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A B S T R A C T   

The Proliferation Index (PI) is an important diagnostic, predictive and prognostic parameter used for evaluating 
different types of cancer. This paper presents an automated technique to measure the PI values for skin mela
noma images using machine learning algorithms. The proposed technique first analyzes a Mart-1 stained his
tology image and generates a region of interest (ROI) mask for the tumor. The ROI mask is then used to locate the 
tumor regions in the corresponding Ki-67 stained image. The nuclei in the Ki-67 ROI are then segmented and 
classified using a Convolutional Neural Network (CNN), and the PI value is calculated based on the number of the 
active and the passive nuclei. Experimental results show that the proposed technique can robustly segment (with 
94 % accuracy) and classify the nuclei with a low computational complexity and the calculated PI values have 
less than 4 % average error.   

1. Introduction 

Skin cancer is the most common cancer type in North America, and it 
can be of different types such as Merkel cell carcinoma, sebaceous car
cinoma, basal cell carcinoma and melanoma. Among these, malignant 
melanoma is the deadliest type with high mortality as it can spread to 
any part of the body. As per recent statistics, it is estimated that about 
100,350 new cases of cutaneous malignant melanoma (CMM) cancer 
would be diagnosed resulting in about 6,850 deaths in 2020 in the 
United States alone (Siegel et al., 2020). The CMM occurs when the 
melanocytes, located around the junction of the epidermis and the 
dermis layers in the skin, start growing aggressively to form metastatic 
melanoma. The aggressive growth of melanocytes is mainly caused by 
the DNA replication due to the excessive exposure of the ultraviolet 
radiation (emitted from the sun). Once it is established that melanoma 
has invaded the epidermis, dermis and subcutaneous layer (in skin), 
doctors examine the lymph nodes closest to the tumor, known as the 
Sentinel Lymph Nodes (SLNs) to determine the spread. Through lymph 
vessels, the metastatic melanoma can be drained from the skin to the 
SLNs and is passed on to other organs. The early detection, diagnosis, 
and staging of melanoma can increase the survival rate up to 92 % after 
five years when the cancer is found (Hanahan and Weinberg, 2011). 

The proliferative activity of CMM is indicative of neoplastic pro
gression and often the clinical growth rate of the neoplasm. High risk 
CMM is commonly associated with a higher growth rate, which is re
flected in a higher Proliferation Index (PI) of the tumor regions. The PI as 
measured by Ki67 expression, reflects the degree of active cell prolif
eration (Bánkfalvi, 2000), and may be useful pathological predictor of 
survival of melanoma patients without distant metastases. PI as a pre
dictor of tumor progression can help physicians to determine the 
effective treatment (Nielsen et al., 2013). The PI is determined by esti
mating the ratio of the number of active cell nuclei and the total number 
of cell nuclei. During cell proliferation, the cell nuclei become active and 
start replicating the nuclei DNA and cytoplasm. A stained skin tissue 
slide is digitized and diagnosed by a pathologist. In Ki-67 stained image, 
the positive response of the actively proliferative cells to the Ki-67 
marker appears as dark brown color, whereas other cells appear as 
blue color (see Fig. 1). A pathologist usually chooses the high prolifer
ative areas in the tumor regions and manually calculates the PI values by 
counting the proportion of the active cells. The manual detection of the 
tumor regions, finding the high proliferative areas and calculating the PI 
values in a Whole Slide Image (WSI) can be labor and time intensive. In 
addition to the large size of WSIs, the manual analysis is also subjected to 
intra- and inter-observer variability (Reid et al., 2015). Therefore, 
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automated Computer-Aided Diagnosis (CAD) algorithms can provide a 
fast and reliable diagnosis (Wang et al., 2009). 

A few techniques have been proposed in the literature to calculate 
the PI values in Ki-67 stained images for different types of cancers. The 
PI calculation is generally done by segmenting and/or detecting the 
nuclei (both active and passive nuclei). The nuclei segmentation and 
detection are difficult in Ki-67 images, as most cells lose the blob shape 
and have heterogeneity in color representation. To calculate PI values, 
several researchers used thresholding algorithms for cells segmentation 
followed by a classifier. Grala et al. (2009) proposed sequential 
thresholding to segment the cells and Support Vector Machine (SVM) to 
classify them into active and passive cells. Akakin et al. (2012) used 
watershed algorithm and Laplacian-of-Gaussian filters to enhance the 
cell segmentation. Al-Lahham et al. (2012) proposed a technique to 
segment and classify the cells into active/passive nuclei by applying 
K-means algorithm on the image pixels in L*a*b* color-space. Mungle 
and Tewary (2017) proposed an algorithm to segment the cells using a 
Fuzzy C-means (FCM) technique and then apply the K-means (KM) al
gorithm for classification (henceforth referred to as FCM + KM tech
nique). Alheejawi et al. (2019a) proposed an automated algorithm to 
calculate the PI values on the tumor regions in Ki-67 images. The al
gorithm determined the tumor regions by mapping the segmented 
melanoma areas from Mart-1 onto Ki-67 image. The PI values in this 
technique are calculated by segmenting the cells using the Otsu 
threshold and then classifying the active/passive nuclei using a SVM 
(henceforth referred to as the Otsu + SVM technique). 

