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Abstract Pose estimation, tracking, and action recog-

nition of articulated objects from depth images are im-

portant and challenging problems, which are normally

considered separately. In this paper, a unified paradigm

based on Lie group theory is proposed, which enables

us to collectively address these related problems. Our

approach is also applicable to a wide range of articu-

lated objects. Empirically it is evaluated on lab animals

including mouse and fish, as well as on human hand. On

these applications, it is shown to deliver competitive re-

sults compared to the state-of-the-arts, and non-trivial

baselines including convolutional neural networks and

regression forest methods. Moreover, new sets of an-

notated depth data of articulated objects are created

which, together with our code, are made publicly avail-

able.

Keywords Depth Images, Pose Estimation, Fish,

Mouse, Human Hand, Lie Group

1 Introduction

With 3D cameras becoming increasingly ubiquitous in

the recent years, there has been growing interest in uti-

lizing depth images for key problems involving artic-

ulated objects (e.g. human full-body and hand) such

as pose estimation [35, 42, 46, 47, 49, 56, 58], track-

ing [7, 11, 23, 36, 40], and action recognition [15, 29,
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41, 52]. On the other hand, although they are closely

related, most existing research efforts targeting these

problems in literature are based on diverse and possibly

disconnected principles. Moreover, existing algorithms

typically focus on a unique type of articulated objects,

such as human full-body, or human hand. This leads us

to consider in this paper a principled approach to ad-

dress these related problems across object categories,

in a consistent and sensible manner.

Our approach possesses the following contributions:

(1) A unified Lie group-based paradigm is proposed to

address the problems of pose estimation, tracking, and

action recognition of articulated objects from depth im-

ages. As illustrated in Fig. 1, a 3D pose of an articulate

object corresponds to a point in the underlying pose

manifold, a long-time track of its 3D poses amounts

to a long curve in the same manifold, whilst an ac-

tion is represented as a certain curve segment. There-

fore, given a depth image input, pose estimation cor-

responds to inferring the optimal point in the mani-

fold; Action recognition amounts to classifying a curve

segment in the same manifold as a particular action

type; Meanwhile for the tracking problem, Brownian

motion on Lie groups is employed as the generator to

produce pose candidates as particles. This paradigm

is applicable to a diverse range of articulated objects,

and for this reason it is referred to as Lie-X. (2) Learn-

ing based techniques are incorporated instead of the

traditional Jacobian matrices for solving the incurred

inverse kinematics problem, namely, presented with vi-

sual discrepancies of current results, how to improve

on skeletal estimation results. More specifically, an it-

erative sequential learning pipeline is proposed: multi-

ple initial poses are engaged simultaneously to account

for possible location, orientation, and size variations,

with each producing its corresponding estimated pose.
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Fig. 1: A cartoon illustration of our main idea: An ar-

ticulated object can be considered as a point in certain

manifold. Its 3D pose, a long track of its 3D motion, and

its action sequences (color-coded herein) correspond to

a point, a curve, and curve segments in the underlying

manifold respectively.

They then pass through a learned scoring metric to de-

liver the final estimated pose. Note the purpose of the

learned metric in our approach is to mimic the behavior

of the practical evaluation metric. (3) Empirically our

approach has demonstrated competitive performance

on fish, mouse, and human hand from different imaging

modalities, where it is also specifically referred to as e.g.

Lie-fish, Lie-mouse, Lie-hand, respectively. The runtime

speed of our pose estimation system is more than real-

time — it executes at around 83-267 FPS (frame per

second) on a desktop computer without resorting to

GPUs. Moreover, new sets of annotated depth images

and videos of articulated objects are created. It is worth

noting that the depth imaging devices considered in our

empirical context are also diverse, including structured

illumination and light field technologies, among others.

These datasets and our code are to be made publicly

available in support of the open-source research activi-

ties. 1.

2 Related Work

The recent introduction of commodity depth cameras

has led to significant progress in analyzing articulated

objects, especially human full-body and hand. In terms

of pose estimation, Microsoft Kinect is already widely

1 Our datasets, code, and detailed information pertaining to
the project can be found at a dedicated project webpage http:

//web.bii.a-star.edu.sg/~xuchi/Lie-X.html.

used in practice at the scale of human full-body, while

it is still a research topic at human hand scale [34, 35,

46, 47, 49, 56, 58], partly due to the dexterous nature of

hand articulations. [49] is among the first to develop a

dedicated convolutional neural net (CNN) method for

hand pose estimation, which is followed by [34]. [35]

also utilizes deep learning in a synthesizing-estimation

feedback loop. [58] further considers to incorporate ge-

ometry information in hand modelling by embedding

a non-linear generative process within a deep learning

framework. [56] studies and evaluates a theoretically

motivated random forest method for hand pose estima-

tion. A hierarchical sampling optimization procedure

is adopted by [47] to minimize the error-induced en-

ergy functions, where a similar energy function is op-

timized via efficient gradient-based techniques in [46]

for personalizing hand shapes to individual users. [43]

instead casts hand pose estimation as a matrix comple-

tion problem with deeply learned features. Meanwhile,

various tracking methods have been developed for full-

body [23] and hand [7, 36, 40]. A particle swarm op-

timization (PSO) scheme is utilized in [36] to recover

temporal hand poses by stochastically seeking solution

to the induced minimization problem. A hybrid method

is adopted in [40] that combines PSO further with the

widely-used iterated closest point technique. [7] con-

siders learning salient points on fingers, for which an

objective function is introduced to jointly take into ac-

count of edges, flow and collision cues. [23] describes a

tracking-by-detection [4] type method based on 3D vol-

umetric representation. 3D action recognition has also

drawn great amount of attentions lately [29, 33, 41, 52].

For example, [29] tackles action recognition using vari-

ants of recurrent neural nets. [41] considers a map-

ping to a view-invariant high-level space by CNNs and

Fourier temporal pyramid. Moreover, the work of [33]

discusses a method to jointly train models for human

full-body pose estimation and action recognition using

spatial temporal and-or graphs. On the other hand, it is

a much harder problem when a color camera is used in-

stead of a depth camera, such as [1], where pose estima-

tion is formulated as a regression problem that is sub-

sequently addressed by relevance vector machine and

support vector machine. Now, let us look at the other

two articulated objects to be described in this paper,

i.e. fish and mouse. They are relatively simple in nature

but are less studied. Existing literature [11, 15, 16] are

mostly 2D-based, and the focus is mainly on pose esti-

mation. [53] is a very recent work in analyzing group-

level behavior of lab mice that relies on a simplified

straight-line representation of a mouse skeleton. We

also would like to point out that there are research ef-

forts across object categories: [16] estimates poses of
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zebrafish, lab mouse, and human face; Meanwhile there

are also works that deal with more than one problem,

such as [33]. They have achieved very promising results

as discussed previously. Our work may be considered

as a renewed attempt to address related problems and

work with a broad range of articulated objects under

one unified principle. For more detailed overview of re-

lated works, interested readers may consult to the re-

cent surveys [8, 14, 37, 38].

Lie groups [6, 39] have been previously used in [50]

for detection and tracking of relatively rigid objects in

2D, however this requires the expensive image warping

operations. [44] reviews in particular the recent devel-

opment of applying shape manifold based approaches in

tracking and action recognition. Its application in ar-

ticulated objects is relatively sparse. Lie algebraic rep-

resentation is considered in [31] for human full-body

pose estimation based on multiple cameras or motion

captured data. Rather than resorting to the traditional

Jacobian matrices as in [31], learning based modules are

employed in our approach to tackle the incurred inverse

kinematics problem. [51, 52] also extract Lie algebra

based features for action recognition. Instead of focus-

ing on specific problem and object, here we attempt to

provide a unified approach.

Part-based models have long been considered in the

vision community, such as the pictorial structures [17],

the flexible mixtures-of-parts [57], the poslet model [10],

the deep learning model [48], among others. Meanwhile

the idea of characterizing the geometric deformations

of shapes or poses can be dated back to the shape de-

formation based descriptors of of D’Arcy Thompson [9]

in the early 1900s. The most related works are proba-

bly [16, 45], where the idea of group action has been

utilized. Moreover, multiple types of objects are also

evaluated in [16] that focuses on the 2D pose estima-

tion problem, while [45] is dedicated to 3D hand pose

estimation. On the other hand, our approach aims to

address these three related problems altogether in 3D,

and we explicitly advocate the usage of Lie group the-

ory. Note that the concept of pose indexed feature has

been coined and employed in [2, 18]. In addition, learn-

ing based optimization has been considered in e.g. [54],

although in very different contexts. Finally, the idea of

learning the internal evaluation metric is conceptually

related to the recent learning to rank approaches [13]

in the information retrieval community for constructing

ranking models. In the meantime, the idea of learning

based methods instead of Jacobian matrices to tackle

inverse kinematics is related to the recent works that

learn to descend instead of directly solving the opti-

mization problems at hand [5, 54].

