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Segment 2D and 3D Filaments by Learning
Structured and Contextual Features

Lin Gu, Xiaowei Zhang, He Zhao, Huiqi Li, and Li Cheng

Abstract— We focus on the challenging problem of filamentary
structure segmentation in both 2D and 3D images, including
retinal vessels and neurons, among others. Despite the increasing
amount of efforts in learning based methods to tackle this
problem, there still lack proper data-driven feature construction
mechanisms to sufficiently encode contextual labelling informa-
tion, which might hinder the segmentation performance. This
observation prompts us to propose a data-driven approach to
learn structured and contextual features in this paper. The
structured features aim to integrate local spatial label patterns
into the feature space, thus endowing the follow-up tree classifiers
capability to grouping training examples with similar structure
into the same leaf node when splitting the feature space, and
further yielding contextual features to capture more of the
global contextual information. Empirical evaluations demonstrate
that our approach outperforms state-of-the-arts on well-regarded
testbeds over a variety of applications. Our code is also made
publicly available in support of the open-source research activi-
ties.

I. INTRODUCTION
The problem of segmenting 2D and 3D image-based fil-

aments is crucial in a wide range of applications, including
neuronal reconstruction and tracing in microscopic images [1],
blood vessel tracing in fundus images [2], [3], human vascu-
lature segmentation in 2D digital subtraction angiography and
3D magnetic resonance angiography images [4], to name a
few. Existing filament segmentation (depending on the context,
also referred to as vessel segmentation or reconstruction,
curvilinear structure segmentation in literature) methods can
be roughly grouped into two types: model-based and learning-
based. Hessian-based models characterize filament edges [5]
by the second order derivatives. However, they could be
awkward in tackling irregular-shaped filamentary structures,
such as irregular cross sections caused by imaging noise or
non-uniform staining. Meanwhile, other model-based methods
work by fitting filaments with known geometric shapes. One
example is the widely used optimally oriented flux (OOF) [6]
method, which is based on the assumption of circular filament
cross-sections. This idea is further extended by Turetken
et al. [7] to segment filamentary structures via a set of
regularly-spaced anchor points. Recently, we have evidenced
an increasing development of learning-based methods [2], [8],
[9], [10], [11], [12], which tackle the challenging irregular-
shaped filamentary structures by exploiting similar patterns
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from training samples in a supervised manner. In [8], a
boosting framework is proposed to learn filters that often
lead to the state-of-the-art performance. On the other hand,
there still lack proper data-driven mechanisms to construct
features or filters that sufficiently encode contextual labelling
information, which might be the bottleneck that hinders the
segmentation performance. Due to the vast literature on fila-
ment segmentation, it is not possible to mention all important
research efforts. Interested readers may consult [3], [13], [14]
for more thorough reviews.

Despite these research efforts, it remains challenging to
precisely segment 2D and 3D image-based filaments. This is
evidenced by e.g. the recent BigNeuron initiative [15] that
calls for innovations in addressing the demands from neuronal
science community where a significant number of neuronal
images have been routinely produced in wet labs, while there
still lack sufficiently accurate tools to automatically segment
the neurite structures. To address this challenge, we propose
in this paper a dedicated pipeline by learning structured and
contextual features from data. In practice, our approach has
outperformed existing state-of-the-art methods by a noticeable
margin on testbeds of 2D and 3D neuronal and retinal seg-
mentation applications. The main contributions of our work
are as follows: First, a novel scheme is developed to learn
structured features, each encodes a distinct local spatial label
pattern. Moreover, this feature construction scheme enables
the incorporation of features of variable sizes and locations
into a single feature vector, as illustrated in the left hand
side of Fig. 1. Compared to the otherwise more involved
multi-resolution approaches, it is simple to construct, and
these heterogeneous features are acquired and normalized in
a unified and natural manner. In addition, a set of context
distance features involving tree leave indices is proposed to
capture more of the global contextual information. Second,
our feature construction scheme and in particular the context
distance features work specifically well with the boosted tree
classifiers. Practically our approach is shown to be capable of
delivering superior performance over existing state-of-the-arts
on a variety of application benchmarks. Last but not least, to
support the open-source convention our package is also made
publicly available 1.

II. RELATED WORK
The work of [8] also learns features from data. Our approach

is however quite different. Instead of each feature being single
label-pixel based, we consider features each being related to

1The code and detailed information can be found at a dedicated
project webpage http://web.bii.a-star.edu.sg/˜zhangxw/
learnStructFeatures/index.htm.
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a local label patch centered around current pixel of interest.
This allows us to learn structured features in term of modeling
similarity patterns among pixels of the patch, as well as dis-
criminative features that retains label information. Moreover,
a context distance feature is proposed to include more global
contextual information when making local decisions. In what
follows, we also provide a succinct review of related machine
learning topics.

Instead of manual feature engineering, feature learning
aims to automatically extract features from data that are
discriminative and ideally interpretable. The visual Bag-of-
Words (VBoW) methods (e.g. [16], [17]) are probably the
most widely-used feature learning techniques, which has been
extended to accommodate spatial co-occurrences of features,
capture relative positions of codewords, and have multi-
resolution capacities [18], [19], [20]. For instance, sparse
coding has been employed in [21] to learn appearance filters.
In addition, a number of other methods have been developed.
Kernel boost [8] learns pixel-wise discriminative features at
each stage of the gradient boosting in the form of linear
filters. In [22], a regression-based approach has been proposed
for centerline detection. These methods nevertheless encounter
difficulties in explicitly modeling the spatial structured label
information. Rather than examining only the label of current
pixel, the auto-context features in [23] are learned to yield
spatially consistent results, where a cascade approach is used
to support the realization of iterative prorogation of label
information in inputs during feature generation. The very
recent structured feature learning paradigm also seeks a feature
map that considers spatial-neighboring labels together with
spatial-neighboring pixel observations. The structured forest
efforts of [24], [25] present such examples where a label patch
is considered as the output space when learning the feature
maps. The neural network and the more recent deep learning
approaches such as [11], [26], [27], [28] emphasize on implicit
learning of feature representations that are sufficiently dis-
criminative for prediction purposes, where it is also relatively
convenient to incorporate structured label information by the
back-prorogation trick. On the other hand, they often lack the
interpretability of their learned features which are the internal
network weights, which might not be desirable for domain
experts. We note in the passing that, to a degree, the idea
of learning structured features is also related with the topic
of structured prediction, for which we refer the readers to a
comprehensive survey [29].

