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Abstract: Light scattering has been used for label-free cell detection. The angular light
scattering patterns from the cells are unique to them based on the cell size, nucleus size, number
of mitochondria, and cell surface roughness. The patterns collected from the cells can then be
classified based on different image characteristics. We have also developed a machine learning
(ML) method to classify these cell light scattering patterns. As a case study we have used this
light scattering technique integrated with the machine learning to analyze staurosporine-treated
SH-SY5Y neuroblastoma cells and compare them to non-treated control cells. Experimental
results show that the ML technique can provide a classification accuracy (treated versus non-
treated) of over 90%. The predicted percentage of the treated cells in a mixed solution is within
5% of the reference (ground-truth) value and the technique has the potential to be a viable method
for real-time detection and diagnosis.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Conventional bench-top flow cytometer, also known as the fluorescence-activated cell sorter
(FACS), is a valuable tool for cell identification in many biological and health-related applications
[1]. It is based on measurement of fluorescence of molecules that are attached to the illuminated
target cells [1]. However, these fluorescent biomarkers can interfere with the function of the cells
they bind to, hindering further potential analyses and complicating interpretation [2]. Additionally,
adequate biomarkers are not available for many cell types, and they can be difficult or expensive
to develop for organisms such as microbes and viruses [2]. Development of label-free techniques
of cell identification is thus of high interest to the scientists to avoid such complications.

Light scattering has been studied as a label-free technique for single-cell analysis by several
research groups [3–7]. In earlier studies in our group, we have used angular light scattering
patterns as signatures for label-free cell identification [8–16]. This technique was applied to
study yeast, human raji [10] and hematopoietic stem cells [14–16]. Single cells were identified
by comparing the experimental 2D scattered light patterns measured using a charge-coupled
device (CCD) camera with the numerical simulation results. In these studies, we used a speckle
count technique for distinguishing the cells. The simulations were carried out by solving the
Maxwell Equations using the Finite Difference Time Domain (FDTD) technique and simplified
models for optical properties of the cells [8]. The cells have been defined in simulations as
three-dimensional dielectrics of spherical or oval shapes, containing different cell organelles
of varying indices of refraction [15,16]. In these papers we have also investigated the effect
of different degrees of surface roughness. Numerical simulations identify the main scattering
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centers in cells such as nuclei, small organelles, e.g. mitochondria or lysosomes, and reproduce
the characteristic features of the experimental angular scattering spectra.

The cell light scattering patterns are dominated by the small scale 2D speckle patterns
originating from light scattering from the mitochondria as they have higher refractive index than
other organelles [10,14–16]. These patterns are different due to the variation in the shape, number
and distribution of the mitochondria. Statistical analysis of the spatial distribution of the speckles
in the scattered light patterns allows us to effectively distinguish one cell type from the other.
The difference in these patterns in our previous works [14,15] can be considered a signature for
use in cell identification. Two speckle properties - the number and the average area of speckles in
the scattering pattern, can be used to discriminate scattering patterns among different types of
blood cells. This technique was applied to distinguish between the cancerous blood cells with
randomly distributed mitochondria and healthy blood cells with aggregated mitochondria [15].
Pattern recognition based on machine learning has been explored in several recent works [17–19].
The Adaptive boosting (AdaBoost) classifier for the discrimination of normal cervical cells and
HeLa cells, yeast cell clusters with different numbers of cells was proposed [17]. The image
gray level co-occurrence matrix (GLCM) features along with support vector machine (SVM)
have been used to classify scattering patterns of prostate cancer cell structures [18]. Histogram
of oriented gradients (HOG) has also been used to discriminate scattering patterns of ovarian
cancer cells from normal cells [19].

The classification techniques mentioned above can be termed as ‘hand-crafted’ feature-based
techniques, which are popular in traditional image classification. However, these techniques
may not be very effective for scattering pattern analysis due to the lack of visibly distinguishable
image characteristics. Superior results may be obtained if the features are learned from the
images using techniques such as deep learning neural networks to perform image classification
[20,21]. In this paper, we have utilized a convolutional neural network (CNN) based machine
learning (ML) technique for the pattern classification. However, as the image database is very
small, we use a pretrained CNN, known as DenseNet-201 [20], as the deep feature extractor. The
DenseNet-201 takes the scattering images as inputs and generates deep feature vectors. The
obtained deep feature vectors are then fed to an SVM for classification of the scattering patterns.