With the recent advances in Machine Learning (ML) algorithms, the 
convolutional neural networks (CNN) have become popular for medical 
image segmentation and classification. Long et al. (2015) proposed a 
CNN architecture for the semantic segmentation with several convolu
tional layers and a few max pooling layers followed by one upsampling 
layer. This architecture shows the segmented objects with coarse 
boundaries/edges due to the information lost in the pooling layers. 
Badrinarayanan et al. (2017) proposed a CNN architecture (popularly 
known as SegNet) by adding several upsampling layers and enhanced 
them by transferring the maximum value indices of the corresponding 
pooling layers. Ronneberger et al. (2015) proposed a CNN architecture, 
popularly known as UNet, to improve medical image segmentation by 
concatenating the upsampling layers (at the decoder side) with the 
corresponding features maps from the pooling layers (at the encoder 
side). Chen et al. (2018) proposed a CNN architecture (known as 
DeepLabV3) for object segmentation, which contains several dilated 
separable convolutional layers, spatial pyramid pooling, and a few re
sidual connections (Kaiming et al., 2016). Although the DeepLab ar
chitecture has been shown to provide a good segmentation performance, 
it has high computational complexity due to the large number of layers. 
In addition, pooling layers in the DeepLab may degrade the segmented 
object boundaries especially in medical images. 

Saha et al. (2017) proposed a technique (henceforth referred to as 

the GMM + CNN technique) to calculate PI values in breast cancer bi
opsy. Here, a few Ki-67 image windows with dense active nuclei are 
manually selected for the PI calculation. This technique uses a Gamma 
Mixture Model (GMM) with expectation-maximization algorithm to 
detect the nuclei seeds. Image patches around the isolated nuclei seeds 
are then classified into passive/active nuclei using a CNN classifier. The 
CNN uses 5 convolutional layers followed by two fully connected layers. 
In addition to the high computational complexity of the nuclei detection, 
the technique can calculate the PI values only for the isolated cell nuclei, 
which typically increases the error rate. Alheejawi et al. (2019b) pro
posed an automated technique (henceforth referred to as the PI-SegNet 
technique) to calculate the PI values for the melanoma regions using 
SegNet architecture, which contains 8 convolutional, 2 pooling, and 2 
un-pooling layers followed by a softmax layer. The pooling layers can 
degrade the segmentation performance. 

In this paper, a fully automated CNN-based technique is proposed to 
calculate the PI value in a WSI. The proposed technique first generates a 
region of interest (ROI) mask in a Mart-1 image based on color histo
gram analysis, and the mask is mapped onto the corresponding Ki-67 
image to identify the melanoma region. The nuclei in the Ki-67 image 
are then segmented and classified using a CNN architecture, and PI 
values are calculated based on the proportion of active and passive 
nuclei areas. Experimental results demonstrate high accuracy and low 
error rate of the calculated PI values compared to the state-of-the-art 
techniques. 

The organization of the paper is as follows. Section 2 describes the 
dataset used to train and evaluate the proposed algorithm; Section 3 
describes the proposed technique in detail. The performance evaluation 
of the proposed technique is presented in Section 4 followed by the 
conclusion in Section 5. 

2. Data description 

In this study, 10 pairs of histopathological images (from 10 different 
patients), obtained using Mart-1 and Ki-67 stains, were collected from 
the Cross-Cancer Institute, University of Alberta, Canada in accordance 
with the protocol for the examination of patients with melanoma cancer. 
The histopathological slides were digitized under 40X magnification 
using aperio scanscope slide scanner. The obtained WSIs are with size 
around 60,000 × 31,000 pixels (15 mm x 7.75 mm area with 0.25 μm/ 
pixel resolution). Each WSI contains several lymph nodes, and some of 
these lymph nodes contain 1-4 melanoma regions. 

Seven non overlapping windows (i.e., ROIs) with size 704 × 1280 
color pixels are obtained from the lymph node regions of each Ki-67 
stained WSI. In other words, a total of 70 windows are obtained from 
10 WSIs, which form the dataset for performance evaluation. 

As the dataset is small, five-fold cross validation is used for perfor
mance evaluation in this paper. For each fold, two WSIs are arbitrarily 
chosen as the testing WSIs, and 14 ROI windows from these two WSIs are 
used as the testing dataset. The remaining 56 ROI windows (from the 
other 8 WSIs) are used as the training dataset. This process is repeated 
five times for the five-fold cross validation, and five sets of performance 
measures are obtained. The average performance is reported in Section 4 

3. Proposed technique 

The schematic of the proposed technique is shown in Fig. 2. The 
proposed technique consists of three modules: Melanoma Region Iden
tification, CNN-based segmentation and PI calculation. The details of 
each module are presented in the following. 

