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A B S T R A C T   

Histopathological images are widely used to diagnose diseases including skin cancer. As digital histopathological 
images are typically of very large size, in the order of several billion pixels, automated identification of all 
abnormal cell nuclei and their distribution within multiple tissue sections would assist rapid comprehensive 
diagnostic assessment. In this paper, we propose a deep learning-based technique to segment the melanoma 
regions in Hematoxylin and Eosin (H&E) stained histopathological images. In this technique, the nuclei in the 
image are first segmented using a Convolutional Neural Network (CNN). The segmented nuclei are then used to 
generate melanoma region masks. Experimental results with a small melanoma dataset show that the proposed 
method can potentially segment the nuclei with more than 94 % accuracy and segment the melanoma regions 
with a Dice coefficient of around 85 %. The proposed technique also has a small execution time making it 
suitable for clinical diagnosis with a fast turnaround time.   

1. Introduction 

Cutaneous Malignant Melanoma (CMM) is an aggressive type of skin 
cancer. The early diagnosis of melanoma is very important as it helps to 
increase the chances of successful treatment and may increase survival 
rate (Brochez et al., 2002). The gold standard of the diagnosis is through 
the examination of histopathological images. The digitized histopatho-
logical slides, which are typically obtained by staining and scanning the 
biopsy slides of the skin tissue, can provide the cell morphological fea-
tures with a high resolution. The digitized slides are known as Whole 
Slide Images (WSIs) and computer aided diagnosis (CAD) techniques can 
speed up detection of cancer features resulting in a fast diagnosis by the 
pathologist (Alheejawi et al., 2019). Pathologists generally use Hae-
matoxylin and Eosin (H&E) stained images as the morphological fea-
tures of the melanocytes and other cells become vividly clear. In 
H&E-stained image, the cell nuclei (as they contain chromatin) are 
typically observed in the blue shade while the cytoplasm and other 
connective tissues are observed with the varying shades of pink (Lu 
et al., 2013a). 

Fig. 1 shows an H&E-stained histopathological image of a CMM 
within a cross section of the skin tissue. The epidermis layer in the Fig.1 

is contoured with the green color, and the CMM is contoured in brown 
color. Note that in this image the CMM are contoured manually by 
morphology. The skin tissues diagnosed with melanoma typically 
contain regions of inflammatory cells (as shown in blue contour) near 
the CMM regions. In the enlarged patch, it is observed that the abnormal 
melanocytes appear with irregularity in shape and color intensity (Rojo 
et al., 2011; Weinstein et al., 2009) whereas the inflammatory cells 
mainly appear in dark color with dense nuclei. Table 1 shows cells 
features in detail that can be shown in skin tissue diagnosed with 
melanoma. 

There have been recent reports of melanoma diagnosis based on the 
histopathological image analysis (Cheng et al., 2012; Lu et al., 2013b; 
Cheng and Mandal, 2015; Hongming et al., 2013). Investigators have 
focused on the detection of the nuclei (Cheng et al., 2012), detection of 
the melanocytes (Lu et al., 2013b), and the melanoma classification of 
WSIs (Cheng and Mandal, 2015). Xu et al. (Hongming et al., 2013) 
proposed an automated technique (henceforth referred to as the 
Watershed + Voting technique) to segment the cell nuclei in 
H&E-stained images. The technique detects the nuclei seeds by using 
voting areas and segments the nuclei cells using marked watershed al-
gorithm. The technique has been shown to provide a good performance, 
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but it has a high computational complexity due to presence of the seed 
detection algorithm. Xu et al. (2017a) proposed another cell nuclei 
segmentation technique (henceforth referred to as the gLoG + mRLS 
technique). This technique first detects the nuclei seeds using the 
generalized Laplacian of Gaussian (gLoG) filters and then segments the 
cells using multiple Radial Lines Scanning (mRLS) algorithm. The mRLS 
uses high gradient pixel locations and shape information to accurately 
segment the cell nuclei (Xu et al., 2017b). 