3 Notations and Mathematical Background

The skeletal representation is in essence based on the

group of rigid transformations in 3D Euclidean R3, a Lie

group that is usually referred to as the special Euclidean

group SE(3). In what follows, we provide an account of

the related mathematical concepts that will be utilized

in our paper.

An articulated object, such as a human hand, a

mouse or a fish, is characterized in our paper by a

skeletal model in the form of a kinematic tree that con-

tains one or multiple kinematic chains. As illustrated in

Fig. 2, a fish or a mouse skeleton both possess one kine-

matic chain, while a human hand contains a kinematic

tree structure of multiple chains. Note that only the

main spine is considered herein for the mouse model.

The skeletal model is represented in the form of Jo
joints interconnected by a set of bones or segments of

fixed lengths. Empirical evidence has suggested that it

is usually sufficient to use such fixed skeletal models

with proper scaling, when working with pose estima-

tion of articulated objects in depth images [45]. The

pose of this object can thus be defined as a set of skele-

tal joint locations. Furthermore, we define the home

position of an articulated object as a set of default

joint locations. Taking a mouse model as depicted in

the middle panel of Fig. 2 for example, its home po-

sition could be a top-view upward-facing mouse with

the full body straight-up, and the bottom joint at the

coordinate origin. Note this bottom joint contains 6 de-

grees of freedom (DoF) of the entire object, and is also

referred to as the base joint. Then the pose could also

be interchangeably referred to as the sequence of SE(3)

transformations or group actions applied to the home

position, Θ = {θ1, . . . , θJo}. The estimated pose is de-

noted as Θ̃ = {θ̃1, . . . , θ̃Jo} to better differentiate from

the ground-truth pose. Here θ could be either ξ or ξ̂

(to be discussed later) when without confusion in the

context. To simplify the notation, we assume a kine-

matic chain contains J joints. Clearly J = Jo for fish

and mouse models, while J < Jo for human hand or

human full-body, by focusing on one of the chains. A

depth image is not only a 2D image but also a set of

3D points (i.e. a 3D point cloud) describing the surface

profile of such object under a particular view. Ideally

the estimated pose (the set of predicted joint locations)

is expected to align nicely with the 3D point cloud of

the object in the observed depth image.

Before proceeding further with the proposed ap-

proach, let us pause for a moment to have a concise

review of the involved mathematical background. Mo-

tivated readers may refer to [22, 27, 32] for further de-

tails.
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Fig. 2: A display of three different articulated objects considered in our paper, which are for (from left to right) fish,

mouse, and human hand, respectively. Each of our skeletal models is an approximation of the underlying anatomy,

presented as a side-by-side pair. Note end-effectors have zero degree of freedom (DoF). See text for details.

Lie Groups A Lie group G is a group as well as a

smooth manifold such that the group operations of (g, h) 7→
gh and g 7→ g−1 are smooth for all g, h ∈ G. For ex-

ample, the rotational group SO(3) is identified as the

set of 3 × 3 orthonormal matrices
{
R ∈ R3×3 : RRᵀ =

I3,det(R) = 1
}

, with Rᵀ denoting the transpose, det(·)
being the determinant, and I3 being a 3 × 3 identity

matrix. Another example is SE(3), which is defined as

the set of rotational and translational transformations

of the form g(x) = Rx+t, with R ∈ SO(3) and t ∈ R3.

In other words, g is the 4 × 4 matrix of the form

g =

(
R t

0ᵀ 1

)
, (1)

where 0 = (0, 0, 0)ᵀ. Note the identity element of SE(3)

is the 4 × 4 identity matrix I4. Both I3 and I4 will be

simply denoted as I if there is no confusion in the con-

text. Now given a reference frame, a rigid-body trans-

formation of two consecutive joints x and x′ in a kine-

matic chain can be represented as

(
x′

1

)
← g

(
x

1

)
.

Moreover the product of multiple SE(3) groups (i.e. a

kinematic chain) is still a Lie group. In other words, as

tree-structured skeletal models are considered in gen-

eral for articulated objects, each of the induced kine-

matic chains forms a Lie group.

Lie Algebras and Exponential Map The tangent plane

of Lie group SO(3) or SE(3) at identity I is known as its

Lie algebra, so(3) := TISO(3) or se(3) := TISE(3), re-

spectively. An arbitrary element of so(3) admits a skew-

symmetric matrix representation parameterized by a

three dimensional vector ω = (ω1, ω2, ω3)ᵀ ∈ R3 as

ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (2)

In other words, the DoF of a full SO(3) is three. Note

that a rotational matrix can alternatively be repre-

sented by the Euler angles decomposition [32]. A bijec-

tive mapping ∨ : so(3) → R3 and its reverse mapping

∧ : R3 → so(3) are defined as ω̂∨ = ω, and ω∧ = ω̂,

respectively. Let ν ∈ R3, an element of se(3) can then

be identified as

ξ̂ =

(
ω̂ ν

0ᵀ 0

)
. (3)

With a slight abuse of notation, similarly there exist the

bijective maps ξ̂∨ = ξ, and ξ∧ = ξ̂, with ξ = (ωᵀ, νᵀ)ᵀ.

Now a tangent vector ξ ∈ R6 (or its matrix form ξ̂ ∈
R4×4) is represented as ξ̂ =

∑6
i=1 ξ

i∂i, with ξi indexing

the i-th component of ξ. Here ∂1 = (1, 0, . . . , 0)ᵀ, . . .,

∂6 = (0, . . . , 0, 1)ᵀ, or in their respective matrix forms,

∂1 =


0 0 0 0

0 0 −1 0
0 1 0 0

0 0 0 0

 , ∂2 =


0 0 1 0

0 0 0 0
−1 0 0 0

0 0 0 0

 , ∂3 =


0 −1 0 0

1 0 0 0
0 0 0 0

0 0 0 0

 ,

∂4 =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 , ∂5 =


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 , ∂6 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 .

The exponential map Exp : se(3) → SE(3) in our

context is simply the familiar matrix exponential ExpI(ξ̂) =

eξ̂ = I + ξ̂ + 1
2 ξ̂

2 + . . . for any ξ̂ ∈ se(3). From the Ro-

drigues’s formula, it can be further simplified as

eξ̂ =

(
eω̂ Aν

0ᵀ 1

)
, (4)

with

A = I +
ω̂

‖ω‖2
(
1− cos ‖ω‖

)
+

ω̂2

‖ω‖3
(
‖ω‖ − sin ‖ω‖

)
,

(5)

where ‖ · ‖ is the vector norm.



5

It has been known in the screw theory of robotics [32]

that every rigid motion is a screw motion that can be

realized as the exponential of a twist (i.e. a infinitesimal

generator) ξ̂, with its components ω and ν correspond-

ing to the angular velocity and translation velocity of

the segment (i.e. bone) around its joint, respectively.

Product of Exponentials and Adjoint Representation

Consider a partial kinematic chain involving j joints

with j ∈ {1, 2, · · · , J}, which becomes the full chain

when j = J . With a slight abuse of notation, let gΘ1:j
be

the Lie group action on the partial kinematic chain, and

gθj or simply gj be the group action on the j-th joint. Its

forward kinematics can be naturally represented as the

product of exponentials formula, gΘ1:j
= eξ̂1eξ̂2 · · · eξ̂j .

Therefore, for an end-effector from the home configu-

ration (or home pose)

(
x

1

)
, its new configuration is

described by

(
x′

1

)
= gΘ1:j

(
x

1

)
= eξ̂1eξ̂2 · · · eξ̂j

(
x

1

)
.

As discussed in [32], this formula can be regarded as

a series of transformations from the body coordinate b

(for local joint) of each joint to the spatial coordinate

s (for global kinematic chain). Let us focus on a joint

j and denote ξ̂(b) and ξ̂(s) the twists of this joint in the

body and spatial coordinates, respectively. Assume the

transformation of this joint to the spatial coordinate is

gΘ1:j−1
= eξ̂1eξ̂2 · · · eξ̂j−1 . The two twists can be related

by the adjoint representation

ξ̂(s) = AdgΘ1:j−1

(
ξ̂(b)
)

:= gΘ1:j−1 ξ̂
(b)g−1

Θ1:j−1
,

which is obtained by

eξ̂
(s)

= gΘ1:j−1e
ξ̂(b)g−1

Θ1:j−1
= e

gΘ1:j−1
ξ̂(b)g−1

Θ1:j−1 ,

and repeatedly applying the identity geξg−1 = egξg
−1

for g ∈ SE(3) and ξ ∈ se(3).