3.1. Tumor region identification 

The PI values are calculated only within the melanoma regions in the 
Ki-67 images. The objective of this module is to identify the melanoma 
regions in Ki-67 stained lymph node image with the help of Mart-1 

Fig. 1. Histopathological image stained with Ki-67 stain.  
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stained image of a consecutive section (Alheejawi et al., 2019a). The 
melanoma regions appear in brown color in Mart-1 stain. These regions 
are segmented and superimposed on Ki-67 images to identify the tumor 
regions in Ki-67 images. Fig. 3(a) shows two lymph nodes in Mart-1 and 
the melanoma regions appear in brown color. Fig. 3(b) shows the 
mapped melanoma regions in green contour on Ki-67 image. Let the 
melanoma regions on Ki-67 stained image be denoted by Ri (i = 1,2, ...,
NDR) where NDR is the total number of disconnected melanoma regions 
in the lymph nodes. 

3.2. CNN-based segmentation 

The objective of this module is to segment an input image window 
(from the detected melanoma region) into active nuclei, passive nuclei 
and background. In this paper, a new CNN architecture, as shown in 
Fig. 4, is used to segment the Ki-67 images into three classes (back
ground, passive and active nuclei). The CNN architecture consists of 
three paths: path A, path B and path C. The details of these three paths 
are listed in Table 1. The paths A and B have 8 and 9 convolutional 
layers, respectively (see Fig. 4). Path C provides the residual connection 
(also known as skip connection) from the input layer to the Concatenate 
layer (denoted as Layer-CON in Table 1). The three paths start after the 
first convolution layer, become parallel, and meet again at the concat
enate layer. This is followed by a convolutional layer, softmax and pixel 
classification layer. The details of these layers are explained in the 
following. 

1) Convolutional layers: The convolutional layer is similar to the 
neurons in a traditional neural network except that each neuron will be 
connected to a small neighborhood of neurons in the previous layer. 

Each neuron in the convolutional layer will result in a scalar value. In 
this paper, the convolutional layer performs three operations: convolu
tion, batch normalization, and ReLU activation. 

(a) Let fl− 1 denote the (3D) feature map generated in the convolu
tional layer l-1. In the convolution layer l, the feature map fl− 1 is 
convolved with a (3D) filter Fj: 

Rl,j = fl− 1*Fj, j = 1, 2, ..,N (1)  

where N is the number of filters in layer l (also known as the depth of the 
layer l), Rl,j is the (2D) output corresponding to the jth convolution filter. 
Note that for the first convolution layer (i.e., l = 1), the input image is 
considered as f0. In the first convolutional layer (Layer I) of the network 
in Fig. 4, f0, Fj, and R1,j have dimensions of H × W×3, 3 × 3×3, and H ×
W×64, respectively (with the input image having H × W pixels). In the 
proposed CNN, the number of filters is 64/layer (in both paths A and B) 
with size of S × S (see Table 1). Note that S increases from 5 to 21 in 
subsequent layers in path B. However, it has a fixed value of 3 in all 
layers of path A. Note that the paths A and B provide complementary 
features: the path A focuses more on the coarse features whereas the 
path B focuses more on the fine features. 

(b) Batch Normalization: During the CNN training, the convolution 
outputs Rl,j corresponding to all images in a mini-batch (of B images) are 
considered. In this work, we have used B = 8 (Ioffe and Szegedy, 2015). 

The Rl,j is made zero mean with unit variance as follows: 

R̂l,j =
Rl,j − μj

σj
(2)  

where μj and σj are the mean and the standard deviation corresponding 

Fig. 2. Schematic of the proposed segmentation technique.  

Fig. 3. Histopathological image of two lymph nodes (a) Mart-1 stained image, where melanoma appears in brown color and (b) Ki-67 stained image, where the green 
contour is the melanoma mask. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article). 
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to the jth feature map for the layer l in a mini-batch. The normalized R̂l,j 

is scaled with γ, and a bias β is added as follows: 

yl,j = γl,j R̂l,j + βl,j (3) 

Note that Eqs. 2 and 3 are applied during both the training (with B =
8) and the testing (with B = 1). The γ and β are trainable parameters and 
are updated iteratively during the backpropagation. 

(c) Activation: In this step, an activation function is applied on the 
batch normalized output yl,j. In this work, the Rectified Linear Unit 
(ReLU) activation (Nair and Hinton, 2010) is used as it has the advan
tages of speeding up the training (Krizhevsky et al., 2012) and inducing 
the sparsity in the hidden units (Glorot et al., 2011). In ReLU, all the 
negative pixel values are replaced by zeros, and the output is expressed 
as follows. 

fl,j = max(0, yl,j) (4) 

The overall output of convolutional layer l, as given below, will be 
passed on to the next layer. 

fl =
{

fl,j, j = 0, 1, ...N
}

Step (a)-(c) are repeated for each subsequent convolutional layer. 
After the ReLU module, the feature map fl is used as the input of the next, 
i.e., the (l + 1)th, convolutional layer. 

