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Figure 1. Foreground segmentation of the “walk” sequence [8], which is challenging due to fuzzy object boundaries and camera motions.
The user is only required to label the first frame (a) using strokes (b). Local classifiers are trained at each pixel location and then used to
relabel the center pixel (c). Repeating training and relabeling leads to convergence (d-e), even though ambiguous (grey) areas still exist.
Final segmentation is obtained using graph cuts (f). When the new frames (g & j) arrive, they are first labeled (h & k) using the classifiers
trained by previous frames, before the same train-relabel procedure is used to produce the segmentation results (i & l). Note that the
proposed algorithm is able to extract the details of the hair without resorting to matting techniques.

Abstract

The objective of foreground segmentation is to extract the
desired foreground object from input videos. Over the years
there have been significant amount of efforts on this topic,
nevertheless there still lacks a simple yet effective algorithm
that can process live videos of objects with fuzzy boundaries
captured by freely moving cameras. This paper presents an
algorithm toward this goal. The key idea is to train and
maintain two competing one-class support vector machines
(1SVMs) at each pixel location, which model local color
distributions for foreground and background, respectively.
We advocate the usage of two competing local classifiers,
as it provides higher discriminative power and allows bet-
ter handling of ambiguities. As a result, our algorithm can
deal with a variety of videos with complex backgrounds and
freely moving cameras with minimum user interactions. In
addition, by introducing novel acceleration techniques and
by exploiting the parallel structure of the algorithm, real-
time processing speed is achieved for VGA-sized videos.

1. Introduction

Foreground segmentation, a.k.a. video cutout, studies
how to extract objects of interest from input videos. It is a
fundamental problem in computer vision and often serves
as a pre-processing step for other video analysis tasks such
as surveillance, teleconferencing, action recognition and re-
trieval. Over the years a significant amount of techniques
have been proposed in both computer vision and graph-
ics communities. However, some of them are limited to
sequences captured by stationary cameras, whereas others
require large training datasets or cumbersome user inter-
actions. Furthermore, most existing algorithms are rather
complicated and computationally demanding. As a result,
there still lacks an efficient and powerful algorithm capable
of processing challenging live video scenes with minimum
user interactions.

This paper presents a novel foreground segmentation ap-
proach that fills this niche. As shown in Figure 1, with
only a few strokes from user on the first frame of the video,
the algorithm is able to propagate labeling information to
neighboring pixels through a simple train-relabel procedure,
resulting in a proper segmentation of the frame. This same
procedure is used to further propagate labeling information
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across adjacent frames, regardless of the fore/background
motions. Several techniques are also proposed in order to
reduce computational costs. Furthermore, by exploiting the
parallel structure of the proposed algorithm, real-time pro-
cessing speed of 14 frames per second (FPS) is achieved for
VGA-sized videos.

1.1. Related work

There is a vast body of existing work for foreground seg-
mentation. Here we have to focus on the most related ones,
which are categorized into unsupervised [18, 15, 14, 5, 10,
13] and supervised [11, 9, 17, 12, 16, 1, 2] approaches.

Unsupervised ones try to generate background models
automatically and detect outliers of the models as fore-
ground. Most of them, referred as background subtrac-
tion approaches, assume that the input video is captured
by a stationary camera and model background colors at
each pixel location using either generative [18, 15] or non-
parametric [14, 5] methods. Some of these techniques can
handle repetitive background motion, such as rippling water
and waving trees, but none can deal with camera motion.

Considering scenarios where camera motion does not
change the viewing position, such as PTZ security cameras,
the background motion can be described by a homography,
which can be used to align different frames before apply-
ing the conventional background subtraction methods [10].
Recently there is also some new development to deal with
freely moving cameras by means of tracking the trajectories
of salient features across the whole video [13], where the
trajectories are used for estimating the background trajec-
tory space, based on which foreground feature points can
be detected accordingly. While this method automatically
detects moving objects, it tends to classify background with
repetitive motion as foreground, as well as to confuse large
rigidly moving foreground objects with background.

On the other hand, supervised methods allow users to
provide training examples for both foreground and back-
ground, then use them to learn classifiers. A number of
important methods [11, 9, 17] along this line have been
developed with impressive results, where multiple visual
cues such as color, contrast, motion, and stereo are uti-
lized. These cues are integrated with the help of structured
prediction methods such as conditional random fields. Al-
though working very well for video conferencing applica-
tions, these algorithms require a large set of fully annotated
images and considerable amount of offline training, which
bring up many issues when applying to different scene se-
tups.

As part of the video matting process, foreground seg-
mentation techniques are also considered and developed in
graphics literature. Most of these algorithms [8, 12, 16, 1]
model a video sequence as a 3D volume of voxels. Users
are required to label fore/background on multiple frames or

directly on the 3D volume. To enforce temporal coherence,
these algorithms usually segment over the entire volume at
one time by solving a global optimization problem, which
restricts their capacity toward live video processing.