Geodesics It is known that SE(3) can not be endowed

with a bi-invariant Riemannian metric. As a result sev-

eral metric choices are proposed, as in e.g. [3]. In what

follows we adopt the widely used Ad-invariant Rieman-

nian metric [3]. Given two configurations g1 and g2, the

geodesic curve between them is g(t̃) =

(
R(t̃) At(t̃)

0ᵀ 1

)
,

with R(t̃) = R1e
(Ω0 t̃), t(t̃) = (t2 − t1)t̃ + t1, t̃ ∈ [0, 1],

and Ω0 = LogI(R
−1
1 R2). Here the logarithm map LogI

or its simplified notion log can be regarded as the in-

verse of the exponential map.

Brownian Motion on Manifolds We refer interested read-

ers to [22] for a more rigorous account of Brownian

motion and stochastic differential geometry as they are

quite involved. Here it is sufficient to know that Brown-

ian motion can be regarded as a generalization of Gaus-

sian random variables on manifolds, where the incre-

ments are independent and Gaussian distributed, and

the generator of Brownian motion is the Laplace-Beltrami

operator. In what follows we will focus more on the

computational aspect [30]. Let t̃ ∈ R denote a continu-

ous variable, and δ > 0 be a small step size. Let ξt̃ =

(ξ1
t̃
, · · · , ξ6

t̃
)ᵀ denote a random vector sampled from nor-

mal distribution N (0, C), for k = 0, 1, · · · with C ∈
R6×6 being a covariance matrix. Then a left-invariant

Brownian motion with starting point g(0) ∈ SE(3) can

be approximated by

g
(
(k + 1)δ

)
= g
(
kδ
)
e

{√
δ
∑6
i=1 ξ

i
k∂i

}
. (6)

In addition, these sampled points can be interpolated

by geodesics to form a continuous sample path. In other

words, for t̃ ∈
(
kδ, (k + 1)δ

)
we have

g(t̃) = g
(
kδ
)
e

{
t̃−kδ√
δ

∑6
i=1 ξ

i
k∂i

}
. (7)

4 Our Approach

In what follows we describe the proposed Lie-X ap-

proach for pose estimation, tracking, and action recog-

nition of various articulated objects.

Preprocessing & Initial Poses For simplicity we assume

that there exists one and only one articulated object in

an input depth image or patch. A simple preprocessing

step is employed in our approach to extract individual

foreground objects of interest. This corresponds to the

point cloud of the object of interest extracted from the

image. We then estimate the initial 3D location of base

joint as follows: The 2D location of the base joint is set

as the center of the point cloud, while its depth value is

the average depth of the point cloud. Initial poses are

obtained by first setting these poses as the home pose of

the underlying articulate object, i.e. bones of the object

are straight-up for the three empirical applications. For

each of the initial poses, the initial orientation of the

object is generated by perturbing the in-plane orienta-

tion of the above-mentioned base joint from a uniform

distribution over (−π, π). To account for the size varia-

tions, the bone lengths of each initial pose estimate are

also scaled by a scalar that is uniformly distributed in

the range of [0.9, 1.1].



6

Skeletal Models After preprocessing, an initial estimated

pose is provided for an input depth image. The objects

of interest are represented here in terms of kinematic

chains. Without loss of generality, in this paper we fo-

cus on fish and mouse that both have one chain, as

well as human hand that possesses multiple chains, as

depicted in the respective panels of Fig. 2. Our fish

and mouse models contain 21 and 5 joints (including

the end-effectors) along the main spine, respectively,

while our hand model has 23 joints. Their correspond-

ing DoFs are 25, 12, and 26, respectively. Overall our

models are designed as proper approximations following

the respective articulate objects’ anatomies. The base

joint is fixed at coordinate origin which always has six

DoFs describing 3D locations and orientations of the

entire object; One DoF joints are applied to the rest fish

joints characterizing the yaw of fish bones; Two DoFs

are used for the rest mouse joints to account for both

yaw and pitch; Similarly in our human hand model, two

DoFs are used for each root joint of finger chain, while

one DoFs are used for the rest joints. In all three mod-

els, zero DoFs are associated with the end-effectors, as

each of them can entirely be determined by the preced-

ing joints of the chain. Note that although simplified,

the mouse model includes the most essential compo-

nents (joints of the spine) at a reasonable resolution in

our study. Our human hand model follows that of the

existing literature (e.g. [35, 56]) that works with the

widely-used NYU hand depth image benchmark [49].

4.1 Pose Estimation

Given a set of nt training images, define

∆θj :=
1

nt

∑
i∈{1,··· ,nt}

∆θj (8)

the mean deviation over training images for the j-th

joint of the set of J joints. The deviation ∆θj character-

izes the amount of changes between the estimated pose

and the ground-truth pose, which is stated in Eq.(11).

A global error function can be defined over a set of ex-

amples that evaluates the sum of differences from the

mean deviation, as for example the following form,∑
j∈{1,··· ,J}

‖∆θj‖22, (9)

with ‖ ·‖2 being the standard vector norm in Euclidean

space. Presented with the above visual discrepancies

of current results, our aim here is to improve skeletal

estimation results.

Traditionally Jacobian matrices are employed for

solving the incurred inverse kinematics problem. Here

we instead advocate the usage of an iterative learning

pipeline. Fig. 3 provides a visual mouse example that

illustrates the execution pipeline of our pose estima-

tion procedure at test run. This is also presented more

formally in Algorithm 1. Meanwhile the corresponding

training process is explained in Algorithm 2. Note that

inside both the training and testing processes, an inter-

nal evaluation metric or scoring function is used, which

is also learned from data. In what follows we are to

explain each of the components in detail.

At test run, our approach behaves as follows: As-

sume for each of the J joints there are C rounds or

iterations. As presented in Algorithm 1, given a test

image and an initial pose estimation, for each joint

j ∈ {1, · · · , J} following the kinematic chain of length

J from the base joint, at current round c ∈ {1, · · · , C},
the current pose of the joint will be corrected by the Lie

group action er
(c)
j , with the twist r

(c)
j being the output

of a local regressor, R(c)
j . In other words, denote the

short-hand notations g
(C)

Θ̃1:j−1
:= g

(1:C)

θ̃1
g

(1:C)

θ̃2
· · · g(1:C)

θ̃j−1
,

eξ̂
(1:c−1)
j := eξ̂

(1)
j eξ̂

(2)
j · · · eξ̂

(c−1)
j , and g

(c−1)

Θ̃1:j
:= g

(1:C)

Θ̃1:j−1
eξ̂

(1:c−1)
j ,

The j-th joint spatial coordinate can be updated by the

following left group action

g
(c)

Θ̃1:j
= g

(c−1)

Θ̃1:j
er

(c)
j , (10)

with er
(c)
j being the latest group element used to further

correct the spatial location of j-th joint at round c. It is

worth emphasizing that this process requires learning

the set of local regressors
{
R(c)

j

}
, where the output of

each regressor, r
(c)
j , is dedicated to a particular round c

and joint j. Each of these local models is learned based
on local features, i.e. the pose-indexed depth features

that is described in details at section 4.4. In a sense, it

endows our system with the ability to memorize local

gradient updating rules from similar training patterns.

This essentially forms the key ingredient that allows

for removal of the commonly used Jacobian matrices

for error-prorogation in our approach. Moreover, at test

run, multiple initial poses are generated for each input

image. They will then pass through our learned inverse

kinematic regressors and produce corresponding can-

didate poses. These output poses will nevertheless be

screened by our learned metric to be discussed later,

where the optimal one is to be picked as the final esti-

mated pose.

At training stage, a set of K initial poses of the in-

put image is obtained in the same manner as those of

the testing stage. The aforementioned local regressors

are then learned as follows. Each example of the train-

ing dataset consists of an instance: a pair of poses in-

cluding the estimated pose and the ground-truth pose,
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Fig. 3: An illustrative example of our pose estimation pipeline in Algorithm 1. In this example, a top-view depth

image is used as the sole input. After a brief preprocessing and obtaining an initial pose, an iterative process is

executed over each joint j and every round c, to produce its output estimate. For demonstration purpose, we also

present a 3D virtual mouse fitted with the predicted skeletal model and with triangle meshing and skin texture

mapping, which is then rendered in its top-view as well as side-view. Note the limbs of this virtual mouse are

pre-fixed to default configuration.