2) Pooling/ UnPooling Layers: The pooling layers are used to extract 
the features in different image resolution, whereas the unpooling layers 
are used to return the extracted features with the same size as the 
original image (H × W) using bilinear interpolation. In the pooling 
layers, the max-pooling operations for [2 × 2] pixels with stride of 2x2 
are used. The indices of the maximum values in pooling layers are 

Fig. 4. Proposed CNN architecture for nuclei 
segmentation (with 19 convolutional layers). 
Note that there are three paths after Layer I 
(first convolutional layer). Path A has 8 con
volutional (shown in blue), 4 pooling (yellow) 
and 4 un-pooling (pink) layers. Path B has 9 
convolutional layers. Path C is the residual 
connection from the output of layer I to the 
concatenate layer. Paths A, B and C meet at the 
Concatenate Layer. (For interpretation of the 
references to colour in this figure legend, the 
reader is referred to the web version of this 
article).   
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transferred to the corresponding unpooling layers. 
3) Concatenate Layer: In this layer, the outputs of paths A, B and C, 

each with size H× W× 64, are concatenated to obtain an output feature 
map of size H× W× 192. 

4) Softmax: The softmax layer is used after the last convolutional 
layer to generate the probability distribution of the classification results 
for each pixel. The output of the last convolutional layer consists of C 
feature maps (each of size H × W), where C is the number of the output 
classes. Let the feature map corresponding to the ith class (i = 1,2,…C)
be denoted by ϕi. The exponential summation of the feature maps, Φ, is 
calculated as follows: 

Φ

(

h,w

)

=
∑C

i=1
exp(ϕi(h,w)) 1 ≤ h ≤ H, 1 ≤ w ≤ W (5) 

The softmax layer calculates the class probability Pi for the pixel at 
location (h,w) using the following equation. 

Pi(h,w) =
exp(ϕi(h,w))

Φ(h,w)
(6) 

Note that the input pixels are classified into three classes (i.e., C = 3): 
background, active nuclei and passive nuclei. 

5) Pixel classification: This layer performs the classification of the 
image pixels using the corresponding class probability. The class with 
the highest probability is chosen as the pixel output class. 

3.3. CNN training 

There are about 7,513,247 parameters in the proposed CNN, which 
need to be trained. In the training phase of the CNN, 56 ROI windows (as 
described in section 2) are used. Note that each window contains 
thousands of nuclei (see Fig. 5). These 56 windows are divided into 
training (49 windows) and validation (7 windows) datasets. As it is 
computationally expensive to use the whole window as input to the 
CNN, each window is further divided into non-overlapping blocks of 64 
× 64 color pixels to obtain 220 block-images (an example of a block- 
image is shown in Fig. 5). The total number of the obtained block- 
images is 12,320 (= 56 × 220). 

The 12,320 images are also augmented by horizontal and vertical 
flipping to obtain 36,960 images (32,340 training and 4,620 for vali
dation). The image augmentation is used to generalize the parameters of 
the CNN model and have better performance (Shijie et al., 2017). 

For CNN training, a loss function and an optimization algorithm need 
to be defined. In this paper, we use the cross-entropy loss function for 
multi-class classification. The loss function X for a pixel at (m,n) location 
is calculated as follows: 

X(m, n) =
∑C

i=1
Ti(m, n)lnPi(m, n) (7)  

where Ti(m, n) is the ith-ground truth class probability and Pi(m, n) is the 
ith-class probability (predicted by the Softmax layer). The total loss for a 
mini-batch of B block-images (each with size H × W) is then calculated 

Table 1 
Details of the proposed architecture with 19 convolutional layers. Input image 
Size: H × W pixels (color). C: Number of classes, NA: Not Applicable. Note that 
layers A1,A3,A5,A7 are pooling layers, and layers-A9,A11,A13,A15 are 
UnPooling layers. For these layers, the max-pooling and a stride of 2x2 are used.   

Number of 
Channels (N) 

Number of 
Filters 

Output Image 
Size 

Filter Size 
(S) 

Layer-I 3 64 H×W×64 3×3 
Layer-A1 64 NA (Pooling) (H/2)×(W/2)×

64 
- 

Layer-A2 64 64 (H/2)×(W/2)×
64 

3×3 

Layer-A3 64 NA (Pooling) (H/4)×(W/4)×
64 

- 

Layer-A4 64 64 (H/4)×(W/4)×
64 

3×3 

Layer-A5 64 NA (Pooling) (H/8)×(W/8)×
64 

- 

Layer-A6 64 64 (H/8)×(W/8)×
64 

3×3 

Layer-A7 64 NA (Pooling) (H/16)×(W/ 
16) ×64 

- 

Layer-A8 64 64 (H/16)×(W/ 
16) ×64 

- 

Layer-A9 64 NA (UnPooling) (H/8)×(W/8)×
64 

- 

Layer- 
A10 

64 64 (H/8)×(W/8) 
×64 

3×3 

Layer- 
A11 

64 NA (UnPooling) (H/4)×(W/4)×
64 

- 

Layer- 
A12 

64 64 (H/4)×(W/4)×
64 

3×3 

Layer- 
A13 

64 NA (UnPooling) (H/2)×(W/2)×
64 

- 

Layer- 
A14 

64 64 (H/2)×(W/2)×
64 

3×3 

Layer- 
A15 

64 NA (UnPooling) H×W×64 - 

Layer- 
A16 

64 64 H×W×64 3×3 

Layer-B1 64 64 H×W×64 5×5 
Layer-B2 64 64 H×W×64 7×7 
Layer-B3 64 64 H×W×64 9×9 
Layer-B4 64 64 H×W×64 11×11 
Layer-B5 64 64 H×W×64 13×13 
Layer-B6 64 64 H×W×64 15×15 
Layer-B7 64 64 H×W×64 17×17 
Layer-B8 64 64 H×W×64 19×19 
Layer-B9 64 64 H×W×64 21×21 
Layer- 

