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Dermoscopic  images  are  widely  used  for melanoma  detection.  Many  existing  works  based  on traditional
classification  methods  and  deep  learning  models  have  been  proposed  for automatic  skin  lesion  analysis.
The  traditional  classification  methods  use hand-crafted  features  as input.  However,  due  to  the strong
visual  similarity  between  different  classes  of  skin  lesions  and  complex  skin  conditions,  the  hand-crafted
features  are  not  discriminative  enough  and  fail in many  cases.  Recently,  deep  convolutional  neural  net-
works  (CNN)  have  gained  popularity  since  they  can  automatically  learn  optimal  features  during  the
training  phase.  Different  from  existing  works,  a novel  mid-level  feature  learning  method  for  skin  lesion
classification  task  is proposed  in  this  paper.  In this  method,  skin  lesion  segmentation  is  first  performed
to  detect  the  regions  of  interest  (ROI)  of skin  lesion  images.  Next,  pretrained  neural  networks  including
ResNet  and  DenseNet  are  used  as the feature  extractors  for the ROI  images.  Instead  of  using  the  extracted
features  directly  as  input  of classifiers,  the  proposed  method  obtains  the  mid-level  feature  representa-

tions  by  utilizing  the  relationships  among  different  image  samples  based  on distance  metric  learning.
The  learned  feature  representation  is a soft  discriminative  descriptor,  having  more  tolerance  to  the  hard
samples  and  hence  is  more  robust  to the  large  intra-class  difference  and  inter-class  similarity.  Experi-
mental  results  demonstrate  advantages  of  the  proposed  mid-level  features,  and  the  proposed  method
obtains  state-of-the-art  performance  compared  with  the existing  CNN based  methods.

©  2020  Elsevier  Ltd.  All  rights  reserved.
. Introduction

Melanoma is the most aggressive kind of skin cancer, whose
ncidence has risen rapidly over the last 30 years (Siegel et al., 2020).
arly detection is the best way to treat melanoma since it is highly
urable before it spreads into other body parts. To detect melanoma
r suspected skin lesions, dermoscopy imaging is used as a pri-
ary step due to its non-invasive nature. Numerous clinical metrics

ased on the appearance of local color and texture patterns for
he detection of melanoma have been proposed using dermoscopy
mages, such as ABCD rules (Stolz et al., 1994; Hazen et al., 1999),
even-point checklist (Argenziano et al., 1998) and classical pattern
nalysis (Pehamberger et al., 1987). However, due to the intrinsic

isual similarity between different types of skin lesions, it is difficult
o distinguish different types of skin lesions even for the derma-
ologists. Recent works have shown that the automatic learning

∗ Corresponding author.
E-mail address: mmandal@ualberta.ca (M.  Mandal).

ttps://doi.org/10.1016/j.compmedimag.2020.101765
895-6111/© 2020 Elsevier Ltd. All rights reserved.
method can obtain comparable performance with experienced der-
matologists (Esteva et al., 2017), which demonstrates the appealing
prospect of automatic skin lesion analysis.

Despite the current research achievement, skin lesion classifi-
cation is still a challenging task due to the following reasons: (1)
The pigment regions of skin lesion images may  share strong visual
similarity across different types of skin diseases. (2) Various visual
patterns are observed within the same class of skin lesions. (3) Com-
plex skin conditions, including color inconsistency and disturbing
items, such as hairs, veins, color marks and other artifacts are also
observed in the skin lesion images. Dermatologists have to focus on
the subtlety of details in order to distinguish the malignant cases
from benign ones, yet the large inter-class similarity and intra-
class variations make it more formidable (Yu et al., 2018; Zhang
et al., 2019). In addition, the existence of complex skin conditions
may  introduce noisy items which can affect the color and texture

description of a given image and deteriorate the classification per-
formance. Fig. 1 presents some example images from the ISIC 2017
dataset towards skin lesion analysis. Euclidean distances between
inter-class and intra-class samples using features extracted via

https://doi.org/10.1016/j.compmedimag.2020.101765
http://www.sciencedirect.com/science/journal/08956111
http://www.elsevier.com/locate/compmedimag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compmedimag.2020.101765&domain=pdf
mailto:mmandal@ualberta.ca
https://doi.org/10.1016/j.compmedimag.2020.101765
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esNet (see Section 2.2 for feature extraction) are given. Strong
nter-class visual similarity and intra-class variations are observed
cross different types of skin lesions, which makes the diagnosis be
ifficult even for experienced dermatologists. More research can
e done to improve the current machine learning methods so as to
ssist the diagnosis of skin lesions.

The general pipeline for existing automated methods follows
hree steps: preprocessing, feature extraction, and classification.
s mentioned above, the original skin lesion images suffer from

ighting condition change and interference from hairs and other
rtifacts. To address these problems, methods such as hair removal
Borys et al., 2015; Rebouç as Filho et al., 2018) and color enhance-

ent (Rebouç as Filho et al., 2018) have been proposed for skin
esion analysis. After preprocessing, morphological or statistical
eatures are extracted from dermoscopic images, and a classifier
s then trained for melanoma detection. The image features play a
ey role in the skin lesion classification task, and many conventional
ethods with hand-crafted features (colors, textures, shapes, etc.)

s inputs have been proposed. Previous works have shown that the
ombination of various types of feature representations, such as
olor, texture, and shape features is more beneficial for the skin
esion classification task than a single type of feature representa-
ion (Ma  and Tavares, 2017; Oliveira et al., 2018). Unfortunately,
and-crafted features have limited discriminative power, and they
erform poorly when dealing with complex problems.