(θ̃
(c−1)
j , θj), as well as its label : the deviation of estima-

tion θ̃j from ground-truth θj , as

∆θj = log
(
g

(1:c−1)

Θ̃1:j

−1
gΘ1:j

)
. (11)

For the first joint j = 1 (the base joint in the kinematic

chain) and at the first round c = 1, the label of an ex-

ample will be the amount of changes from the first joint

of the initial pose to that of the ground-truth. Then at

any round c, its corresponding initial pose is obtained

by executing the current partial kinematic model until
the immediate previous round c − 1. Similarly for the

second joint and at round c, the initial pose in each of

the training examples is attained by executing the cur-

rent partial model from base joint up to round c − 1

of the current joint, and its label is then the amount

of changes from the current joint of the aforementioned

initial pose to the second joint of the ground-truth. In

this way, the training examples are prepared separately

over joints and then across rounds until the very last

joint J & round C. Algorithm 2 presents the procedure

of learning the set of regressors
{
R(c)

j

}
, with each re-

gressor R(c)
j of round c and joint j being learned from

its local context to make its prediction, r
(c)
j . Without

loss of generality the random forest method [12] is en-

gaged here as the learning engine.

Note that our hand skeletal model contains five kine-

matic chains, all of which share the hand base joint as

root of the tree. For each chain, the sub-chain resulting

from the exclusion of the base joint is independent of

Algorithm 1 Pose Estimation: Testing Stage

Input: An unseen depth image

Output: Estimated skeletal joint locations and a prediction of
its evaluation score

Preprocessing to obtain Kt initial poses by random perturba-

tion of the home pose centered at the object point cloud.
for k=1:Kt do

for j=1:J do
for c=1:C do

Twist prediction by applying a learned local regressor

R(c)
j :

(
θ̃
(c−1)
j , θj

)
7→ r

(c)
j .

Update prediction of current joint spatial coordinate
by applying the corresponding left group action of

Eq.(10).
end for

end for

end for
Pick the best out of Kt candidates by applying the learned

metric.

the other sub-chains given that the root is set. This mo-

tivates us to consider the following procedure: At test

run, the base joint is first worked out, following the pro-

cess described above. After this is done, Algorithm 1 is

executed for each of the five sub-chains separately.

Learning the Internal Evaluation Metric Since multi-

ple pose hypotheses are presented in our approach, it

remains to decide on which one from the candidate pool

we should choose as the final pose estimate. Tradition-

ally this can be dealt with by either mode seeking or

taking their empirical average as in e.g. Hough voting

methods [19, 21, 28] or random forests [12], respectively;

It could also be carried out by simply matching with a



8

Algorithm 2 Pose Estimation: Training Stage

Input: The set of training examples. For each example i, ob-

tain K initial poses by random perturbations from the base
system estimate.

Output: a series of learned regressors {R(c)
j : j = 1, · · · , J ; c =

1, · · · , C}.
for j=1:J do

for c=1:C do

Given the context, learn a local regressor R(c)
j .

Update prediction of current joint spatial coordinate by

R(c)
j using Eq.(10).

end for

Prepare the training set of j+1-th joint spatial coordinate by

applying
{
R(c)

j′

}j,C

j′=1,c=1
, the partial set of local regressors

learned so far.
end for

small set of carefully crafted templates such as distance

transform or DOT [20]. Instead we propose to learn

a surrogate scoring function that is to be consistent

with the real evaluation metric employed during prac-

tical quantitative analysis. This learned scoring func-

tion then becomes a built-in module in our approach to

select the pose hypothesis with the least error.

More concretely, the widely used criteria of average

joint error [55] is adopted as the evaluation metric for

our scoring function to mimic. During training stage,

a set of nm training examples are generated, where a

training example consists of an instance and a label:

A training instance contains an input depth image, its

ground-truth pose (i.e. skeletal joint locations) and an

estimated pose as a set of corresponding joint locations

after random perturbations from the ground-truth. Its

label is the average joint error between the estimated

and the ground-truth poses. Therefore a second type of

regressor, Rm, is utilized here to learn to predict the

error at test run. Namely, given an unseen depth image

and an estimated pose, our regressor would produce a

real-valued score mimicking the average joint error as

where the ground-truth is known.

4.2 Tracking

Particle filters such as [24] have long been regarded as

a powerful mean for tracking, and is also considered

in our context to address the tracking problem. To fa-

cilitate a favorable balance between efficiency and ef-

fectiveness, we consider a probabilistic particle filter

based approach only for the base joint, where parti-

cles are formed by Brownian motion based sampling in

the pose manifold; Meanwhile the parameters of the re-

maining joints are obtained by invoking the same infer-

ence machinery as in our deterministic pose estimation

algorithm. This design is also motivated from our em-

pirical observation that often the object poses are also

well-estimated when the prediction of the base joint is

in close vicinity of the true values. That is, according

to our observation the first joint is crucial in pose esti-

mation: If ξ1 is wrongly predicted, estimation results

of the remaining joints could be seriously damaged;

When our prediction of ξ1 is accurate, the follow-up

joints estimates would also be accurate. Algorithm 3

further presents the main procedure for our tracking

task, which is also visually illustrated in Fig. 4, with a

detailed description in the following paragraphs.

Following the particle filter paradigm [24] we con-

sider a discretized time step t, and use x to denote a

latent random variable as well as y for its observation.

Here the state of a tracked object (i.e. the estimated

pose Θ̃ at time t) is denoted as xt and its history is

x1:t = (x1, · · · , xt). Similarly, current observation is

denoted as yt, and its history as y1:t = (y1, · · · , yt).
The underlying first-order temporal Markov chain in-

duces conditional independence property, which by def-

inition gives p(xt|x1:t−1) = p(xt|xt−1). Following the

typical factorization of this state-space dynamic model,

we have

p(y1:t−1, xt|x1:t−1) = p(xt|x1:t−1)p(y1:t−1|x1:t−1)

= p(xt|xt−1)

t−1∏
i=1

p(yi|xi),

with p(y1:t−1|x1:t−1) =
∏t−1
i=1 p(yi|xi). We also need the

posterior probability p(xt|y1:t) for filtering purpose, which

in our context is defined as p(xt|y1:t) ∝ p(yt|xt)p(xt|y1:t−1),

with p(xt|y1:t−1) =
∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1. In

other words, it is evaluated by considering the posterior

p(xt−1|y1:t−1) from the previous time step in a recur-

sively manner.

The realization of the particle filter paradigm in our

context involves the three-step probabilistic inference

process of selection-prorogation-measurement, which serves

as the one time-step update rule in particle filter, and

is also described in Algorithm 3. Specifically, the pro-

cess at current time-step t corresponds to an execution

of the selection-prorogation-measurement triplet steps:

The output of previous time-step contains a set of Kr

weighted particles

St−1 :=
{

(s
(i)
t−1, π

(i)
t−1)

}Kr
i=1

.

Here each particle i, s
(i)
t−1, corresponds to a particular

realization of the set of tangent vector parameters Θ̃(i)

that uniquely determines a pose, where each of the vec-

tors is attached to a joint following the underlying kine-

matic chain. The particle s
(i)
t−1 is also associated with

its weight π
(i)
t−1 ∈ [0, 1]. Collectively this set of weighted
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particles is thus regarded as an approximation to the

posterior distribution p(xt−1|y1:t−1). The selection step

operates by uniform sampling from the cumulative dis-

tribution function (CDF) of p(xt−1|y1:t−1) to produce

a new set of Kr particles with equal weights. It is fol-

lowed by the propagation step where the manifold-based

Brownian motion sampling of Eq.(7) is employed to re-

alize p(xt|xt−1), i.e. to obtain the new state based on

discretized Brownian motion deviation from the previ-

ous time-step. Note that this Brownian motion sam-

pling is carried out only on the base joint, while the

remaining joints are obtained by directly executing the

same inference machinery of Eq.(10) as in our pose es-

timation algorithm. Now, the sample set constitutes an

approximation to the predictive distribution function

of p(xt|y1:t−1). The measurement step finally provides

an updated weight π
(i)
t for each particle s

(i)
t as follows:

Let m
(i)
t be the predicted error value of the i-th parti-

cle s
(i)
t , obtained by applying our learned metric. The

weight is thus evaluated as

π
(i)
t =

1√
2πσ

e−
m

(i)
t

2

2σ2 . (12)

After obtaining all the Kr weights, each of the weights,

π
(i)
t , is further normalized as

π
(i)
t ←

π
(i)
t∑Kr

i′=1 π
(i′)
t

. (13)

The updated sample set now collectively approximates

the corresponding posterior distribution p(xt|y1:t) at

time t.