In this study, we have used the light scattering technique in combination with ML techniques to
distinguish non-treated and staurosporine-treated SH-SY5Y neuroblastoma cells. The SH-SY5Y
neuroblastoma cells are used in neuroscience for better understanding of human neurological
disorders such as Parkinson’s disease [22–25]. Staurosporine-treated SH-SY5Y neuroblastoma
cells are used in the fundamental studies of apoptosis [26,27] and neuroprotection studies [28–30].
Experimentally, we have used green and red lasers to study the light scattering patterns from these
cells. The light scattering patterns were collected at different angles to obtain more information.
Mie and FDTD simulations of light scattering were carried out for these cells to validate the
experimental results. In addition to these cells, polystyrene beads of known refractive indices
and sizes are used in experiments and simulation to obtain reference light scattering patterns
to distinguish the treated and non-treated cells. The ML techniques were then applied to these
experimental patterns distinguish the treated and non-treated cells.

2. Methods

Figure 1 shows the schematic diagram of experimental setup for collecting scattered laser light
patterns from beads and cells. The setup is similar to our experiments reported previously [16]
but with the additional capability of measurement of scattered light in three different directions.
Key components of the system include a probing laser, a sample holder, and CCD cameras with
microscope objectives. The beads/cells were irradiated with one of two wavelengths individually
(632.8 nm red light from a He-Ne laser or 532 nm green light from a second-harmonic diode-
pumped solid-state laser). A plano-convex lens with a focal length of 5 cm was used to focus each
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laser beam to a diameter of approximately 0.1 mm at the focal position. Three CCD cameras
were placed in forward, side and backward directions, respectively. Microscope objectives with
long working distance (10x Mitutoyo infinity-corrected long working distance objective with
a numerical aperture (NA) of 0.28) were used with the forward and backward CCD cameras,
while a normal microscope objective (10x microscope objective with a NA of 0.25) was used
with the CCD camera placed in the side direction. Each microscope objective and CCD camera
were connected by a tube and the system was placed on three-directional translation stages. The
central lines of the forward, side and backward microscope objectives were 30°, 90° and 150°
away from laser beam direction, respectively. The ranges of light collection angles were between
18° and 42° in the forward direction, between 79° and 101° in the side direction, and, between
141° and 159° in the backward direction, with respect to the laser beam direction (z direction).
The overlap of the laser beam and the observation region of each CCD camera with microscope
objectives defines a small measurement volume of approximately 0.002 mm3 [31]. Typically a 10
ml solution containing spherical polystyrene microbeads or SH-SY5Y cells with a concentration
of approximately 3000 particles/ml was prepared for each experiment. The micro-particles move
freely inside the solution due to Brownian motion and several micro-particles in a minute enter
the measurement volume, leading to their 2D light scattered patterns being recorded by the CCD
cameras.

Fig. 1. A schematic diagram of the experimental setup used to obtain two-dimensional light
scattered patterns of spherical beads and cells in three directions. The probing laser and
the side, forward and backward CCD cameras that collect scattered light are shown in the
schematic.

A multimode fiber with diameter of 125 µm was used for optics alignment. The fiber was
placed in the sample holder and a focused fiber image was first obtained in all three CCD
cameras simultaneously, and then a defocused image was obtained in the CCD cameras when
each microscope objective was moved several hundred micrometers away from the sample holder.
With the setup, two-dimensional scattered light patterns of spherical beads and cells can be
obtained in three directions with illumination with two different wavelengths. The CCD has
1294x964 pixels and each pixel has a size of 3.75 µm. A typical experimental scattering pattern
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image is circular and has a diameter of approximately several hundred pixels, giving an angular
resolution of approximately several minutes of arc.

Spherical polystyrene beads of two different sizes with diameters of 10 µm and 15 µm were
used in the study. The concentration of the beads was reduced from around 107 particles/ml to
around 3000 particles/ml using phosphate-buffered saline (PBS) so that light scattering patterns
of single beads could be obtained. These initial measurements with plastic microbeads of sizes
similar to SH-SY5Y cells were helpful in calibrating the collection optics and optimizing the
concentration of cells. Our measurements rely on the thermal motions of cells for introducing
different scattering centers in the focus of the laser probe and collection optics.

SH-SY5Y cells were from the American Type Culture Collection (ATCC, Manassas, Va, USA)
and cultured using a 1:1 mixture of Eagle’s Minimum Essential Medium supplemented with F12
Medium containing 10% v/v fetal bovine serum and penicillin/streptomycin mixture. Cultures
were seeded at 20% cell density and then allowed to grow for approximately 48 h until they
had reached 70% confluence of adherent cells. At this point, staurosporine was added to a final
concentration of 5 µM to make the treated SH-SY5Y cells group, while an equivalent volume of
PBS was added to the control SH-SY5Y cells group without staurosporine. Both groups were
allowed to incubate for 48 h, and then cells were fixed with 10% p-formaldehyde for 15 minutes.
Cells were sampled for each of the two conditions and were counted using a hemocytometer
to determine cell density present for each aliquot. Undiluted samples had a concentration of
approximately 106 to 107 cells/ml and were diluted to a final assay concentration of around 3000
cells/ml so that light scattering patterns of single cells could be obtained.