Some methods perform skin lesion segmentation before the
lassification task, which aims at extracting the boundary informa-
ion or detecting the ROI, to assist the subsequent classification task.
arious skin lesion segmentation methods have been proposed in

iterature, including the thresholding-based methods (Humayun
t al., 2011), region-merging based approaches (Wong et al., 2011),
ctive contour models (Riaz et al., 2018; Abbas et al., 2014) and
eep CNN models (Yuan et al., 2017).

Recently CNN (convolutional neural network) based methods
ave received much attention and many popular CNN architectures
ave been proposed for the image classification task with encour-
ging performance. A good initialization of neural networks with
retrained weights from a similar task is crucial for better perfor-

ance and faster training. Consequently, a good starting point and

he most intuitive way is to use these existing models and transform
hem to the task of skin lesion classification by finetuning parame-

ig. 1. Example images from ISIC 2017 dataset on skin lesion analysis towards melanoma d
s.  right: benign), and each red box indicates a pair of intra-class samples (both images
xtracted via pretrained ResNet. The average distance for intra-class samples is 37.5. Stron
ypes of skin lesions. (For interpretation of the references to color in this figure legend, th
al Imaging and Graphics 84 (2020) 101765

ters of the neural networks. Many methods based on this idea have
been proposed for skin lesion classification, and techniques like
ensemble and test augmentation are also used to boost the exper-
imental results (Matsunaga et al., 2017; Menegola et al., 2017; Bi
et al., 2017; Mahbod et al., 2019). The multi-task framework is also
proposed for skin lesion analysis (Yang et al., 2017), which trained
the segmentation and classification task simultaneously. Generally
speaking, the multi-task framework can obtain better performance
than the single task method since it can take advantage of the
shared information between different tasks. González-Díaz (2019)
proposed a method called DermakNet which used 50-layer ResNet
(He et al., 2016) as a backbone. Dermatologists’ knowledge (e.g.
attributes, asymmetry information) modeled by different subsys-
tems and meta-data are used to gain better performance and
interpretability. The CNN models can extract global optimal fea-
tures but miss the local information. To address this problem, Ge
et al. (2017a) proposed to use both the global features and local
features for melanoma detection. The global features are obtained
using ResNet (He et al., 2016) and the local features are extracted
using VGG-16 Network (Simonyan and Zisserman, 2015) with BP
(Bilinear Pooling), which can differentiate skin conditions with sub-
tle visual differences in local regions. To learn features with more
discriminative power and take advantage of images from different
sources, Ge et al. (2017b) proposed a siamese deep architecture
with a pair of images from a single lesion as the input. Information
of different modalities is shared in the middle layers of neural net-
works. The features are then spatially weighted using CAM (Class
Activation Mapping), and BP is used to generate the feature repre-
sentation.

In this paper, a novel mid-level feature learning method is pro-
posed for skin lesion classification. Our motivation is that: the
dermoscopic images suffer from strong visual similarity among dif-
ferent types of skin lesions and visual variations within the same
class of samples (as shown in Fig. 1), and it is very difficult to
learn an optimal feature representation that can well separate all
the training images. Instead of using the original features as the
input, relationships among different sample images are used as the
feature representation. The relationships are modeled using the

similarity measurement based on metric learning (learned using
the training set) with a given reference set. An SVM classifier is
finally used for the classification task by using the mid-level fea-

etection. Each green box indicates a pair of hard inter-class samples (left: melanoma
 are melanoma). d is the Euclidean distance between two samples using features
g inter-class visual similarity and intra-class variations are observed across different
e reader is referred to the web  version of this article.)
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Fig. 2. Block diagram of the proposed method.
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ig. 3. Schematic of the proposed CNN-based model for skin lesion segmentation. (
he  web version of this article.)

ures as input. We  name it mid-level feature representation, since
t captures higher-level affinity information of the original features,
nd can be regarded as an intermediate semantic feature repre-
entation which bridges the raw features and the classification
ask. The distance metric learning can be regarded as a method for
earning discriminative feature representation. Compared with the
iscriminative features learned by metric learning, the proposed
id-level feature is a soft discriminative feature representation,
here the relationships of visual similarities and distinctions can be

ept for some difficult cases (hard samples) as long as the remaining
elationships are captured correctly. The learned image features are
hus more robust to the large visual similarities between different
lasses of skin lesions and noisy items. Specifically, a CNN-based
kin lesion segmentation model is used as a primary step for ROI
etection. The skin lesion segmentation method is based on our
revious work (Liu et al., 2019), which employs a U-Net architec-
ure. We  will not give detailed introduction about the skin lesion
egmentation method, since our focus is the skin lesion classi-
cation task. Features are then extracted from the ROI via the
retrained neural networks (ResNet (He et al., 2016) and DenseNet
Huang et al., 2017).

