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Abstract—We consider the topic of multivariate regression onmanifold-valued output, that is, for amultivariate observation, its output

response lies on amanifold. Moreover, we propose a new regressionmodel to deal with the presence of grossly corruptedmanifold-

valued responses, a bottleneck issue commonly encountered in practical scenarios. Our model first takes a correction step on the grossly

corrupted responses via geodesic curves on themanifold, then performsmultivariate linear regression on the corrected data. This results

in a nonconvex and nonsmooth optimization problem on Riemannianmanifolds. To this end, we propose a dedicated approach named

PALMR, by utilizing and extending the proximal alternating linearizedminimization techniques for optimization problems on euclidean

spaces. Theoretically, we investigate its convergence property, where it is shown to converge to a critical point under mild conditions.

Empirically, we test our model on both synthetic and real diffusion tensor imaging data, and show that our model outperforms other

multivariate regressionmodelswhenmanifold-valued responses contain gross errors, and is effective in identifying gross errors.

Index Terms—Manifold-valued data, multivariate linear regression, gross error, nonsmooth optimization on manifolds, diffusion

tensor imaging

Ç

1 INTRODUCTION

THIS paper focuses on multivariate regression on mani-
folds [1], [2], [3], [4], where given a multivariate observa-

tion xx 2 Rd, the output response yy lies on a Riemannian
manifoldM. This line of work has many applications. For
example, research evidence in diffusion tensor imaging
(DTI) (e.g., [5]) indicates that the shape and orientation of dif-
fusion tensors are profoundly affected by age, gender and
handedness (i.e., left- or right-handed). In particular, we con-
sider noisymanifold-valued output scenarios where data are
subject to sporadic contamination by gross errors of large or
even unbounded magnitude. Such grossly corrupted data
are often encountered in practice due to unreliable data col-
lection or data with missing values: For example, errors in
DTI data can be introduced by Echo-Planar Imaging (EPI)
distortion [6] or inter-subject registration [7], where practical
measurement errors such as Rician noise or other sensor
noise have a significant impact on the shape and orientation
of tensors [8], [9]. Although the problem of learning from
data with possible gross error in euclidean spaces has gained
increasing interest [10], [11], [12], [13], [14], [15], to our best
knowledge, there exists no prior work in dealing with mani-
fold-valued responsewith gross errors.

Our main idea can be summarized as follows: For each
manifold-valued response yy 2M, we explicitly model its
possible gross error (in yy). This gives rise to a correctedmani-
fold-valued data yyc by removing the identified gross error
component from yy, which is realized via geodesic curves on
M. Note that yyc could be the same as yy, corresponding to no
gross error in yy. Then the corrected manifold-valued data
can be utilized as the responses in multivariate geodesic
regression, which boils down to a known problem [2]. More
details are illustrated in Fig. 1 and are fully described in
Section 3. Unfortunately, the induced optimization problem
becomes rather challenging as it contains nonconvex and
nonsmooth functions on manifolds. Inspired by the recent
development of proximal alternating linearized minimiza-
tion (PALM) methods in euclidean spaces, in this paper we
propose to generalize this technique onto Riemannian mani-
folds [16], whichwe have named as PALMR.

The main contributions of this paper are three-fold. First,
we propose to address a novel problem ofmultivariate regres-
sion on manifolds where the manifold-valued responses are
subject to possible contamination of gross errors. Second, a
new algorithm named PALMR is proposed to tackle the
induced nonconvex and nonsmooth optimization on mani-
folds, for which we also provide the convergence analysis.
The algorithm and analysis is applicable to a class of non-
convex and nonsmooth optimization problem on mani-
folds. Empirically our algorithm has been evaluated on
both synthetic and real DTI data, where results suggest the
algorithm is effective in identifying gross errors and recov-
ering corrupted data, and it produces better predictive
results than regression models that do not consider gross
errors. Third, our approach makes connections to two
established research areas, namely learning from grossly
corrupted data and multivariate regression on manifolds:
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When we restrict ourselves to the special case of euclidean
space, our approach reduces to robust regression consid-
ered in e.g., [13], [14]; On the other hand, when there is no
gross error, the problem boils down to that of multivariate
regression on manifolds as considered in [2], where the
method of [2] can be regarded as a special case of our
approach. Our code is also made publicly available.1

1.1 Related Work

Manifold-valued data arise from a wide range of application
domains including neural imaging [17], shape model-
ling [18], [19], [20], robotics [21], graphics [22], and symmet-
ric positive matrices [23], [24], [25], [26]. One prominent
example is DTI [24] where data lie in the Riemannian mani-
fold of 3� 3 symmetric positive definite (SPD) matrices. In
this work, we use SðnÞ and SþþðnÞ to denote the set of n� n
symmetric matrices and n� n SPD matrices, respectively.
Other examples include higher angular resolution diffusion
imaging where data can be modelled as the square root of
orientation distribution functions lying on the unit sphere [2],
[27], aswell as group-valued data such as SOð3Þ and SEð3Þ in
shape analysis [19] and robotics [21]. It is well known that for
such scenarios, it is in generalmuch better to conduct statisti-
cal analysis directly on the manifold (i.e., curved space)
instead of in the ambient euclidean space (i.e., flat space),
whichwe also verify empirically.

Unsurprisingly, there exists plenty of prior work
studying statistics on manifolds [19], [24], [28], [29], [30].
This is to be distinguished from the well-known topic of
manifold learning [31], where the data are assumed to be
sampled from certain manifold embedded in a usually
much higher dimensional euclidean space and one is
supposed to extract intrinsic geometric properties of the
manifold from observations. Instead here the manifold
is usually known in priori, and the task is to engage

appropriate statistical models in the analysis of the mani-
fold-valued data.

In the area of regression on manifolds, Fletcher [28] pro-
poses geodesic regression that generalizes univariate linear
regression on flat spaces to manifolds by regressing a mani-
fold-valued response from a real-valued independent data
with a geodesic curve. [27] adapts the idea of geodesic
regression for regressing sphere-valued data against real
scalar. [20] investigates parametric polynomial regression
on Riemannian manifolds, while [1] studies regression on
the group of diffeomorphisms for detecting longitudinal
anatomical shape changes. Banerjee et al. [32] propose a
nonlinear kernel-based regression method for manifold-val-
ued data. Hong et al. [33] propose a shooting spline-based
regression technique specifically designed for the Grass-
mannian manifold. [34], [35] investigate a family of non-
parametric regression models for data on manifolds. The
closest work might be [2], which extends the idea of geode-
sic regression [28] to multivariate regression on manifolds,
and applies it to analyze diffusion weighted imaging data.
In [3], the authors investigate multivariate regression mod-
els on Riemannian symmetric spaces from a statistical per-
spective and develop several test statistics for evaluating
linear hypotheses of the regression coefficients. In the area
of learning with grossly corrupted data, there have been
various methods [10], [13], [14], [15], [36] proposed for lin-
ear regression with gross errors in the euclidean space,
among which robust lasso in [13] and robust multi-task
regression in [14] can be considered as special cases of our
approach when restricted to euclidean spaces.

A recent trend in manifold data analysis is kernel meth-
ods on manifolds which aim at embedding the manifold to
a reproducing kernel Hilbert space (RKHS). In [37] and [38],
kernel methods are developed for sparse coding and dictio-
nary learning on SPD and Grassmann manifolds, respec-
tively. In [39], kernels on SPD and Grassmann manifolds
are considered for classification. As it is important for such
kernels on manifolds to satisfy the positive definite con-
straint, significant efforts [40], [41], [42], [43], [44] have been
made in this regard. Meanwhile, as shown in [44], these ker-
nels tend to either disregard the original Riemannian struc-
ture due to linearization requirement, or violates the positive
definiteness constraint. In particular, a geodesic Gaussian
kernel is positive definite only if the underlying manifold is
euclidean. Moreover, a geodesic Laplacian kernel is positive
definite if and only if conditionally negative definite condi-
tions are satisfied, which is in general not true for curved
Riemannianmanifolds. These results suggest that the applica-
tion of kernel methods in curved manifolds has its limitation.
On the other hand, it is also of interest for the community to
investigate on approaches other than kernel based methods.
This motivates us to consider in this work a manifold-valued
geodesic regression approach by directly considering the
intrinsic Riemannianmetric.