The design of our proposed features and especially the
context distance feature makes them mostly suitable for
boosted tree classifiers. Therefore, it is meaningful to give
a brief overview about this research line here. In particular,
we focus on boosting [30], [31], which has wide applications
and various variants e.g. AdaBoost [32], LogitBoost [33],
gradient boosting [34], probabilistic boosted trees [35]. In what
follows, we provide a concise account of the gradient boosting
trees (also known as gradient boosted regression trees) as
background context.

Given training data {fi, yi}Ni=1 where fi ∈ Rn denotes
feature vector with n features and yi ∈ {+1,−1} denotes the
corresponding label. In our context yi = 1 denotes a filament

sample while yi = −1 refers to the background. Gradient
boosting trees are composed of an ensemble of weak decision
trees hj(f), which collectively predict the target value of input
data f by a function FM (f) defined as

FM (f) =

M∑
j=1

γjhj(f). (1)

The weak decision tree hj(f) is iteratively added to minimize
the loss as hj = arg minh

∑N
i L(Fj−1(fi)+h(fi), yi), where

for the loss function L(·, ·) we adopt the widely used expo-
nential loss L(Fj(fi), yi) = exp(−yiFj(fi)). Specifically, in
each iteration, we minimize a quadratic approximation of the
loss function in the following steepest descent strategy: In
each iteration j, we train a decision tree hj(f) to minimize∑N
i=1 w

j
i (h(fi) − rji )2, where wji = ∇2

FL(Fj−1(fi), yi) and
rji = −∇FL(Fj−1(fi), yi)/w

j
i denotes the gradient descent

direction. To grow a decision tree, we choose splitting function
t(f) that selects a single feature in f , as well as a threshold
τ . A training sample is assigned to the left child if t(f) < τ ,
otherwise assigned to the right child. We exhaustively search
all n choices for t(f) and seek the optimal τ to minimize the
quantity

∑
i,t(fi)<τ

wji (r
j
i − ηl)2 +

∑
i,t(fi)≥τ w

j
i (r

j
i − ηr)2,

where ηl and ηr are the mean values of rji in the left and right
child nodes, respectively.

III. OUR APPROACH

In this section, we describe details of our new approach,
including techniques used to extract structured features and
context distance features as well as the training of boosted tree
classifiers. The pipeline of our approach is shown in Fig. 1.
We first develop a scheme for structured feature learning
in Subsection III-A, aiming to integrate local spatial label
patterns into the feature space. Then, we feed the resulting
features to train two boosted tree classifiers, as shown in
Fig. 2. The first boosted tree classifier is used to obtain
context distance features, as described in Subsection III-B. The
resulting context distance features, together with structured
features, are used to train the second boosted tree classifier
which is adopted for testing image segmentation.

A. Structured Feature Learning

To start with, a set of N representative patches or cubes (for
2D or 3D images, respectively) of the same size is randomly
selected from the training images, as is presented in the left-
most panel of Fig. 1. The patches or cubes, together with
their corresponding labels, aggregate to form a set of training
image patches or cubes {pi, yi}Ni=1, where yi ∈ {−1, 1} is
the label of the central pixel in pi. For each patch or cube
pi, we randomly select m (e.g., m = 1024) pairs of labels
for pixels in pi and construct a m-dimensional binary vector
based on these label pairs. Here, the element of the binary
vector contains either 1 if the label pair are of the same type,
or 0 if they differ. This gives rise to a N ×m matrix Ŷ that
contains a rich set of spatially structured label information.
To further reduce the dimensionality, principal component
analysis (PCA) is subsequently performed on Ŷ to reduce
the dimension from m to l (In our experiments, we choose
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Fig. 1: Pipeline of our approach, which consists of two main components: The first component is for learning structured features as described
in Subsection III-A, the second component is for learning context distance features and training boosted tree classifiers as described in
Subsection III-B. Details of the second component are shown in Fig. 2, while the growing of a single tree as well as an illustration of why
structured features are useful are shown in Fig. 3.

Fig. 2: Illustration of the construction of context distance features. Left panel illustrates the pipeline of training two boosted tree classifiers.
Right panel presents the construction of context distance features for a specific pixel, where only top dc context distance features are
preserved. See text for details. Best viewed in color.

Fig. 3: Illustration of a single tree in the boosted tree classifier. Left panel illustrates why structured features are useful for partitioning
patches containing similar filamentary structures into the same leaf node. Right panel shows the function of a single tree, which corresponds
to a tree in boosted tree classifier I when input contains only {fi, yi}Ni=1 and corresponds to a tree in boosted tree classifier II when input
contains both {fi, yi}Ni=1 and {ci}Ni=1.

l = 10), resulting a matrix Y satisfying Y >Y = Σ, with
Σ ∈ Rl×l being a diagonal matrix consisting of the first l
largest singular values of Ŷ >Ŷ .