The contributions of this paper can be summarized as follows:
1) A novel mid-level feature representation that utilizes the rela-
ionships among image samples (e.g. between an input image and
he reference image set) is proposed for skin lesion classifica-
ion. The new feature representation contains high-level affinity
nformation between samples. It is a soft discriminative feature,
aving more tolerance to difficult cases, and is more robust to
oise, large inter-class similarity and intra-class variations. (2) A
ovel framework for skin lesion classification is proposed. Pre-
rained CNN models are used as off-the-shelf feature extractors
f ROI images, and metric learning is utilized to construct the
id-level features for classification. Extensive experiments have

een conducted to show advantages of the proposed approach, and
xperimental results show that the proposed method outperforms
tate-of-the-art CNN based methods.

. Proposed method

The proposed method contains four steps: skin lesion seg-

entation, feature extraction, mid-level feature learning and SVM

lassification. Block diagram of the proposed approach is shown
n Fig. 2. Details about each step are presented in the following
ections.
terpretation of the references to color in this figure legend, the reader is referred to

2.1. Skin lesion segmentation

It is difficult to process the original high-resolution dermoscopic
images with machine learning algorithms, which contain much
redundancy and require large computation memory. Many exist-
ing methods first downsample the dermoscopy images to the same
scale for further analysis. However, the regions of interest (ROI) of
skin lesions are generally of different scales, and some are so small
that it is difficult to observe their patterns if we  directly down-
sample the original images to the same size. Therefore, skin lesion
segmentation is first performed to obtain the ROI.

Schematic plot of the proposed segmentation module is shown
in Fig. 3. The inputs are images in RGB and HSV color spaces, and
the output is a probability map  of the foreground (i.e., the lesion).
As observed from Fig. 3, the proposed method contains an encoder
path and a decoder path, which is composed of a sequence of oper-
ation blocks. Both the encoder blocks and decoder blocks follow
a structure of [conv, BN,  conv, BN,  dilated conv], but with differ-
ent pooling operations. Note that conv is a convolutional layer and
BN is a batch normalization layer. Down-sampling is used at the
end of each encoder block to reduce the resolution of feature maps
by 2, while up-sampling is used at the beginning of each decoder
block to increase the resolution of feature maps from the previ-
ous layer. Then the enlarged feature maps are concatenated with
feature maps (of the same size) from the encoder path (as the
dashed green arrows show in Fig. 3). The yellow block Conv 5 in
Fig. 3 is the connection layer between the encoder and decoder
paths.

For all convolution operations in this paper, 3 × 3 kernel with
the “same” padding is used. The stride is set to be 1, and Rectified
Linear Unit (ReLu) is used as the activation function. In addition, the
number of output feature maps of each operation block is shown
in Fig. 3. Note that the number of intermediate filters inside each
encoder and decoder block is identical, which equals to the number
of output feature maps. The proposed model is an improved version
of the U-net (Ronneberger et al., 2015). Compared with the original
U-net architecture, dilated convolution with a rate of 2 is used at
the end of each operation block, which can increase the perceptive
field of the output feature maps (at each depth of layer) without loss
of resolution information. It is very suitable for the skin lesion seg-
mentation task, since the ROI of dermoscopic images can be from

different scales and with similar visual patterns. Note that the pro-
posed skin lesion segmentation method is based on our previous
work in (Liu et al., 2019). Different from the previous work, both
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ig. 4. The first row shows the original images, and the second row shows the imag
re  enhanced via the use of Retinex method. The resulted images are of similar ligh

inary focal loss and dice loss are used for CNN training, while the
ther implementations are the same.

.2. Deep feature extraction

In this section, deep features are extracted from the ROI images
sing the pretrained neural networks. The pretrained neural net-
orks can extract rich and meaningful texture information of

mages, and have been successfully used as offline feature extrac-
ors for medical image analysis (Gu et al., 2017; Mahbod et al.,
019). In this paper, pre-trained ResNet-50 (He et al., 2016) and
enseNet-201 (Huang et al., 2017) are used as off-the-shelf feature
xtractors. We denote them as ResNet and DenseNet for clarity in
he following paper. Before feature extraction, Retinex algorithm
Ebner, 2007) is used to enhance the color consistency among dif-
erent images. The resulting images are shown in Fig. 4. The colors
f different images are more comprehensive and consistent after
sing the Retinex method. The ROI bounding boxes obtained by the
egmentation module (Section 2.1) are superimposed on the pre-
rocessed images to obtain the ROI images, which are then resized
o 224 × 224 for feature extraction. For both CNNs, the output of
he Global Average Pooling (GAP) layer is used as the feature. The
utput features corresponding to the two CNNs are of dimension
048 (ResNet) and 1920 (DenseNet), respectively. Principal Com-
onent Analysis (PCA) is used to reduce the feature dimension by
eeping 99% energy. The reduced feature dimensions for ResNet
nd DenseNet are 700 and 532, respectively.