2 BACKGROUND

We first briefly review some concepts in Riemannian mani-
folds in Section 2.1, nonsmooth analysis and Kurdyka–
ºojasiewicz property onRiemannianmanifolds in Sections 2.2
and 2.3, respectively, which are necessary for the derivation of

Fig. 1. An illustration of the proposed approach for multivariate regres-
sion on grossly corrupted manifold-valued data, which contains two
main ingredients: The first is to obtain the corrected response yyci by
removing its possible gross error, as illustrated by the directed curves on
the manifold; The second one involves the manifold-valued regression
process using fxxi; yycig. Here x11 and x21 are the components of input xx1
along tangent vectors vv1 and vv2 of point pp 2M. Red solid arrow denotes

a tangent vector x11vv1 þ x21vv2 at pp, and red dash arrow is its correspond-

ing geodesic path. x12 and x22 are also defined similarly using blue color.
See Section 3.1 for details.

1. Our implementation is available at the project website http://
web.bii.a-star.edu.sg/�zhangxw/palmr-SPD/.
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our algorithm and the proof of convergence. We then review
some models regarding multivariate linear regression with
gross errors in euclidean space, whose ideas are utilized to
design our newmodel.

2.1 Riemannian Manifolds

Let ðM; %Þ denote a smooth manifold M endowed with a
Riemannian metric %. Moreover, TppM denotes the tangent
space at point pp and TM :¼ [pp2MTppM denotes the tangent
bundle. Notation ðpp; vvÞ 2 M� TM refers to pp being a point
ofM and vv being a tangent vector at pp. uu; vvh ipp:¼ %ppðuu; vvÞ is
the inner product between two vectors uu and vv in TppM, with
%pp being the metric at pp. The induced norm thus becomes
kuukpp :¼ uu; uuh i1=2pp . Let g : ½a; b� ! M be a piecewise smooth
curve such that gðaÞ ¼ pp and gðbÞ ¼ qq, with the curve length
as
R b
a kg 0ðtÞkgðtÞdt where g 0ðtÞ denotes derivative. The Rie-

mannian distance dMðpp; qqÞ between pp and qq is defined as the
infimum of the length over all piecewise smooth curves join-
ing these two points. Let r be the Levi-Civita connection2

associated with ðM; %Þ. Curve g is called a geodesic if
rg0g

0 ¼ 0. A Riemannian manifold is complete if its geodesics
gðtÞ are defined for any value of t 2 R. The parallel transport
along g from pp ¼ gðaÞ to qq ¼ gðbÞ is a mapping PgðaÞgðbÞ :
TppM! TqqM defined by PgðaÞgðbÞðvvÞ ¼ V ðbÞ, where V is the
unique vector field satisfying rg0V ¼ 0 and V ðaÞ ¼ vv. The
exponential map at point pp is a mapping Exppp : TppM!M
defined asExpppðvvÞ ¼ gð1Þ, where g : ½0; 1� ! M is the geode-
sic such that gð0Þ ¼ pp and g 0ð0Þ ¼ vv. The inverse of the expo-
nential map, if exists, is denoted by Exp�1pp . To simplify
notations, we also use ;h i, k � k, dð�; �Þ, andExpðpp; vvÞ to denote
inner product, norm, Riemannian distance, and exponential
map respectively, when there is no confusion. We focus on
Hadamard manifold M, which is a complete and simply
connected finite dimensional Riemannian manifold with
nonpositive sectional curvature. The class of Hadamard
manifolds possesses many nice properties: For example, any
two points inM can be joined by a unique geodesic. In this
case, the exponential map is a global diffeomorphism and
dðpp; qqÞ ¼ kExp�1pp qqkpp. One example of Hadamard manifold is
the manifold of symmetric positive definite matrices. Moti-
vated readers can consult [45] for further details of manifolds
and differential geometry.

2.2 Nonsmooth Analysis on Riemannian Manifolds

Given an extended real-valued function s :M! R [ fþ1g
we define its domain by dom s :¼ fpp 2 M : sðppÞ < þ1g
and its epigraph by epis :¼ fðpp;bÞ 2 M�R : sðppÞ � bg. We
say that s is a lower semicontinuous function if epis is
closed, and is proper if dom s 6¼ ; and sðppÞ > �1 for all
pp 2 dom s. Proper and lower semicontinuous (PLS) func-
tions play important roles in optimization, since it guaran-
tees the well-definedness of the proximal operator. In
particular, given pp and � > 0, the proximal map defined as

proxs�ðppÞ :¼ argmin
zz

sðzzÞ þ �

2
kzz� ppk

� �
;

is well-defined when s is PLS and inf sðzzÞ > 0. In Section 3,
we will see that the objective function in our approach is a
PLS. Moreover, we have the following definition of (sub)dif-
ferential of PLS functions on manifolds.

Definition 1 ([46]). Let s be a PLS function, then

� the Fr�echet subdifferential of s at any pp 2 dom s,
denoted as @̂sðppÞ, is defined as the set of all vv 2 TppM
which satisfies

lim
qq 6¼pp

inf
qq!pp

sðqqÞ � sðppÞ � vv; g 0ð0Þh i
dðpp; qqÞ 	 0;

for geodesic g joining gð0Þ ¼ pp and gð1Þ ¼ qq. When
pp =2 dom s, we set @̂sðppÞ ¼ ;.

� the (limiting) subdifferential of s at any pp 2 M,
denoted as @sðppÞ, is defined as

@sðppÞ ¼ fvv 2 TppM : 9ðppk; sðppkÞÞ ! ðpp; sðppÞÞ;
9vvk 2 @̂sðppkÞ s:t: Pgkð0Þgkð1ÞðvvkÞ ! vvg;

where gk is the geodesic joining ppk and pp.
� pp 2 M is a critical point of s if 0 2 @sðppÞ. We denote

the set of critical points of s by crit s. That is

crit s ¼ fxx 2 M : 0 2 @sðxxÞg:

If pp is a local minimizer of s then by the Fermat’s rule
0 2 @sðppÞ. If s is differentiable, then its subdifferential
reduces to a unique gradient, denoted as grads, which is a
vector field satisfying gradsðppÞ; vvh ipp¼ vvðsÞ for all vv 2 TppM
and pp 2 M. Here vvðsÞ denotes the directional derivative of
s in the direction vv. In this case @sðppÞ ¼ fgradsðppÞg. More-
over, we have the following definition of Lipschitz gra-
dients for smooth functions on manifolds:

Definition 2 ([47]). Let s :M! R be a continuously differen-
tiable function and L > 0. s is said to have L-Lipschitz gradi-
ent if, for any pp; qq 2 M and any geodesic segment g : ½0; r� !
M joining pp and qq, then

k@sðgðtÞÞ � Pgð0ÞgðtÞ@sðppÞkgðtÞ � LlðtÞ; 8t 2 ½0; r�;

where gð0Þ ¼ pp, Pgð0ÞgðtÞ is the parallel transport along g from
pp to gðtÞ, and lðtÞ denotes the length of the segment between pp
and gðtÞ. In addition, ifM is a Hadamard manifold, then the
last inequality becomes

k@sðgðtÞÞ � Pgð0ÞgðtÞ@sðppÞkgðtÞ � Ldðpp; gðtÞÞ:

Since s is continuously differentiable, @sðgðtÞÞ and @sðppÞ
are the unique tangent vectors at gðtÞ and pp, respectively.
Parallel transport thus becomes necessary to move them
onto the same tangent space. Note in general, the right hand
sides of the two inequalities above are different. This is due
to the fact that for non-Hadamard manifolds, geodesic
between two points is usually not unique. Since dðpp; gðtÞÞ is
defined as the infimum length of geodesic segments
between pp and gðtÞ, it could be smaller than lðtÞ, which is

2. Roughly speaking, a connection acts as a generalization of direc-
tional derivative that connects tangent spaces of nearby points and pro-
vides a consistent manner of transporting tangent vectors from one
point to another along geodesic curves. A manifold may have many
connections. Levi-Civita connection, also called Riemannian connec-
tion, is a unique connection that is symmetric and compatible with the
Riemannian metric.