The set of weighted particles allows us to represent

the entire distribution instead of a point estimate as

what we have done during the pose estimation task. The

final pose estimate, x∗t (i.e. Θ̃ at time t), is produced

by weighted averaging over this set of particles,

x∗t ←
Kr∑
i=1

π
(i)
t s

(i)
t . (14)

4.3 Action Recognition

Our approach can be further employed to work with the

problem of action recognition. The key insight is that

an action instance (i.e. a pose sequence) corresponds to

a curve segment in the manifold, whereas the set of all

instances of a particular action type corresponds to a

group of curves. Therefore, the task of action recogni-

tion can be cast as separating different groups of ac-

tion curves. It motivates us to consider a third type

of learned predictor, Ra. Here dedicated features are

Select

Propagate

Measure

(st-1
(i),πt-1

(i))

(st
(i))

(st
(i),πt

(i))

Fig. 4: A visual illustration of one time-step update

process of the particle filter paradigm considered in our

tracking task.

Algorithm 3 Tracking at time-step t

Input: St−1

Output: x∗t , St

(1) Select:

calculate the normalized cumulative probabilities:

for i = 1 · · ·Kr do
Sample a particle s

′(i)
t uniformly from the CDF of

p(xt−1|y1:t−1).

end for
(2) Propagate:

for i = 1 · · ·Kr do

Obtain s
(i)
t by sampling from

{
s
′(i)
t

}
using the transition

probability p(xt|xt−1), which is realized by manifold-based

Brownian motion sampling of Eq.(7) of the tangent vec-
tor for the base joint, ξ1, followed by directly executing

Eq.(10) for each of the remaining joints following the kine-

matic chain.
end for

(3) Measure:
for i = 1 · · ·Kr do

Evaluate π
(i)
t by Eq.(12).

end for

normalize π
(i)
t by Eq.(13). Now St =

{
(s

(i)
t , π

(i)
t )
}Kr

i=1
is ready.

(4) Estimate the pose

The estimated pose x∗t is finally obtained by Eq.(14).

extracted as to be described next, and the output con-

cerns that of predicting its action categories.

Action Recognition Features As the length of action se-

quences may vary, they are firstly normalized to the

same length (in practice 32 frames) using linear interpo-

lation. Local features from each frame of a sequence can

be obtained based on the tangent vectors (Lie algebras)

of the estimated joints in the manifold. Each temporal

sequence is further split into 4 equal-length segments,

where the frames in a segment collectively contain the

set of tangent vectors as local features. Moreover, a tem-
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poral pyramid structural representation is utilized in

a sense similar to that of the spatial pyramid match-

ing [26], where features are extracted using hierarchical

scales of {4,2,1}, where 4 corresponds to the 4 segments

introduced previously, and the rest correspond to those

coarser scales built over it layer by layer. In total it leads

to 7 temporal segments (or sets of variable sizes) over

these 3 scale spaces. For each such segment, the mean

and standard deviation of its underlying pose represen-

tation (in terms of Lie algebras to be described below)

are then used as features. Now let us investigate the

details of these pose representations defined on single

frames, which can be decomposed into joints following

the aforementioned kinematic chain structure. For the

base joint, we use the Lie algebras of the transforma-

tion from the current frame to the next frame. For the

rest of the joints, we use the Lie algebras of the trans-

formation from previous joint to the current joint and

that of the transformation from current frame to the

next frame. Besides, we also use the 3D location and

orientation of the first joint (i.e. base joint) as features.

In particular for fish-related actions, rather than using

the Lie algebras of all 20 joints, we emphasize on robust

estimation by considering a compact feature represen-

tation: The first component or sub-vector of the fea-

ture vector corresponds to the Lie algebra of the base

joint; The second and the third components are the

sub-vectors of the same length obtained by averaging

over the set of Lie algebras from second to tenth joints,

and from eleventh to the last joint, respectively. Over-

all a 252-dim feature vector is thus constructed to fully

characterize an action sequence.

4.4 Random Forests, Pose-indexed Depth features,

and Binary Tests

There are three types of learned predictors (namely

the set of local regressors
{
R(c)

j

}
, the learned inter-

nal metric Rm, and the action recognition predictor

Ra) considered in our approach. In general any rea-

sonable learning method can be used to realize these

three types of predictors. In practice the random forest

method [12, 19] is engaged for these learning tasks, so

it is worthwhile to describe its details here.

For action recognition, a unique set of action fea-

tures are used as stated previously. In what follows,

we thus focus on the description of our pose-indexed

depth features, which are used in the first two types

of regressors,
{
R(c)

j

}
, and Rm. Our feature represen-

tation can be regarded as an extension of the popular

depth features as discussed in [42, 55] by incorporat-

ing the idea of pose-indexed features [2, 18] to model

3D objects. We start by focusing on a joint j with its

current 3D location x ∈ R3, where a 3D offset u can

be obtained by random sampling from the home pose.

Let gΘ̃1:j
(u) denote the Lie group left action of cur-

rent object pose Θ̃1:j applied onto u. Now the 3D lo-

cation of the offset is naturally x + gΘ̃1:j
(u), and its

projection onto 2D image plane under current camera

view is denoted as ū = Proj
(
x + gΘ̃1:j

(u)
)
. Similarly

we can obtain another random offset v̄. For a 2D pixel

location x̄ = Proj
(
x
)
∈ R2 of an image patch I con-

taining the object of interest, its depth value can be de-

noted as dI(x̄). Now we are ready to construct a feature

φI,(ū,v̄)(x̄) or its short-hand notation φ, by considering

two 2D offsets positions ū, v̄ from x̄:

φI,(ū,v̄)(x̄) = dI

(
x̄ + ū

)
− dI

(
x̄ + v̄

)
. (15)

Due to the visibility constraint, we are only able to

obtain the depth values of the projected 2D locations ū

and v̄ from the object surface. Thus Proj is a surjective

map. Nevertheless, this serves our intention of sampling

random features well. Following [12], a binary test is

defined as a pair of elements, (φ, ε), with φ being the

feature function, and ε being a real-valued threshold.

When an instance with pixel location x passes through

a split node of our binary trees, it will be sent to the

left branch if φ(x) > ε, and to the right side otherwise.

Our random forest predictors are constructed based

on these features and binary tests for split nodes. Sim-

ilar to existing regression forests in literature including

e.g. [42], at a split node, we randomly select a relatively

small set of m distinct features Φ := {φi}mn=1 as can-

didate features. For every candidate feature, a set of

candidate thresholds Λ is uniformly selected over the

range defined by the empirical set of training examples

in the node. The best test (φ∗, ε∗) is chosen from these

features and accompanying thresholds by maximizing

the following gain function. This procedure is then re-

peated until there are L levels in the tree or once the

node contains fewer than ln training examples. More

specifically, the above-mentioned split test is obtained

by

(φ∗, ε∗) = arg max
φ∈Φ,ε∈Λ

I(φ, γ),

where the gain I(φ, ε) is defined as:

I(φ, ε) = E(S)−
(
|Sl|
|S|

E(Sl) +
|Sr|
|S|

E(Sr)

)
. (16)

Here |·| denotes the cardinality of the set, S denotes the

set of training examples arriving at current node, which

is further split into two subsets Sl and Sr according to

the test (φ, ε). Define ∆θj := 1
‖S‖

∑
i∈S ∆θj the mean

deviation of the set to j-th joint, and accordingly for Sl
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Fig. 5: The capture setups used in constructing our (a) fish and (b) mouse depth image datasets, respectively.

and Sr. The function E is defined over a set of examples

that evaluates the sum of differences from the mean

deviation:

E(S) =
∑
i∈S
‖∆θj‖2. (17)

In the final decision stage, for the first two regres-

sion modules, the mean-shift mode searching in Hough

voting space is used as e.g. in [19], while for the third

module (action recognition) the classical random forest

strategy [12] is used to pick the category with largest

counts from the averaged histogram.

5 Empirical Evaluations

Empirically our Lie-X approach is examined on three

different articulated objects: fish, mouse, and human

hand.