.3. Mid-level feature learning

Due to the complex skin conditions, noise, artifacts and severe
isual similarities among different types of skin lesions, the
xtracted features may  have limitations in describing character-
stics of the original data and have poor discrimination power.
nstead of using the original features as input, a novel mid-level fea-
ure representation is learnt, which describes relationships among
mage samples, and uses it as input feature of the classifier. The

id-level features of a sample are obtained by learning the sim-
larities between a given sample and a reference image set. Since

he discriminative power of the original features on the Euclidean
pace is poor due to the strong visual similarities among different
lasses of skin lesions, metric learning is used to address this prob-
em. The metric learning method can learn a similarity measure
r pre-processing using Retinex method. The color distributions of different images
onditions.

to separate samples of different classes. Here, we  present a brief
introduction of the metric learning method. The squared Euclidean
distance between two  features xi and xj can be calculated by:

d(xi, xj) = (xi − xj)
T (xi − xj) = (xi − xj)

T I(xi − xj)

where I is an identity matrix. Similar to the formulation of Euclidean
distance, instead of using an identity matrix, the Mahalanobis dis-
tance between features is defined as:

dM(xi, xj) = (xi − xj)
TM(xi − xj), s.t. M ≥ 0 (1)

where M is a positive semidefinite matrix to be learned during the
training procedure. Since M is a positive semidefinite matrix, it can
be represented as LTL, and the above function can be reformulated
as:

dM(xi, xj) = (xi − xj)
TM(xi − xj)

= (xi − xj)
T LT L(xi − xj)

=
∥∥L(xi − xj)

∥∥2

s.t. M ≥ 0

(2)

By observing Eq. (2), the distance metric learning method can also
be treated as a discriminative subspace learning problem that aims
at learning L, and the new discriminative feature of xi is denoted
as Lxi. The metric learning method expects the distance between
within-class samples to be small, and the distance between inter-
class samples to be large. Compared with the discriminative feature
Lxi, the learned feature in this paper is a soft discriminative fea-
ture. Experiments in Section 3.9.3 show the advantage of the soft
discriminative features over the discriminative features.

The optimal distance metric can be learned by separating sam-
ples of the same class and different classes by a margin of �.  The
objective function can then be formulated as follows by using the
logistic loss function:

fM(xi, xj) = log(1 + eyij(dM (xi,xj)−�)), (3)

yij =
{

1 if y(xi) = y(xj)

−1 if y(x ) /= y(x )
i j

where y(xi) is the label of input feature xi. The above function can
drive distances between intra-class samples to become smaller
than �, and distances between inter-class samples to become larger
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Fig. 5. (a) Schematic plot of the distance metric learning algo

han �. In this paper, we set � as the average Euclidean distance
etween samples of the same class. The optimal solution is learned
y minimizing the following function:

(M) =
∑
xi,xj ∈ V

wijfM(xi, xj), (4)

here wij is a weighting factor for each training pair. Instead of
sing a fixed weight for each pair of inputs, we update wij according
o its difficulty of training the input pair (xi, xj). Especially, we  only
ocus on the violating pairs and give higher weights to those who
iolate the rules more. A violating pair is defined as a pair of samples
hat violates the learning rule. For instance, if the distance between
wo samples of the same class is larger than �, the two  samples
re regarded as a violating pair. Similarly, two samples are also
egarded as a violating pair if their distance is smaller than � and
hey are from two different classes. Examples of violating pairs are
hown in Fig. 5. In this paper, we use V to denote the collection of
iolating pairs. The value of wij is initialized as 1 and it is updated
n each training iteration according to:

ij
� = N(|dM�−1 (xi, xj) − �|), (xi, xj) ∈ V (5)

n which � is the number of iteration. N(.) is the normalization
rocess, which is min–max normalization in this paper.

The learned distance values among different samples vary dra-
atically, some violating pairs’ distance values are an order of
agnitude different compared with the others. These violating

nput pairs are known as the hard samples (difficult cases), which is
ainly caused by the appearance variation within the same class.
irectly normalizing the distance values using standard min-max
ormalization will make the majority of weights wij be closer to
, which indicates the algorithm will only use these hard samples.
herefore, min-max normalization at a cutoff distance value is per-
ormed to normalize the distance difference values |dM�−1 (xi, xj) −
| to a fixed range [0, 1]. In this paper, the cutoff value is decided

utomatically by calculating the cumulative histogram of the dis-
ance differences. For the cumulative histogram, the y-axis of a bin
epresents the percentage of observations that are smaller than a
pecific value (x-axis of the bin). We  use the bin value that accounts
or 97% as the cut-off value, and distance values that are larger than
he cutoff value are set to be 1. In this case, the weights are updated
ynamically in each iteration and hard violating samples are given
ore importance during training.

