. These studies 
first defined objects to represent tissue components, and then extracted 
object-level features for image partitioning algorithm. Tosun et al. 
(2009) and Gunduz-Demir et al. (2010) proposed to represent colon 
histological image by a set of primitive circular objects. Region growing 
methods integrated with object-level features were then utilized to 
segment the image. The segmentation performances shown in these two 
studies depend on initially selected seed points used with the region 
growing method. Simsek et al. (2012) proposed a multilevel segmen
tation method that first constructs a graph based on randomly selected 
tissue objects and then cluster graph nodes based on object 
co-occurrence features, such that colon histological image is divided into 
different regions. Because graph nodes were selected by random sam
pling, this method did not guarantee to provide a global optimum 
segmentation. 

Recently deep learning techniques have been explored for histolog
ical image segmentation and provided superior performances over 
existing methods. Xu et al. (2015) applied transfer learning on deep 
convolutional neural network to extract features that were used by SVM 
classifier for brain histology image segmentation. Bejnordi et al. (2017) 
reported a number of deep learning methods for detection of lymph node 

metastases in H&E stained breast cancer pathology slides. Ronneberger 
et al. (2015) designed a U-Net deep learning model which has been used 
for different biomedical image segmentations. Chan et al. (2019) 
designed a HistoSegNet that performs histological image segmentation 
based on convolutional neural networks. Although deep learning 
methods are powerful to learn image features, they generally require a 
large number of training images and associated annotations, which are 
difficult to collect due to the effort and experience required to carefully 
delineate tissue structures, especially for histological images (Xing et al., 
2017; Amgad et al., 2019). 

In this paper, we propose an unsupervised method, termed as tissue 
cluster level graph cut (TisCut), which automatically partitions the 
histology image into meaningful compartments. The proposed method is 
based on the observation that different tissue compartments in pathol
ogy slides usually vary in terms of cellular structure, density and type. 
Overall there are three main contributions for this study. First, we design 
a novel unsupervised image segmentation method that performs image 
partition based on tissue cluster level features computed from the Vor
onoi diagram. Second, the proposed method has been evaluated on three 
histological image sets and has shown a promising performance in ne
crosis and melanoma detections, which would be able to assist in 
computer-aided disease diagnosis and grading by quantitative histo
logical image analysis. Finally, we show that the TisCut technique has 
the potential to be used for annotating histological images to train the U- 
Net model, which would be able to overcome the difficulties in col
lecting histological annotation masks for supervised learning-based 
segmentations. 

Fig. 1. Pipeline of the TisCut technique and its applications. (a) Schematic of the TisCut technique. First cell nuclei with spatially close distance and similar size are 
clustered together. The image is then represented by the Vonoroi diagram based on nuclei clustering. Finally a region adjacency graph is constructed such that the 
image is partitioned by using the graph cut algorithm. (b) Potentially extended applications of the TisCut technique to train supervised models for histological 
tissue detection. 
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The organization of this paper is as follows. Section 2 describes the 
TisCut, followed by performance evaluations in Section 3. The conclu
sion is presented in Section 4. 

2. Tissue cluster level graph cut (TisCut) 

The schematic of the proposed TisCut technique is shown in Fig. 1(a). 
It is observed from Fig. 1(a) that the TisCut consists of three main 
modules. The first module is the tissue object clustering, where a set of 
objects of interest (e.g., cell nuclei) are detected and grouped into 
different clusters based on extracted object features. The second module 
is the Voronoi representation, which divides the image into a number of 
regional components by merging Voronoi polygons based on tissue ob
ject clustering. The third module is the graph cut partition, where the 
graph is built based on tissue object clustering and then cut off by uti
lizing histological features computed in the Voronoi diagram such that 
the image is divided into different meaningful compartments. Fig. 1(b) 
illustrates the potentially extended applications of the TisCut technique 
in training supervised models for histological tissue segmentation. 
Table 1 lists symbols and notations employed in this paper. In the 
following, the TisCut technique is explained in the context of brain 
tumor pathology image partition, which aims at segmenting cell ne
crosis regions. 

2.1. Tissue object clustering 

The proposed TisCut technique considers the optimal image partition 
as a tissue cluster level graph cut problem, where the features of local 
tissue components are utilized. To this end, this module first extracts 
objects of interest (i.e., cell nuclei) in the histological image, and then 
groups them into local object clusters. The details of this module are as 
follows. 