446 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 41, NO. 2, FEBRUARY 2019



the length of the segment between pp and gðtÞ along a given
geodesic g. For Hadamard manifolds on the other hand,
there exists a unique geodesic between any two points,
hence dðpp; gðtÞÞ ¼ lðtÞ always holds.

2.3 Kurdyka–ºojasiewicz (K-L) Property on
Riemannian Manifolds

The Kurdyka–ºojasiewicz (K-L) property plays a crucial
role in nonsmooth analysis [48], [49]. In this section we
extend the K-L property from euclidean spaces to Rieman-
nian manifolds. To do this, we need to introduce some basic
notations. If A is a subset ofM, then the distance between
xx 2M and A is defined by

distðxx;AÞ :¼ inffdðxx; yyÞ : yy 2 Ag;
where A is nonempty, and distðxx;AÞ ¼ þ1 for all xx 2 M
when A is empty. For a fixed xx 2 M, the open ball neighbor-
hood of xx with radius h is defined as Bðxx; hÞ :¼ fyy 2M :
dðxx; yyÞ < hg.
Definition 3. Given real scalars a, b, and PLS function s, we

define

½a � s � b� :¼ fxx 2M : a � sðxxÞ � bg:
We define similarly ½a < s < b�.
Now, we define the K-L property.

Definition 4 ([49]). Let s :M! R [ fþ1g be a PLS func-
tion. The function s is said to have K-L property at �xx 2 dom s

if there exists h 2 ð0;1�, a neighborhood U of �xx and a continu-
ous concave function f : ½0; hÞ ! Rþ such that

(i) fð0Þ ¼ 0, f is continuously differentiable on ð0; hÞ and
f0ðsÞ > 0 for all s 2 ð0; hÞ;

(ii) the following K-L inequality holds

f0ðsðxxÞ � sð�xxÞÞdistð0; @sðxxÞÞ 	 1;

8xx 2 U \ ½sð�xxÞ < s < sð�xxÞ þ h�.
We call s a K-L function if it has K-L property at each point

of dom s.

The K-L property basically asserts that function s can be
made sharp by a reparameterization of its values using f. In
particular, when s is differentiable and �xx is critical, i.e.,
@sð�xxÞ ¼ 0, we can define reparameterization fðxxÞ :¼ fðsðxxÞ �
sð�xxÞÞ, then the K-L inequality becomes k@fðxxÞk 	 1, which
avoids flatness around �xx. This geometrical feature plays a
critical role in proving that the sequence generated by our
algorithm converges to a critical point. In Proposition 4 of
the supplementary, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPAMI.2017.2776260, we also establish K-L
property in the neighborhood of non-critical points. K-L func-
tions are ubiquitous in a wide range of applications, includ-
ing for example semi-algebraic, subanalytic, semiconvex,
uniformly convex, and log-exp functions [48], [49].

2.4 Multivariate Linear Regression with Gross
Errors

Given a matrix representation of N observations X 2 RN�d,
and the corresponding m-dimensional response matrix

Y 2 RN�m, one of the central problems in linear regression is
to accurately estimate the regressionmatrix V 2 Rd�m from

Y ¼ XV 
 þ Z; (1)

with Z 2 RN�m being the stochastic noise. In most of exist-
ing work regarding linear regression, Z is assumed to be
composed of entries following normal distribution with
zero mean. However, when the response Y is subject to pos-
sible gross error, the estimated regression matrix deviates
significantly from the true value and becomes unreliable. To
deal with this problem, several recent works [12], [13], [14]
suggest to consider model

Y ¼ XV 
 þG
 þ Z; (2)

where G
 2 RN�m is used to explicitly characterize the gross
error component. As in practice only a subset of responses
are corrupted by gross error, G
 is a sparse matrix whose
nonzero entries are unknown and magnitudes can be arbi-
trarily large. Moreover, this model can as well be applied to
deal with the case where some entries of Y are missing. A
commonly used paradigm of estimating ðV 
; G
Þ is by solv-
ing convex optimization problem

min
V;G

1

2
kY �XV �Gk2F þ �RvðV Þ þ rRgðGÞ; (3)

where � > 0 and r > 0 are tuning parameters, and Rv and
Rg are regularization terms of V and G, respectively. Some
frequently used regularization norms include ‘1 norm k � k1
which is the summation of the absolute value of all entries,
and ‘1;2 norm which is the summation of ‘2 norm of rows of
a matrix. For example, in [14] the authors propose to use
RvðV Þ ¼ kV k1;2 and RgðGÞ ¼ kGk1.

3 OUR APPROACH

Consider a set of training examples fðxxi; yyiÞgNi¼1, where yyi
lies on Riemannian manifold M and xxi 2 Rd is the associ-
ated independent variable. We propose a novel extension of
the modeling approach of Eq. (2) for euclidean spaces to
deal with the more general curved spaces, as follows.

3.1 From Euclidean Spaces to Manifolds

The Model of Eq. (2) can be reformulated as Y �G
 ¼
XV 
 þ Z. Denote Y c :¼ Y �G
, which can be interpreted as
corrected response after removing the gross error. Now the
model of Eq. (2) can be reformulated as standard linear
regression in Eq. (1) with response Y c. With this in mind,
we proceed to extend the aforementioned idea to regression
on manifolds. For each manifold-valued response yyi, denote
as yyci its corrected version. Different from the euclidean
space setting where Y c can be obtained from Y simply by a
translation, we need to ensure that yyci remains on the mani-
fold. This is accomplished by the exponential map
yyci ¼ ExpyyiðggiÞ with the gross error ggi 2 TyyiM over each of
the training examples, i 2 f1; . . . ; Ng. Note that whenM is
an euclidean space, the exponential map reduces to addi-
tion, as ExpyyiðggiÞ ¼ yyi þ ggi. In other words, translation in
the affine space is a special case of exponential map in the
more general curved space.

ZHANG ETAL.: MULTIVARIATE REGRESSION WITH GROSS ERRORS ON MANIFOLD-VALUED DATA 447

http://doi.ieeecomputersociety.org/10.1109/TPAMI.2017.2776260
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2017.2776260


As illustrated in Fig. 1, we first obtain the corrected mani-
fold-valued response yyci ¼ ExpyyiðggiÞ. Then the relationship
between xxi and yyci can be modeled as

ExpyyiðggiÞ ¼ Exp Exp pp;
Xd
j¼1

xj
ivvj

 !
; zzi

 !
; (4)

where pp 2 M and fvvjgdj¼1 2 TpM is a set of tangent vectors
at pp, xj

i is the jth component of xxi, and zzi is a tangent vector
at Expðpp;Pd

j¼1 x
j
ivvjÞ. Our model can be viewed as a generali-

zation of linear regression model of Eq. (1) from flat spaces
to manifolds, where pp denotes the intercept that is in anal-
ogy to the origin 0 in the flat space as in Eq. (1), and expo-
nential map corresponds to the addition operator in Eq. (1).