The objective function in Eq. (4) can be solved using the APG
Accelerated Proximal Gradient) algorithm (Liao and Li, 2015). Liao
nd Li (2015) used fixed weights for input training pairs. Different
rom (Liao and Li, 2015), only violating pairs are used in this paper

nd weight wij is updated in each iteration to give different pairs of
amples different importance. After learning the metric M,  a new
eature representation is obtained by using the similarity informa-
ion among a reference set. In this paper, the validation set is used
; (b) Schematic plot for the skin lesion classification method.

as the reference set. Let Xr ∈ R
p×Nr denote feature representations

of the reference set. Nr is the number of images in the reference set,
and Xr

j is the jth column of Xr, which represents the feature vector
of jth image in the reference set. For a feature vector xi coming from
training or testing set, its corresponding new feature representa-
tion vi is obtained by calculating its distance with all samples in the
reference set.

vi =
{
dM(xi, Xr

1), dM(xi, Xr
2), . . .,  dM(xi, Xr

Nr )
}
, (6)

After vi is calculated, “L2” normalization is performed. The dimen-
sion of the new feature space equals to the number of samples in
the referent set Nr, which is 150 in this paper.

2.4. Classification using SVM

In this paper, SVM with the radial basis function (RBF) kernel is
used for classification, which is a common choice due to its good
generalization ability and competing performance (Oliveira et al.,
2018). There are two parameters that need to be tuned for the RBF
kernel SVM, the parameter C, which is known as the capacity con-
stant, the parameter g for the RBF kernel, which is a multiplier for
the squared Euclidean distance between the two feature vectors.
Details about the parameter selection can be found in Section 3.5.

3. Experiments and results

3.1. Dataset

For performance evaluation of the proposed method, we have
used the dataset from ISIC 2017 for skin lesion detection (Codella
et al., 2018), which is a very challenging dataset for skin lesion clas-
sification. There are 2000 images in the training set, including 374
melanoma, 254 seborrheic keratosis, and 1372 benign nevi. The val-
idation dataset contains 150 images and the final testing dataset
contains 600 images. All the images are of various resolutions,
ranging from 767 × 1022 to 4499 × 6748 pixels. Severe illumina-
tion variation, noise and various artifacts are also witnessed in this
dataset.

3.2. Evaluation metrics

To evaluate the classification results, Accuracy (ACC) and Area
Under Curve (AUC) are used as the evaluation metrics. The criteria
are defined as:

ACC = TP + TN

TP + TN + FP + FN

FPR = FP
FP + TN
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Table  1
Parameters used for performance evaluation.

Proposed Without MFL

C g C g
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T
C

SK 1 0.001 0.5 0.0156
MEL  2 0.002 0.5 0.0313

PR = TP
TP + FN

UC =
∫ 1

0

T(F0)dF0

here TP is the True Positive number, TN is the True Negative num-
er, FP is the False Positive number and FN is the False Negative
umber. T(F0) is the corresponding true positive rate (TPR) when
he false positive rate (FPR) is F0.

.3. Platform information

The skin lesion segmentation method is implemented using
eras while the classification method is implemented using Mat-

ab. All the experiments were conducted on a desktop with Intel(R)
7-7700 4.2 GHz CPU and a GPU of Nvidia GeForce GTX 1080Ti with
1GB memory.

.4. Parameter selection

There are two parameters of SVM that need to be tuned for the
roposed skin lesion classification method. The best parameters C
nd g of the proposed method are selected by conducting 5-fold
ross-validation on the training dataset using the deep features
xtracted by ResNet. Note that 2 binary classifiers, SK for seborrheic
eratosis and MEL  for melanoma, are trained in the skin lesion clas-
ification task, therefore, we select different sets of parameters for
ifferent tasks. The best parameters used in this paper are shown in
able 1. In addition, the best parameters for the proposed method
ithout MFL  are also given.

.5. Comparison with features extracted via pretrained CNN

To show advantages of the learned mid-level feature represen-
ation, we first compare the learned mid-level features with the
aw features obtained by the pretrained CNN models. This is done
y comparing the proposed method with and without the MFL  on
he same test data. Best parameters of the proposed method with
nd without the MFL  module are used to make a fair comparison.
est data augmentation is used to increase performance as pre-
ious work (Mahbod et al., 2019; González-Díaz, 2019). Similarly,

o show influence of the input features, we provide experimen-
al results with input features extracted via the pretrained ResNet
nd DenseNet. Dimensions of the extracted features for ResNet and
enseNet are 2048 and 1920, respectively. After applying PCA (with

able 2
omparison of the proposed method with and without MFL  module.

Networks ResNet 

Metric AUC (in %) ACC (in %) 

Task Without MFL  With MFL  Without MFL With MFL

Mel  77.67 84.29 81.17 84.33 

SK  91.00 93.71 87.00 90.17 

Average 84.34 89.00 84.09 87.25 
al Imaging and Graphics 84 (2020) 101765

99% energy preserved), the reduced dimensions are 700 and 532
correspondingly. Performance of this part is shown in Table. 2 .

As observed in Table 2, the learned mid-level features consis-
tently outperform the raw features extracted by pretrained CNN.
Features extracted via ResNet achieve comparable performance
with the features extracted via DenseNet. Especially, for the ResNet
features, the proposed method with MFL  module achieves 4.7%
higher for the average AUC score and 3.2% higher for the average
ACC score compared with the proposed method without MFL  mod-
ule. For the features extracted by DenseNet, the proposed method
with mid-level features as input outperforms the one with original
features as input by 4.0% and 2.5% for the average AUC  and ACC
scores. Experimental results show that the mid-level features can
significantly improve the performance, this is because additional
discriminative power is gained by using metric learning.