CON 
192 NA 

(Concatenate) 
H×W×192 - 

Layer-O 64 C H×W× C 3×3 
Softmax C NA H×W×C - 
Pix-Class 1 NA H×W -  

Fig. 5. Example of (a) an original RGB Image (704 × 1280) and (b) the cor
responding classified ground truth image, where the active and passive nuclei 
appear in red and blue color, respectively. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of 
this article). 
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as follows: 

E =
∑B

b=1

∑H

m=1

∑W

n=1
Xb(m, n) (8)  

where Xb is the loss function for the bth-block image. As the three classes 
of pixels have different distributions for each class, the loss function is 
weighted for each class differently. The weights φi for different classes 
are calculated as follows: 

φi =
median freq

freq(i)
1 ≤ i ≤ C (9)  

where the class frequency freq(i) is a ratio of the number of the pixels 
that represent the i-class to the total number of pixels in the training 
dataset, and median freq is the median of the class frequencies {freq(i)}. 
To minimize the loss function E, the stochastic gradient descent with 
momentum (SGDM) optimizer (Murphy, 2012) is used in the proposed 
technique. The SGDM accelerates stochastic gradient descent (SGD) and 
reduces the oscillation problem of SGD by adding the contribution from 
the previous iteration to the current iteration. The network parameters 
at the end of the nth iteration are updated as follows: 

θn+1 = θn − α ∇E(θn) + μ(θn − θn− 1) (10)  

where θ is the parameter vector, which includes parameters such as 
normalization weights, filters and biases, ∇ E(θ) is the gradient of the 
loss function, αis the learning rate, and μ is the momentum. The learning 
rateα is initialized to 0.01 and is reduced by a factor of 0.2 every 10 
epochs. In this work, we have used μ = 0.9, and the maximum number 
of epochs is set to 100. Note that the training accuracy and the loss are 
calculated for each individual mini-batch. 

Fig. 6 shows an example of the evolution of the training and the 
validation accuracy over different iterations. The validation accuracy 
and the loss are calculated on the validation dataset at the end of every 
250 iterations. The network training is stopped when the validation loss 
has not decreased in the previous 5 validations. Note that each epoch 
performs 4,042 (= 32,340/8) iterations and the training of the CNN 
stopped at iteration 28,644 (at around 7th epoch) in this example. 

The CNN model is trained using 56 Ki-67 ROI windows (49 for 
training and 7 for validation) as described in Section 2. As five-fold cross 
validation is used in this paper, five CNN models are trained, one for 
each fold. 

3.4. CNN evaluation 

The CNN architecture proposed for the nuclei segmentation was 
shown in Fig. 4. In this section, we evaluate the performance of the 
different paths and finetune the hyper parameters to obtain the best 
performance. The segmentation performance is measured using: Accu
racy, Intersection over Union (IoU), and BF score, which are defined as 
follows: 

Accuracy =
TP + TN

TP + FP + FN + TN  

IoU =
TP

TP + FP + FN  

BF Score =
2 ∗ Precision ∗ Recall

Precision + Recall  

where TP, TN, FN and FP denote the number of true positives, true 
negatives, false negatives and false positives, respectively. Note that the 
BF Score is defined as the harmonic mean (F1-measure) of the Precision 
and Recall values (calculated using the following equations) with a 
distance error tolerance to decide whether a point on the predicted 
boundary has a match on the ground truth boundary or not (Csurka 
et al., 2013). 

Precision =
TP

TP + FP  

Recall =
TP

TP + FN 

The performance measures are calculated for each of the three pixel- 
classes separately. For example, when the IoU for active nuclei class is 
calculated, the active nuclei pixels are considered positive and both 
passive and background pixels are considered as negative. The perfor
mance measures for three classes are then averaged to obtain the mean 
accuracy, mean IoU and mean BF score, which are used for the overall 
performance comparison. 

To analyze the performance of each path, an ablation study is per
formed, and the performance of the different combinations of paths is 
shown in Table 2. It is observed that the proposed architecture, with all 
three paths A, B and C, provides performance superior to the other 
combinations: A, A + B or A + C. The Path A can efficiently detect the 
nuclei in different scales by applying several pooling and un-pooling 
layers. The Path A is therefore helpful to detect the coarse features 
(due to pooling) of the objects. Path B has been used with different sizes 
of filters and without using any pooling layers to obtain fine segmen
tation of the nuclei. The residual connection in path C reduces the 
impact of vanishing gradients problem caused by the large number of 
layers in paths A and B (Chen et al., 2018; Zeiler and Fergus, 2014). By 
combining all three paths, there will be minimal information loss and 
better feature extraction to segment the three classes of pixels. 

Fig. 7 shows visual examples of nuclei segmentation results, with and 
without Path B. It is observed that the CNN with path A + C provides the 
coarse segmentation boundaries. When the Path B is included in the 
CNN, more accurate segmentation results are obtained for both Passive 
(contoured in cyan) and Active (contoured in red) nuclei. 