2.1.1. Tissue object detection 
In histology image analysis, objects of interest are usually cell nuclei 

or glands, which may differ in different tissue slides and applications. In 
this work, objects of interest in brain and skin histological images are 
cell nuclei (see Fig. 2(a)). To efficiently segment cell nuclei, a local 
optimal thresholding method (Lu et al., 2012) that segments cell nuclei 
based on area and shape analysis is applied. This method adaptively 
determines the optimal threshold by minimizing a cost function to 
ensure that segmented cell nuclei have elliptical shape and acceptable 
size. Fig. 2(a) shows a brain tumor histological image, and Fig. 2(b) 
shows nuclei segmentation in the image where nuclei boundaries are 
highlighted by yellow contours. Let us denote the set of segmented cell 
nuclei as ℴ = {oi}i=1,…,N, where N is the total number of cell nuclei. 

2.1.2. Feature space clustering 
After segmenting cell nuclei, spatial and morphological features of 

cell nuclei are computed for feature space analysis. Since each nucleus 
corresponds to a feature vector xi ∈Rd, where d indicates the feature 
dimension, all segmented cell nuclei correspond to a set of features 𝒳 =

{xi}i=1,…,N. To group cell nuclei into clusters, mean-shift algorithm 
(Comaniciu and Meer, 2002) is applied on feature set 𝒳 . Mean-shift is 
selected mainly because it does not require a prior specification for the 
number of clusters. To segment necrotic regions in brain histological 
images, we explore a 3D feature space which includes 2D spatial co
ordinates (i.e., centroid location) of cell nuclei in the image and nuclei 
size. These features are chosen based on the observation that the same 
type cell nuclei usually locate closely and have similar size. The band
width h for the mean-shift algorithm is set as 60 in brain histological 
image segmentation (at 40× magnification). This indicates that for each 
cell nucleus in 3D feature space, its neighbors within a sphere with a 
radius of 60 are used to estimate the density for clustering. Let us denote 
𝒯 = {tj}j=1,…,K as the set of tissue object clusters, and 𝒞 = {cj}j=1,…,K as 
the set of 2D spatial components of cluster centers, where K is the 
number of clusters. Fig. 2(c) and (d) illustrate nuclei clustering results 
with binary and original color images, where green stars indicate 2D 
spatial locations of cluster centers (i.e., point set 𝒞). As observed in Fig. 2 
(c) and (d), nuclei with close distances and similar sizes have been 
clustered together. 

2.2. Voronoi representation 

Voronoi diagram has been applied for extracting spatial features of 
tissue objects in histology image analysis (Gurcan et al., 2009; Xu et al., 
2018). Unlike existing studies such as (Xu et al., 2018) that constructs 
Voronoi diagram by using nuclear seeds directly, in this module, we 
propose to decompose the whole image into a collection of Voronoi 
regions based on tissue object clustering (i.e., nuclei clusters). The de
tails of this module are explained below. 

2.2.1. Voronoi decomposition 
Let us consider tissue object centers (i.e., nuclear seeds) as the 2D 

points in the plane. The whole histological image is then decomposed 
into a set of Voronoi polygons, which are denoted as 𝒱 = {vi}i=1,…,N. 
Such decomposition has the property that an arbitrary pixel p in the 
image is assigned to the polygon vi such that it has the closest distance to 
the spatial center of object oi than any other object centers. Fig. 2(e) 
shows the Voronoi diagram constructed by using nuclear seeds in the 
image. It is observed that each Voronoi polygon encompasses a nucleus 
and its surrounding region. 

2.2.2. Voronoi merging 
Based on pre-computed tissue object clusters 𝒯 , in this step, the 

Voronoi polygons 𝒱 are merged into larger Voronoi regions which are 
denoted as 𝒰 = {uj}j=1,…,K. Specifically, a Voronoi region uj consists of 
several Voronoi polygons vi such that, 

uj =
{

vi
⃒
⃒oi ∈ tj

}
, i ∈ 1, 2,…,N (1)  

In other words, uj is composed of several Voronoi polygons vi, where cell 
nuclei within polygons vi belong to the same cluster tj. The reasons 
behind representing an image as a set of larger Voronoi regions are two 
folds. First there is a large number of cell nuclei in histology image, and 
hence clusters of cell nuclei could lead to efficient partition by subse
quent graph cut algorithm. Second clusters of cell nuclei help in 
capturing local region properties and reducing feature variants and 
noise that commonly exist in histology images. Fig. 2(f) shows the 
example of Voronoi regions constructed based on tissue object clusters. 
As observed in Fig. 2(f), the Voronoi polygons in Fig. 2(e) have been 
merged together based on nuclei clustering. The Voronoi regions in 
Fig. 2(f) is a higher level representation of Voronoi polygons shown in 
Fig. 2(e). These larger Voronoi regions are treated as basic elements for 
subsequent image segmentation. 