To visualize the distribution of raw features obtained using
pretrained ResNet and corresponding mid-level feature represen-
tation, t-distributed stochastic neighbor embedding (t-SNE) is used
to visualize the high dimensional data following Mahbod et al.
(2019). The t-SNE first reduces the dimension of original features to
50 by PCA (for speed up), and then to 2 by using the t-SNE Barnes-
Hut algorithm (Maaten and Hinton, 2008). It allows us to visualize
the cluster of high dimensional data to some degree. The Visual-
ization plot is shown in Fig. 6. From Fig. 6, we can see that the
raw features are more likely to mix  together (for both the train-
ing and testing data), especially for the samples of melanoma and
nevus. This means the raw features have limitations in dealing with
those hard samples. The mid-level features learned from pretrained
ResNet show apparent grouping behavior for the training data.
Samples are more likely to cluster together if they are of the same
class, and hence the three-class skin lesions become more discrim-
inative after using MFL. For the mid-level features of testing data,
the melanoma and nevus become more distinguishable, although
not completely separable. Some hard samples are identified along
with the learning phase.

3.6. Comparison with features extracted via finetuned CNN

In this section, we  first finetune the pretrained ResNet and
DenseNet for the classification tasks by changing the output dimen-
sions of the last fully connected layers to be 2 (i.e., the number of
classes). For each neural network, we set the batch size to be 24
and train it for 100 epochs. Adam optimization algorithm with a
learning rate of 0.0001 is used. The best models are selected by the
validation performance. Data augmentation techniques including
random resize cropping (70% to 100% of the original size), random
horizontal and vertical flipping, random rotation (−20◦ to 20◦) and
normalization are used. Afterward, finetuned features are extracted
and SVM classifiers are trained in order to compare the mid-level
features with the finetuned CNN features. The same steps described
in Section 3.5 are used but with finetuned CNN features as inputs.

It is worth noting that parameter selection and test augmentation
are also performed so as to make a fair comparison.

Experimental results are shown in Table 3. Method “ResNet”
is the finetuned ResNet for classification. “ResNet + SVM” method

DenseNet

AUC (in %) ACC (in %)

 Without MFL  With MFL  Without MFL  With MFL

76.34 84.29 81.17 84.33
93.32 93.42 87.83 89.67
84.83 88.85 84.50 87.00
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Fig. 6. t-SNE visualization of the raw features extracted via pretrained ResNet and the learned mid-level features given raw features obtained from pretrained ResNet. The
first  and second row show scatter plots of the training data and testing data, respectively.

Table 3
Comparison of the proposed method with the finetuned CNN and finetuned features
using AUC scores (in %).

Method Mel  SK Avg

ResNet 77.30 94.19 85.75
ResNet + SVM 80.92 93.94 87.43
Proposed (ResNet) 84.29 93.71 89.00
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Table 4
Average AUC of the proposed method with different input sizes.

Scale ResNet DenseNet Fusion

I[224,224] 89.00 88.85 90.67
I 88.22 88.13 89.35
DenseNet 84.52 92.51 88.52
DenseNet + SVM 84.66 90.62 87.64
Proposed (DenseNet) 84.29 93.42 88.85

ses the SVM to classify the features extracted via finetuned ResNet.
Proposed (ResNet)” is the proposed method which uses features
xtracted via pretrained ResNet. The same definitions are used for
enseNet. As shown in Table 3, the proposed method achieves

he best average performance for both features extracted by pre-
rained ResNet and DenseNet. The proposed method (ResNet)
utperforms the finetuned ResNet by 3.25%, and ResNet + SVM
y 1.57%. The three methods obtain similar performance when
sing the DenseNet models. The proposed method outperforms the
netuned DenseNet by 0.33%, and DenseNet + SVM by 1.21%. The
est performance for seborrheic keratosis classification is obtained
hen using the finetuned ResNet (94.19%). For melanoma clas-

ification, the best performance is obtained by using SVM over
netuned DenseNet (84.66%).

.7. Comparison with state-of-the-art methods

In this section, we compare the proposed method with state-of-
he-art methods. Due to the fact that ISIC 2017 dataset is a challenge
ataset, tricks such as ensemble are widely used among the existing
ethods (see Table 6). Prevalent methods get the final performance
y fusing outputs from different trained neural networks. Here we
ive a brief introduction about the compared methods in Table 6:
atsunaga et al. (2017) trained ResNet-50 with different optimiza-

ion methods, and selected the best combination of fine-tuned
[448,448]

I[672,672] 89.04 88.28 89.40

CNNs through cross validation. Besides, a manual decision rule with
metadata (age, sex information) is also adopted. Menegola et al.
(2017) used ResNet-101 and Inception-v4 models. The final results
were obtained by ensembling 7 trained neural networks with a
meta learning model to assemble these models. Bi et al. (2017)
fused outputs of the binary ResNet and 3-class ResNet to get the
final results. Mahbod et al. (2019) used AlexNet, VGG16, ResNet-
18 and ResNet-101 models. Extensive models are used to boost
performance. The final results of a single architecture (e.g. ResNet-
18) were acquired from 18 different models (obtained by different
training settings). Yang et al. (2017) used multi-task framework
(GoogleNet and U-net) for learning skin lesion segmentation and
classification jointly. González-Díaz (2019) trained a Fully Convolu-
tional Network (FCN) for detecting ROI. In addition, González-Díaz
(2019) also incorporates the meta-data information and attribute
information to improve performance.