Performance Evaluation Metric Our performance eval-

uation metric is based on the commonly-used average

joint error, computed as the averaged Euclidean dis-

tance in 3D space over all the joints. Formally, let vg
and ve be the ground-truth and estimated joint loca-

tions, respectively. The joint error of the pose estimate

ve is defined as e = 1
m

∑
i ‖vgi − vei‖, where ‖ · ‖ is

the Euclidean norm in 3D space. When dealing with

test images, let k = 1, . . . , ntst index over the test im-

ages, and their corresponding joint errors denoted as

{e1, · · · , entst
}. The average joint error is then defined

as 1
ntst

∑
j ej .

Internal Parameters Throughout experiments, a fixed

set of values is always used for the internal parame-

ters of our approach, unless otherwise stated, as fol-

lows. For the first type of regressors (namely the set of

local regressors
{
R(c)

j

}
), the number of trees is fixed

to (3, 10, 10), while the tree depth is (24, 24, 24) for

the triplet of articulated objects (fish, mouse, hand),

respectively. For the second type (the learned internal

metric Rm), the number of trees is (20, 20, 20), while

the tree depth is (15, 15, 20) for the triplet of articu-

lated objects (fish, mouse, hand), respectively. For the

third type (the action recognition predictor) Ra, the

number of trees in the forest is 50, and tree depth is

20. The number of features is m=8,000, and the max-

imum number of examples in the leaf node is ln=5.

The number of rounds at each joint is set to C=7, 3,

and 3, for fish, mouse, and hand, respectively. The local

image patch sizes considered in our approach for fish,

mouse, and hand are normalized to 25× 25, 100× 100,

100× 100 mm2, respectively. These patches are used as

input to the local random forest regressors in our ap-

proach to estimate the spatial coordinate of next joint

based on current joint following the kinematic chain.

One important parameter is Kt, the number of initial

poses in pose estimation. In practice, after factoring-in

the efficiency consideration, Kt is set to 40, 40, 20 for
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In use
Not used

Fig. 6: Following the evaluation protocol of [34, 35, 49,

58], for NYU hand depth image dataset, only a subset

of 14 joints out of the total 23 hand skeletal joints is

considered during performance evaluation for hand pose

estimation.

pose estimation of fish, mouse, and hand, respectively,

throughout experiments. Similarly, the number of ini-

tial poses for tracking is set to Kr=200. For learning the

internal evaluation metric, the number of candidates is

set to 8. Namely, given a training dataset of size nt, the

number of training examples for pose estimation be-

comes Kt × nt, while the number of training examples

for learning the internal metric is nm = 8× nt.

5.1 Datasets

To examine the applicability of our approach on di-

verse articulated objects, we demonstrate in this paper

its empirical implementation for fish, mouse, and hu-

man hand, respectively, where three distinct real-life

datasets are employed. In particular, here we introduce

our home-grown 3D image datasets of zebrafish and lab

mouse that are dedicated to the related problems of

pose estimation, tracking, and action recognition. The

images have been captured and annotated by experts to

provide the articulated skeleton information describing

the pose of the subject. The popular NYU hand depth

image dataset [49] is also considered here. More details

of the datasets are discussed next. It is worth noting

that different imaging modalities are utilized across the

three datasets: light-field depth images are used for fish,

while structured illumination depth cameras are em-

ployed for mouse and human hand objects. Regardlessly

our approach is demonstrated to work well across these

diverse image modalities.

Our Fish Dataset Depth images are acquired with a

top-mount Raytrix R5 light-field camera at a frame

rate of 50 FPS and a resolution of 1, 024×1, 024, as dis-

played in Fig. 5(a). The depth images are obtained from

the raw plenoptic images by utilizing Raytrix on-board

SDK. In total 7 different adult zebrafish of different gen-

ders and sizes are engaged in our study. From the cap-

tured images, 2,972 images containing distinct poses are

annotated. The training dataset of nt =95,104 images

is thus formed by augmenting each fish object of these

images with 31 additional transformations, where each

transformation comes with a random scaling within [0.9,

1.1] and with a random in-plane rotation within (-π, π).

The test dataset of pose estimation problem contains

ntst =1,820 distinct fish images.

In addition to single-frame based pose annotations,

we also record, annotate, and make available a fish ac-

tion dataset. [25] provides a comprehensive catalogue

of zebrafish actions, from which a subset of 9 action

classes are considered in this paper, which is listed be-

low as well as illustrated in Fig.19:

Scoot : Moves along a straight line.

J-turn: Fine reorientation during which the body slightly

curves (30◦−60◦), with a characteristic bend at the

tail.

C-turn: Fish body curves to form a C-shape en route

to a near 180◦ turn.

R-turn: Involves routine angular turn of greater than

60◦.

Surface: Moves up towards the water surface.

Dive: Moves towards the tank bottom.

Zigzag : Contains erratic movements with multiple darts

in various directions.

Thrash: Consists of forceful swimming against the side

or bottom walls of the tank.
Freeze: Refers to complete cessation of movement.

Our fish action dataset contains 426 training se-

quences and 173 testing sequences, respectively, from

7 different fish over the aforementioned 9 categories.

The length of each fish action sequence varies from 7

frames to 135 frames.

Our Mouse Dataset Mouse depth images are collected

using a top-mount Primesense Carmine depth camera

at a frame rate of 30 FPS and with a resolution 640×
480. Fig. 5(b) presents our dedicated imaging set-up.

Two different lab mouse are engaged in our study. We

select 3,253 images containing distinct poses and depth

noise patterns, and augment them with additional trans-

formations following the same protocol as above, which

gives rise to the training dataset here containing nt =104,096

images. The testing dataset of pose estimation problem

contains ntst =4,125 distinct depth images. For track-

ing problem, the test set consists of two sequences of

length 511 and 300 frames, respectively.
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Fig. 7: Sensitivity analysis of our Lie-X approach w.r.t. internal parameters for pose estimation tasks: In each of

the five rows, average joint error is plotted as a function of the respective internal parameter. It is further displayed

in three columns for fish, mouse, and hand, respectively. In each of the panels, a red dot is placed to indicate the

specific parameter value empirically employed in our approach.

The NYU Hand Dataset We also evaluate our approach

on the benchark NYU hand depth image dataset[49] 2.

It contains nt =72,757 depth images for training and

ntst=8,252 frames for testing. All images are depth im-

2 The NYU dataset is publicly available at http://cims.nyu.

edu/~tompson/NYU_Hand_Pose_Dataset.htm.

ages captured by Microsoft Kinect using the structured

illumination technique, which is the same as the Prime-

sense camera used in our mouse dataset. Depth images

in the training set are from a single user, while images

in the test set are from two users. While a ground-truth

hand label contains 36 annotated joints, only 14 of these



14

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Distance threshold (mm)

F
ra
ct
io
n
of

fr
am

es
w
it
h
in

d
is
ta
n
ce

(%
)

RF
CNN

Lie-Fish

(a)

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Distance threshold (mm)
F
ra
ct
io
n
of

fr
am

es
w
it
h
in

d
is
ta
n
ce

(%
)

RF
CNN

Lie-Mouse

(b)

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

Distance threshold (mm)

F
ra
ct
io
n
of

fr
am

es
w
it
h
in

d
is
ta
n
ce

(%
)

RF

CNN

Lie-Hand

Tompson et al. [45]

Oberweger et al. [30]

Oberweger et al. [31]

Zhou et al. [54]

(c)

Fig. 8: Cumulative error distribution curves for pose estimation of (a) fish, (b) mouse and (c) hand, respectively.

Horizontal axis displays the distance amount in mm of the estimated poses from ground-truths. Vertical axis

presents the fraction of examples where their corresponding estimated poses possess average joint errors within

the current distance range.

Comparison methods on articulated objects fish mouse

RF 1.28 12.24

CNN 0.79 9.17

Lie-X (w/o multiple initial poses) 3.28 13.27

Lie-X (w/o learned metric) 1.71 9.82

Lie-X 0.68 6.64

Table 1: Quantitative evaluation of competing meth-

ods on pose estimation problem for fish and mouse re-

spectively. Performance is measured in terms of average

joint error (mm).

Comparison methods on hand pose estimation average joint error (mm)

RF 24.81

CNN 18.82

Tompson et. al. [49] 21.00

Oberweger et. al. [34] 20.00

Oberweger et. al. [35] 16.50

Zhou et. al. [58] 16.90

Lie-X (w/o multiple initial poses) 20.50

Lie-X (w/o learned metric) 16.72

Lie-X 14.51

Table 2: Quantitative evaluation of competing methods

on the benchmark NYU dataset [49] for hand pose es-

timation task. Performance is in terms of average joint

error (mm).

joints are considered in many existing efforts using this

dataset, such as [34, 35, 49, 58], which is followed dur-

ing our experiments. This is also presented in Fig. 6:

Important hand joints are included in this subset of 14

joints, such as all the finger tips and the hand base.