3. Results and discussion with microbeads

3.1. Measurements of scattered light from beads

Two-dimensional scattered light patterns of single spherical polystyrene microbeads have been
successfully obtained experimentally in all three directions with laser lights of two different
wavelengths. These basic measurements tested the laser probe and the detection system and
identified the scatter patterns generated along with the number of fringes in the patterns
corresponding to the diameter of the scattering beads, as shown in Fig. 2. Fringe patterns were
observed for both 10 µm (top row) and 15 µm (bottom row) spherical beads in forward, side and
backward directions, and for red (Fig. 2(a)) and green and (Fig. 2(b)) illuminations. Similar
number of fringes was observed in all three directions for the beads of same diameter at each
illumination. More fringes were observed with shorter (green) wavelength illumination for the

Fig. 2. 2D scattered light patterns with (a) red and (b) green laser illuminations for
polystyrene beads with diameters of 10 µm (upper rows) and 15 µm (lower rows). The
pictures in a row from left to right are the forward, side and backward scattered light
patterns of a bead, respectively. The angular ranges corresponding to the three directions of
measurements: 18°- 42° (forward), 79°-101° (side), and 141°-159° (backward).
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beads of same diameter. In addition, a greater number of fringes were observed with larger
diameter (15 µm) beads.

3.2. Analysis of bead scattering measurement

Scatterings from spherical beads of known refractive index were performed to establish the
connection between measured angular spectra and Mie theory and to verify the concentration of
beads that allows scattering from a single bead at the time when the scattering object enters the
focal volume of the optical system in Fig. 1. Note that in our basic setup we rely upon Brownian
motion of beads (or cells) to obtain angular scattering spectra of statistically significant number of

Fig. 3. Angular spectra from Mie theory calculations. The red curve corresponds to the
scattering intensity from spherical beads of diameter 10 µm; the blue curve corresponds to
beads of the size defined by a diameter of 15 µm. The vertical lines define the angular ranges
corresponding to the three directions of measurements: 18°-42° (forward), 79°-101° (side),
and 141°-159° (backward). Above: illumination using 632.8 nm light; below: illumination
using 532 nm light.



Research Article Vol. 12, No. 6 / 1 June 2021 / Biomedical Optics Express 3517

cells and to identify the concentration of cells of given characteristics. Two parameters required
by Mie calculation, the size parameter x and the relative index of refraction m, can be described
by equations:

x =
2πr

λvac/nmedium
(1)

m =
nsphere

nmedium
(2)

where r is the radius of the spherical object, λvac is the vacuum wavelength, nsphere and nmedium
are the refractive indices of the spherical object and medium under this wavelength, respectively.
For the red laser with 632.8 nm wavelength, the refractive indices of polystyrene latex beads and
PBS are 1.587 and 1.332 respectively. For the green laser with 532 nm wavelength, they are
1.598 and 1.3337 respectively. These parameters are used in the Mie calculation, whose result
is shown in Fig. 3 in the form of line plots that express the angular distribution of logarithm
scattered intensities. Mie calculation was done using external software [32].

The theoretical result shows the angular variation of the intensities, which results in the fringe
patterns in the experimental result. Three angle windows are applied in the plot in Fig. 3, which
correspond to the three observation angle ranges from the forward, side and backward directions.
The number of fringes in the experimental results and the number of peaks in the calculation
results shown in Fig. 3 are within 1 fringe of one another, and considered to be in good agreement.

4. Results and discussion: SH-SY5Y cells

4.1. Measurements of non-treated and staurosporine-treated SH-SY5Y cells

Experimental scattered light patterns of both treated and non-treated SH-SY5Y cells in all
three directions have been successfully obtained using our experimental setup of Fig. 1. The
angular distribution of scattered light displayed complicated patterns with no easily discernible
characteristics and no apparent differences between samples that contained treated and non-treated
cells, cf. Figs. 4–7. An analysis of such experimental spectra is usually based on relations
between scattering objects in cells and features of the scattered light spectra within different
angular ranges. Numerical simulations of light scattering from dielectrics have been helpful in
identifying such relations. For example, the nucleus, the largest organelle in a cell, scatters light
predominantly in the forward directions. If the regular fringe scatter pattern is observed, the
Mie theory can be used to estimate the overall size of the nucleus [16]. Nanoscale structures
such as mitochondria play an important role in the side scattering. If mitochondria are optically
thick they dominate the scattering cross-section and produce randomly distributed speckle-like
patterns of the scattered light intensity [10].