Table 1 
List of symbols employed in this paper.  

Symbols Descriptions 

ℴ = {oi}i=1,…,N  Set of tissue objects 
𝒳 = {xi}i=1,…,N  Set of tissue object features 
𝒯 = {tj}j=1,…,K  Set of tissue object clusters 
𝒞 = {cj}j=1,…,K  Set of 2D spatial components of clusters centers 
𝒱 = {vi}i=1,…,N  Set of Voronoi polygons for tissue objects 
𝒰 = {uj}j=1,…,K  Set of Voronoi regions for tissue objects clusters 
𝒢 = (ℛ,ℰ,𝒲) Graph representation 
S, T Two terminal vertices for the graph structure 
ℛ = 𝒞 ∪ {S,T} Set of RAG vertices 
ℰ Set of edges connecting graph nodes 
𝒲 Set of cost weights on graph edges  

H. Xu et al.                                                                                                                                                                                                                                       



Computerized Medical Imaging and Graphics 93 (2021) 101974

4

2.3. Graph cut partition 

A graph is a structure that consists of vertices, edges and weights on 
the edges, which is denoted by 𝒢 = (ℛ,ℰ,𝒲). Unlike existing techniques 
that use pixels or object centers as vertices to construct a simple grid 
graph for an image, we propose to incorporate tissue object clusters into 
the region adjacency graph (RAG) (Trémeau and Colantoni, 2000) to 
describe a histology image. Details of this module are as follows. 

2.3.1. Edge construction 
Let us consider 2D spatial components of cluster centers (i.e., point 

set 𝒞) as graph nodes. We assign edges and weights between these nodes 
to construct RAG. For graph node connection, Delaunay triangulation is 
applied to build interconnected edges. The Delaunay triangulation for 
the set 𝒞 with K points in a plane is a triangulation DT(𝒞) such that no 
point in 𝒞 is inside the circumcircle of any triangle in DT(𝒞). Fig. 3(a) 
shows an example of generated graph edges by Delaunay triangulation. 
Note that in Fig. 3(a) the interconnected edges between graph nodes (e. 
g., yellow stars) are called n-links which encode the neighborhood/ 
proximity information. Since Delaunay triangulation is used to construct 
neighboring system, there are three interconnected n-links for each node 
in the RAG. Let 𝒩 denote the set of all pairs of {m, n} neighboring 
interconnected edges, where 1 ≤m, n ≤ K. Besides graph nodes 𝒞, there 
are two specially designed terminal nodes S(source) and T(sink) that 
represent “foreground” and “background” labels. The edges connecting 
graph nodes to terminals are called t-links. Each node cj has two t-links 

which are denoted by {{cj, S} and {cj, T}}. Fig. 3(b) illustrates an 
example of constructing graph neighboring system including both n- and 
t-links. 

2.3.2. Edge weight assignment 
Let A = [A1, A2, …, AK] be a binary vector whose components Aj, 

1 ≤ j ≤ K, specify the class label (e.g., necrosis or non-necrosis) of object 
clusters tj ∈ 𝒯 . The vector A describes a segmentation for tissue object 
clusters in the image. Since the vector A has K components and each 
component has a binary value, there exist 2K possible segmentations. To 
obtain an optimal segmentation, an energy function that encodes the 
regional and boundary properties (Boykov and Funka-Lea, 2006) of 
tissue object clusters is defined as follows: 

E(A) = λR(A) + B(A) (2)  

where R(A) and B(A) are functions encoding regional and boundary 
terms, respectively. λ is a coefficient that balances the importance of 
regional and boundary terms. In this work, λ is empirically set as 0.25. 
Note that a smaller λ value indicates a relatively less importance for 
regional term, which helps in producing large connected regions during 
image segmentation. The regional term corresponds to the assigned 
weights/costs on t-links, while the boundary term corresponds to the 
assigned weights/costs on n-links. 

The regional term R(A) in Eq. (2) is computed as: 

Fig. 2. Illustration of tissue object clustering and Voronoi representation. (a) A H&E stained brain histological image. (b) Nuclei segmentation result. (c) Nuclei 
clustering shown with a binary image. (d) Nuclei clustering shown with the color image. (e) Voronoi decomposition. (f) Voronoi merging. Note that green stars in (c) 
and (d) indicate 2D spatial components of cluster centers. Cyan circles in (e) and (f) indicate the locations of cell nuclei. 