To measure the training loss, we use

E pp; fvvjg; fggig
� �

:¼ 1

2

X
i

d2 ExpyyiðggiÞ;Exppp
X
j

xj
ivvj

 ! !
;

to denote the sum-of-squared Riemannian distance between
the corrected data yyci ¼ ExpyyiðggiÞ and the prediction ŷyi ¼
Expppð

P
j x

j
ivvjÞ, and let Rv and Rg denote two regularization

terms controlling the magnitude of fvvjg and fggig, respec-
tively. The problem considered in our paper can now be for-
mulated as the following optimization problem

ð~pp; f~vvjg; f~gggiÞ ¼ argmin
ðpp;fvvjgÞ2M�TM
fggig2TyyiM

E pp; fvvjg; fggig
� �

þ �Rv fvvjg
� �þ rRg fggigð Þ;

(5)

where � 	 0 and r 	 0 are regularization parameters.
Without loss of generality, we consider regularization terms

Rv fvvjg
� �

:¼Pd
j¼1 vvj
�� ��

pp
and Rg fggigð Þ :¼PN

i¼1 ggik kyyi , with

�k kpp and �k kyyi being the norm of tangent vectors at pp and yyi,

respectively. There are two reasons for the choice ofRv: First,
it enables problem of Eq. (5) to contain themultivariate linear
regression problems with feature selection in euclidean
spaces as special cases, as shown in Examples 1 and 2 below;
Second, in many applications one may collect a large set of
possible variables fxxjg for each response, and want to find a
compact subset of base tangent vectors from fvvjg and the cor-
responding fxxjg that are significant to the manifold-valued
output yy. The choice of Rg is based on the assumption that
gross errors are usually sporadically spread among data.
Now, the optimization problem becomes

min
ðpp;fvvjgÞ2M�TM

ggi2TyyiM

E pp; fvvjg; fggig
� �þ �

Xd
j¼1

vvj
�� ��

pp
þ r

XN
i¼1

ggik kyyi : (6)

3.2 Connections to Existing Works

We would like to point out that model in Eq. (6) includes as
special cases a number of related research works on gross
error or on manifold-valued regression. In this section, we
provide three such examples.

Example 1. WhenM¼ Rm, we can establish a connection
between the model of Eq. (6) and the robust multi-task
regression studied in [14]. Specifically, instead of optimiz-
ing Eq. (6) over pp 2 Rm we select pp ¼ 0, resulting in

min
vvj;ggi2Rm

1

2

XN
i¼1

yyi �
Xd
j¼1

xxj
ivvj þ ggi

�����
�����
2

þ�
Xd
j¼1

vvj
�� ��þ r

XN
i¼1

ggik k;

which can be rewritten as

min
V;G

1

2
Y �XV �Gk k2F þ � Vk k1;2 þ r Gk k1;2; (7)

where k � k becomes the usual euclidean norm, Y ¼
½yy1; . . . ; yyN �> 2 RN�m, X ¼ ½xx1; . . . ; xxN �> 2 RN�d, V ¼ ½vv1; . . . ;
vvd�> 2 Rd�m and G ¼ ½gg1; . . . ; ggN �> 2 RN�m. The resulting
model of Eq. (7) is exactly the one considered in [14]
except that regularization term Gk k1 in [14] is replaced
by Gk k1;2 here.

Example 2. IfM¼ Rm, we can show by Fermat’s rule that
the optimal solution ~pp is given by ~pp ¼ 1

N

PN
i¼1ðyyi þ ggi �P

j xx
j
ivvjÞ. By substituting ~pp into problem of Eq. (6)

and assuming fðxxi; yyiÞg has empirical mean 0, that is,PN
i¼1 xxi ¼ 0 and

PN
i¼1 yyi ¼ 0, the optimization problem of

Eq. (6) reduces to

min
vvj;ggi2Rm

1

2

XN
i¼1

yyi �
Xd
j¼1

xxj
ivvj þ ggi �

1

N

XN
i¼1

ggi

�����
�����
2

þ �
Xd
j¼1

vvj
�� ��þ r

XN
i¼1

ggik k;

which can be reformulated as

min
V;G

1

2
kY �XV � �Gk2F þ �kV k1;2 þ rkGk1;2

s:t: �G ¼ I � 1

N
11N11

>
N

� �
G;

(8)

where 11N 2 RN is a column vectorwith all entries being 1.

The difference between Examples 1 and 2 lies in that the
former is obtained from selecting pp ¼ 0 while the latter is
from optimizing pp which exactly follows model of Eq. (6).
The resulting models are quite similar except that model of
Eq. (8) needs to center variable G.

Example 3. If we let � ¼ 0 and r ¼ þ1, then optimization
problem of Eq. (6) reduces to

min
ðpp;fvvjgÞ2M�TM

1

2

XN
i¼1

d2
�
yyi;Exppp

	Xd
j¼1

xj
ivvj


�
;

which recovers exactly the model considered in [2]. In
this regard, the MGLM model in [2] is a special case of
our model.

3.3 PALM for Optimization on Hadamard Manifolds

In this section, we propose a new algorithm to solve optimi-
zation problem of Eq. (6), which is actually a nonsmooth opti-
mization problem on Hadamard manifolds. As explained in
details in Section 3.4, problem of Eq. (6) admits the form

min
xx2M1;yy2M2

Cðxx; yyÞ :¼ fðxxÞ þ gðyyÞ þ hðxx; yyÞ; (9)
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whereM1 andM2 are Hadamard manifolds, f :M1 ! R [
fþ1g and g :M2 ! R [ fþ1g are PLS functions, and
h :M1 �M2 ! R is a smooth function.

Many existing optimization techniques are developed to
work with euclidean spaces, thus not directly applicable to
curved manifolds. Meanwhile, an increasing amount of
attention has been drawn to the field of optimization on
manifolds [50]. For smooth optimization, classical optimiza-
tion techniques, such as gradient, conjugate gradients, and
trust-region methods, have been generalized to the mani-
fold setting [50], [51], [52], [53], which are however not suit-
able for the nonconvex and nonsmooth optimization
manifold-based problem of Eq. (6). For nonsmooth optimi-
zation, there exist many prior works [54], [55], [56], [57].
Unfortunately they either cannot exploit the composition
structure in Eq. (9) (e.g., [54], [55], [57]), or fail to guarantee
convergence (e.g., [56]).

Recently, a proximal alternating linearized minimization
algorithm has been proposed in [16] for optimization prob-
lem of Eq. (9) withM1 ¼ Rn andM2 ¼ Rm. Inspired by the
success of PALM in the euclidean setting, in what follows
we propose PALMR, an inexact proximal alternating mini-
mization algorithm for problem of Eq. (9).

We alternately solve the following two proximally linear-
ized subproblems

xxkþ1 2 argmin
xx2M1

fðxxÞ þ Exp�1
xxk
xx; @xxhðxxk; yykÞ� �

þ ck
2
d2M1
ðxxk; xxÞ;

(10)

yykþ1 2 argmin
yy2M2

gðyyÞ þ Exp�1
yyk
yy; @yyhðxxkþ1; yykÞ

D E
þ dk

2
d2M2
ðyyk; yyÞ;

(11)

where ck ¼ m1L1ðyykÞ and dk ¼ m2L2ðxxkþ1Þ with m1 > 1,

m2 > 1 and L1ðyykÞ, L2ðxxkþ1Þ being the Lipschitz constants
of @xxh and @yyh, respectively, as to be explained in Assump-
tion 1. In particular, by exploiting the fact that M1 is a
Hadamard manifold on which any two points can be joined
by a unique geodesic, we have a one-to-one mapping
between vv 2 TxxkM1 and xx 2 M1 such that xx ¼ ExpxxkðvvÞ,
vv ¼ Exp�1

xxk
xx and dM1

ðxxk; xxÞ ¼ kvvk. Thus, a simple substitu-
tion reformulates Eq. (10) as

vvk 2 argmin
vv2TxxkM1

f � Expxxkð ÞðvvÞ þ vv; @xxhðxxk; yykÞ� �þ ck
2
kvvk2;

or equivalently

vvk 2 argmin
vv2TxxkM1

f � Expxxkð ÞðvvÞ þ ck
2
kvvþ 1

ck
@xxhðxxk; yykÞk2;

which becomes an optimization problem in linear space

TxxkM1, and as a result, we have xxkþ1 ¼ ExpxxkðvvkÞ. Since f is
PLS satisfying infxx2M fðxxÞ > �1 and Expxxk is smooth, it
follows that the composite function f � Expxxk is PLS and
infvv2TxxkM f � ExpxxkðvvÞ > �1 which, together with Theo-

rem 1.25 of [58], implies that vvk is well-defined. Moreover,

the above optimization problem for vvk is called proximity

operator [59], denoted as

vvk ¼ prox
f�Expxxk
ck � 1

ck
@xxhðxxk; yykÞ

� �
:

Similar claims apply to problem of Eq. (11), implying thewell-

definiteness of xxkþ1 and yykþ1. Solving Eqs. (10) and (11) alter-

nately yields the algorithmPALMRoutlined inAlgorithm 1.