Fig. 4. Scattered light patterns from treated SH-SY5Y with red laser. The angular ranges
corresponding to the three directions of measurements: 18°- 42° (forward), 79°-101° (side),
and 141°-159° (backward).
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Fig. 5. Scattered light patterns from non-treated SH-SY5Y with red laser. The angular
ranges corresponding to the three directions of measurements: 18°- 42° (forward), 79°-101°
(side), and 141°-159° (backward).

Fig. 6. Scattered light patterns from treated SH-SY5Y with green laser. The angular ranges
corresponding to the three directions of measurements: 18°- 42° (forward), 79°-101° (side),
and 141°-159° (backward).

Fig. 7. Scattered light patterns from non-treated SH-SY5Y with green laser. The angular
ranges corresponding to the three directions of measurements: 18°- 42° (forward), 79°-101°
(side), and 141°-159° (backward).
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Such interpretations of scattering spectra are enabled by the analytic solution, i.e. Mie theory,
for the scattering from dielectric spheres, or numerical simulations involving modelling of cells
as inhomogeneous dielectrics and solving Maxwell equations [8] describing the laser probe
and scattered light. Motivated by the measurements with SH-SY5Y cells, this procedure of
numerical modelling of the scattering experiments will be explored for the effect of the cell
surface roughness on the scattering spectra.

Experimental samples of scattering spectra are shown in Figs. 4–7. The small fraction of
images, approximately 10%, in the forward and side angular ranges display regular fringe patterns
similar to Mie theory results for spherical beads. Because the same relative number of such
spectra was observed in the treated and non-treated samples, we removed these spectra from
further analysis.

Scattering spectra from red laser illumination are shown in Figs. 4 and 5, while those from
green laser illumination are shown in Figs. 6 and 7. The top, middle and bottom rows show
scattering patterns measured in forward, side and backward direction, respectively.

4.2. Models of cells and the effect of surface roughness on the scattering angular
spectra

Rather than the regular fringe patterns shown in the bead experiment, the scattered light spectra
of cells contain complicated patterns with dominant contributions from speckle-like distributions
of scattered light intensities. The two types of cells, treated and non-treated SH-SY5Y cells,
contribute to speckle-like distribution of the scattered light in Figs. 4–7. As it was established
before in simulations and experiments [8,14–16], small organelles with relatively high indices of
refraction can be responsible for the transformation of the regular Mie theory fringe patterns into
randomly distributed local maxima of laser intensity in the angular scattering spectra.

In the following, we will first examine images of SH-SY5Y cells obtained by scanning electron
microscopy and next introduce the theoretical model of the cell roughness. In addition to the
effects of small-scale organelles inside the cells we will also show that scattering from cells with
an increasing degree of surface roughness results in a transition from fringes to complicated
angular distributions of scattered light intensity that can be observed in Figs. 4–7.

The scanning electron microscopy (SEM) images for non-treated and staurosporine-treated
SH-SY5Y cells shown in Fig. 8 were taken to better understand their morphology.

Fig. 8. SEM images of non-treated (left) and staurosporine-treated (right) SH-SY5Y cells.
The two images correspond to cells of the similar size approximately 8 µm in diameter.

There is an obvious difference between SEM images of treated and non-treated SH-SY5Y cells.
The non-treated cells in Fig. 8 are characterized by a relatively smooth surface and quasi-spherical
shapes while the treated cells have rough, almost sponge-like surfaces and various shapes. The
apparent similarities between the scattering spectra of these two kinds of cells despite such
different physical features that are displayed in Fig. 8 contribute to difficulties in identifying
the main components contributing to the scattered light spectra. We believe that the internal
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components of the non-treated cells, such as mitochondria [33] produce speckle distributions
of the scattered light, while in the case of treated cells the additional source of the complicated
speckle-like spectra is the surface roughness.