The nuclei detection techniques (Hongming et al., 2013; Xu et al., 
2017b) mentioned above are generally based on the extracted 
hand-crafted features that require significant time for calculation. 
Furthermore, these manually designed features are often over-specified 
or incomplete. On the other hand, features learned using the deep 
learning algorithms are easy to adapt and fast to learn, hence, Con-
volutional Neural Network (CNN) have recently been used successfully 

in medical image analysis. Badrinarayanan et al. (2015) proposed the 
SegNet architecture for the object segmentation. Ronneberger et al. 
(2015) proposed the U-Net architecture for biomedical image segmen-
tation. Alheejawi et al. (2020) proposed a technique (henceforth 
referred to as the NS-Net + FC technique) to segment and classify the cell 
nuclei on the H&E-stained images. The segmentation is performed using 
the NS-Net architecture that contains 5 convolutional layers with 
different filter sizes. From each segmented nucleus, 54 features are 
extracted, and these feature vectors are fed to a Support Vector Machine 
(SVM) for nuclei classification (melanoma or non-melanoma nuclei). 
Patrik et al. (Sabol et al., 2021) proposed a technique to perform 
patch-based segmentation of the H&E-stained WSI for diagnosing colo-
rectal cancer. The proposed patch-based segmentation technique 
(henceforth referred to as the PBS-ResNet technique) divides a WSI into 
several nonoverlapping patches of size 64 × 64 pixels. During training 

Fig. 1. Histopathological image of a skin tissue with cutaneous malignant melanoma. The epidermis region, the melanoma nests and inflammatory cells are con-
toured in green, brown and blue colors, respectively. 

Table 1 
Cells types and comparisons within skin tissue sections diagnosed with melanoma.  

Cells Features 

Melanoma tumour 
cells 

Viable Melanoma cells 
Very large size (>15–50 μm in diameter) with abundant cytoplasm sometimes containing brown melanin pigment, 
pleomorphic large vesicular nuclei, and prominent often multiple nucleoli, with frequent mitoses. 

Necrotic Melanoma cells Size may decrease, nuclei may become smaller and darker compared with viable Melanoma cells. 

Inflammatory cells 
Lymphocytes Much smaller size (7–12 μm in diameter), with dark nucleus, little cytoplasm and elliptical boundaries. 

Histiocytes/ Macrophages Moderate to large size (20–40 μm in diameter), with dark nucleus, and irregular boundaries. Macrophage cytoplasm may 
contain consumed brown melanin pigment. 

Epidermis cells 
Melanocytes Small to moderate size (7–20 μm in diameter), large dark nucleus, situated at the Dermal-Epidermal junction. 
Keratinocytes, Langerhans 
and Merkel Variable size with differentiation (15–50 μm in diameter), dark nucleus, and variably abundant eosinophilic cytoplasm.  

Fig. 2. Schematic of the proposed melanoma detection technique.  
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these patches are labelled into 8 classes (e.g., stroma, complex stroma, 
normal). The ResNet-50 architecture is then trained to classify the 
patches. Although, the patch-based segmentation is fast (Sabol et al., 
2021; Gadermayr et al., 2019), the technique might generate many false 
positive patches. 

In this paper, we propose an automated technique to segment cuta-
neous malignant melanoma regions in H&E-stained images. In the 
proposed technique, the nuclei are first detected and segmented into 
melanoma and non-melanoma classes using a CNN architecture. The 
CMM regions are then generated by applying a series of morphological 
operations on the detected melanoma nuclei. The main difference be-
tween the existing methods and the proposed methods is that the 
existing methods work at patch level to detect the CMM regions whereas 

the proposed method first detects the nuclei and then builds up the CMM 
regions. The assumption here is that the melanoma nuclei can be 
detected with a higher accuracy, resulting in a superior overall seg-
mentation performance. 