Fig. 8 shows the nuclei segmentation performance with different 
numbers of convolutional layers in path B (paths A and C are considered 

Fig. 6. Loss and accuracy plots during the network training process.  

Table 2 
Segmentation performance of the proposed technique.  

Technique: Mean Accuracy Mean IoU Mean BF Score 

Path A 0.86 0.80 0.70 
Path A + C 0.90 0.83 0.71 
Path A + B 0.91 0.85 0.74 
Path A + B+C 0.94 0.89 0.82  
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fixed during the performance evaluation). It is observed that nine layers 
in path B provides the best performance. In a similar way, Path A was 
also evaluated (results not shown in the paper) to determine the optimal 
number of layers (keeping paths B and C fixed). Eight convolutional 
layers and four pooling and four un-pooling layers in Path A were found 
to provide the best nuclei segmentation performance. 

Fig. 9 shows the performance of the proposed CNN with different size 
of filters in path B. In this evaluation, eight CNN architectures are 
trained with 9 layers. In the first seven architectures, the filter size for all 
layers is kept fixed, i.e., S × S, where S = 3, 5, 7, 9, 11, 13 and 15 for the 
seven architectures. For the eighth architecture, the filter size for each 
layer increases from 5 to 21 in steps of 2. As observed in Fig. 9, the eighth 
architecture (which includes variable filter size) provides the best seg
mentation performance. 

Fig. 10 shows an example of the obtained features maps on Path B of 
the proposed CNN. Fig. 10 (a) shows an input image and Fig. 10(b) 
shows the corresponding segmented ground truth image where the 
active, passive, and background pixels are shown in red, blue and white. 
As shown in Table 1, there are 64 feature maps at the output of 
convolution Layer-B3. Twelve of the 64 feature maps are shown in 
Fig. 10(c)–(f). Fig. 10(g) shows the three (C = 3) channel output of 
Layer-O, which primarily represents the active, passive, and background 
feature maps. Fig. 10(h) shows the output of the softmax layer: the three 

images showing the class probabilities (in the range [0,1]) of each pixel. 
Note that for a pixel, the sum of all three probabilities (from three im
ages) is one. As observed in Fig. 10, there are feature maps that can 
represent one class as shown in (c), (d), and (e), or two as shown in (d). 
Note that the feature maps in (c), (d), (e), and (f) primarily detect the 
background, passive nuclei, active nuclei, and passive + active nuclei 
pixels, respectively. 

3.5. PI calculation 

After the melanoma tumor regions in a Ki-67 image is segmented into 
three classes, the next task is to determine the melanoma subregions 
(ROI) with the highest PI values. The PI value of an ROI is typically 
calculated using the following equation: 

PI =
NA

NA + NP
× 100 (11)  

where NA and NP are the number of the active and the passive nuclei in 
the ROI. In this paper, before PI values are calculated, the active and the 
passive nuclei are detected using the following steps.  

(i) The active and the passive nuclei pixels are determined using the 
CNN.  

(ii) Connected component analysis is done to form active and passive 
nuclei from the classified pixels. Most of the nuclei will be iso
lated nuclei, but some will be overlapped nuclei, also known as 
nuclei clump.  

(iii) Ellipse descriptor analysis is applied to separate the isolated 
nuclei from the nuclei clumps in the ROI (based on ellipticity 
parameter and size of the nuclei) (Xu et al., 2014).  

(iv) The nuclei clumps are segmented into multiple overlapped active 
or passive nuclei using generalized Laplacian of Gaussian (gLoG) 
seed detection algorithm (Xu et al., 2017). 

In this paper, a few ROI windows (K × L pixels) in melanoma regions 
with highest PI values are determined using the following steps.  

(i) In the tumor region, a moving window (K × L pixels) is used.  
(ii) For each window, the numbers of active (NA) and passive (NP) 

nuclei inside the window are calculated.  
(iii) Based on the NA and NP, the PI value of a window is calculated 

using Eq. (11).  
(iv) A few windows with highest PI values are chosen for grading the 

tumor and further analysis. 

Fig. 7. Comparison of the nuclei segmentation performance using paths A + C 
(i.e., without path B) and paths A + B + C. 

Fig. 8. Segmentation performance evaluation with different number of layers 
in path B. 

Fig. 9. Performance evaluation with different size of filters in Path B.  
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Fig. 10. Example of the feature maps obtained from path B in the proposed CNN. (a) Ki-67 image. (b) ground truth segmented image, (c)–(f) 12 of the 64 feature 
maps obtained after Layer-B3. (g) Output of Layer-O. (h) Softmax layer output. A: Active nuclei, P: Passive nuclei, and B: Background feature map. 
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Fig. 11 shows the calculation of few PI values in three melanoma 
regions (MR1, MR2, MR3) in the WSI. The window size used is 250 × 500 
(K × L) pixels. Two or three windows with the highest PI values are 
shown in each of the three melanoma regions. Finally, the three win
dows with overall highest PI values are shown with red contour. A 
magnified version of the window with the highest PI values (PI = 24.14), 
located in MR3, is shown in Fig. 12. The active and the passive nuclei are 
shown as red and green + symbols, respectively. The overall nuclei 
(active and passive) classification accuracy is about 94 %. For the win
dow shown in Fig. 12, the ground truth PI value is 25.15 while the ob
tained PI value is 24.14. 