We have developed a computer model of a spherical dielectric with a rough surface and have
simulated scattering spectra using our Finite Difference Time Domain (FDTD) code, AETHER
[8]. The surface roughness is characterized by two parameters, the amplitude of the surface
modulations σ and the correlation length of the random surface perturbation, Λ [34]. The two
parameters are introduced into the model by first dividing the sphere into many statistically
independent circular thin slices. For each circular slice the radius is modified by small variations,
h, such that the averages satisfy:

⟨h⟩ = 0 (3)

⟨h2⟩ = σ2 (4)

The distribution of the modulations along the circle satisfies the probability distribution:

p(h) =
1
σ
√

2π
exp

(︃
−h2

2σ2

)︃
(5)

The spacing of the surface modulations along the circumference of each slice is given by the
correlation function:

C(R) =
⟨h(ρ)h(ρ + R)⟩

σ2 = exp
(︃
−R2

Λ2

)︃
(6)

where R is the length of an arc along the circumference of each slice of the sphere. The
speckle-like simulated light scattered pattern for a spherical cell with rough surface is shown
in Fig. 9. The simulation results support our conjecture that the speckles can come from the
surface roughness of the cells. The analysis of the speckles can conversely give information of

Fig. 9. Simulated scattered light pattern in the side direction from a spherical cells with
changing surface roughness. The vertical axis shows the decreasing correlation lengths, Λ,
expressed as the fraction of the circumference of different horizontal slices of the sphere.
The horizontal axis indicates the increasing amplitude of the surface modulations. The
wavelength of the laser probe is 520 nm. The 3D image of the sphere surface corresponds
to the scattered spectrum inside red circle. The radius of the sphere is r=5 µm, index of
refraction of a dielectric is n=1.57. The sphere is immersed in water with refraction index
1.334.
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the cell surface. Potentially, we can distinguish the cells with different surfaces by doing the
statistical analysis of the scattering patterns. As we proceed, clear identification of the source of
the irregular scattering patterns, e.g. small organelles or the surface roughness, will require the
application of pattern recognition and machine learning techniques.

5. Discrimination between treated and non-treated SH-SY5Y cells

5.1. Two-parameter analysis of 2D light scattering patterns

In our previous studies [14,15], we were able to use two observables, number of speckles and
average area of their cross-sections, as parameters for cell identification. These speckles are
produced as a result of interference of scattered light from small and optically dense mitochondria
and as discussed above on random and deep perturbations of the cell surfaces. Here we perform
similar analysis for scattered light patterns from non-treated (NT) and staurosporine-treated (ST)
SH-SY5Y cell samples. Only the speckle and irregular patterns were analyzed as the fringe Mie
scattering patterns were already eliminated. Figure 10 shows an example of the speckle patterns
from treated cells. In our analysis, we first found each local maximum in the pattern, and then
starting from each local maximum scanned pixel values in four directions (upward, downward,
leftward and rightward) until reaching the half value of each local maximum pixel value. The
scanning area around each local maximum is defined as the local cross-section area. As Fig. 10
shows, each local maximum is labeled with green colour, and each local cross-section area is
represented by a red quadrilateral. All speckle patterns were smoothed by using a Gaussian
smoothing filter to eliminate high-frequency noise before applying the method of finding the local
maximum. The average cross-sectional area is defined as the summation of local cross-section
areas divided by the number of local maxima.

Fig. 10. A typical scattered light pattern from a single SH-SY5Y cell. Each local maximum
is labeled with a green circle and each local cross-section area is labeled with a red
quadrilateral shape.
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This example illustrates the method of physical cytometry based on the number and average
size of speckles in the 2D scattered light intensity distribution. In our previous studies [14,15]
the two parameters, i.e., the average local cross-section areas and number of speckle spots, for
different types of blood cells do not overlap with each other and thus can be used as fingerprints
to identify the cell types. In the current study, the spreads of the two parameters for ST and NT
SH-SY5Y cells result in them significantly overlapping with each other. The dataset including
the two wavelengths and three observation directions was investigated to examine the behavior
of the two parameters. It was found that the average number of speckle spots for NT cells are
larger than ST cells and the average sizes of the speckles for NT cells are smaller than the ST
cells [35]. The differences between the average numbers of speckle spots for NT cells and those
for the ST cells are larger for red laser illumination than for green laser illumination, in all of
the three observation directions, with no significant directional dependency [35]. Based on the
observations, analysis is focused on the data in the forward direction with red laser illumination.
The two parameters were determined from the scattered light patterns in the forward direction
with red laser illumination for 31 ST cells (red solid circles) and 38 NT cells (black hollow
circles), as shown in Fig. 11(a). Even though the two parameters for ST and NT cells overlap
significantly with each other, it is more likely to find a NT cell with large number of spots than
a ST cell. The average numbers of spots are 23 and 26 for ST and NT cells respectively. In
Fig. 11(a) we found that the number of ST cells having 25 or more intensity maxima was 9 out
of 31, while the number of NT cells having 25 or more speckles was 22 out of 38. Thus, this
training data set gives the probabilities 0.58 and 0.29 for a NT cell and a ST cell, respectively,
having 25 or more maxima. The probabilities from the training sample can be used to estimate
the fraction of treated and non-treated cells in a sample where staurosporine was applied to
SH-SY5Y cells to study the effectiveness of such treatment. An experiment was carried out to
verify this approach using a mixed solution with 4:1 ratio of NT to ST cells as a probing data set.
Scattered light patterns in the forward direction with red laser illumination from 27 cells in the
mixed solution of probing data set were collected and analyzed as shown in Fig. 11(b). Of the 27
patterns analyzed, 17 were found having 25 or more speckle maxima. The result is consistent
with the fact that most of the cells in the mixture are NT. Since the errors of measurements
typically decrease proportionally to the inverse of the square root of the number of data, it is
expected that the accuracy of the prediction can be improved with larger training and probing
data sets. Thus, the above result would point to the fact that a single criterion, i.e., the number of
speckle spots, can be used for the estimation of fractions of the two groups of cells in a mixed
solution providing sufficient large set of training and probing data sets are available.