The organization of the paper is as follows. Section 2 describes the 
dataset used to train and evaluate the proposed technique. Section 3 
describes the proposed technique in detail. Section 4 presents the per-
formance evaluation, followed by the conclusion in Section 5. 

2. Data description 

In this section, we present the details of the training and the testing 
dataset to evaluate the performance of the proposed nuclei segmentation 

Fig. 3. The proposed INS-Net deep learning architecture. Note that in the output image the melanoma, non-melanoma nuclei, and background pixels are shown in 
red, blue and white colors, respectively. 
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and cell classification technique. The digitized biopsies were collected at 
the Cross Cancer Institute, University of Alberta, Edmonton, Canada in 
accordance with the protocol for the examination of the specimens with 
skin melanoma. Standard Neutral Buffered formalin-fixed paraffin- 
embedded tissue blocks of these biopsies were cut into thin slices (e.g., 4 
μm for light microscope). These slices were then mounted to glass slides 
and stained using H&E stain (Haggerty et al., 2014). The WSIs were 
obtained by scanning the H&E slides using aperio scanscope scanning 
system under 40X magnification. The size of a WSI is typically around 
40,000 × 60,000 pixels (0.25 μm/pixel resolution) and each WSI con-
tains thousands of cell nuclei. The image dataset consists of 100 
H&E-stained images with size (960 × 960 RGB pixels) extracted from 4 
WSIs of skin tissue. The 100 H&E-stained images are divided into 
training (70), validation (15), and testing (15) datasets. Note that the 
ground truth melanoma regions of the H&E images were generated by 
matching MART-1 stained image of consecutive tissue sections (MART-1 

is a sensitive and specific marker used for the diagnosis of melanoma). 
This limited the size of the dataset as only a handful of slides were 
available with both H&E and MART-1 stains. 

3. Proposed technique 

The schematic of the proposed technique is shown in Fig. 2 which 
consists of two modules: CNN-based nuclei segmentation and melanoma 
region detection. The details of these two modules are presented in the 
following. 

3.1. CNN-based nuclei segmentation 

In this module, the H&E-stained image is segmented into three re-
gions: melanoma nuclei, non-melanoma nuclei and background regions. 
The segmentation is done by using the proposed CNN architecture 

Fig. 4. Example of (a) an original H&E Image (960 × 960) and (b) the corresponding classified ground truth image, where the melanoma and non-melanoma nuclei 
appear in red and blue colors, respectively. 

Fig. 5. Example of (a) an Original Image (in color) and (b) the corresponding INS-Net (segmented) output. The melanoma nuclei, non-melanoma nuclei, and the 
background pixels appear in red, blue and white colors, respectively. 
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shown in Fig. 3. The CNN architecture has 25 convolution layers instead 
of 5 layers in the NS-Net (Ronneberger et al., 2015) architecture used for 
nuclei segmentation. The proposed architecture, henceforth referred to 
as the improved NS-Net (INS-Net), consists of two paths: path A and path 
B. Out of 25 layers, 13 layers are in the path A, and 12 layers are in path 
B. Note that there are five Skip Connections (Skip Conn) in the proposed 
INS-Net to reduce the gradient vanishing impact (Kaiming et al., 2016). 

There are 6 types of layers in INS-Net architecture and the details of 
these layers are explained in the following.  

1 C-BN-R layer: This layer includes three operations: Convolution, 
Batch Normalization, and Rectified Linear Unit (ReLU) activation 
(Eigen and Fergus, 2015; Ioffe and Szegedy, 2015; Nair and Hinton, 
2010). 

Fig. 6. Example of intermediate output images of the MRD module. Melanoma nuclei mask (a) obtained using the proposed CNN, (b) melanoma nuclei mask (in 
blue) superimposed on the original H&E image (c) after dilation, (d) after image fill, (e) after erosion, and (f) after area thresholding operations. In Figs. (b)–(f), the 
intermediate melanoma masks are superimposed on the H&E image to show more insights. 