Algorithm 1. (PALMR): PALMonRiemannianManifolds

Input: m1 > 1 and m2 > 1.
Output: the sequence fðxxk; yykÞgk2N.
1: Initialization: ðxx0; yy0Þ and k ¼ 0.
2: while stopping criterion not satisfied do
3: Set ck ¼ m1L1ðyykÞ and compute xxkþ1 as in Eq. (10).
4: Set dk ¼ m2L2ðxxkþ1Þ and compute yykþ1 as in Eq. (11).
5: end while

To analyze the convergence of PALMR, we need the fol-
lowing assumptions.

Assumption 1. Cðxx; yyÞ satisfies the following conditions:
(i) inf f > �1, inf g > �1 and infC > �1.
(ii) For any fixed yy, the function xx! hðxx; yyÞ has

L1ðyyÞ-Lipschitz gradient. Likewise, for any fixed xx, the
function yy! hðxx; yyÞ has L2ðxxÞ-Lipschitz gradient.
Moreover, there exist real scalars ��i ; �

þ
i > 0 for

i ¼ 1; 2, such that

inf
k2N
fL1ðyykÞg 	 ��1 ; inf

k2N
fL2ðxxkÞg 	 ��2 ;

sup
k2N
fL1ðyykÞg � �þ1 ; supk2NfL2ðxxkÞg 	 �þ2 :

(iii) @h is Lipschitz continuous on bounded subset of
M1 �M2. More specifically, for bounded subset
A1 �A2 2 M1 �M2, there exists constant L > 0
such that for all ðxxi; yyiÞ 2 A1 �A2, i ¼ 1; 2, we have

k@xxhðxx1; yy1Þ � @xxhðxx1; yy2Þk � LdM2
ðyy1; yy2Þ;

k@yyhðxx1; yy1Þ � @yyhðxx2; yy1Þk � LdM1
ðxx1; xx2Þ:

(iv) Cðxx; yyÞ has the Kurdyka–ºojasiewicz (K-L) property
on Hadamard manifolds.

Assumption (i) establishes that proximal operators in
Eqs. (10) and (11) are well-defined, leading to the well-defin-
edness of algorithm PALMR. Assumption (ii) provides that
h is locally block-Lipschitz continuous, and the boundedness
of Lipschitz constants are to ensure sufficient decrease of
objective function value over iterations. Assumption (iii)
considers the partial gradients of h being Lipschitz continu-
ous, which would be used to derive lower bound for the iter-
ation gap dðxxkþ1; xxkÞ + dðyykþ1; yykÞ. Assumption (iv)
guarantees that fðxxk; yykÞg form a Cauchy sequence.

Under Assumption 1 we have the following theorem,
whose proof is provided in the supplementary, available
online.

Theorem 1. Suppose Assumption 1 holds. Let fðxxk; yykÞgk2N be a
sequence generated by PALMR. Then either the sequence
fdM1�M2

ððxx0; yy0Þ; ðxxk; yykÞÞg is unbounded or the following
assertions hold:

1) The sequence fðxxk; yykÞgk2N has finite length, i.e.,P
k dM1

ðxxkþ1; xxkÞ < 1 and
P

k dM2
ðyykþ1; yykÞ < 1.
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2) The sequence fðxxk; yykÞgk2N converges to a critical
point ðxx
; yy
Þ ofC.

Based on Theorem 1, we know that the sequence
fðxxk; yykÞg generated by PALMR converges to a critical point
of C, provided the boundedness of the sequence. As shown
in [16], there are many scenarios where such assumption
holds. For example, when functions f and g are convex and
hðxx; yyÞ ¼ kAxx�Byyk where A and B are matrices, then the

sequence fðxxk; yykÞg is bounded.
In what follows, we specifically investigate the dedicated

realization of PALMR to solve the optimization problem of
Eq. (6). To simplify the notation, the resulting algorithm is
also referred to as PALMR when there is no confusion.

3.4 Applying PALMR to Optimization Problem of
Eq. (6)

Optimization problem of Eq. (6) in our context can be refor-
mulated as

min
ðpp;fvvjgÞ2M1

fggig2M2

Eðpp; fvvjg; fggigÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
hðpp;fvvjg;fggigÞ

þ�
Xd
j¼1

vvj
�� ��

pp|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
fðpp;fvvjgÞ

þ r
XN
i¼1

ggik kyyi|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
gðfggigÞ

;

which is of the form in Eq. (9) with M1 ¼M� TM and
M2 ¼ Tyy1M� � � � � TyyNM. To apply PALMR to solve prob-
lem of Eq. (6), we need to evaluate the gradients of Eðpp;
fvvjg; fggigÞ. To simplify the notation, we further denote the
prediction ŷyi :¼ Expppð

P
j x

j
ivvjÞ, as well as the derivatives of

the exponential map with respect to pp and vv as dppExpppðvvÞ
and dvvExpppðvvÞ, respectively. Now, the partial gradient of E
with respect to pp amounts to

@ppE ¼ �
X
i

dppExppp
X
j

xj
ivvj

 ! !y
Exp�1ŷyi

yyci 2 TppM; (12)

where ð�Þy is the adjoint derivative of the exponential
map [28] defined by

�
mm; dppExpppðvvÞww

�
ExpppðvvÞ ¼

��
dppExpppðvvÞ

�y
mm;

ww
�
pp
with mm 2 TExpppðvvÞM, ww 2 TppM. The adjoint derivative

operator maps Exp�1ŷyi
ðyyciÞ from the tangent space of ŷyi to the

tangent space of pp. Thus @ppE 2 TppM. Similarly, the partial

gradient ofEwith respect to vvj and ggi are given by

@vvjE ¼ �
X
i

xji dvvExppp
X
j0

xj0
i vvj0

0
@

1
A

0
@

1
AyExp�1ŷyi

yyci 2 TppM; (13)

and

@ggiE ¼ �ðdvvExpyyiðggiÞÞ
yExp�1yyc

i
ŷyi 2 TyyiM; (14)

respectively.
The PALMR algorithm for problem of Eq. (6) proceeds as

follows: To update ðpp; fvvjgÞ, we let @ppE
k :¼ @ppEðppk; fvvkjg;

fggki gÞ and @vvjE
k :¼ @vvjEðppk; fvvkjg; fggki gÞ and solve

ðppkþ1; fvvkþ1j gÞ ¼ argmin
pp;fvvjg

Exp�1
ppk
pp; @ppE

k
D E

þ ck
2
d2ðpp; ppkÞ

þ
Xd
j¼1

PppppkðvvjÞ � vvkj ; @vvjE
k

D E	
þ � vvj

�� ��
pp
þ ck

2
kPppppkðvvjÞ � vvkjk2



;

where Pppppk is the parallel transport from pp to ppk along the
unique geodesic between them. Due to the constraint
vv 2 TppM, it is difficult to solve pp and vvj together. Instead,
the above subproblem is solved by alternating minimization
over pp and vvj. Specifically, to update pp, we solve

ppkþ1 ¼ argmin
pp2M

Exp�1
ppk
pp; @ppE

k
D E

þ ck
2
d2ðpp; ppkÞ;

which, by a change of variable uu ¼ Exp�1
ppk
pp, is equivalent to

solving

uuk ¼ argmin
uu2TppkM

uu; @ppE
k

� �þ ck
2

uuk k2ppk ¼ �
1

ck
@ppE

k;

and ppkþ1 ¼ ExpppkðuukÞ.
To update fvvjg, we need to first obtain v̂vkj by

v̂vkj ¼ argmin
vvj2TppkM

vvj � vvkj ; @vvjE
k

D E
þ ck

2
vvj � vvkj

��� ���2
ppk
þ � vvj

�� ��
ppk

¼ argmin
vvj2TppkM

1

2
vvj � sskj

��� ���2
ppk
þ �

ck
vvj
�� ��

ppk
;

where sskj ¼ vvkj � 1
ck
@vvjE

k. Notice that the above optimization

problem have closed form solution of

v̂vkj ¼ prox
�k kppk
�
ck

ðsskj Þ :¼ 1� �

ck sskj

��� ���
ppkþ1

0
B@

1
CA
þ

sskj ;

where ðaÞþ ¼ a if a > 0 and 0 otherwise. Since fv̂vkjg lie on

the tangent space at ppk, we need to parallel transport them

to Tppkþ1M by vvkþ1j ¼ Pppkppkþ1ðv̂vkj Þ along the unique geodesic

between ppk and ppkþ1.
Similarly, update fggig by

ggkþ1i ¼ arg min
ggi2TyyiM

1

2
ggi � ttki
�� ��2

yyi
þ r

ek
ggik kyyi

¼ 1� r

ek ttki
�� ��

yyi

 !
þ
ttki ;

where ttki ¼ ggki � 1
ek
@ggiEðppkþ1; fvvkþ1j g; fggki gÞ.