To take topological structure into account, for each pi,
we randomly select a sub-patch or sub-cube xi ∈ Rd, then
learn a linear filter W ∈ Rd×l such that the learned feature
x>i W has consistent topological structure as Yi, with Y =
[Y1 · · · YN ]> ∈ RN×l. Mathematically, we would like to
learn the optimal filter W by solving

min
W∈Rd×l

N∑
i=1

‖x>
i W − Y >

i ‖2 + λRw(W ) s.t.
N∑
i=1

W>xix
>
i W = Σ,

(2)

where Rw(W ) is a regularization term and λ > 0 is a param-
eter controlling the data fidelity and the model complexity. In
our experiment, we choose the fused Lasso [36] as the regu-
larization, that is Rw(W ) =

∑l
j=1

∑d−1
i=1 |Wi+1j −Wij |, to

impose smoothness in the filter. Denote X = [x1 · · · xN ]> ∈
RN×d, and define the `1,2-norm as ‖A‖1,2 :=

∑N
i=1 ‖ai‖2

for any matrix A = [a1 · · ·aN ]> ∈ RN×l, then optimization
problem in (2) can be reformulated as

min
W∈Rd×l

‖XW − Y ‖1,2 + λRw(W ) s.t. W>X>XW = Σ. (3)

The construction of Y is inspired by [25], aiming to measure
the similarity of pixels within a patch over the label space.
In this way, the features learned by W can model similarity
patterns among pixels in an image patch. A main difference
between [25] and model (3) is that [25] uses Y to facilitate
the computation of information gain in random forests while
model (3) exploits structured information in Y and uses it to
extract structured features. We also introduce the orthogonality
constraint to model the topological structure between different
patches. Moreover, one important reason for us to adopt the
`1,2-norm here as loss function is that the `1,2-norm is known
to be robust to outliers in data points, as shown in e.g. [37].

The final piece of our structured feature is a discriminative
feature vector. To ensure this feature being as uncorrelated
with the rest features (i.e. W ) as possible, we penalize the
correlation during feature learning. Formally, we solve

min
v∈Rd

‖Xv − y‖1 + ρRv(v) +
µ

2
‖W>X>Xv/N‖22, (4)

where y = [y1, · · · , yN ]> is the label vector, Rv(v) is a reg-
ularization term, and ρ > 0 and µ > 0 are tuning parameters
(In our experiments, we use Rv(v) :=

∑d−1
j=1 |vj+1 − vj |

to impose smoothness in v, and let µ = 0.1.). In the
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last term of (4), we use W>X>Xv/N to approximate the
sample covariance matrix between topological features x>W
and discriminative feature x>v, and attempt to minimize the
correlation. Similar to the model of (3), we use `1-norm as
the loss function, instead of least square loss, to make sure
the model in (4) is robust to outliers.

The alternating direction method of multipliers (ADMM) is
applied to solve both optimization problems (3) and (4). We
repeat T times the random selection process of image sub-
patches (In our experiments T = 200), which yields linear
filters {W (k)}Tk=1 and {v(k)}Tk=1. Therefore, for each image
patch or cube pi, the following feature vector is constructed:

fi := [(x
(1)
i )>W (1), (x

(1)
i )>v(1), · · · , (x

(T )
i )>W (T ), (x

(T )
i )>v(T )],

which is also illustrated in Fig. 1.
It is worth mentioning that features learned by W and

v contain quite different information of the current pixel.
On one hand, the construction of Y enables W to learn
similarity patterns of the neighbor pixels in the label space,
while the orthogonality constraint enables W to model topo-
logical structure among different patches. On the other hand,
feature v provide necessary discriminative information since
y alone records only the label of the current pixel instead of
difference of labels. In addition, due to the equality constraint
in problem (3), the resulting feature vectors {fi}Ni=1 must lie
on a manifold. By exploiting such constraints, our structured
features can work well with tree structured classifiers. As
shown in Fig. 3, feature vectors with similar structure lie close
to each other on the manifold, and the decision stumps of a
tree amount to partitioning the curved space of the manifold,
which force image patches with similar filamentary structure
to the same leaf node. A standard application of decision trees
is to compute posterior probability for classification or mean
values in leaf nodes for regression, and usually ignores the leaf
index. In the next subsection, we show how to take advantage
of leaf index information to construct context distance feature
aiming to capture global contextual information.

B. Context Distance Feature

We learn a boosted tree classifier (Boosted tree classifier
I in Fig. 2) to construct context distance features as follows:
Firstly, we grow a decision tree using {fi, yi}Ni=1, and index
all leaf nodes. Secondly, we input all training images into the
tree. Since each pixel will be clustered into one leaf node, we
get a index map for each image as shown in the left panel
of Fig. 2, where we highlight pixels in different leaf nodes
with different colors. Therefore, for each patch pi, we get the
leaf index li recording the leaf node into which the central
pixel of pi is clustered. Lastly, for each patch pi we compute
the distance from its central pixel to each leaf node, where
the distance is computed as the Euclidean distance between
the central pixel and the nearest pixel within the leaf node.
Therefore, for patch pi we get a distance feature vector ci
whose length equals to the number of leaf nodes. Iterate this
process M times, we can grow M trees and get a collection
of context distance feature vectors {cji}

j=1,··· ,M
i=1,··· ,N as well as

leaf indices {li}Ni=1 where li = [l1i , · · · , lMi ] represents the
structure label of pi.

Note in each iteration of classifier I, a new set of context
distance features are learned and used to train the corre-
sponding tree in classifier II, as shown in Fig. 2. In the
implementation, for the computational cost to compute the
whole context distance feature vector in 3D space or large 2D
space would be computationally expensive, we only collect
the context distance features for the top dc leaf nodes of
the highest weight, that is, keep only dc components in each
distance feature vector ci. For the sake of clarity, we use a
toy example to illustrate the construction process of context
distance feature, as follows. Suppose we have trained a tree
at some iteration of classifier I, for a given image we learn
structured feature for each pixel, and by processing the image,
each pixel passes through a particular path of the tree and lands
onto a leaf node. The weight of a leaf node is calculated as the
number of pixels in the node, among which we select the top
dc = 4 leaf nodes of the highest weight. Then, for an arbitrary
pixel x in the image, we find its nearest pixel x1, · · · , x4 from
the selected 4 nodes, respectively. The context distance feature
of pixel x is defined as cx = [dist(x, x1), · · · , dist(x, x4)],
where dist denotes the Euclidean distance of two pixels in an
image.