Table 2 
Nuclei segmentation performance on H&E-stained images.  

Techniques Accuracy Precision Recall Dice Coefficient 

Voting + Watershed (Hongming et al., 2013) 83.64 78.24 84.64 81.31 
gLoG + mRLS (Xu et al., 2017b) 76.67 79.27 60.25 68.46 
SegNet (Badrinarayanan et al., 2015) 87.84 84.16 87.53 85.81 
U-Net (Ronneberger et al., 2015) 78.79 87.41 57.87 69.63 
NS-Net (Alheejawi et al., 2020) 90.21 87.20 89.90 88.52 
INS-Net 94.12 90.32 88.05 89.17  

Table 3 
Configuration of the CNN architectures used in performance evaluation. Note that PBS-ResNet does patch-based segmentation directly and does not perform nuclei 
segmentation.  

CNN Architecture Convolutional layers No. of Trained parameters Filter size No. of Filters per layer 

SegNet (Badrinarayanan et al., 2015) 8 225,542 3 × 3 64 
U-Net (Ronneberger et al., 2015) 11 905,472 3 × 3 (64, 128, 256) 
NS-Net (Alheejawi et al., 2020) 5 150,336 (3 × 3)- (11 × 11) 64 
PBS-ResNet (Sabol et al., 2021) 53 22,676,052 (1 × 1)- (7 × 7) (64, 128, 256,512,1024, 2048) 
INS-Net 18 225,987 (3 × 3)- (21 × 21) 64  
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2 C-BN-R-P layer: This layer consists of a C-BN-R layer followed by the 
Pooling operation to reduce the size (width x height) of the feature 
maps by selecting a pooling window and a stride value. In this work, 
we have used MAX pooling, window size of 2 × 2 and a stride of 2 ×
2. Note that the index of the maximum value is sent to the corre-
sponding C-BN-R-UnP layer.  

3 C-BN-R-UnP layer: This layer consists of a C-BN-R layer followed by 
the UnPooling operation to upsample the feature map size (width x 
height). In this paper, an upsampling factor of 2 × 2 is used. The 
upsampling is done using the bilinear interpolation. The corre-
sponding index from the C-BN-R-P layer is used to determine the 
location of the pixel that needs to be upsampled.  

4 Concatenate layer: This layer combines the feature maps (of same 
size) from two or more input layers. The depth of the output layer is 
equal to the sum of depths of the input layers. In Fig. 3, this layer 
concatenates the output of paths A and B. In our implementation, 
outputs of paths A, B, and the Skip-Conn1 have depths of 64 each. In 
other words, the output of the Concatenate layer has a depth of 192.  

5 SoftMax layer: This layer finds the probability values of each pixel for 
K classes. Note that each pixel will have K probability values (In this 
paper, K = 3) (Robert, 2014).  

6 Pixel classification layer: This layer selects the class with the highest 
value of SoftMax output for each pixel. 

In the INS-Net (see Fig. 3), it is observed that Path B is used to extract 
fine features of the cells and the background, whereas the Path A is used 
to extract coarse features of the cells and background regions. In this 
paper, the INS-Net architecture is used to segment the H&E-stained 
image pixels into melanoma nuclei, non-melanoma nuclei, and back-
ground pixels. 

Note that the dataset contains 100 H&E-stained images each with 
size 960 × 960 as described in Section 2. Fig. 4(a) shows an example of a 
960 × 960 image, and it can be observed that the image contains hun-
dreds of nuclei. These 100 images are divided into training (70 images), 
testing (15 images) and validation (15 images) datasets. As it is 

computationally expensive to use the whole image as input to the CNN, 
each image is further divided into non-overlapping blocks of 64 × 64 
color pixels to obtain 225 block-images (an example of a block-image is 
shown in Fig. 4). The total number of the obtained block-images is 
22,500 (= 100 × 225). Out of these, 19,125 block-images are used for 
training and validation, and 3375 block-images are used for testing. 