Fig. 3. Illustration of RAG construction. (a) Delaunay triangulation on tissue object clusters. (b) Example of constructing graph neighboring system. (For inter
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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R(A) =
∑

j
Rj(Aj) (3)  

where each regional term Rj(Aj) computes the penalty for assigning 
object cluster tj to “foreground” or “background” labels. Motivated by 
the MAP-MRF model (Boykov et al., 2001), a negative log-likelihood 
function is used to compute the penalty, which is defined as follows: 

Rj(ℒ) = − lnP(Fj|ℒ) (4)  

where P(Fj|ℒ) is a Gaussian probability, that is, 

P(Fj|ℒ) =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(2π)q

|Σ|
√ exp

(

−
1
2
(Fj − μℒ)

T Σ− 1(Fj − μℒ)

)

(5)  

where Fj is the feature/property for the jth object cluster tj, and μℒ ∈ ℛq 

is the mean feature vector (with dimension q) for one class. For binary 
case where ℒ = {1,0} or {positive, negative}, μℒ = μ1 or μℒ = μ0. Σ ∈

ℛq×q is the covariance matrix, and |Σ| is the determinant. In this work, 
the parameters μℒ and |Σ| are adaptively estimated by fitting features Fj, 
1 ≤ j ≤K, with two Gaussian mixture models using the Expectation- 
Maximization (EM) algorithm (Lu et al., 2013). The feature Fj can be 
adaptively computed based on different applications. For necrosis seg
mentation evaluated in this study, a simple but effective feature that 
estimates the ratio between each Voronoi area and its enclosed nuclei 
area, is proposed as follows: 

Fj =
Area(uj)

Area(nuclei ∈ uj)
, Fj ∈ ℛ1 (6)  

This feature is motivated based on the observation that cell nuclei in 
non-necrosis tumor regions tend to have larger sizes and higher densities 
than those of necrosis regions. Thus a larger value of Fj in Eq. (6) is 
expected for necrosis regions. 

The boundary term in Eq. (2) is computed as: 

B(A) =
∑

{m,n}∈𝒩

Bm,n⋅1(Am ∕= An) (7)  

where 1(⋅) is an indicator function, i.e., 

1(expression) =
{

1 if expression is true
0 if expression is false (8)  

The boundary term Bm,n encodes boundary penalties for a potential 
segmentation. Since we are trying to find the minimum cut from the 
whole RAG, a large penalty of Bm,n value should indicate high similarity 
between object clusters tm and tn. Meanwhile, a small penalty of Bm,n 
value should be used when object clusters tm and tn have significantly 
different properties. The boundary term Bm,n can be computed based on 
object cluster features. For two class segmentation problem in this study, 
we define the boundary penalty function as follows: 

Bm,n = exp
(

−

⃒
⃒
⃒
⃒
(Fm − Fn)

2

2(μ1 − μ0)
2

⃒
⃒
⃒
⃒

)

(9)  

Note that the denominator, inside the exponential function, encodes the 
feature mean difference between two classes. The numerator, inside the 
exponential function, computes the distance between two object clusters 
tm and tn in feature space. The largest penalty occurs as a value of 1, 
when features of two object clusters tm and tn are identical, i.e., Fm = Fn. 

2.3.3. Optimal segmentation 
In this section, we seek for the minimum cost/energy cut on the RAG 

to achieve an optimal segmentation. It is noted that in the RAG the edge 
set ℰ consists of n-links and t-links, i.e., 

ℰ = 𝒩
⋃

cj∈𝒞
{{cj, S}, {cj,T}} (10)  

Table 2 lists RAG edge weights. The RAG is partitioned by using the 
graph cut algorithm (Boykov and Funka-Lea, 2006), which provides a 
global minimum cost cut on the graph. The global minimum cost cut is 
obtained in polynomial time by the max-flow algorithm, given that all 
edge weights are non-negative. For more details, readers are referred to 
Boykov and Funka-Lea (2006). After graph cut segmentation, the small 
holes that might exist in foreground or background regions are filled by 
morphological operations. Fig. 4 shows a cropped example for tissue 
cluster level graph cut partition. In Fig. 4, the yellow contour indicates 
the segmentation boundary, while letters A, B indicate two classes of 
Voronoi regions obtained by the proposed segmentation algorithm. The 
regions overlapped with letters B belong to necrotic tumors. 