At the same time of constructing context distance features,
we also train a second a boosted tree classifier (Boosted tree
classifier II in Fig. 2). The training of classifier II is the
same as that of classifier I except that when growing each
tree in classifier II, we input both the structured features
{fi}Ni=1 and context distance features {ci}Ni=1. In the testing
phase, we use classifier I to construct context distance features
and classifier II to perform segmentation. In the experiments,
we demonstrate that introducing the context distance feature
would significantly improve the segmentation performance.

IV. EMPIRICAL EVALUATION

To examine the effectiveness of the proposed approach, in
what follows a series of empirical experiments are carried
out on different applications, including 2D retinal vessel
segmentation, 2D neuronal segmentation, as well as 3D neu-
ronal segmentation, all on widely-used testbeds. We start with
introducing the experimental configuration.

A. Experimental Configurations

Our Approach and Variants: As discussed in Fig. 1, our
pipeline contains the learning of two types of features, namely
the structured features, or SF in short, as well as the context
distance features, which we may refer to as SF + context
distance, which is the complete version of our approach.

Datasets and Evaluation Metrics: Six sets of publicly
available datasets are employed, each dedicates to one appli-
cation, as follows.

Four datasets are engaged for the task of 2D retinal
vessel segmentation, including DRIVE [38], STARE [39],
CHASEDB1 [40] and HRF [41]. DRIVE dataset 2 contains
40 fundus images of size 584 × 565, while STARE dataset 3

2DRIVE dataset can be downloaded at http://www.isi.uu.nl/
Research/Databases/DRIVE/.

3STARE dataset can be downloaded at http://www.ces.clemson.
edu/˜ahoover/stare/.
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contains 20 fundus images of size 605 × 700. CHASEDB1
dataset 4 contains eye images of 14 children, which were cap-
tured using 8 bit color channel with a resolution of 1280×960
pixels, yielding 28 images in total. Two experts’ segmentations
are available for each images as ground-truth. HRF dataset 5

contains 45 images, of which one third are images of healthy
patients, one third are patients with diabetic retinopathy and
the rest are images of glaucomatous patients. Binary gold
standard vessel segmentation images, generated by a group
of experts, are available for each image. The size of fundus
images is 3304×2336. Regarding the training/testing partition,
DRIVE dataset has its own partition, while for other datasets
we use the first half as training subset and the other half as
testing subset.

Then, to facilitate the analysis of 2D neuronal segmentation
systems, the neuronal dataset [2] 6 is utilized. This dataset
contains 112 images of in total 675 neurons. The image size
is within the range of 512×572. The same training and testing
splits in [2] are adopted in our experiments.

Finally, to demonstrate the application of our approach
on 3D neuronal segmentation, the Gold166 dataset shared
by BigNeuron initiative [15] is engaged here. The Gold166
dataset consists of 79 3D neuronal images along with the
corresponding manual annotations. The sizes of the 3D images
or image stacks vary from 511×511×597 to 1024×1024×62.
As some annotations of the image stacks might not be proper,
e.g. annotated filaments are visibly diverging from the 3D
point clouds in raw data, or the annotated 3D filaments are
noticeably much thinner than others in the dataset to match
up consistently with the 3D point clouds, we then end up
with a subset of 34 image stacks 7 by filtering away the ones
with questionable annotations. Among them, 17 images are
randomly selected to form the training set, and the rest form
the testing set.

Evaluation Metric: To evaluate the performance, we
follow the common practice in e.g. [42], [2] to adopt the
standard F1 measure (computed as 2×precision×recall

precision+recall ) and the
precision-recall curve in our experiments. We also compute the
Specificity as TN

TN+FP , and Matthews Correlation Coefficient
(MCC) [43] as TP×TN−FP×FN√

(TP+FP )(TP+FN)(TN+FP )(TN+FN)
, where

TP, TN, FP, FN refer to true positives, true negatives, false
positives and false negatives, respectively. For the 3D neuronal
(i.e. Gold166) dataset, we only use F1 measure. In particular,
to account for the near-boundary annotation issue 8, a tolerance
factor σ is introduced. Similar to that of [42], [44], [22], this
tolerance zone is used here to exclude the influence of these
near-boundary voxels from the boundary of human-annotated

4CHASEDB1 dataset can be downloaded at https://blogs.
kingston.ac.uk/retinal/chasedb1/.

5HRF dataset can be downloaded at https://www5.cs.fau.de/
research/data/fundus-images/.

6Downloadable from http://web.bii.a-star.edu.sg/˜zhaoh/
data/2D_Neuron_dataset.zip.

7Downloadable from http://web.bii.a-star.edu.sg/

˜zhangxw/learnStructFeatures/3D_Neuron_dataset.zip.
8As shown in Fig. 7(a) & 7(f), human annotation is often too conservative

to envelop in the actual 3D filamentary point clouds. In other words, the
ground-truth label for 3D filaments could be smaller than the size it should
be, thus is not sufficiently accurate in terms of segmentation.

TABLE I: An evaluation of various related features and classifiers on
DRIVE. Two values separated by “/” are F1 measures in percentage
(%) obtained with / without context distance features. See text for
details.