Fig. 5(a) shows an input H&E-stained image and the CMM region is 
shown with a green contour. The Nuclei Segmentation results obtained 
using the INS-Net architecture is shown in Fig. 5(b). It is observed that 
the nuclei in the CMM region (of Fig. 5(a)) have been detected accu-
rately (the red nuclei) in Fig. 5(b). The accuracy of nuclei segmentation 
results is very important to determine the melanoma regions mask in 
H&E-stained images. The doctors can then determine the depth of the 
melanoma invasion and grade the melanoma based on the detected 
CMM regions. In the next section, the nuclei segmentation results will be 
used to generate the melanoma regions mask. 

3.2. Melanoma Region Detection (MRD) 

This module is used to determine the melanoma regions (MR) from 
the NS mask obtained using the INS-Net architecture. The MR detection 
consists of several morphological operations applied on the melanoma 
nuclei mask (see Fig. 6(a)). Note that the melanoma nuclei mask is a 
binary mask representing the melanoma nuclei class obtained from the 
NS mask (see the red pixels in Fig. 5(b)). The MR detection is done using 
the following steps.  

1 The isolated melanoma nuclei (considered as foreground) in a 
neighbourhood are merged using the binary morphological dilation 
operation. In this work, a disc structuring element with 5–20 pixels 
radius is used. An example output is shown in Fig. 6(c). The merged 
regions will include the melanoma nuclei and its neighboring back-
ground pixels. Note that the size of structuring element gives a trade- 
off between precision and recall (or sensitivity). A larger structuring 
element is expected to provide higher sensitivity but lower precision. 

Fig. 7. Subjective comparison of cell nuclei segmentation results (contoured in blue color) (a) original test image, (b)-(g) Segmentation results for Voting +
Watershed (Hongming et al., 2013), gLoG + mRLS (Xu et al., 2017b), SegNet (Badrinarayanan et al., 2015), U-Net (Ronneberger et al., 2015), NS-Net (Alheejawi 
et al., 2020) and the proposed INS-Net techniques, respectively. 
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Fig. 8. Subjective comparison of nuclei classification results of the H&E-stained image shown in Fig. 1. (a) The ground truth image, nuclei, (b) NS-Net + FC 
classification result, and (c) the proposed INS-Net classification result. 
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2 Sometimes, there are small, isolated background pixels inside the 
merged melanoma regions, which can be considered as noise. An 
image fill operation is performed to change these isolated background 
pixels to the foreground pixels.  

3 During the dilation operation (step 1), the size of an object typically 
increases. To nullify the increase in object size during dilation, an 
erosion operation is performed. The structuring element is same as 
that used in the step 1.  

4 Connected melanoma regions with small areas are removed using an 
area thresholding method. In this paper, an area threshold of 600 
pixels (equivalent to 150 μm2 area) has been used to detect the noise 
regions. 

Fig. 6 shows the examples of the intermediate results obtained by the 
above operations. It is observed that the output of the MRD module 
shows an excellent melanoma region segmentation compared with the 
ground truth image shown in Fig. 5(a). Note that we also implemented 
an MR generation technique by applying image closing followed by 
image fill and area threshold. But the overall performance is not as good 
as the MRD module. 

4. Results and discussion 

In this section, we present the performance of the proposed tech-
nique and compare it with state-of-the-art techniques. The performance 
of the Nuclei Segmentation module is presented first followed by the 
performance of MRM module. 