Fig. 11. Two-parameter plots, total local cross areas and number of speckle spots, for
scattered light patterns from (a) “training" and (b) “probing" data sets.
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However, to achieve robust identification and determination of the fraction of different cell
types in a mixed solution with relatively small data sets, more sophisticated methods will need to
be developed. In the next section, we describe a ML method developed for robust identification
of the two groups of SH-SY5Y cells.

6. Classification of non-treated and treated SH-SY5Y cells using machine learn-
ing algorithms

In this section, we present the ML technique used in this paper for classification of scattered light
patterns. The data is collected in the forward direction with red laser. The objective is to classify
the patterns into two classes: ST (staurosporine-treated) and NT (non-treated).

The overall schematic of the ML module is shown in Fig. 12. The input images are resized to
224x224 pixels and are fed to a pretrained CNN, DenseNet-201 [20], for feature extraction. Note
that the DenseNet-201 consists of 201 layers, including convolutional (Conv), ReLU activation
(ReLU), batch normalization (BN), pooling layers, etc. A feature vector of length 1920 is obtained
at the GAP (Global Average Pooling) layer of the DenseNet for each image. The feature vectors
are then fed to an RBF-kernel SVM that outputs a real value score in the range [0, 1]. The score
determines the probability of the image class (i.e., the probability of being an NT or ST). As
the pretrained DenseNet is used only as a feature extractor, there is no training required for the
DenseNet, and only the SVM needs to be trained to obtain the classification output.

Fig. 12. Schematic of the machine learning module.

To evaluate the performance of the machine learning algorithm, we use a dataset of 360 images
that consists of 180 NT and 180 ST cells. The average performance of 5-fold cross-validation
is used as the final result. For 5-fold cross-validation, the entire dataset is divided into 5
non-overlapping subsets (with equal number of ST and NT cells in each subset). For each fold,
one data subset (i.e., 20% of the data) is used as the testing data, and the remaining 4 subsets
(i.e., 80% of data) are used as the training data. This process is repeated 5 times until each subset
has been used as testing data. To select the best parameters of SVM, 5-fold cross-validation is
performed on the training set within each fold. We also perform the same parameter selection
step for the other hand-crafted features used as comparison in this paper, so as to make a fair
comparison.
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The classification performance is evaluated in terms of Accuracy (ACC), Sensitivity (SEN),
Specificity (SPE), and Area Under the ROC Curve (AUC), which are defined below.

ACC =
TP + TN

TP + FP + FN + TN
(7)

SEN(TPR) =
TP

TP + FN
(8)

SPE =
TN

TN + FP
(9)

AUC =
∫ 1

0
TPR(F0) d(F0) (10)

In this work, the NT cells are considered as the positive samples and the ST cells are considered
as the negative samples for the SVM. In this case, TP (True Positive) is the number of the
correctly classified NT cells, TN (True Negative) is the number of the correctly classified ST
cells, FP (False Positive) is the number of the ST cells (mistakenly) classified as the NT cells
and FN (False Negative) is the number of the NT cells being (mistakenly) classified as ST cells.
The SEN, also known as True Positive Rate (TPR), shows how many among the NT cells are
correctly classified as the NT cells. The SPE shows how many among the ST cells are correctly
classified as ST cells. Note that the AUC calculates the area under the TPR-FPR curve (also
known as the ROC curve), where TPR(F0) is the value of the TPR when the false positive rate,
defined as FPR=FP/(TN+FP) is F0.