Now, we are ready to present our algorithm for multivar-
iate regression with grossly corrupted manifold-valued
data, as shown in Algorithm 2. Notice that when letting
� ¼ 0 and r ¼ þ1, Algorithm 2 alternately updates the val-
ues of pp and vvj via three steps: (1) ppkþ1 ¼ Expppkð� 1

ck
@ppE

kÞ,
(2) v̂vkj ¼ vvkj � 1

ck
@vvjE

k, (3) vvkþ1j ¼ Pppkppkþ1ðv̂vkj Þ, which recovers

the gradient descent method proposed in [2].

3.5 Implementation of Algorithm 2

During each iteration of Algorithm 2, the partial derivatives
@ppE, @vvjE and @ggiE of Eqs. (12), (13), and (14) are evaluated.
Their detailed derivations are provided in Section 3 of the
supplementary file, available online. Nevertheless, these
terms could be practically intractable to compute for some
manifolds, due to the presence of adjoint derivatives of
the exponential map. As a remedy to this issue, we adopt the
variational technique of [2], [60] for computing derivatives,
which basically replaces the adjoint derivative operators by
parallel transports
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@ppE � �
X
i

PŷyippðExp�1ŷyi
yyciÞ; (15)

@vvjE � �
X
i

xj
iPŷyippðExp�1ŷyi

yyciÞ; (16)

@ggiE � �Pyyc
i
yyiðExp�1yyc

i
ŷyiÞ: (17)

One advantage of such approximation is that for some spe-
cial manifolds, including manifold of SPD matrices SþþðnÞ,
parallel transports have analytical expressions and can be
computed directly. For general manifolds that have no ana-
lytical expressions for parallel transports, approximation
approaches such as Schild’s ladder approximation [61], [62]
can be used. The method approximates parallel transport
by constructing geodesic parallelograms, which requires
three exponential maps and two inverse exponential maps,
as shown in Fig. 2.

Algorithm 2. PALMR for Multivariate Regression with
Gross Error on Manifolds

Input: fðxxi; yyiÞg, � 	 0, r 	 0, m1 > 1, m2 > 1, and k ¼ 0.
Output: ~pp, f~vvjg, and f~gggi.
1: Initialize pp, fvvjg, and fgggi.
2: while stopping criterion not satisfied do
3: ppkþ1 ¼ Expppkð� 1

ck
@ppE

kÞ.
4: v̂vkj ¼ proxRv

�
dk

ðsskj Þ.
5: vvkþ1j ¼ Pppkppkþ1ðv̂vkj Þ.
6: ggkþ1i ¼ prox

Rg
r
ek

ðttki Þ.
7: end while
8: return ~pp ppkþ1, ~vvj  vvkþ1j and ~ggi  ggkþ1i .

4 EXPERIMENTS

In this section, we empirically evaluate the performance of
the proposed approach (i.e., PALMR) in working with syn-
thetic and real DTI data sets, which lies in the Sþþð3Þ mani-
fold of SPD matrices. Throughout all experiments, we fix
� ¼ 0:1 and choose the optimal r from set f0:05; 0:1; . . . ;
0:95; 1g by a validation process using a validation data set
consisting of the same number of data points as the testing
data. As our algorithm is iterative by nature, in practice it
stops if either of the two stopping criteria is met: (1) the dif-
ference between consecutive objective function values is
below 1e-5, or (2) maximum number of iterations (100) is
reached.

4.1 Synthetic DTI Data

Synthetic DTI data sets are constructed with known ground-
truths and gross errors as follows: First, we randomly gener-
ate pp 2 Sþþð3Þ, symmetric matrices fvvjgdj¼1 
 Sð3Þ and

fxxigNi¼1 
 Rd where entries of xxi are sampled from standard

normal distributionNð0; 1Þ. Then the ground-truth DTI data

is obtained as yyti :¼ Expppð
Pd

j¼1 x
j
ivvjÞ. This is followed by DTI

data with stochastic noise as yysi :¼ Expyyt
i
zzið Þ, where zzi is a

random matrix in Sð3Þ with its entries being sampled from

Nð0; 1Þ and satisfies zzik kyyt
i
� 0:1. Meanwhile, the gross errors

are generated by a two-step process: (a) Randomly select an

index subset Ig from f1; 2; . . . ; Ng, such that jIgj ¼ b 
N with

0 � b � 1. (b) For i 2 Ig, its grossly corrupted response is

attained by yyi ¼ Expyys
i
ggið Þ, where ggi is a random matrix in

Sð3Þ satisfying ggik kyys
i
¼ sg. The rest of the training data

remain unchanged, i.e., yyi ¼ yysi for i =2 Ig . Thus, among allN

manifold-valued data, the percentage of grossly corrupted

data is b. With the same pp and fvvjg, we also generateNt pairs

of testing data fðxxtesti ; yytesti Þg and validation data.
We first conduct experiments on a data set with d ¼ 2,

N ¼ 50, b ¼ 40% and sg ¼ 5, and compared with the multi-
variate general linear model (MGLM) of [2] which has not
considered gross error. Training samples are displayed in
Fig. 3, where we also show the predictions of PALMR and
MGLM on the training data. Visual results of PALMR and
MGLM on 20 testing data and training data correction by
PALMR are presented in Figs. 4a and 4b, respectively. Col-
lectively, the results suggest that PALMR indeed is capable
of correctly identifying the gross errors during training. This
enables the delivery of a better-behavedmodel. Fig. 4b shows
that PALMR can effectively recover the original data (i.e.,
true data without gross error). It also produces improved
regression results on testing data as displayed in Fig. 4a.

Next we quantitatively evaluate the effect of varying the
internal parameters of PALMR,which include the number of
independent variables d, the number of training data N ,
magnitude of gross error sg, and percentage of grossly cor-
rupted training data b. To see the effect of one specific
parameter, synthetic DTI data are generated by varying this
parameter value while keeping rest parameters at their

Fig. 2. An illustration of the Schild’s ladder approximation of parallel
transport of the tangent vector vv from pp to qq. It consists of four steps: (1)
Obtain pp1; (2) Compute tangent vector uu ¼ Exp�1pp1

ðqqÞ and take half step

along uu to arrive at pp2; (3) Compute tangent vector ww ¼ Exp�1pp ðpp2Þ and
take two steps along ww to have pp3; (4) Compute tangent vector joining qq
and pp3 PppqqðvvÞ ¼ Exp�1q ðpp3Þ. If the distance between pp and qq is large, the
above process can be iterated over points along the geodesic path join-
ing pp and qq.