Gradient boosting AdaBoost LogitBoost Random forest
SF 78.56 / 76.82 74.40 / 70.82 78.33 / 76.61 73.22 / 68.77

raw feature 76.88 / 76.62 69.63 / 62.00 76.10 / 76.09 62.36 / 49.86
SE [25] 73.52 / 71.31 63.83 / 59.49 72.63 / 71.31 62.73 / 58.13
Gabor 62.96 / 67.12 56.75 / 62.32 62.13 / 63.91 54.83 / 60.80

3D filaments outward within σ voxels. In other words, only
voxels outside this zone are considered during performance
evaluation. It is worth noting in the passing that we have in
fact examined different schemes (one such alternative scheme
is presented in the supplementary materials.) to counter the
effect of near-boundary annotation issue, and found out all
leads to similar results. Throughout the experiments on 3D
Neuronal dataset, we report the F1 measure computed using
tolerance σ = 2.

Comparison Methods: For tasks of 2D Retinal and Neu-
ronal Segmentation, a range of state-of-the-art methods are
considered covering both supervised and unsupervised ones.
They are: (1) Kernel Boost [8] that utilizes gradient boost-
ing to learn convolutional features from data; (2) Optimally
Oriented Flux (OOF) [6] that uses manual filters to delineate
tubular structures; (3) IUWT [5] that is based on isotropic
undecimated wavelet transform, to segment 2D image in a
unsupervised manner; (4) Eigen [4], which is a multiscale
Hessian-based unsupervised method for 2D segmentation; (5)
T2T [45], which is a supervised 2D segmentation system that
integrates pixel classification, medial sub-tree generation and
global tree linking; (6) structured edge (SE), the structured
edge detection technique of [25]; (7) B-COSFIRE [43] that
responds to vessels selectively by computing the weighted ge-
ometric mean of the outputs by applying a pool of Difference-
of-Gaussian filters. (8) LCMBoost [2] which utilizes an iter-
ative learning-based approach to boost the performance of an
existing base segmentation method.

Unlike our approach, most existing 2D filament segmen-
tation methods could not work with 3D problems. Thus,
for 3D neuronal segmentation, our approach is compared
with a different set of state-of-the-art methods, as follows:
(1) Adaptive Enhancement [46] is a Hessian-based method
dedicated to 3D neuronal segmentation by detecting salient
features via adaptive context windows; (2) GWDT [47] is a
3D neuronal segmentation method based on a region-growing
scheme; (3) Regression Tubularity [22], which could be con-
sidered as an extension of Kernel Boost [8], formulates the
linear structure centreline detection as a regression problem.
These three standard 3D segmentation methods could produce
a probability map, thus allowing us to obtain the F1 measure as
well as the precision-recall curve. As these methods come with
the BigNeuron Gold166 dataset, their default parameters are
assumed to be optimal and are used as is in our experiments.

B. Results and Analysis
Classifiers and Features: As discussed previously, a num-

ber of boosted tree classifiers are applicable in our pipeline. A
systematic study is thus conducted on DRIVE dataset to gauge
the performance of incorporating related classifiers and typical
features. As in Table I, empirically gradient boosting delivers
the overall best results in our context, when comparing to



IEEE TRANSACTIONS ON MEDICAL IMAGING, SUBMITTED MANUSCRIPT 6

(a) F1 vs number of weak learners M (b) F1 vs tree depth dt (c) F1 vs number of context distance features

dc

(d) F1 using SF only vs parameters λ and ρ (e) F1 using SF + context distance vs param-

eters λ and ρ

Fig. 4: Parameter sensitivity analysis results. Each panel presents the F1 measure as a function a specific parameter while the
rest parameters remain unchanged at the default values.

options including AdaBoost, LogitBoost, and random forest.
This motivates us to adopt gradient boosting throughout our
experiments. On the feature side, four distinct feature types
are considered, including our structured features (SF), raw
features, structured edge (SE) features, and the widely-used
Gabor features. The raw feature is simply the image patch
pi centered around the target pixel as defined in Section
III-A. The SE features are obtained by the structured edge
detection technique of [25], which includes three CIE-LUV
color channels, two magnitudes and eight gradient channels
as well as 13 pair-wise self similarity features. From Table I,
clearly our structured features outperform the alternative (raw
or SE) features on all classifiers considered. This is due
to the fact that our structured features could capture both
discriminate and topology structure information. Furthermore,
the incorporation of context distance features would usually
lead to additional improvement. It is noted that although raw
features sometimes achieve nearly comparable performance,
its combination with the context distance feature then fails to
further advance the performance, as raw features could not
facilitate their context distance features in term of exploiting
topology and structure information as what structured features
can do. The performance of raw features on other datasets
are not consistently as well. For example, on STARE dataset,
the raw features achieve a F1 measure of 73.29%, while in
comparison SF alone has already 77.48%, which is 4.19%
higher.

1) Influence of Internal Parameters: Our approach contains
a handful of internal parameters, including the number of weak
learners M , tree depth dt of the weak learner, the number dc
of top context distance features we used, and regularization
parameters λ and ρ in optimization problems (3) and (4), as
also illustrated in Fig. 1, Fig. 2 and Fig. 3. Now, we proceed to
evaluate its robustness with respect to the change of parameter
values. While experiments are conducted only on the DRIVE
dataset, practical observation suggests similar trend on other
datasets, so what we have shown here is quite representative.
To avoid overfitting issue, a small fraction (10 images) of the
DRIVE training images are randomly picked and retained as a
validation set. Our parameter sensitivity analysis experiments
are thus evaluated on this validation set. To investigate the
effect of a specific parameter, we assign various values to the
parameter while keeping all other parameters at the default
value, and compute the F1 measure of our methods. The
following default values are used in this section: M = 500,
dt = 4, dc = 3, λ = 10 and ρ = 0.1. As indicated in Fig. 4,
overall our approach is often robust with respect to varying

parameter values, such as M , dt, dc. It is relatively more
sensitive to the value of λ and ρ. In what follows we give
more detailed analysis.

Number of Weak Learners: To show how the performance
changes with respect to tree number M , we evaluate the two
variants of our approach under varying values of M and plot
the corresponding F1 measure in Fig. 4(a). We observe that the
performance improves continuously with the growing number
of trees before considerably slowing down after around M =
500. In practice, we choose to use M = 500 to tradeoff
between performance and computational burden.