3. Evaluation results 

The proposed TisCut is a general framework for histological image 
segmentation. It can be adaptively adjusted and applied for different 
segmentation problems according to image characteristics. In this sec
tion, we provide evaluations and comparisons on three different test 
cohorts, which consist of brain, skin and lung histological images, 
respectively. We aim at detecting necrosis and melanoma regions from 
brain and skin testing sets, respectively. The lung data set is indepen
dently used for verifying whether the proposed technique could help in 
generating annotations for supervised deep learning models. 

3.1. Datasets description 

Dataset-I: The first dataset consists of 35 H&E stained brain histo
logical images diagnosed with glioblastoma multiforme. These images 
have different sizes, ranging from 500 to 5000 pixels in each dimension. 
The pixel resolution for this dataset is about 0.50 μm/pixel. The brain 
histological images, along with ground truth annotations (i.e., necrosis 
vs non-necrosis), were obtained by following Xu et al. (2015). This 
dataset was used to design necrosis detection algorithms, which would 
help in brain tumor diagnosis and prognosis. 

Dataset-II: The second dataset consists of 30 Ki-67 stained skin his
tological images with the average size about 1000 × 1000 pixels per 
image. These images were collected from the Cross Cancer Institute at 
University of Alberta, for skin melanoma diagnosis and grading study. 
The images including melanoma and non-melanoma regions were 
cropped from the whole slide images at 40× magnification (Alheejawi 
et al., 2019; Xu et al., 2017), where the pixel resolution is about 
0.25 μm/pixel. The ground truth melanoma regions in this dataset were 
manually labeled by an experienced pathologist. These cropped images 
are regions of interest which are used for evaluating tumor proliferation 
index (Xing et al., 2013). For skin histological image partition, we 
adaptively compute another feature from Voronoi regions of nuclei 
clusters, which is provided as follows: 

Fj =
1
M

∑M

m=1
R(xm), xm ∈ uj (11)  

where R(xm) represents the gray intensity (in Red channel) of the mth 
pixel in Voronoi region uj, and M is the total number of pixels belonging 

Table 2 
Edge weights in the RAG.  

Edges Weights (costs) 

{cm, cn} 
Bm,n = exp

(

−
(Fm − Fn)

2

2(μ1 − μ0)
2

)

{cj, S} Rj(negative) =− lnP(Fj|negative)  

{cj, T} Rj(positive) =− lnP(Fj|positive)  
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to uj. The feature computed in Eq. (11) replaces that of Eq. (6), and is 
integrated into the RAG to perform skin image partition. 

Dataset-III: The third dataset consists of 80 H&E stained lung 
adenocarcinoma histological images, where each image has the size of 
500 × 500 pixels and the pixel resolution is about 1.0 μm/pixel. These 
lung histological images, along with corresponding ground truth ne
crosis regions (i.e., necrosis vs non-necrosis), were obtained from Saltz 
et al. (2018). These images were used to build deep learning models for 
necrosis detection, such that necrosis could be distinguished from re
gions of tumor infiltrating lymphocytes. 

3.2. Quantitative comparisons and evaluations 

As existing works such as Simsek et al. (2012), segmentation sensi
tivity (SEN) and precision (PRE) are computed to evaluate the perfor
mance. In addition, the accuracy of automatic segmentations is 
evaluated by using the Dice similarity coefficient (DSC) and Jaccard 
index coefficient (JIC), respectively, which are defined as follows: 

DSC =
2|GT ∩ AS|
|GT| + |AS|

× 100% (12)  

JIC =
|GT ∩ AS|
|GT ∪ AS|

× 100% (13)  

where GT and AS are ground-truth and automatic segmentations, 
respectively, for any histological image. Note that if the image contains 
necrotic (or melanoma) regions, the foregrounds in GT and AS sepa
rately correspond to necrosis (or melanoma) regions obtained by manual 
labeling and automatic segmentation. Otherwise, the foregrounds in GT 
and AS correspond to non-necrosis (or non-melanoma) regions accord
ingly. The DSC is the ratio equaling to twice the number of pixels 
common to both ground truth and automatic segmentation sets divided 
by the sum of the number of pixels in each set. The JIC is the ratio be
tween the number of pixels which are correctly segmented by the 
method and the number of pixels which are included in either the 

automatic segmentation or ground truth masks. 
The proposed TisCut has been compared with three baseline super

vised techniques, which were implemented as follows: 
(1) Block based Textual Analysis with SVM classifier (BTA-SVM) 

(Wang et al., 2009): In our implementation, each histological image in 
brain or skin dataset was divided into a set of 120 × 120 
non-overlapping image blocks. 278 textural features were then 
computed from each image block. These features included 7 histogram 
features, 88 Haralick features and 44 gray level run length matrix 
related features from red and blue channels (Xu et al., 2018), respec
tively. The whole image was partitioned by predicting image blocks into 
different categories such as necrosis or non-necrosis with the trained 
SVM classifier. 