4. Performance evaluation 

In this section, the performance of the proposed technique is pre
sented and compared with a few state-of the art techniques for PI 
calculation, namely FCM + KM (Mungle and Tewary, 2017), GMM +
CNN (Saha et al., 2017), Otsu + SVM (Alheejawi et al., 2019a), 
PI-SegNet (Alheejawi et al., 2019b). As UNet and DeepLab have become 
very popular CNN architecture, these CNN architectures have also been 
implemented in this work and the performance has been compared with 
the proposed technique. Henceforth, these techniques are referred to as 
PI-UNet and PI-DeepLab. In these techniques, the nuclei segmentation is 
done using UNet (Ronneberger et al., 2015) and DeepLabV3 (Chen et al., 
2018), and the PI calculation is done using the algorithm presented in 
Section 3.5. In the following, the nuclei segmentation performance is 
first evaluated and compared. The PI calculation performance is pre
sented next. 

Optimal parameters were used for performance evaluation of all 
techniques. In FCM + KM technique, two clusters (nuclei and back
ground) were used for the FCM and two classes (active and passive) were 
used for the KM algorithm. In Otsu + SVM, one optimal threshold was 
used for nuclei and background segmentation, and Gaussian kernel was 
used for the SVM. The layer configurations of the CNN architectures in 
the PI-SegNet, PI-UNet, PI-DeepLab, and the proposed technique are 

shown in Table 3. It is observed that the number of layers varies between 
37–100 in the various CNNs. Note that the GMM + CNN is not included 
in the segmentation performance comparison as the technique does not 
perform nuclei segmentation. 

Fig. 13(c)–(h) show visual examples (for subjective assessments) of 
the segmentation results of FCM + KM, Otsu + SVM, PI-SegNet, PI-UNet, 
PI-DeepLab and the proposed technique, respectively. In Fig. 13(c)–(g), 
the passive and the active nuclei are shown with blue and green con
tours, respectively. A few coarse nuclei boundaries can be observed in 

Fig. 11. Example of PI calculation of ROIs in 
the three melanoma regions (MR1, MR2, MR3) 
in a WSI. The three melanoma regions in the 
WSI are shown with magnification. The regions 
MR1 and MR2 contains three blocks (with red 
contours) with the highest PI values: 24.14, 
22.22, and 22.09. The other five blocks (with 
black contours) are also active areas, but the PI 
values are smaller. (For interpretation of the 
references to colour in this figure legend, the 
reader is referred to the web version of this 
article).   

Fig. 12. Magnified window with the highest PI value (PI = 24.14) in Fig. 11. 
(a) input image (b) Detection results with 252 active and 792 passive nuclei. 
The ground truth PI = 25.15 with 252 active and 750 passive nuclei. 
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Fig. 13(c) and (d). In addition, a part of an active nuclei may be 
segmented as passive nuclei. This is because these techniques (FCM, 
Otsu) are based on thresholding and do not consider the shape features 
of the nuclei during the segmentation process. On the other hand, the PI- 
SegNet, PI-UNet, and PI-DeepLab techniques segment the nuclei with 
respect to their morphological features (see Fig. 13(e)–(g)), and results 
in higher accuracy. Note that the PI-SegNet, PI-UNet, and PI-DeepLab 
architectures include several pooling layers. As the pooling operation 
typically causes loss of morphological features (e.g., shape feature) of 
nuclei, it is likely to degrade the quality of the nuclei segmentation re
sults. In addition, the PI-SegNet and PI-UNet architectures have a large 
number of convolutional layers at the encoder/decoder side, which may 
cause vanishing gradients problem. Fig. 13(g) shows the output ob
tained by the proposed technique, and it is observed that the proposed 
architecture provides an excellent nuclei segmentation performance. 

Table 4 compares the segmentation performance of FCM + KM, Otsu 
+ SVM, PI-UNet, PI-SegNet and PI-DeepLab techniques with the pro
posed technique using the testing dataset (see section 2). As observed in 
Table 4, the proposed technique provides the best performance with an 

average 94 % accuracy, 89 % IoU and 82 % BF score for five-fold cross 
validations. Note that the training and the testing dataset are kept 
completely independent to ensure an unbiased performance 
comparison. 

The PI calculation performance of the proposed technique is now 
evaluated. The Mean Absolute Error (MAE), and the Mean Percentage 
Error (MPE) are used as the performance measures, which are defined as 
follows: 

MAE =
1
K
∑K

k=1
|G(k) − B(k)| (12)  

MPE =
1
K
∑K

k=1

⃒
⃒
⃒
⃒
G(k) − B(k)

G(k)

⃒
⃒
⃒
⃒× 100% (13)  

where G(k) and B(k) are respectively the ground truth and the obtained 
PI values for the k th test image, and K is the number of images. 