Tree Depth dt and Top dc Context Distance Features:
For each regression tree in the gradient boosting, the tree depth
also matters. As suggested in Fig. 4(b), similar to the number
of trees, deeper tree might improve the performance but at a
cost of higher computational demand. Similar pattern is also
observed in Fig. 4(c) when using different values of dc. In
practice, we fix dt = 4 and dc = 3.

λ and ρ in Learning Structured features (SF) and Con-
text Distance Features: Structured and context distance fea-
tures are produced using different λ and ρ values from set
{0.01, 0.1, 1, 10, 100}. As displayed in Fig. 4(d) and Fig. 4(e)
for SF and SF + context distance, respectively, the performance
of our approach is relatively stable, as the overall change of
F1 measures is less than 3%. In practice we set λ = 10, and
ρ = 0.1.

2) 2D Retinal and Neuronal Segmentation: Table II sum-
marizes the performance statistics of the competing 2D seg-
mentation methods on five datasets, namely DRIVE, STARE,
2D Neurons, CHASEDB1, and HRF. Additionally, Figure 5
presents the more detailed precision-recall curves on each
of these datasets. Representative visual results are displayed
in Fig. 6 which shows (a) the raw image, (b) ground-truth,
(c) the posterior probability estimated by our SF + context
distance variant and (d) its result, (e) the result of our SF only
variant, as well as two most competing methods, (f) Kernel
Boost [8] and (g) SE [25]. As shown in Table II, in terms of
F1 measure, the SF variant of our approach alone is capable
of slightly outperforming the best state-of-the-art methods,
Kernel Boost, B-COSFIRE and LCMBoost, on all testbeds.
Besides, the full version of our approach, namely SF + context
distance, outperforms the SF variant by a noticeable margin of
1% to 2% higher F1 scores on average. This exemplifies the
usefulness of the context distance features in our approach.

Fig. 5(a) presents the precision-recall curves of comparison
methods on DRIVE dataset. Our SF + context distance variant
significantly outperforms existing methods in a wide range of
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TABLE II: Performance statistics of 2D segmentation using F1 measure (%), Precision (%), Recall (%), Specificity (%) and MCC.
Method

SF SF + context distance Kernel Boost [8] OOF [6] IUWT [5] Eigen [4] T2T [45] SE [25] B-COSFIRE [43] LCMBoost [10]

D
R

IV
E

F1 measure 77.57 ± 2.16 78.86 ± 2.15 74.79 ± 2.67 67.01 ± 3.12 68.81 ± 3.31 65.74 ± 4.85 40.56 ± 2.26 60.98 ± 2.75 78.73 ± 1.95 75.74 ± 3.57
Precision 79.31 ± 2.65 80.50 ± 2.53 71.65 ± 3.57 65.76 ± 4.40 69.23 ± 4.71 67.43 ± 4.71 42.72 ± 3.82 55.33 ± 3.74 78.87 ± 2.21 78.59 ± 6.87
Recall 75.95 ± 2.65 77.33 ± 2.68 78.30 ± 2.49 68.42 ± 2.72 68.57 ± 3.74 64.82 ± 8.16 38.80 ± 2.31 68.23 ± 4.14 78.67 ± 3.14 74.11 ± 7.42
Specificity 97.11 ± 0.46 97.28 ± 0.37 95.50 ± 0.58 94.81 ± 0.76 95.57 ± 0.66 95.43 ± 0.95 92.31 ± 1.52 91.95 ± 1.15 96.93 ± 0.39 97.41 ± 1.16
MCC 0.7442 ± 0.0241 0.7589 ± 0.0239 0.7106 ± 0.0293 0.6214 ± 0.0352 0.6436 ± 0.0370 0.6116 ± 0.0496 0.3244 ± 0.0282 0.5511 ± 0.0273 0.7567 ± 0.0210 0.7322 ± 0.0349

ST
A

R
E

F1 measure 77.70 ± 6.19 79.53 ± 5.59 77.19 ± 6.35 69.58 ± 6.40 73.07 ± 5.62 67.45 ± 9.17 41.66 ± 4.81 59.22 ± 5.74 78.42 ± 4.11 78.13 ± 5.35
Precision 77.61 ± 7.80 79.89 ± 6.73 78.61 ± 6.07 70.26 ± 6.88 74.60 ± 6.90 71.93 ± 3.75 43.53 ± 6.86 52.67 ± 4.94 77.78 ± 4.55 82.33 ± 5.58
Recall 77.91 ± 4.85 79.24 ± 4.67 75.94 ± 7.18 68.98 ± 6.21 71.66 ± 4.74 66.10 ± 7.04 40.24 ± 4.15 67.94 ± 8.39 79.18 ± 4.75 75.19 ± 9.83
Specificity 97.41 ± 1.01 97.74 ± 0.74 97.60 ± 0.86 96.63 ± 0.97 97.19 ± 0.84 96.67 ± 1.72 93.78 ± 1.92 92.86 ± 1.92 97.36 ± 0.71 98.04 ± 0.93
MCC 0.7519 ± 0.0649 0.7724 ± 0.0588 0.7470 ± 0.0657 0.6613 ± 0.0672 0.7008 ± 0.0587 0.6488 ± 0.0791 0.3525 ± 0.0441 0.5448 ± 0.0574 0.7593 ± 0.0438 0.7614 ± 0.0527