In the proposed method, ensemble method is used during
the testing time to improve the performance. Our final model
is obtained by fusing outputs given input images from multiple
scales (based on performance on the validation set), which does
not require extra training process. Performances of inputs with
different scales are shown in Table 4, and experimental results
regarding the ensemble of scales on the validation set are shown
in Table 5. As shown in Table 4, for input images with different
scales, the best performance is obtained at scale 224. Scale 672

comes the second best, and scale 448 gives the least satisfacoty per-
formance. From Table 5, we  can see that, in general, adding more
scale information can improve the performance, but the best per-
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Table  5
Ensemble performance with input of different scales on the validation set.

224 224 entire 448 672 AUC
√ √

94.0√ √
93.6√ √
94.1

√  √ √
94.5√  √ √
95.2√  √ √
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Table 6
Performance comparison with state-of-the-art methods on ISIC 2017 dataset (AUC
score).

Method Ensemble External data Mel  SK Avg

Matsunaga et al. (2017) Y 1444 86.8 95.3 91.1
Menegola et al. (2017) Y 7544 87.4 94.3 90.8
Bi et al. (2017) Y 1600 87.0 92.1 89.6
Yang et al. (2017) N 0 83.0 94.2 88.6
González-Díaz (2019) N 2828 87.3 96.2 91.7
Mahbod et al. (2019) Y 187 87.3 95.5 91.4
Proposed Y 0 87.0 97.1 92.1

Table 7
Average AUC of the proposed method with and without skin lesion segmentation.

Input ResNet DenseNet Fusion
94.3
√ √  √ √

94.9

ormance (AUC of 95.2%) is obtained by fusing results with input
cale 224, 224 e ntire (i.e., the whole image without ROI segmen-
ation), and 672. The fusion with scale 448 gives less satisfactory
erformance compared with the other scales. This is consistent
ith the results reported in Table 4 that scale 448 performs the

east satisfactory and fusing a less satisfactory output (obtained
ith input scale 224) would not increase the performance. This
ay  due to the fact that, the parameters of SVM are not selected

or these inputs with different scales. When the input size is larger
han [224 × 224], the output of pretrained neural networks will be

ulti-channel features instead of one feature vector. We  reshape
he multi-channel features into one feature vector, and PCA is then
sed to reduce the feature dimension, which is described in Section
.2. This will result in raw features with different input dimensions,
iven the inputs of different scales. The finetuned parameters of
cale 224 are used for the proposed method for simplicity. The use
f entire images is to get information about the lesion size and skin
egions, which can benefit the proposed model (Bissoto et al., 2019).
herefore, our final performance is obtained by fusing the outputs
ith input scale [224 × 224], [672 × 672] and the entire image with

cale [224 × 224]. It is worth noting that consistent ensemble trend
egarding the fusing of different input scales has also been found
n the testing set.

Final results compared with state-of-the-art methods are shown
n Table 6. The column “ensemble” indicates whether the compared

ethods use ensemble technique or not, and column “external
ata” shows the number of external data used for training neural
etworks. The external data plays an important role in the training
f CNN models for the skin lesion classification task. For instance,
González-Díaz, 2019) got the best performance of 90.8% (vs. 91.7%)
or the models with less external training sets, even when it incor-
orated the meta-data and attribute data. From Table 6, we can see

hat the proposed method provides a superior performance com-
ared with state-of-the-art methods without using external data.
he proposed method achieves the best AUC of 97.1% for seborrheic
eratosis, which verifies the effectiveness of the proposed method.

Fig. 7. Examples of correctly classified images: le
Iwhole 84.11 84.62 86.10
IROI 89.00 88.85 90.67

We  also display some challenging images that have been correctly
classified by the proposed method in Fig. 7. The left images are
skin lesions of melanoma, while the right images are skin lesions
of seborrheic keratosis. Strong visual similarity and artifacts are
observed in these two types of images, yet the proposed method
successfully classifies these hard samples, which implies that the
proposed method can tackle difficult samples.

3.8. Time complexity

There are two  binary classification tasks in this paper. For
simplicity, the following time complexity is calculated on the clas-
sification task of seborrheic keratosis using features extracted via
ResNet. The platform information has been described in Section 3.3.
The training time of the proposed method is a total of 96 min. Out of
96 min, 92.4 min  are spent to train the segmentation network, and
about 3.6 min  are used to train the classification model. The testing
time is 0.39 s on average for one given image. Typically, the extra
time induced by the proposed method (mid-level feature process-
ing) is 0.13 s, which is relatively fast. The fast inference time of the
proposed method indicates the potential in clinical application.