(2) Transfer Learning on InceptionV3 model (TL-InceptionV3) 
(Kermany et al., 2018): Likewise the BTA-SVM, each histological image 
was divided into a set of 120 × 120 non-overlapping image blocks. 
Training was then performed by fine-tuning parameters of the last fully 
connected layer of the InceptionV3 model. Image augmentation such as 
random flipping and rotation were applied along with the training. 
Stochastic gradient descent with a batch of 100 image blocks per step 
and a learning rate of 0.01 were applied for training. The whole image 
was partitioned by predicting image blocks into different categories with 
the TL-InceptionV3 model. 

(3) U-Net model (Ronneberger et al., 2015): In our implementation, 
the depth of each convolutional layer in the original U-Net model was 
reduced by 4 times to avoid over-fitting (i.e., the deepest convolutional 
layer had 256 kernels instead of 1024). In addition, to ensure more 
contextual information captured by convolutional kernels, the whole 
image was scaled to a smaller size (i.e., 192 × 192 pixels). The kernel 
size of convolutional layers was increased from 3 × 3 to 5 × 5. Due to the 
small dataset, we performed aggressive image augmentations to train 
the U-Net model. First, every training image was augmented to 18 im
ages by cropping from the original image using different size settings. 
Second, random rotation, flipping, elastic distortion and zooming were 
applied during the training process. The U-Net model was trained at 
most 40 epoches (with early stopping if validation performance did not 
improve) with the batch size of 16 images per step. During testing, an 
empirical threshold of 0.5 was applied on the obtained probability map 
to segment the image into foreground and background. 

Table 3 lists quantitative evaluations of different techniques on 
Dataset-I and II. Note that fivefold cross validation was separately 
applied on two datasets for three supervised techniques. To ensure the 
fair comparison, the divisions for training and testing sets during five
fold cross validation were the same across three supervised techniques. 
Both BTA-SVM and TL-InceptionV3 techniques first make predictions on 
120 × 120 non-overlapping image blocks, and then predictions were 
stitched together to get whole image segmentation result. The U-Net 
model provided extremely poor performance when the high resolution 
original images were used, mainly because it was hard for convolutional 
operations of the U-Net model to capture the contextual information 
during tissue region segmentation. Based on trial and error tests, the 
high resolution images were scaled down to the size of 192 × 192 pixels 
for U-Net model training and testing such that a satisfied segmentation 
performance could be achieved. As observed in Table 3, the BTA-SVM 
provides the poorest performance among four techniques, with JIC 

Fig. 4. Illustration of graph cut partition. Note that superimposed letters A 
(cyan) and B (white) in the image indicate segmented two classes, and the 
yellow contour indicates the segmentation boundary. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web 
version of this article.) 

Table 3 
Quantitative evaluations and comparisons on Dataset-I and II.  

Techniques Dataset-I/II (Brain/skin histological images)  

SEN (%) PRE (%) DSC (%) JIC (%) 

BTA-SVM (Wang et al., 2009) 75.93/84.94 70.23/91.48 68.79/87.60 55.87/78.48 
TL-InceptionV3 (Kermany et al., 2018) 80.92/88.85 78.05/91.47 77.05/89.65 65.05/81.77 
U-Net (Ronneberger et al., 2015) 81.22/92.62 80.62/92.74 78.58/91.38 67.22/85.76 
Proposed TisCut 79.91/91.28 88.15/93.38 80.64/91.82 70.24/85.44  
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values of 55.87% and 78.48% on Dataset-I and II, respectively. The BTA- 
SVM performs image partition by using hand-crafted texture features, 
and hence its performance is relatively sensitive to the training dataset. 
The TL-InceptionV3 provides better performances than the BTA-SVM, 
with JIC values of 65.05% and 81.77% on two datasets, respectively. 
The U-Net and proposed TisCut provide comparative results, both of 
which are superior to other two techniques. Specifically, the U-Net and 
TisCut separately provide 67.22% and 70.24% JIC values on brain 
dataset, and 85.76% and 85.44% on skin dataset. The TisCut integrates 
cytological features into the RAG model and performs image partition 
directly on histological images at high resolution. By contrast, the U-Net 
model tends to provide a good performance on low resolution images for 
histological tissue segmentation, although it is likely to provide poor 
histological segmentation results close to image borders where contex
tual information is not enough. 