2D
N

eu
ro

ns F1 measure 84.87 ± 3.92 86.17 ± 3.33 81.17 ± 4.67 65.58 ± 5.29 73.96 ± 4.37 68.30 ± 4.50 69.58 ± 4.44 58.42 ± 6.33 74.26 ± 3.79 83.96 ± 3.78
Precision 83.19 ± 4.65 85.02 ± 3.86 80.58 ± 4.97 60.33 ± 6.97 69.71 ± 7.19 62.39 ± 7.15 66.26 ± 6.30 48.82 ± 7.92 69.65 ± 6.49 74.96 ± 7.32
Recall 86.71 ± 3.87 87.45 ± 3.83 81.92 ± 5.49 72.57 ± 6.31 79.41 ± 4.79 76.76 ± 7.81 73.73 ± 4.98 74.06 ± 6.49 80.08 ± 3.90 96.71 ± 3.47
Specificity 99.51 ± 0.30 99.57 ± 0.27 99.45 ± 0.34 98.71 ± 0.72 99.07 ± 0.49 98.76 ± 0.65 99.02 ± 0.47 97.96 ± 0.91 99.09 ± 0.44 99.19 ± 0.36
MCC 0.8448 ± 0.0402 0.8581 ± 0.0347 0.8068 ± 0.0487 0.6504 ± 0.0518 0.7353 ± 0.0431 0.6804 ± 0.0438 0.6894 ± 0.0447 0.5866 ± 0.0577 0.7384 ± 0.0367 0.8441 ± 0.0321

C
H

A
SE

D
B

1 F1 measure 67.50 ± 3.77 72.02 ± 3.11 69.49 ± 3.06 47.12 ± 3.46 61.44 ± 3.10 62.20 ± 4.08 20.47 ± 1.69 53.59 ± 4.07 69.08 ± 3.08 –
Precision 66.60 ± 3.89 71.08 ± 2.89 69.32 ± 2.59 41.32 ± 4.64 59.80 ± 4.08 57.95 ± 5.28 13.16 ± 1.41 42.48 ± 4.84 64.74 ± 3.66 –
Recall 68.50 ± 4.32 73.03 ± 3.72 69.71 ± 3.97 55.28 ± 3.18 67.04 ± 2.61 67.40 ± 3.92 47.14 ± 5.54 73.19 ± 3.14 74.18 ± 3.77 –
Specificity 96.64 ± 0.49 97.10 ± 0.38 96.97 ± 0.52 92.08 ± 2.14 94.98 ± 0.86 95.14 ± 1.19 69.25 ± 5.87 90.19 ± 1.69 96.00 ± 0.86 –
MCC 0.6432 ± 0.0379 0.6928 ± 0.0314 0.6652 ± 0.0312 0.4167 ± 0.0403 0.5758 ± 0.0333 0.5745 ± 0.0442 0.1005 ± 0.0200 0.5007 ± 0.0370 0.6604 ± 0.0331 –

H
R

F

F1 measure 76.86 ± 4.53 77.49 ± 4.66 75.67 ± 5.10 49.59 ± 6.52 67.68 ± 6.06 71.33 ± 6.60 19.18 ± 1.94 53.66 ± 5.10 54.54 ± 5.46 –
Precision 77.75 ± 5.28 78.25 ± 5.47 76.42 ± 6.12 50.96 ± 8.29 69.65 ± 8.09 79.85 ± 6.83 13.16 ± 1.88 44.40 ± 6.39 41.55 ± 5.67 –
Recall 76.02 ± 4.13 76.78 ± 4.16 74.99 ± 4.38 48.44 ± 4.92 65.97 ± 4.45 65.09 ± 8.33 36.54 ± 4.26 68.58 ± 3.74 79.92 ± 3.84 –
Specificity 97.95 ± 0.41 97.99 ± 0.43 97.82 ± 0.47 95.49 ± 0.96 97.25 ± 0.73 98.43 ± 0.59 76.27 ± 5.84 91.61 ± 1.93 89.24 ± 0.92 –
MCC 0.7472 ± 0.0474 0.7541 ± 0.0489 0.7343 ± 0.0535 0.4495 ± 0.0696 0.6477 ± 0.0644 0.6959 ± 0.0623 0.0856 ± 0.0196 0.4971 ± 0.0515 0.5218 ± 0.0511 –

(a) DRIVE (b) STARE (c) 2D Neurons

(d) CHASEDB1 (e) HRF

Fig. 5: Precision-recall curves of comparison methods on (a) DRIVE, (b) STARE, (c) 2D Neurons, (d) CHASEDB1, and (e) HRF, respectively.
Best viewed in color.

TABLE III: Comparison evaluation focusing specifically on the optical disk region, as illustrated in the Exemplar optical disk
region masks of supplementary Fig. 1. Numbers are in percentage (%) of their F1 measure.

SF SF + context distance Kernel Boost [8] OOF [6] IUWT [5] Eigen [4] T2T [45] SE [25] B-COSFIRE [43] LCMBoost [2]
DRIVE 81.64± 2.79 83.27± 2.49 80.60± 4.26 71.79± 3.52 69.73± 4.50 67.18± 4.31 48.85± 3.06 65.76± 3.76 82.91± 2.87 78.27± 4.04

areas, especially during the recall value range of [0.6, 0.8],
which corresponds to the most useful zone in most practical
applications. The best existing method, Kernel Boost method,
shows slightly better precision when the recall is more than
0.95, which is too extreme to be of any practical use. On
the other hand, Kernel Boost are far inferior to both of our
variants in most of the cases (i.e. in the recall range of
[0, 0.9]). A representative example presented in the first row
of Fig. 6 provides visual evidence that our approach is capable
of suppressing false alarms and missing ones, while securing
reasonable amount of true positive vessel foregrounds, when
compared to existing methods like Kernel Boost and SE.

Fig. 5(b) again illustrates the superior performance of our
SF + context distance variant over any other methods on

STARE dataset. This point is also illustrated in Fig. 6 that
both of our variants successfully avoid the ambiguous vessels
while recover equivalent amount of detailed vessels. It is worth
noting that, in this dataset, our SF only variant is sufficiently
effective in high recall region when compared to Kernel
Boost. Additionally, a 5-fold cross-validation is conducted
on STARE, where the average F1 measure is 78.30% for
SF + context distance feature, and 76.41% for SF, which is
consistent with our aforementioned experiments where the first
10 images were used for training.