3.9. Discussions

3.9.1. Effect of lesion segmentation

To determine the influence of the skin lesion segmentation, we

conduct experiments with and without skin lesion segmentation
as a primary step, and experiment results are shown in Table 7.
Iwhole means using the whole images as input, and IROI means using

ft: melanoma; right: seborrheic keratosis.
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Fig. 8. Segmentation results of the proposed method. The red contours are the ground truths, and the blue contours are the segmentation results. (For interpretation of the
references to color in this figure legend, the reader is referred to the web  version of this article.)

Table 8
Effect of weighting factor for APG algorithm.

Weighting ResNet DenseNet

Uniform 87.88 88.60
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Table 9
Comparison of AUC scores of the proposed method using discriminative features
and mid-level features.

Input ResNet DenseNet Fusion

As shown in Table 9, the mid-level features outperform the dis-
Proposed 89.00 88.85

he ROI images obtained with skin lesion segmentation method as
nput. As shown in Table 7, the proposed method obtains signifi-
ant improvement if we use the ROI images as input. This is mainly
ecause the interest regions of skin lesions are of various scales,
nd some targets are very small and only occupy a small region of
he whole image. Directly downsampling all images to the same
ize ([224, 224]) will lose detail information about skin lesions,
nd make it even difficult to observe patterns of skin lesions. Some
xamples of the predicted binary masks are shown in Fig. 8.

.9.2. Effect of weighting factor for APG algorithm
In this section, we conduct experiments to show the benefits

f the weighting scheme introduced in Section 2.3. We compare
he proposed method with uniform weight and experiment results
re shown in Table 8. The weighting scheme used in this paper can
et an improvement of 1.12% and 0.15% with features extracted via

esNet and DenseNet, respectively. Though minor improvement

s observed for the features extracted via DenseNet with online
eighting, it can still be regarded as useful overall. One reason for
Discrim Fea 86.53 87.68 88.71
Mid-level Fea 89.00 88.85 90.67

this may  be that focusing more on hard violating pairs can benefit
the training phase of metric learning.

3.9.3. Advantage of soft discriminative feature
As shown in Eq. (2), the metric learning problem can also be

regarded as a discriminative subspace learning problem. The new
feature representation can be represented as Lxi given the input fea-
ture xi, which is a discriminative feature representation. Compared
with the discriminative feature Lxi learned based on metric learn-
ing, the proposed mid-level feature representation vi in Eq. (6) is a
soft descriptor which uses affinity information as the new feature
representation. In this section, we  also implement experiments to
compare the proposed mid-level features vi with the discrimina-
tive feature Lxi. To make a fair comparison, best parameters of the
discriminative features based on metric learning are also selected
as in Section 3.5. Experimental results are shown in Table 9.
criminative features for both the features extracted via ResNet and
DenseNet. This is because learning an optimal feature represen-
tation that can well separate all the samples (especially the hard
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ig. 9. Performance of the proposed method (with and without the MFL  module) on
ompared with the original features. (For interpretation of the references to color in

amples) is very difficult. In contrast, the proposed mid-level fea-
ure representation is a soft discriminative descriptor, where the
elationships of visual similarities and distinctions can be kept
or some difficult cases (hard samples) as long as the remaining
elationships are captured correctly. Also note that, compare with
able 2, the discriminative features obtain better performance than
he original features, which demonstrates that the original features
ave poor discriminative power, and using the discriminative fea-
ures can promote the classification task.

.9.4. Robustness of the proposed mid-level features against
arameters

In this section, to show the robustness of the proposed mid-level
eature representation against parameters, performance (5-fold
ross-validation on the training set) of the proposed method on
he parameter space is given in Fig. 9. As shown in Fig. 9, the mid-
evel features outperform the original features by a large margin
or both binary classifiers. Especially, the AUC of proposed method
or the SK classifier ranges from 90% to 95% across the parameter
pace, while the AUC of proposed method without MFL  ranges from
6% to 90%. The best performance of the proposed method is about
% higher than the proposed method without MFL, which proved
hat the mid-level features contain more discriminative power. A
imilar trend is also observed for the MEL  classification. Also note
hat the ranges of color bars are similar for the method with and
ithout MFL, and as the score increases, the color of the parameter

pace changes from blue to yellow. A large area of the proposed
ethod’s parameter space is yellow while only a minor part is yel-

ow for the proposed method without MFL, which demonstrates
he robustness of the proposed mid-level features.

. Conclusions
Automatic melanoma detection is a challenging task due to
he large inter-class similarity and intra-class variation, and com-
lex skin conditions among different skin lesions. In this paper,
arameter space. The learned mid-level features are more robust and discriminative
ext, the reader is referred to the web version of this article.)

a novel framework for skin lesion classification is proposed. Skin
lesion segmentation is first performed to get the ROI images for
the later classification task. A novel mid-level feature representa-
tion is obtained by using metric learning and a reference set. The
learned mid-level feature representation contains affinity informa-
tion among image samples, which is a soft discriminative feature,
having more tolerance to the hard samples thus being more robust.
Experimental results show that skin lesion segmentation can ben-
efit the subsequent classification task. Meanwhile, the learned
mid-level features obtain much better performance compared with
the original features. Experimental results show that the proposed
method outperforms state-of-the-art CNN based methods, which
verify the effectiveness of the proposed method.
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