5.2 Pose Estimation of Fish, Mouse, and Human Hand

In this subsection, we focus on the problem of pose esti-

mation for articulated objects such as fish, mouse, and

hand. To make a fair comparison with existing meth-

ods, we specifically implement two non-trivial baseline

methods, namely regression forest (RF), and convolu-

tional neural network (CNN). The RF method is a re-

implementation of the classical regression method used

by Microsoft Kinect [42], with the only difference being

that our RF implementation explicitly utilizes a skele-

tal model, instead of estimating joint locations without

skeletal constraints as in [42]. Two separate regression
forests, F1 and F2, are trained for this purpose. Here F1

is used to estimate the 3D location and in-plane orienta-

tion of the subject, followed by F2 which produces a set

of 3D pose candidates. The number of trees trained are

set to 7 and 12 for F1 and F2, respectively. In both cases,

the maximum tree depth is fixed to L=20. The stan-

dard depth invariant two-point offset features of [42]

are also used. The CNN method is obtained as follows:

The pre-trained AlexNet CNN model from ImageNet is

engaged as the initial model. To tailor the training data

for our CNN, objects of interest from the training depth

images are cropped according to their bounding boxes.

The depth values in each patch are rescaled to be in the

range of 0 to 255. Each object patch is replicated three

times to form into a RGB image, which is then resized

as an input instance of size 224 × 224. This together

with its corresponding annotation prepares a training

example. Then our CNN model is finally obtained by

executing the MatConvNet package to train on these

training examples for 50 epochs.



15

1

1 2

2

1

1 2

2

1

1 2

2 1

1

2

21

1

2

21

1

2

2

1

1 2

2

1

1 2

2

1

1 2

2

(a) (b) (c)

1

1 2

2

1

1 2

2

1

1 2

2
1

1 2

2

1
1 2

2

1
1 2

2

1

1

2

2

1

1

2

2

1

1

2

2

(d) (e) (f)

1

1 2

2

1

1 2

2

1

1 2

2
1

1 2

2
1

1 2

2

1

1 2

2

(g) (h) (i)

1

1 2

2

1

1 2

2

1

1 2

2
1

1 2

2

1

1 2

21

1 2

2

(j) (k) (l)

Fig. 9: Visual comparison of fish and mouse examples. Here pose estimates of RF, CNN, as well as our Lie-X

approach are compared together with respective human-annotated ground-truths. Panels (a)–(f) present six fish

examples, which is followed by panels (g)–(l) for six exemplar mouse results. In each of the twelve panels, top row

displays the full top-view together with one or two zoom-in visual examinations. Meanwhile, the bottom row also

provides a side-view. Best viewed in color.
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Fig. 10: Visual comparison of hand examples. Here pose estimates of RF, CNN, as well as our Lie-X approach are

compared together with respective human-annotated ground-truths. In each of the four panels, top row displays

the full top-view together with four zoom-in visual examinations. Meanwhile, the bottom row displays side-views

of the respective methods. Best viewed in color.

Sensitivity Analysis of the Internal Parameters As our

approach contains a number of internal parameters, it

is of interest to systematically investigate the influence

of these parameters w.r.t. the final performance of our

system. Here we consider five influential parameters,

which are the number of initial poses Kt, the number

of rounds C, the number and depth of trees in our first

type of regressors (i.e. the local regressors
{
R(c)

j

}
), as

well as the number of trees used in our learned met-

ric component Rm. Fig. 7 displays the performance of

Lie-X with respect to each of these five parameters row-

by-row. Meanwhile each of the three columns presents

the respective results for fish, mouse, and hand. Each of

the fifteen panels in this five by three matrix is obtained

by varying one parameter of interest while keeping the

other parameters fixed to default values. In general, our

system behaves in a rather stable manner w.r.t. the

change of internal parameters over a wide range of val-

ues. Moreover, in each of the panels, a red colored dot

is placed to indicate the specific parameter value em-
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Fig. 11: Visual comparison of Lie-X as well as the state-of-the-art methods on the same four input hand images

presented in Fig. 10. In each of the panels, the corresponding example is presented with four zoom-in visual

examinations. Best viewed in color.

Comparison methods uses GPU frames per second (FPS)

Tompson et. al. [49] X 30

Oberweger et. al. [34] X 5,000

Oberweger et. al. [35] X 400

Zhou et. al. [58] X 125

Lie-X × 123

Table 3: Runtime speed comparison with state-of-the-

art methods for hand pose pose estimation task. Note

our Lie-X results are obtained using CPU only, while

the rest methods all utilize GPUs.

pirically employed by our approach in this paper. It is

worth noting that the choice of these internal parameter

values represents a compromise between performance

and efficiency.

Comparison with Baselines and the State-of-the-art Meth-

ods To evaluate the performance of the proposed ap-

proach, a series of experiments are conducted on the

aforementioned datasets for fish, mouse, and hand pose

estimation tasks. Table 1 presents a comparison of Lie-

X w.r.t. the two non-trivial baseline methods (i.e. RF

and CNN) on fish and mouse pose estimation tasks.

Overall, our approach clearly outperforms the others

by a significant margin, while CNN achieves better re-

sults over RF. Moreover, the error distributions of these

comparison methods are also presented in Fig. 8(a-b),

where our approach clearly outperforms the baselines

most of the time. The superior performance of our Lie-

X approach is also demonstrated in Fig. 9, which pro-

vides visual comparisons of pose estimation results for

six fish and six mouse examples, respectively, over the

three competing methods. From these visual examples,

it is observed that the estimated poses from our Lie-X

approach tend to be more faithfully aligned with the

ground-truth when compared against the two baseline

methods.

Our approach is also validated on the NYU hand

depth benchmark, as is displayed in Table 2. Over-

all, our CNN baseline result is on par with the stan-

dard deep learning results of e.g. [34] that also utilizes
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Fig. 12: Visual comparison of Lie-X results and the state-of-the-art methods on ten additional hand examples.

Each column presents an example, while each row displays results from a particular competing method. Best

viewed in color.

a AlexNet-like CNN. This helps to establish that our

baselines are consistent in terms of performance with

what has been reported in the literature, which are also

used as pose estimation baselines on fish and mouse ob-

jects. Moreover, the results of the state-of-the-art meth-

ods are also directly compared here, including Tomp-

son et. al. [49], Oberweger et. al. [35], and Zhou et.

al. [58]. It is worth pointing out that the test error rate

of our approach is 14.51 mm in terms of average joint

error. This is by far the best result on hand pose es-

timation task to our knowledge, which improves over

the best state-of-the-art result of 16.50 mm of [35] by

almost 2 mm. More detailed quantitative information is

revealed through the error distributions of comparison

methods in Fig. 8(c), where our approach clearly out-

performs the baselines and the state-of-the-art meth-

ods. Similarly, visual comparison results are provided

in Fig. 10, Fig. 11, and Fig. 10, where our approach is

again shown to clearly outperform other methods. More

specifically, Fig. 10 and Fig. 11 present the visual re-

sults of all competing methods on the same four exem-

plar hand images. Due to the access limit, we are only
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Fig. 13: An example of fish pose estimation that visually illustrates the inner-working of the learned internal metric

in our approach applied onto the Kt = 40 pose candidates of the input depth image. Here green colored numbers

correspond to the scores (lower the better here) and ranking results obtained by applying the learned metric, red

colored numbers denote the corresponding actual evaluation scores and ranking results by engaging the empirical

evaluation metric of average joint error when we have access to the ground-truth annotations. See text for details.

able to present the side-view results on our approach

and the baseline methods of RF and CNN. Fig. 10 pro-

vides additional visual results comparing our approach

to state-of-the-arts on ten more hand images.

To reveal the inner working of our approach, in

Fig. 13, Fig. 14, and Fig. 15, a visual example is re-

spectively provided for pose estimation of fish, mouse,

and hand. It is evident that a diverse set of pose can-

didates are obtained that covers distinct pose location,

orientation, and sizes. This is made possible due to the

adoption of multiple initial poses. Moreover, prediction

scores and associated orders from our learned metric

module in general closely resembles that of the empiri-

cal evaluation metric. In addition, Fig. 16 presents sev-

eral intermediate pose estimation results from different

joints and rounds on an exemplar mouse image, when

executing the pose estimation pipeline as illustrated in

Fig. 3. It is observed that each step of the iterative pro-

cess usually helps in converging toward the final pose

estimation.