3.3. Qualitative and sensitive evaluations 

Fig. 5 shows two visual examples of brain and skin histological image 
partitions. In Fig. 5, the first row compares brain necrosis and non- 
necrosis partitions by four techniques, where cyan contours indicate 
automatically segmented necrosis regions and yellow contours indicate 
ground truth segmentations. The second row compares skin melanoma 
and non-melanoma partitions, where cyan contours indicate automati
cally segmented non-melanoma regions and yellow contours indicate 
ground truth segmentations. As shown in Fig. 5(a) and (b), the BTA-SVM 
and TL-InceptionV3 provide many false segmentations. Note that the 
jagged segmentation boundaries in Fig. 5(a) and (b) are generated 
because the whole image is divided into 120×120 blocks for supervised 
classification. The U-Net model and proposed TisCut, as shown in Fig. 5 
(c)and (d), provide more accurate segmentations than the other two 
techniques. However, since regions close to image borders lack of 
contextual information, the U-Net model may make incorrect pre
dictions for those image border regions. 

In the TisCut technique, there are two adjustable parameters which 
are mean-shift bandwidth h (see Section 2.1.2) and weighing coefficient 
λ (see Eq. (2)). In our evaluations, they are empirically set as: h = 60 and 
λ = 0.25. To explore sensitivities of these two parameters, we did ex
periments by fixing one parameter and progressively adjusting another 
parameter. Specifically, when h = 60, λ was tested with [0.15, 0.20, 
0.25, 0.30, 0.35]. When λ = 0.25, h was tested with [40, 50, 60, 70, 80]. 
Fig. 6(a) and (b) shows sensitivity evaluations by tuning parameters λ 
and h on Datasets I and II, respectively. As observed in Fig. 6(a), the JIC 
value on Dataset-I reduces greatly to about 66.5% when λ value is 
reduced to 0.15. This indicates that an appropriate λ value balancing 
regional and boundary terms in Eq. (2) is important for achieving a good 
performance. The JIC value on Dataset-I reduces about 1.5% when 
parameter h increases to 80. The slight performance drop with the in
crease of parameter h is mainly because larger nuclei clusters are likely 

to result in less accurate segmentation boundaries. However, it should 
be noted that the larger h value for mean-shift clustering produces less 
nuclei clusters (or Voronoi regions) in the image, which helps in 
reducing the computational complexity for RAG segmentation. 
Compared with Dataset-I, Dataset-II (see Fig. 6(b)) is relatively insen
sitive to parameters h and λ, where JIC values only fluctuate within 
about 3% when h or λ value was tuned. 

3.4. Annotation generation for deep learning model 

The TisCut is a fully unsupervised histological image segmentation 
method, which could assist in histological annotations for training deep 
learning models. To verify the annotation capability, we compare U-Net 
segmentations based on training with manual annotations and auto
matic annotations, respectively. Since both Dataset-I and III include 
histological images containing necrosis and non-necrosis regions, they 
were used for this evaluation. First, we trained the U-Net model by using 
Dataset-I along with its manual annotations (i.e., U-Net-MA) and tested 
it on Dataset-III. Second, we trained the U-Net model by using Dataset-I 
along with its automatic segmentations (i.e., U-Net-AS) generated by the 
TisCut technique. We then tested the U-Net-AS on Dataset-III. Fig. 7 lists 
an example of histological image segmentation in Dataset-III, where the 
overlapped yellow contours and cyan contours indicate manual anno
tations and automatic segmentations, respectively. Compared with the 
TisCut, it is found from Fig. 7 that U-Net models tend to generate false 
segmentations around image borders due to the lack of contextual 
information. 

To verify the data robustness in model training, we also evaluated 
training on Dataset-III based on manual annotations and automatic 
segmentations, respectively, and then testing on Dataset-I. Table 4 lists 
quantitative evaluations on Dataset-III and I by using the proposed 
TisCut and U-Net models trained with manual annotations and auto
matic segmentations, respectively. As observed in Table 4, the U-Net 
models trained with manual annotations and automatic segmentations 
provide a comparative performance on Dataset-III, with the JIC values of 
58.14% and 57.25%, respectively. Fig. 8 shows the boxplot of JIC values 
for all images in Dataset-III in terms of three methods, which indicates 
that there are no significant performance differences (i.e., p > 0.05) 
among three methods. By contrast, the U-Net-AS provides the JIC value 
of 61.58% on Dataset-I, which is about 5% lower than that of the U-Net- 
MA. This is mainly because the Dataset-III is more heterogenous and 
challenging for automatic segmentation by the TisCut, and hence 
automatic annotations include more noisy regions during training the U- 
Net-AS. This also indicates that training data with well annotations is 
crucial for the U-Net model to achieve a good performance. Neverthe
less, it could be concluded from these evaluations that the proposed 
TisCut method can provide a comparative necrosis segmentation per
formance compared with U-Net models. In addition, the TisCut method 
has the potential to be used in generating histological annotations for 