Fig. 3. Visualization of the synthesized training samples and the predic-
tions of PALMR and MGLM. The two row vectors on the top give the val-
ues of X generating the data, red boxes identify the samples with gross
error. The rows indexed by PALMR and MGLM display the predictions of
corresponding method on the training data. All objects are viewed
directly from overhead. Best viewed in color.
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default values. The following default values are used: d ¼ 2,
N ¼ 50, b ¼ 20%, and sg ¼ 1. To evaluate performance of
PALMR, the following mean squared geodesic error

(MSGE) metrics are considered:MSGEtrain :¼ 1
N

P
i d

2ðyyi; ŷyiÞ,
MSGEtest :¼ 1

Nt

P
i d

2ðyytesti ; ŷytesti Þ,MSGEpp :¼ d2ðpp; ~ppÞ,MSGEV :¼
1
d

P
j kvvj � P~ppppð~vvjÞk2pp, andMSGEG :¼ 1

N

P
i kExp�1yyi

ðyysi Þ � ~ggik2yyi ,
where ~pp, ~vvj and ~ggi are the outputs of Algorithm 2. The data

correction error is measured as 1
N

P
i dðyysi ; yyciÞ2. In addition,

we say that gross error ggi is correctly identified if both ggi and

~ggi are either zero or nonzero, and compute the rate RateG :¼

number of correctly identified gross errors=N . Results aver-
aged over 10 repetitions are presented in Fig. 5, where each
column corresponds to the effect of one parameter and each
row corresponds to the results using onemetric.

From Fig. 5, we have four observations: (1) PALMR has
lower MSGE for all values of d, and our correction performs
well on training data, cf. column Fig. 5a. (2) PALMR has
large advantage over MGLM for all values of training size
(N) and magnitude of gross error (sg), cf. columns Figs. 5b
and 5c. (3) PALMR can handle training data with up to
80 percent being grossly corrupted, and delivers better

Fig. 4. Visual results of PALMR and MGLM. (a) Predictions for 20 testing data. (b) From top to bottom: Training samples corrupted by gross error (i.e.,
samples marked by red boxes in Fig. 3), correction results of PALMR, and the true data without gross error. Best viewed in color.

Fig. 5. Box plots showing the effect of four different parameters: The number of tangent basis d, the number of training dataN, the magnitude of gross
error sg, and the percentage of grossly corrupted training data b, corresponding to four columns accordingly. Plots in each row show results using the
samemetric. SinceMGLMdoes not consider gross error, the last two rows only show results of PALMR. See text for details. Best viewed in color.
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result than MGLM. On the other hand, the performance is
slightly worse if more than 80 percent of training data are
corrupted, cf. column Fig. 5d. (4) PALMR can reliably iden-
tify most of the gross errors. Still it may not always correctly
recover the true value of the error. This is evidenced in the
last row of Fig. 5, where the MSGE on G increases as sg or b
increases, and our correction error starts to stand out (i.e.,
being larger than both prediction errors of PALMR and
MGLM) when over b ¼ 30% of the training samples are
grossly corrupted. We believe this is acceptable as in most
practical situations, only small fraction of the training exam-
ples would be contaminated by gross errors.

Finally, we compare the proposed method PALMR and
MGLM with an euclidean multivariate linear regression
model with gross errors described in Eq. (7) of Example 1.
All experimental settings are the same as above except three
aspects: (i) Since the euclidean model can not deal with DTI
tensors directly, for each tensor yy, we vectorize its upper tri-
angle part into a 6-dimensional vector. Therefore, X 2 R50�2

and Y 2 R50�6 in model (7). (ii) Since predictions of the
euclidean model are not guaranteed to lie on the SPD mani-
fold, the geodesic metrics are not applicable. As alternate, we
adopt Frobenious norm distance kyy� ŷykF to measure the
distance between prediction ŷy and ground-truth yy. (iii) We
only investigate the effect of the magnitude of gross errors
and the ratio of gross errors in the training data. Results are
shown in Fig. 6, where the y-axis in each plot denotes the log-
scale of median error over 10 reptitions measured by Frobe-
nious norm. We observe that PALMR achieves the best per-
formance and outporforms the euclidean model by a large
margin under various settings. MGLM also performs better
than the euclidean model, but when there are large gross
errors in the training data, its advantage disappears, as can
be seen in the left plot. These observations are within our
expectation, since the euclidean model does not respect the
intrinsic structure of the DTI data.

4.2 Real DTI Data

In this section, we apply PALMR to examine the effect of
age and gender on human brain white matter. We experi-
ment with the C-MIND database3 released by Cincinnati
Children’s Hospital Medical Center (CCHMC) with the pur-
pose of investigating brain development in children from
infants and toddlers (0 � 3 years) through adolescence (18
years). We use the imaging data of participants who were
scanned at CCHMC at year one and whose age were
between 8 and 18 (2,947 to 6,885 days), consisting of 27
female and 31 male. The DTI data of each subject are first

manually inspected and corrected for subject movements
and eddy current distortions using FSL’s eddy tool [63],
then passed to FSL’s brain extraction tool to delete non-
brain tissue.4 After the pre-processing, we use FSL’s DTIFIT
tool to reconstruct DTI tensors. Finally, all DTIs are regis-
tered to a population specific template constructed using
DTI-TK.5 We investigate six exemplar slices that have been
identified as typical slices by domain experts and have been
also similarly used by many existing works such as [2], [27].
And in particular, we are interested in the white matter
region. At each voxel within the white matter region, the
following multivariate regression model

yy ¼ Expppðvv1 � ageþ vv2 � genderÞ; (18)

is adopted to describe the relation between the DTI data yy
and variables ‘age’ and ‘gender’.

In DTI studies, another frequently used measure of a ten-
sor is fractional anisotropy (FA) [64], [65] defined as

FA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1 � �2Þ2 þ ð�2 � �3Þ2 þ ð�1 � �3Þ2

2ð�2
1 þ �2

2 þ �2
2Þ

s
;

where �1, �2 and �3 are eigenvalues of the tensor. FA is an
important measurement of diffusion asymmetry within a
voxel and reflects fiber density, axonal diameter, and myeli-
nation in white matter. In our experiments, we also com-
pared three models: two geodesic regression models,
MGLM and PALMR, and the FA regression model which
uses FA value to replace tensor yy in Eq. (18). The relative FA
error metric is employed to compare the results of geodesic
regressions and FA regression, as follows: Since the
responses of geodesic regression are tensors, the FA values
of the tensors can be computed. The relative FA error metric
is then evaluated on testing data, which is defined as the
mean relative error between the FA values of the predicted
tensors and the true tensors. Besides this relative FA error
metric, the aforementioned mean squared geodesic error on
testing data as in Section 4.1 is still engaged to compare the
performance of MGLM and PALMR.

4.2.1 Model Significance

To examine the significance of the statistical model of
Eq. (18) considered in our approach, the following hypothe-
sis test is performed. The null hypothesis is H0 : vv1 ¼ 0,
which means, under this hypothesis, age has no effect on
the DTI data. We randomly permute the values of age6

among all samples and fix the DTI data, then apply model
of Eq. (18) to the permuted data and compute the mean
squared geodesic error MSGEperm ¼ 1

N

P
i distðyyi; ŷypi Þ2,

where ŷypi is the prediction of PALMR on the permuted data.
Repeat the permutation T ¼ 1000 times, we get a sequence
of errors fMSGEi

permgTi¼1 and calculate a p-value at each

voxel using p�value :¼ jfi jMSGEi
perm <MSGEtraingj

T . Fig. 7 presents
the maps of voxel-wise p-values for three models using six

Fig. 6. Results of comparing PALMR andMGLMwith euclideanmodel (7)
under different magnitude of gross error (left) and different ratio of gross
error in the training data (right). For each plot, the y-axis denotes the log-
scale of median error over 10 reptitionsmeasured by Frobenious norm.

3. https://cmind.research.cchmc.org

4. http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
5. http://dti-tk.sourceforge.net/pmwiki/pmwiki.php
6. Empirical results investigating the effect of ‘gender’ are provided

in Section 5 of the supplementary file, available online.
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typical slices, and Fig. 8 displays the distribution of p-values
for all six slices collectively.