The performance of the proposed ML technique is also compared with other state-of-the-art
scattering analysis techniques [14,15,18,19]. The SF technique [14,15] uses the two speckle
features: number and area of speckles. For calculating the number and average area of speckles,
we first perform the segmentation on the scattering patterns, and calculate the two features using
the foreground mask. An example of a segmented mask is shown in Fig. 13. The original image
first goes through a Gaussian filter to remove the noise and smooth the image. The GLCM
technique [18] uses the gray-level co-occurrence matrix features. We set the gray level range to
be [0,255], the pixel pair distance as 1, and use four directions of 0°, 45°, 90°, 135° to calculate
the GLCM. For each of the four directions, 22 statistical features are calculated from the GLCM.
Overall, an 88-dimensional feature vector is obtained by concatenating features obtained from
the 4 directions. Note that before calculating the GLCM features, Gaussian filtering is performed
on each image to reduce the impact of noise. The HOG technique [19] uses the histograms of
oriented gradients as features. Here, the original images are divided into non-overlapping 16x16
pixel cells, and 9 bins are used for the histograms. The dimension of the extracted HOG features
is 1764 for each image. The Hand-Crafted technique uses all three hand crafted features SF,
GLCM and HOG. For all four techniques, SVM is used for pattern classification. 5-fold cross
validation is used to obtain the classification performance. In this paper, SVM with RBF (radial
basis function) kernel is used as it provided superior performance.

The classification performance (classes: NT and ST) of the proposed machine learning method
along with the existing methods is shown in Table 1. It is observed that the deep features-based
classification significantly outperforms the hand-crafted features. Among all these features, the SF
technique provides the least satisfactory performance with ACC of 61.67%. One possible reason
may be that the SF uses only a 2-dimensional feature vector, which contains less information.
Therefore, it has limited power in characterizing the characteristics of NT and ST cells resulting
in low discriminative ability. However, it still achieves an ACC over 50%, which indicates
that useful information is contained in the speckle features. The GLCM features obtain an
improvement of about 10% accuracy compared with the speckle features. This indicates that
the co-occurrence matrix can capture more useful texture information and is beneficial for the
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Fig. 13. Segmented speckles for pattern analysis. Note that speckles (in the left image)
with very low contrast have also been identified and segmented.

distinction of the NT and the ST cells. Among the handcrafted features, the HOG features
present the best performance. The combination of all three hand-crafted features provides further
improved performance, since it captures more diverse and useful information, with 77.78% ACC,
82.78% SEN, 72.78% SPE, and 86.62% AUC.

Table 1. Classification Performance of the machine learning method. All techniques use SVM as
the classifier.

Classification Method ACC SEN SPE AUC

SF [14,15] 61.67 63.33 60.00 64.86

GLCM [18] 71.11 70.56 71.67 77.19

HOG [19] 75.28 76.11 74.44 83.15

Hand-Crafted 77.78 82.78 72.78 86.62

Proposed ML 91.11 92.78 89.44 96.95

As observed in Table 1, the proposed ML technique provides the best performance among all
techniques with over 10% improvement in ACC, SEN, SPE and AUC over the Hand-Crafted
technique. This shows that, although the manually designed hand-crafted feature contains useful
statistical features of image textures, it has limited discriminative power. It fails when the task is
complex (The texture patterns of the non-treated and treated SH-SY5Y cells are visually similar,
and can be regarded as the complex situation in this case). As a contrast, the CNN methods
can extract semantic-meaningful features with the deep architecture. Texture features (such as
edges, corners) can be extracted in the bottom layers of a CNN model. As the layers go deeper,
more semantic-meaningful and rich features can be extracted (such as parts, shapes, patterns).
In this paper, we used the feature vector in the GAP layer as the feature representation of an
input image, which is a high-level and semantic-meaningful feature representation. Compared
with the hand-crafted features, the extracted CNN features are not data dependent and can
extract semantic-meaningful features, which are discriminative and hence more powerful for
the classification task. The proposed ML technique can tackle the complex situation and obtain
superior performance compared with the technique using hand-crafted features.

The proposed ML technique is evaluated on the Desktop with Intel i7-7700 4.2 GHz CPU
with 32 GB memory and a GPU of Nvidia GeForce GTX 1080Ti with 11GB memory. The
features are extracted using pretrained Densenet in Pytorch and the classification of SVM method
is implemented using Matlab. The inference time for a single cell image is about 0.033 seconds
on average, and the majority of the time is spent on feature extraction, which is about 0.0326
seconds. It worth noting that, the feature extraction time can be sped up by using compression
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technology of deep neural networks or some more advanced CNN methods, which are more
lightweight, efficient and without the loss of accuracy. The inference time is very fast and has the
potential for real-time cell classification.

In some medical applications, the percentage of ST cells (PSTC) defined below, is a diagnostic
factor.