The PI calculation performance of the proposed technique is 
compared with the state-of-the-art techniques in Table 5. For each 
testing set, the MAE and MPE values are calculated using Eqs. 12 and 13 
for 14 ROI windows. With five-fold cross-validation, 5 sets of MAE and 
MPE values are obtained, and the average MAE and MPE values are 
shown in Table 5. It is observed that the FCM + KM technique calculates 
PI values with highest error (i.e., MAE and MPE values). This is perhaps 
because, in the FCM + KM technique, the active and the passive nuclei 
pixels are separated using the K-Means algorithm, which may have low 
accuracy due to the intensity variation of the pixels. The GMM + CNN 

Table 3 
Layer configuration of the deep learning techniques.  

Technique No. of layers 
in CNN 

Details of CNN architecture 

PI-SegNet (Alheejawi 
et al., 2019b) 

37 1-In,9-Conv, 8-Btch, 8-Rlu, 4-Mx, 4-Up, 
1-Dth, 1-Sft,1-Px 

PI-UNet 58 1-In, 19-Conv, 22-Rlu, 4-Mx, 4-Up, 2-Dr, 
4-Dth,1-Sft,1-Px 

PI-DeepLab 100 1-In,29-Conv, 28-Btch, 25-Rlu, 2-Cr, 1- 
Mx, 2-Up, 8-Ad, 2-Dth, 1-Sft,1-Px 

Proposed Technique 67 1-In, 19-Conv, 18-Rlu, 18-Btch, 4-Mx, 4- 
Up, 1-Dth, 1-Sft,1-Px  

Notations 

In: Input image normalization Layer Conv: Convolutional Layer 
Mx: Max pooling layer Btch: Batch normalization Layer 
Up: Up-sampling layer Rlu: ReLU Layer 
Dr: Dropout layer Dth: Depth concatenate layer 
Px: Pixel classification layer Sft: Softmax layer 
Ad: Addition layer Cr: Crop layer  

Fig. 13. Subjective comparison of segmentation results (a) original test image, (b) The ground truth image (c)–(h) Segmentation results for FCM + KM, Otsu + SVM, 
PI-SegNet, PI-UNet, PI-DeepLab and the proposed technique, respectively. 

Table 4  
Segmentation performance of the proposed technique.  

Technique: Accuracy IoU BF Score 

FCM + KM (Mungle and Tewary, 2017) 0.74 0.73 0.72 
Otsu + SVM (Alheejawi et al., 2019a) 0.78 0.76 0.78 
PI-SegNet (Alheejawi et al., 2019b) 0.86 0.80 0.70 
PI-UNet 0.84 0.75 0.71 
PI-DeepLab 0.88 0.82 0.71 
Proposed Technique 0.94 0.89 0.82  
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technique provides performance better than FCM + KM, although the 
RMSE and MAE values are still high. This is perhaps because this tech
nique does not perform nuclei segmentation. Instead, it generates 
patches around the detected nuclei seeds and classifies the patches as 
active or passive. The CNN classifier cannot reliably classify a patch that 
contains both the active and the passive nuclei, resulting in a lower 
performance. 

The PI-SegNet and PI-UNet provide a better and somewhat compa
rable performance. The PI-DeepLab provides improved results compared 
to SegNet and UNet. The proposed technique provides the best perfor
mance (i.e., lowest error rate). 

The computational complexity of various CNN-based techniques, in 
terms of execution time, is now presented. All techniques were imple
mented using MATLAB R2020a, and CNNs were implemented using the 
Deep Network Designer Toolbox. All experiments are performed on a 
Windows 10 computer with Intel i7-4790 CPU, 12 GB RAM, and NVIDIA 
GeForce GTX 745 graphic card. The average execution time (for both 
segmentation and PI calculation) for a WSI in testing mode is shown in 
the last column of Table 5. It is observed that the GMM + CNN requires 
the highest execution time. Note that in this technique the GMM (for 
nuclei detection) takes about 90 % of the overall execution time. FCM +
KM technique also requires long execution time due to the FCM and KM 
algorithms. The other techniques use trained models, are fast in testing 
mode, and the execution times are comparable. It is observed that the 
proposed technique has an average of execution time of about 18 s per 
image. 

Table 6 compares the training time required by the CNN architec
tures (GMM + CNN, PI-SegNet, PI-UNet, PI-DeepLab and the proposed 
architecture). All four CNN architectures are trained using an NVIDIA 
GeForce GTX 745 graphic card. Columns 2 and 3 show the training time 
and the required number of training epochs. The proposed architecture 
typically finishes the training at around the 7th epoch, and the overall 
training time is comparable with other CNN architectures. 

5. Conclusions 

This paper proposes an automated technique for proliferative index 
calculation in lymph node histopathological images. The proposed 
technique first determines the melanoma regions in a Ki-67 image by 
registering it with a corresponding MART-1 image. The technique then 
uses a CNN architecture to segment and classify the pixels in the mela
noma regions of the Ki-67 stained image into three classes (i.e., back
ground, active and passive nuclei). The PI values are then calculated 
based on the number of the active and passive nuclei. Experimental 
results show that the proposed technique provides an excellent perfor
mance in terms of segmentation (with 94 % segmentation accuracy) and 
PI calculation results (with 4 % mean error). 
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