With vs. Without Multiple Initial Poses As presented

in Table 1 for fish and mouse objects and Table 2 for

hand objects, empirically we observe that the presence

of multiple initial poses always improves the pose es-

timation performance. As presented in Figs. 13, 14,
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Fig. 14: An example of mouse pose estimation that visually illustrates the inner-working of the learned internal

metric in our approach applied onto the Kt = 40 pose candidates. Here green colored numbers refer to the scores

(lower the better here) and ranking results obtained by applying the learned metric, red colored numbers are the

corresponding actual evaluation scores and ranking results by engaging the empirical evaluation metric of average

joint error when we have access to the ground-truth annotations. See text for details.

and 15, execution of our pose estimation process, start-

ing from multiple distinct initial poses, results in unique

pose estimates, each of which can be regarded as a

locally optimal result. This is due to the highly non-

convex nature of our problem, a well-known fact for

systems of rigid-bodies in general. These visual exam-

ples also demonstrate the importance of having multiple

initial poses to avoid getting trapped into local optimal

points that are far from the ground-truth point.

With vs. Without the Learned Metric To examine the

usefulness of our learned internal metric, a special vari-

ant of our approach without this component is engaged

here, which is also referred to as Lie-X w/o learned

metric. Provided with multiple output pose candidates,

this variant differs from our full-fledged approach by av-

eraging over them for each of the joints in the 3D Eu-

clidean space, instead of scoring them with the learned

metric to pick up the best estimate. Empirical experi-

ments such as those presented in Table 1 for fish and

mouse objects and Table 2 for hand objects suggest a

noticeable performance degradation when without the

learned metric. Clearly the learned internal metric does

facilitate in selecting from a global viewpoint the fi-

nal estimate, which is obtained from the pool of locally

optimal candidates using multiple initial poses. It has

also been demonstrates in Figs. 13, 14, and 15 that

in our context a max operation (i.e. with the learned

metric) may well outperform an average operation (i.e.

w/o learned metric). In particular, visually our learned

internal metric is capable of producing predicted error

scores that are nicely aligned with the true average joint

error when we have access to the ground-truth.

Computational Efficiency All experiments discussed in

this paper are performed on a desktop PC with an Intel

i7-960 CPU and with 24Gb memory. At this moment,

our CPU implementation achieves an average run-time

speed of 83 FPS, 267 FPS, and 123 FPS for fish, mouse,

and hand tasks, respectively. Table 3 summarizes the

run-time speed comparisons with state-of-the-art hand

pose estimators on the NYU hand dataset [49]. Our

result of 123 FPS is obtained with only CPU access,

nevertheless it is still comparable with most of these
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Fig. 15: An example of hand pose estimation that visually illustrates the inner-working of the learned internal

metric in our approach applied onto the Kt = 20 pose candidates. Here green colored numbers present the scores

(lower the better here) and ranking results obtained by applying the learned metric, red colored numbers denote

the corresponding actual evaluation scores and ranking results by engaging the empirical evaluation metric of

average joint error when we have access to the ground-truth annotations. See text for details.

Initial Final

Fig. 16: Illustrating the convergence process on the

same mouse example presented in Fig. 14. It starts from

an initial pose candidate to the final pose estimation re-

sult, which is the top-left one among the list of all 40

output candidates.

recent methods which are based on GPUs. Note the em-

pirical runtime speed of our approach could be further

improved by exploiting the computing power of modern

GPUs. Meanwhile, an exceptionally high speed method

is developed in Oberweger et. al. [34], which is made

possible by the usage of very shallow neural nets. This

however comes with degraded performance as shown in

Table 2, with a significant average joint error increase

of 5.41 mm when compared to our approach.

Common Pose Estimation Errors of Our Approach Al-

though our Lie-X approach performs relatively well in

practical pose estimation settings, inevitably it does

make mistakes in practical situations. These common

errors include the following ones: orientation flips, dis-

placement along the z-direction and sub-optimal shape

fitting. A visual illustration of these common errors

made by our approach is provided in Fig. 17. As can be

observed, usually our Lie-Fish results are best aligned

with the ground-truths. The mistakes of Lie-Mouse are

more noticeable. Meanwhile the visual displacements of

our Lie-Hand results from the ground-truths are most

significant. This is to be expected, as the corresponding

complexity levels of the three tasks varies from being

relatively simple (i.e. kinematic chains) to complex (i.e.

kinematic trees).

5.3 Tracking of Mouse

Our Lie-X approach is also examined on the tracking

task using the mouse tracking dataset described before-

hand. Compared with our single frame based pose es-

timation of Alg. 1, it is of interest to examine on how

much we can gain from our tracking algorithm of Alg. 3,

when temporal information is available. Empirically our

mouse tracker is shown to produce an improved per-
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Fig. 17: Visual examples of common pose estimation errors made by our Lie-X approach. These errors include

orientation flips, displacement along the z-direction and sub-optimal shape fits. Each of the columns presents an

exemplar depth image of fish, mouse, and hand, respectively, while the first and second rows display its top and

side views.
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Fig. 18: Pose estimation vs. tracking: An comparison of the average joint error on frames of a mouse test sequence

when employing our pose estimation (Alg. 1) vs. tracking (Alg. 3) modules. The horizontal dotted lines in green

and blue colors are the respective mean errors of pose estimation and tracking results. Visual comparisons at

various time frames are presented in the bottom row.

formance of 7.19 mm from the 8.42 mm results from

our pose estimator on single frames. This can also be

observed from the bottom row of Fig. 18 where visual

comparisons are provides at several time frames. By ex-



23

Start

End
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(d) R-turn (e) Surface (f) Dive

(g) Zigzag (h) Thrash (i) Freeze

Fig. 19: Key frames from the nine distinct fish action categories considered in our experiments. The colored dots

display the trajectory of the fish motions, where blue and red mark the start and end of the action respectively.

Note for a better illustration of the distinct fish action categories, (e) and (f) present a side view of the surface

and dive actions, while a top view is adopted for the rest action types.

ploiting temporal information, the results of our tracker

are shown to produce less dramatic mistakes comparing

to that of pose estimation. It is again evidenced quanti-

tatively in Fig. 18, which presents a frame-by-frame av-

erage joint error comparison of tracking vs. pose estima-

tion on a test sequence. Clearly there exists a number

of very noisy predictions of pose estimation. In compar-

ison our tracking results are in general much less noisy.

Overall, the tracking results outperforms post estima-

tion with a noticeable gap of at least 1 mm. Note the

tracking results in some frames are slightly inferior to

that of the pose estimation counterpart, which we at-

tribute to the utilization of the averaging operations in

our tracker.

5.4 Action Recognition of fish

To demonstrate the application of our approach on ac-

tion recognition tasks, in what follows we conduct ex-

periments on the aforementioned fish action dataset. In

addition to the proposed tangent vector (i.e. Lie alge-

bras) based feature representation, as comparison we

also consider a joint based feature representation. Here

the main body of the feature representation follows ex-

actly as in the tangent vector representation, including

e.g. the adoption of a temporal pyramid of {4, 2, 1},
with the only change as follows: Instead of tangent vec-

tors, the corresponding the 3D joint positions are em-

ployed. This finally leads to an 888-dim feature vector

representation.

Fig. 19 displays our fish dataset that contains nine

unique action categories. The standard evaluation met-
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(a) (b)

Fig. 20: Action recognition confusion matrices on our fish action dataset. (a) is for joint position based features,

while (b) is for tangent vector based features. Their overall performance in terms of average classification accuracy

for (a) and (b) is 79.19% and 91.33%, respectively.

ric of average classification accuracy are considered in

this context. Empirically the comparison method that

utilizing joint position features achieves a performance

of 79.19%, which is significantly outperformed by our

approach based on tangent vector features with the

average accuracy of 91.33%. Fig. 20 provides further

information of category-wise errors in the form of the

confusion matrices. It is observed that the joint based

method tends to confuse among the subset of actions of

scoot, J-turn, c-turn, and r-turn, which are indeed more

challenging to be separated due to their inherent sim-

ilarities. Nonetheless, the performance on this subset

is dramatically improved in our approach with tangent

vector based features. We hypothesize that by following

the natural tangent vector representation, our approach

gains the discriminative power to separate these other-

wise troublesome action categories.

6 Conclusion and Future Work

A unified Lie group approach is proposed for the re-

lated key problems of pose estimation, tracking, and

action recognition of diverse articulated objects from

depth images. Empirically our approach is evaluated on

human hand, fish and mouse datasets with very com-

petitive performance. For future work, we plan to work

with more diverse articulated objects such as human

full body and wild animals, as well as their interactions

with other articulated objects and background objects.
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