4.1. Nuclei segmentation performance 

In this section, the nuclei segmentation mask obtained by the INS- 
Net will be evaluated. The segmentation performance is evaluated 
using 3375 block-images (each with 64 × 64 pixels) as explained in 
Section 3.1. The segmentation performance of the INS-Net is evaluated 
for each pixel and compared with the handcrafted feature-based algo-
rithms: gLoG + mRLS and Voting + Watershed techniques as well as 
CNN-based techniques using SegNet, U-Net and NS-Net architectures. 
The segmentation performance is evaluated using Accuracy, Precision, 
Recall (also known as Sensitivity), and Dice Coefficient (also known as F1 
score) measures defined as follows (Csurka et al., 2013): 

Accuracy =
TP + TN

TP + FP + FN + TN
× 100%  

Precision =
TP

TP + FP
× 100%  

Recall =
TP

TP + FN
× 100%  

Dice Coefficient =
2 × Precision × Recall

Precision + Recall
× 100%  

where TP, TN, FN and FP denote the number of true positive, true 
negative, false negative and false positive pixels, respectively. Table 2 
shows the segmentation performance of different techniques. It is 

observed that the deep learning algorithms provide an excellent per-
formance compared to the conventional feature-based algorithms. This 
is because the conventional features are less sensitive to the diversity of 
the cell nuclei in the skin tissue. For example, the melanoma cells tend to 
have light and inhomogeneous color (see Fig. 1), which cause mis-
detection of the melanoma cells in the gLoG + mRLS and Voting +
Watershed techniques. 

In this work, the SegNet, U-Net and NS-Net and the proposed INS-Net 
architectures are trained with the same number of training images (70 
H&E-stained images). The configuration of the CNN architectures is 
shown in Table 3. Fig. 7 shows the subjective segmentation performance 
of Voting + Watershed, gLoG + mRLS, SegNet, U-Net, NS-Net and the 
proposed INS-Net architecture. It is observed that the INS-Net archi-
tecture provides an excellent nuclei segmentation performance, whereas 
gLoG + mRLS, Voting + Watershed techniques miss a few cell nuclei due 
to the inhomogeneity in the cell nuclei color. It is also observed that the 
U-Net architecture does not perform well compared to the other tech-
niques because of the overfitting of the large number of the filters that 
are used in the cell nuclei segmentation. 

Fig. 8 shows visual examples of melanoma nuclei classification re-
sults using the NS-Net + FC, and the proposed INS-Net compared with 
the ground truth image. Note that in the NS-Net + FC technique an SVM 
classifier is used to detect the melanoma nuclei. The SVM uses a feature 
vector of length 54 (18 first-order features, 9 Histogram of Oriented 
Gradient features, 24 Haralick texture features and 3 Morphological 
features) calculated for each nucleus. For the proposed technique, the 
nuclei segmentation and classification are integrated in a single CNN 
architecture. In Fig. 8(c), it is observed that the INS-Net has superior 
nuclei classification results compared to the NS-Net + FC outputs shown 
in Fig. 8(b). The objective nuclei classification performance is shown in 
Table 4. It is observed that the proposed INS-Net provides a superior 
classification performance compared to the NS-Net + FC architecture. 
The mis-classification results of the melanoma nuclei can impact nega-
tively on the subsequently obtained melanoma regions detected by the 
MRD module. Note that accurate melanoma nuclei classification results 
are important to obtain a good MR detection performance by the MRD 
module. 

4.2. Melanoma Region Detection performance 

In this section, the intermediate output images of the MRD module 
are evaluated after each operation. The melanoma segmentation per-
formance of the proposed INS-Net + MRD is then compared with the 
output of PBS-ResNet (Sabol et al., 2021) and NS-Net + FC + MRD 
techniques. For the PBS-ResNet + MRD and INS-Net + MRD, a disc 
structuring element with 9 pixels radius is used whereas for the NS-Net 
+ MRD technique, a disc structuring element with 16 pixels radius is 
used. The size of the structuring elements was selected so as to obtain the 
best performance. 