PSTC =
No.ofSTcells

TotalNo.ofcells
× 100% =

TN + FN
TP + FP + TN + FN

× 100% (11)

Here, we present the accuracy of estimating the PSTC using ML based classification of the ST
and NT cells. In this experiment, the same testing dataset is used but with different numbers of
ST cells (selected randomly). In this way, testing set with different concentration of ST cells
are constructed. The process is repeated 10 times, and the average PSTC value is calculated.
Three experiments were carried out using ground truth (i.e., calibrated dataset) PSTC of 50%,
33% and 20%. Table 2 shows the experimental results. The last column of Table 2 shows the
predicted PSTC value. It is observed the predicted PDC value is very close to the ground truth
PDC value when the dataset includes roughly similar number of NT and ST cells. However,
when the number of NT cells exceeds significantly the number of ST cells, the predicted PSTC
value deviates slightly more and is usually larger than the ground truth value. However, the
predicted percentage is within 5% of the ground truth percentage, which may be acceptable for
making diagnostic decision.

Table 2. Prediction of PSTC (percentage of ST cells) value.

Testing Dataset Ground Truth Percentage Predicted Percentage

36 ST, 36 NT 50.0 49.1

18 ST, 36 NT 33.3 35.2

9 ST, 36 NT 20.0 24.2

As discussed in Section 4, the sources of the observed speckle-like patterns for NT and ST
SH-SY5Y cells can be from small organelles and cell surface roughness. The ML method
developed here was able to effectively classify these two groups of SH-SY5Y cells and thus
potentially can be used to pinpoint the origins of the scattered light patterns by studying simulated
scattering patterns from various combinations of small organelles with different distributions and
cell surface with different degree of roughness. This can potentially be a useful tool for studying
SH-SY5Y cells treated with staurosporine at various concentrations which may affect the internal
organelles and change the cell surface roughness.

7. Summary and conclusions

We have described in this paper experiments and theoretical analysis of light scattering from
neuroblastoma cells. The main goal of this study is to examine different components, from
label-free light scattering to machine learning image recognition, comprised in a procedure that
allows accurate and reliable measurement of the concentration of different cells in biological
samples. We have demonstrated the effectiveness of our method by measuring the relative
concentration of the non-treated vs staurosporine treated SH-SY5Y neuroblastoma cells in a
sample. Applications of this method to measurements of relative concentrations of cells in
laboratory and clinical settings could offer a useful alternative to techniques currently used and
based on the fluorescent cytometry and manual analysis of scattering spectra.

Our group has demonstrated over the years [9–16] that the measurement of the angular intensity
distribution of the scattered light provides a non-invasive way of cell characterization that can be
employed in cell discrimination and the recognition of various physiological states in cells of
the same kind. Further advancements in the light scattering experiments in this paper involved
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measurements in three directions (forward, side and backward) with the application of two laser
sources of different wavelengths, 520 nm and 632.8 nm.

When combined with numerical modelling using our FDTD code AETHER [8], label-free
scattering experiments led to the method of rapid cell size determination [11] and differentiation
of the hematopoietic stem cells [10,12] based on the mitochondria distribution. Mitochondria
represent randomly distributed scattering centers that give rise to speckle patterns in the scattered
light distribution from the random interference of coherent light of the laser probe. Speckle
patterns were described using two parameters statistical analysis [10,12] in terms of the number
of speckles in 2D intensity distributions and their average cross-sections. This procedure was
applied here to distinguish the non-treated and staurosporine treated SH-SY5Y neuroblastoma
cells.

The SEM images revealed that application of the staurosporine leads to a change of the cell
morphology and an increase in the cell surface roughness. Our theoretical modelling of the
cell roughness and shape modification demonstrated in Sec. 4.2 that large amplitude and short
correlation length modifications in the cell roughness result in the speckle pattern in the scattering
light similar to the effect of scattering on mitochondria. The cumulative effect on the scattered
light of the internal organelles and cell roughness reduced the accuracy of our two-parameter
speckle analysis and prompted the application of machine learning techniques.

It was observed that a Deep Neural Network-based method developed in this study has the best
classification performance with Accuracy (ACC) of 91%, Sensitivity (SEN) of 93%, Specificity
(SPE) of 89% and Area Under the ROC Curve (AUC) of 97%. The robust classification was
applied to determine the fraction of staurosporine-treated SH-SY5Y cells in a mixed solution
consisting of staurosporine-treated and normal SH-SY5Y cells. Experimental results show very
good prediction accuracy (within 5% of the ground truth fraction value).

In summary, our label-free cytometry has the potential for real-time detection and diagnosis
of different cells. In this study, we have shown that it can be used for studying the effect
of staurosporine on human neuroblastoma cells which has potential applications including
fundamental apoptosis studies in neuroscience and neuroprotection research.
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