For the rest datasets, as presented in Fig 5(c), Fig 5(d),
and Fig 5(e), our SF + context distance again outperforms
other methods by a large margin, which nicely coincides
the performance summary of Table II, where our approach
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(a) Input image (b) Ground-truth (c) Probability map (d) SF + context distance (e) SF (f) Kernel Boost (g) SE

Fig. 6: Exemplar results on segmenting 2D retinal and neuronal images. (a): Input images; (b): Ground-truth; (c): Probability
maps of our approach (SF + context distance variant); (d & e): Error images of our approach (SF + context distance & SF
only); (f): Error images of Kernel Boost; (g): Error images of SE. Here green denotes false alarm and the magenta denotes
the missing error. Best viewed in color.

overtakes other competing methods most of the times.
Exemplar results on 2D retinal and neuronal datasets are

presented in Fig. 6, which provides visual evidence that our
approach outperforms existing methods like Kernel Boost and
SE. We also observe that the 2D neuronal dataset seems to
pose less challenge than the retinal datasets. This could be
possibly due to the fact that the neurons dyed in fluorescent
protein exhibit a clearer and relatively more visible boundaries.
On the other hand, both variants of our approach are able
to ignore the out-of-focus neurons in the background while
Kernel Boost is unable to tell them apart from the high quality
neurons.

In addition, experiments are also carried out to focus
specifically on the optic disk region. This helps to examine
the performance of our approach specifically on this difficult
region, where existing methods are often performing less well
due to the existence of packed nerve heads. A masked area is
centered around the optical disk with a radius of 100 pixels is
applied to extract the region of interest, as illustrated in Fig.1
of the supplementary file. Table III displays the quantitative
F1 results. Similarly, our complete approach still outperforms
rest competing methods.

3) 3D Neuronal Segmentation: Here, the experiment fo-
cuses on the task of 3D neuronal segmentation using the
Gold166 dataset. Exemplar visual results are presented in
Fig. 7, where the input images are overlayed by ground-truth
annotations in blue color as presented in the leftmost column.
It can be observed from especially the zoom-ins that, compared
with the three state-of-the-art segmentation methods (namely
Adaptive Enhancement, GWDT, and Regression Tubularity),
our filamentary structure predictions are more capable of
filtering away background noises while still retaining the
connectedness along the neuron branches. Quantitative results
are presented as the precision-recall curves in Fig. 8, where

our approach (i.e. SF + context distance) outperforms the best
comparison method, GWDT, by a noticeable margin most
of the time, and is only overtaken by GWDT when recall
is over 92% and precision is below 50%. The SF variant
of our approach performs only slightly inferior to the SF
+ context distance variant and is clearly the second best. It
is also observed that the Regression Tubularity is able to
achieve the highest precision at the cost of missing much of
the neurons. One reason is that this approach is particularly
designed to produce the maximal response at the centreline of
the curvilinear object, thus making it sometimes less sensitive
to the whole body. Table IV summarizes the F1 measures
as well as of the error bars (i.e. 1-standard deviation) of the
quantitative evaluation.
C. Time Complexity Analysis

The complexity of our algorithm consists of three main
parts: computing structured features, computing context dis-
tance features and training gradient boosting classifiers. We fo-
cus on the first two parts since the complexity of training gradi-
ent boosting classifiers has been extensively studied (e.g. [31])
and hence omitted. To compute both structured features W and
v, we employed ADMM, which is an iterative algorithm, we
assume the numbers of iterations are given by NW

iter and Nv
iter,

respectively. Then, the complexity of computing both W and
v is given by O((N + d) min(N, d)2 + (N + d)dlNW

iter +
((d + l)l2 + (N + d)d)Nv

iter). Computing context distance
feature vector cji for the center pixel of patch pi in the j-th
tree requires O(d

∑dc
k=1Nk), where Nk denotes the number

of pixels in the top k-th leaf node. Thus, the total complexity
of computing {cji}

j=1,··· ,M
i=1,··· ,N is given by O(dMN

∑dc
k=1Nk).

We note that in practice the time of computing structured
features usually dominates that of computing context distance
features. In testing phase, on 2D dataset DRIVE, the average
computational time of SF and SF + context distance is 173.3
seconds and 350.0 seconds per image, respectively; on the
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(a) Input image with ground-truth (b) SF + context distance (c) Adaptive Enhancement (d) GWDT (e) Regression Tubularity

(f) Input image with ground-truth (g) SF + context distance (h) Adaptive Enhancement (i) GWDT (j) Regression Tubularity

Fig. 7: Exemplar 3D neuronal segmentation results on Gold166 dataset. (a & f): Input images with ground-truth in blue; (b
& g): Results of our SF + context distance variant; (c & h): Results of Adaptive Enhancement [46]; (d & i): Results of
GWDT [47]; (e & j): Results of Regression Tubularity [22].

TABLE IV: Comparison of 3D neuronal segmentation methods on Gold166 dataset using F1 measure (%) with tolerance
σ = 2.

SF SF + context distance Adaptive Enhancement [46] GWDT [47] Regression Tubularity [22]
79.38± 9.75 79.89± 9.33 58.53± 14.27 75.77± 10.52 65.75± 12.48

Fig. 8: Precision Recall Curves of 3D neuronal segmentation
methods on Gold166 dataset.

3D dataset, the average computational time of SF and SF
+ context distance is 243.2 seconds and 486.7 seconds per
image, respectively.

V. CONCLUSION

We present a supervised feature learning approach for
filamentary structure segmentation. Empirical evaluations on
2D and 3D applications demonstrate the competitiveness of
our approach. For future work, we aim to investigate its ap-
plications in e.g. 2D and 3D human vasculature segmentation.
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