The subjective performance of the MRD module in the NS-Net + FC +
MRD technique and the proposed INS-Net + MRD technique are shown 
in Fig. 9. It is observed that the overall melanoma region detection 
performance of the proposed technique is superior to that obtained by 
the NS-Net + FC + MRD technique. This is primarily because the 

Table 4 
Nuclei classification performance.  

Technique Accuracy Precision Recall Dice Coefficient Jaccard score 

NS-Net + FC (Alheejawi et al., 2020) 97.27 84.37 77.52 81.37 69.90 
INS-Net (proposed) 99.33 85.79 87.31 86.48 76.54  
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Fig. 9. Subjective comparison of MRD results (a) The ground truth image (b) Melanoma detection using the PBS-ResNet + MRD technique, (c) Melanoma detection 
using the NS-Net + FC + MRD technique and (d) Melanoma detection using INS-Net + MRD technique. 
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accuracy of the melanoma nuclei classification of the NS-Net + FC 
technique is not very high. 

The MRD module is now objectively evaluated in terms of Accuracy, 
Precision, Recall, and Dice coefficient. Table 5 shows the ablation study 
of the different steps for the melanoma segmentation performance of the 
MRD module. It is observed that the performance improves with each 
added step. The overall performance of the MRD module (with all four 
steps) is shown in the last row of the table. It is observed that a Dice 
coefficient of 83.81 % is achieved by the MRD module. 

The melanoma regions detected by the proposed INS-Net + MRD 
technique are now compared with those obtained by the state-of-the-art 
techniques: PBS-ResNet (Sabol et al., 2021) and NS-Net + FC + MRD. In 
the PBS-ResNet, the H&E WSI is first divided into non-overlapping 
blocks of size 64 × 64 (RGB) pixels. Note that other block sizes (e.g., 
32 × 32, 48 × 48, 80 × 80 128 × 128) have also been experimented with 
and 64 × 64 block size provide the best performance. Each block is then 
classified into melanoma, non-melanoma, and background blocks using 
the ResNet-50 CNN classifier. The ResNet-50 CNN classifier has been 
trained with 19,016 images for each of the three classes. In the NS-Net +
FC + MRD technique, the melanoma nuclei in an H&E WSI are detected 
using the NS-Net + FC technique (Alheejawi et al., 2020), which uses the 
NS-Net for the nuclei segmentation followed by nuclei classification (to 
detect the melanoma nuclei) using SVM. The detected melanoma nuclei 
are then passed through the MRD module to obtain the melanoma 
regions. 

In this paper, we also evaluate the performance of the MRD module 
with different size (S) of the structuring element. Fig. 10 shows the 
performance of MRD module in INS-Net +MRD technique. It is observed 
that the performance of INS-Net + MRD technique is very sensitive to 
the value of S. This is expected as melanoma regions are dilated and 
connect, the Recall values increase. Note that the best performance in 
terms of Accuracy, Precision, Recall, Dice Coefficient and Jaccard Score 
is obtained with S = 9. In this paper, the MRD module is also used in the 

PBS-ResNet + MRD and Net + FC + MRD techniques. It has been found 
that the best performance for PBS-ResNet + MRD and Net + FC + MRD 
techniques is obtained with disc structuring elements of radius of 9 and 
16 pixels, respectively. 

Fig. 11 shows a visual example of the melanoma region detection on 
the H&E WSI shown in Fig. 1. It is observed that the PBS-ResNet gen-
erates a significant number of FP and FN regions throughout the image 
due to the misclassification of patches (of size 64 × 64). The NS-Net + FC 
+ MRD generates a significant number of FP and FN pixels due to the 
misclassification of melanoma nuclei. On the other hand, the INS-Net +
MRD provides a superior segmentation performance. This is because the 
technique first classifies the melanoma nuclei and builds the melanoma 
region by merging the detected nuclei resulting in a superior 
performance. 

The segmentation performance is now compared objectively with 
respect to Accuracy, Precision, Recall, Dice Coefficient (defined before) 
as well as Jaccard score as defined below. 