Fig. 5. Examples of histological image parti
tions by using (a) BTA-SVM. (b) TL- 
InceptionV3. (c) U-Net model. (d) Proposed 
TisCut. Note that the first row shows H&E 
stained brain histological image partition, 
where yellow contours indicate ground truth 
necrosis regions. The second row shows Ki-67 
stained skin histological image partition, 
where yellow contours indicate non-melanoma 
regions. In all images, automatically segmen
tations are labeled by cyan contours. (For 
interpretation of the references to color in this 
figure legend, the reader is referred to the web 
version of this article.)   
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training supervised segmentation methods, when manual histological 
annotations are time-consuming and expensive to collect. 

The proposed TisCut method was implemented and tested on a 
2.90 GHz Intel Core i7-10700 CPU with 32.0 GB RAM using Mat
lab2020a. The total time consumed for unsupervised histological seg
mentations on Dataset-III (including 80 histological images) was about 
151.03 s, which indicates that each image on average takes about 1.88 s 
for histological segmentation by the TisCut method. For comparison, we 
implemented U-Net models for histological image segmentation by 
using the Tensorflow toolbox with Python3.6. The U-Net model trained 
with either manual annotations or automatic segmentations on Dataset-I 
takes around 20 minutes on our deep learning server which is equipped 
with Intel Xeon 8353H CPU, 128.0 GB RAM and NVIDIA RTX 3090 GPU 
card. The trained U-Net model then on average takes about half of 
second to perform histological image segmentation on Dataset-III. 
Compared with the supervised segmentation models such as the U-Net 
model, the TisCut method mainly has the advantage that it is fully 

Fig. 6. Sensitivity evaluations by tuning parameters λ and h. (a) JIC values on Dataset-I. (b) JIC values on Dataset-II. In our evaluations one parameter value was 
fixed during progressively adjusting another parameter value. 

Fig. 7. Histological image partition on an example of Dasetset-III. (a) TisCut. (b) U-Net-MA. (c) U-Net-AS. In images, the manually labeled necrosis regions are 
indicated by yellow dashed contours, while the automatically segmented necrosis regions are indicated by cyan contours. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 

Table 4 
Quantitative evaluation of necrosis segmentations on Dataset-III/I (lung/brain 
histological images). Note that the performance of Dataset-III is obtained by 
using the U-Net model trained on Dataset-I with either manual annotations or 
automatic segmentations, and vice versa.  

Techniques SEN (%) PRE (%) DSC (%) JIC (%) 

TisCut 82.99/79.91 66.20/88.15 64.42/80.64 54.00/70.24 
U-Net-MA 82.11/79.87 69.89/81.45 68.99/77.01 58.14/66.70 
U-Net-AS 84.82/78.65 67.62/77.30 67.96/73.15 57.25/61.58  

Fig. 8. The boxplot of JIC values for three methods on Dataset-III. Note that 
there are no significant performance differences among three methods, which 
indicates that the proposed TisCut technique could provide a comparative 
performance with U-Net models and also has the potential to be used in 
generating histological image annotations for training supervised segmenta
tion models. 
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unsupervised, and hence it does not take any time for training. 

4. Conclusion 

This paper presents a novel unsupervised technique, termed as Tissue 
Cluster Level Graph Cut (TisCut), for histological image partition. The 
TisCut method first groups nuclei into different clusters based on nuclear 
similarities and spatial distance. The image is then represented by 
Voronoi diagrams, where histological features are computed from con
structed Voronoi diagrams. Finally the computed features are integrated 
into a region adjacency graph. Image partition is performed by using a 
graph cut algorithm. Experimental results evaluated on three different 
histology image sets with different color staining show that the TisCut 
method can effectively partition the testing histological image into 
meaningful compartments. In particular, it provides a comparative 
segmentation performance with U-Net models in terms of necrosis and 
melanoma detections. The TisCut method is a general framework for 
image partition, which has the potential to be extended for solving 
various image segmentation problems. In addition, because of its un
supervised property, the TisCut method could help in generating image 
annotations for training supervised segmentation models such as the U- 
Net when histological annotations are difficult to collect. 
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