As shown in Figs. 7 and 8, geodesic regression models
are able to capture more white matter regions with aging
effects than FA regression model. In addition, voxels satisfy-
ing p-value � 0:05 are more spatially contiguous when geo-
desic regression models are used, as can be seen from the
zoom-in plot for each slice in Fig. 7. This may be attributed
to the fact that geodesic regression models preserve more
geometric information of tensor images than that of FA
regression. We also observe that PALMR and MGLM obtain
very similar results. This is to be expected, as both methods
use model of Eq. (18) and adopt geodesic regression on
manifolds. The main difference is that PALMR considers
gross error while MGLM does not, and in this experiment,
there is no gross error in the DTI data.

4.2.2 Model Predictability

We proceed to investigate the predictability of PALMR
when compared with existing methods such as FA regres-
sion and MGLM. For each of the six slices, we randomly
partition our data into 40 training (20 female + 20 male) and
18 testing (7 female + 11 male) data, then train all three
methods on each voxel within the white matter region. To
test the ability of PALMR in handling gross errors, we con-
sider three different experimental settings: (1) No gross
error, where all training data are fully preprocessed as
described at the beginning of Section 4.2; (2) 20 percent
manual gross error, where for each voxel we randomly

select 20 percent of training instances and insert gross error
with magnitude sg ¼ 5; (3) 20 percent registration error,
where 20 percent of the patients in the training data are ran-
domly selected to undergo an incomplete registration proc-
essing. Compared with fully preprocessed data, DTI data
with registration error are obtained by skipping the diffeo-
morphic registration step in DTI-TK. The purpose of

Fig. 7. p-value maps obtained by three methods: FA regression (top), MGLM (middle) and PALMR (bottom). p-value is only illustrated for voxels with
p-value � 0.05. Best viewed in color.

Fig. 8. Distribution of p-values for white matter tensors in all six slices.
The inlet plot shows distribution of p-values over range ½0:1; 1�.

TABLE 1
Median Values of Prediction Errors on All

Six Slices of Testing Data

Metrics Methods No gross

error

20% manual

gross error

20% registration

error

S
li
ce

z
¼

32

Relative FA

error

FA regression 0.9376 1.0414 0.9467

MGLM 0.3223 0.4349 0.1654

PALMR 0.3210 0.3409 0.1316

MSGE
MGLM 0.1475 0.3530 0.1949

PALMR 0.1386 0.2196 0.1508

S
li
ce

x
¼

55

Relative FA

error

FA regression 0.9238 1.0362 0.8688

MGLM 0.3298 0.5089 0.2067

PALMR 0.3279 0.3682 0.1882

MSGE
MGLM 0.1606 0.3631 0.3513

PALMR 0.1602 0.2562 0.2915

S
li
ce

y
¼

64

Relative FA

error

FA regression 0.8822 1.0136 0.9528

MGLM 0.3162 0.4564 0.1917

PALMR 0.3166 0.3665 0.1562

MSGE
MGLM 0.1687 0.3720 0.2449

PALMR 0.1614 0.2843 0.1906

S
li
ce

z
¼

24

Relative FA

error

FA regression 0.8478 1.0066 0.8144

MGLM 0.3570 0.7342 0.2140

PALMR 0.3564 0.5081 0.1581

MSGE
MGLM 0.1227 0.3466 0.2954

PALMR 0.1160 0.2530 0.2445

S
li
ce

x
¼

64

Relative FA

error

FA regression 0.9723 1.0526 0.9067

MGLM 0.2142 0.4053 0.5023

PALMR 0.2114 0.3318 0.4318

MSGE
MGLM 0.1646 0.3663 0.2436

PALMR 0.1639 0.2779 0.2226

S
li
ce

y
¼

45

Relative FA

error

FA regression 0.9715 1.0695 0.9379

MGLM 0.3779 0.5976 0.1739

PALMR 0.3767 0.5319 0.1664

MSGE
MGLM 0.2162 0.4205 0.2928

PALMR 0.2113 0.3780 0.2593

We use two metrics, relative FA error and MSGE, to measure the prediction
error. The best results in each setting are highlighted in bold.
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experimenting on data with registration error is to imitate
the realistic scenario that gross error can be caused by
improper preprocessing of the data. We should remark that
registration error is more challenging to handle than the
manual gross error, since its magnitude varies dramatically
for different voxels and patients. A heat map of registration
error for each slice is provided in Fig. 1 of the supplemen-
tary file, available online. In this case, instead of considering
all voxels on each slice, we set a threshold value v and con-
sider those voxels whose minimum registration error is
greater than v. For the first four slices, we set v ¼ 0:7 and
for the last two slices we set v ¼ 0:5. The three comparison
methods are examined on the three types of training data,
and for each voxel the experiments are repeated 10 times.

Table 1 provides the median values of prediction errors
measured with both relative FA error and MSGE on all
voxels and over all six slices. As clearly indicated in
Table 1, geodesic regression models again outperform FA
regression model, which is to be expected. Moreover,
when there is no gross error in the training data, both

MGLM and PALMR achieve similar results. This is consis-
tent with the claim that MGLM is a special case of PALMR
when there is no gross error. In addition, the ‘20 percent
manual gross error’ column shows that when 20 percent of
the training data contain gross errors PALMR outperforms
MGLM by a large margin. For the challenging case of 20
percent registration error, the last column of Table 1 shows
that PALMR is still much better than its competitors. In
Fig. 9, we use box plots to demonstrate the performance
advantage of PALMR over its competitors. For each met-
ric, the performance improvement is computed as (error of
the best competitor - error of PALMR) / error of the best compet-
itor * 100 percent. Fig. 9 displays the same results as in
Table 1 from a different perspective and with more details.
We first compute the performance improvement of
PALMR on each voxel of all six slices to get a percentage
value, then put all values under the same metric and
experimental setting to plot a box plot. Fig. 9 shows that
PALMR improves the median prediction error by at least
20 and 15 percent in the case of manual gross error and
registration error, respectively.

The distribution of prediction errors measured by the rel-
ative FA error and the MSGE on each slice is shown in
Figs. 10 and 11, respectively. In each plot, the method with
corresponding distribution on the left is better than the one
with corresponding distribution on the right. From both
Figs. 10 and 11, we get similar observation as in Table 1.
Moreover, Fig. 11 shows that PALMR is more robust to
gross errors than its competitors. In Fig. 2 of the supplemen-
tary file, available online, we also show the comparison of
prediction errors of MGLM and PALMR on each voxel of
all slices. We observe that on most of the voxels PALMR is
better than MGLM when gross errors are present. More
experimental results on real DTI data are available in
Section 5 of the supplementary file, available online.

Fig. 9. Performance improvement obtained by PALMR measured with
the relative FA error (left) and the MSGE (right). A positive value means
that PALMR is better than the best competitor, and a negative value
means that PALMR is worse. We first compute the performance
improvement of PALMR on each voxel of all six slices to get a percent-
age value, then put all values under the same metric and experimental
setting to plot a box plot.

Fig. 10. Distribution of relative FA errors on testing data. The inset figures show zoom-in plots of the prediction errors by MGLM and PALMR over the
error interval ½0; 1�. Better viewed in color.
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5 CONCLUSION AND FUTURE WORK

This paper focuses on the interesting problem ofmultivariate
regression on manifolds with gross error contamination,
where mathematical formulation nevertheless resides in a
challenging landscape concerning a nonconvex and non-
smooth optimization on manifolds. A new algorithm,
PALMR, is proposed to address this problem and its conver-
gence property is analyzed. Through empirical studies,
PALMR is shown to be capable of dealing with the presence
of gross error and produces reliable results. For future work,
there are several directions to explore. In terms of theoretical
study, it remains to investigate the recoverbility of the pro-
posed model, that is, to study conditions under which our
model can correctly locate gross errors and recover their
magnitude. It is also of interest to analyze the asymptotic
behaviour of the resulting estimators. In terms of applica-
tions, in addition to age and gender, one may also consider
the influence of handedness (i.e., left- or right-handed) on
DTI responses. We also plan to apply our framework to dif-
ferent applications including shape analysis and robotics,
where themanifolds of interest could be SOð3Þ and SEð3Þ.
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