Jaccard Score =
TP

TP + FP + FN
× 100% 

Table 6 shows the melanoma segmentation performance of the 
proposed technique and state-of-the-art techniques. It is observed that 
the proposed INS-Net + MRD has superior results in terms of Precision, 
and Accuracy compared to that of the PBS-ResNet and NS-Net + FC +
MRD techniques. The INS-Net + MRD shows the best performance over 
the PBS-ResNet and NS-Net + FC + MRD techniques. 

The run-time complexity of the various melanoma region detection 
techniques is shown in the last column of Table 6. The average execution 
time (for both nuclei segmentation and melanoma detection) for a WSI 
in testing mode is calculated. In this paper, all techniques were imple-
mented using MATLAB R2020a and run on a Windows 10 workstation 
with Intel i7− 6700 K CPU, 12 GB RAM, and NVIDIA GeForce GTX 745 
graphic card. Note that the CNNs were implemented using the Deep 
Network Designer Toolbox. 

Table 5 
Melanoma segmentation performance of various steps of the MRD module.  

Steps Accuracy Precision Recall Dice Coefficient 

Dilation 95.14 80.27 49.87 61.55 
Dilation + Image Fill 94.66 69.88 88.25 78.00 
Dilation + ImageFill + Erosion 95.80 76.35 85.97 80.88 
Dilation + ImageFill + Erosion + AreaThresh 97.70 83.22 87.08 85.10  

Fig. 10. MRD performance with different structural element.  
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The PBS-ResNet (Sabol et al., 2021) requires the lowest execution 
time (about 184 s) as it classifies the patches directly. On the other hand, 
the NS-Net + FC + MRD (Alheejawi et al., 2020) requires the highest 
execution time (about 1034 s). Note that in this technique the FC (for 
Feature extraction and Classification) takes about 50 % of the overall 

execution time. The CNN segmentation architecture requires more time 
compared to the CNN classifiers as the CNN segmentation classifies each 
pixel in the image instead of classifying the whole patch. The proposed 
INS-Net + MRD technique also requires a long execution time (about 
402 s) due to the nuclei-based segmentation. However, an increase in 

Fig. 11. Subjective comparison of the detected melanoma regions. (a) The ground truth segmentation mask (green contour), melanoma regions detected by (b) PBS- 
ResNet + MRD, (c) NS-Net + FC + MRD, and (d) INS-Net + MRD. The melanoma regions are shown with blue contour. The last row shows the FP (green), TP (green), 
FN (red) and TN (black) regions. In the upper row in Fig. (b), the melanoma regions are shown with light blue shade. 
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the computational complexity is offset by the superior melanoma region 
detection performance of the proposed technique. 

The performance of the melanoma region detection as shown in 
Table 6 shows a significant improvement over the state-of-the-art 
techniques. However, it is acknowledged that the training and testing 
dataset used in this work is small as explained in Section 2. More ex-
periments are planned in future with larger dataset of images to 
demonstrate the generalizability of the proposed technique. 

5. Conclusions 

This paper proposes an automated technique to detect cutaneous 
malignant melanoma regions in skin tissue images stained with H&E. 
The technique segments the cell nuclei in H&E-stained images using the 
proposed INS-Net deep learning network. The INS-Net segments the 
image into melanoma nuclei, non-melanoma nuclei and background 
regions. The segmented melanoma nuclei are then used to generate a 
melanoma mask using the melanoma region detection (MRD) module. 
Experimental results with a small melanoma dataset show that the 
proposed method can achieve a nuclei segmentation accuracy of over 94 
%. The malignant melanoma regions are detected with a Dice coefficient 
of around 85 % (precision of 83 % and recall of 87 %), which is sub-
stantially better than the state-of-the-art techniques. The proposed 
technique also has a small execution time, about 6− 7 min for an image 
with a standard desktop computer, making it suitable for clinical diag-
nosis with a fast turnaround time. 
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