The most relevant method to ours might be Video Snap-
Cut [2], where, starting from a segmentation of the first
frame, both global and local classifiers are trained using
color and shape cues, then labeling information is propa-
gated to the rest of the video frame by frame. Although the
workflows are somewhat similar, the two approaches have
notably different objectives. Video SnapCut aims toward
high quality video segmentation and produces very convinc-
ing results. However, it expects users to provide a fine an-
notation of the entire first frame which can be challenging
for fuzzy objects, and runs at about 1 FPS for VGA-sized
videos (excluding the time for matting). Meanwhile our ap-
proach is designed to process live videos, which starts by
inquiring only a few strokes from users, takes 1-2 seconds
to initialize and segment the first frame, and processes new
frames in real-time. Another key difference is how the local
classifiers are used. Video SnapCut utilizes local classifiers
only along the object boundaries, whereas in our approach
they are trained at each of the pixel locations. Appearing
as being redundant, this in fact facilitates the propagation of
label information to future frames without explicitly track-
ing fore/background motion. In contrast, SIFT features are
firstly employed in Video SnapCut to estimate rigid motion,
which is followed by optical flow to compute per-pixel mo-
tion. This nevertheless leads to a much more complex and
computational demanding algorithm.

1.2. Motivation of the presented algorithm

The key insight of our approach is to maintain two
Competing 1-class Support Vector Machines (C-1SVMs)
at every pixel location. The two 1SVMs capture the local
fore/background color densities separately, but determine a
proper label for the pixel jointly. By iterating between train-
ing local C-1SVMs and applying them to label the pixels,
the algorithm effectively propagates initial user labeling to
the entire image, as well as to consecutive frames.

Empirical studies such as Figures 4 and 6 suggest that
comparing to using a global classifier, the idea of main-
taining local classifiers could endow the resulting algorithm
with higher discriminative power. Moreover, as will be ex-
plained in the next section, the usage of C-1SVMs instead
of binary SVMs, allows better handling of ambiguous situ-
ations. As a result, the algorithm can deal with a variety of
challenging scenarios studied by the state-of-the-art meth-
ods (see Figure 1 and 7).

In summary, the proposed algorithm bears the following
characteristics:

Ability to deal with challenging scenarios: As shown in
Figure 1, 7 and 10, the algorithm performs competitively



under a variety of challenge scenarios such as fuzzy ob-
ject boundaries, camera motion, topology changes, and low
fore/background color contrast.

Minimal user interaction: Users are only asked to anno-
tate fore/background of the first frame with few key strokes.
Alternatively, the algorithm can also be configured to train
with only pure background images, allowing fully auto-
matic segmentation.

Easy to implement: The same train-relabel procedure is
used to segment foreground objects from input user strokes,
as well as to take care of fore/background motions in the
video. No additional procedure is required for obtaining
initial segmentation or estimating scene motions.

Low computational cost: The classifiers are trained us-
ing online learning, which allows much more efficient
learning of a dynamic set of examples than batch learning.
Two novel techniques are also proposed in this paper to fur-
ther reduce computational cost of training.

Parallel computing: The algorithm is designed for paral-
lel execution at individual pixel locations. Our current im-
plementation processes VGA-sized videos in real-time us-
ing a mid-range graphics card.

2. Key building blocks
2.1. Binary SVMs vs C-1SVMs

Intuitively, being a binary classification problem,
foreground segmentation seems best solved by binary
SVMs. However, we hypothesize that better perfor-
mance can be achieved using two C-1SVMs, which learns
fore/background distributions separately. The reasons are:

First, foreground and background may not be well sep-
arable in the color feature space. For example, the black
sweater and the dark background shown in Figure 1(a) share
a similar appearance. As a result, it is not proper to deal
with this scenario by means of training a global binary SVM
and use it to classify the entire image. Furthermore, trying
to train local binary SVMs at each pixel location is prob-
lematic as well since in most cases merely one of the two
(fore/background) types of observations is locally available.

Moreover, even in areas that both fore/background ex-
amples are available, modeling the two sets separately us-
ing the C-1SVMs gives us two hyperplanes that enclose the
training examples more tightly. As illustrated in Figure 2,
this helps toward better detecting and handling of ambigu-
ous cases. This hypothesis is also supported by empirical
evidence such as the experiments conducted in Figure 6.

2.2. Batch vs. online learning with reweighting

Training a SVM using a large set of examples is a clas-
sical batch learning problem, the solution of which can be
found through minimizing a quadratic objective function.

   

(a) a separable case

   

(b) an inseparable case

Figure 2. Comparison between a binary SVM and C-1SVMs.
White circles and black dots represent the foreground and back-
ground training instances, respectively, while red dot denotes an
unseen example. In scenario (a), binary SVM classifies the test ex-
ample as foreground, whereas the C-1SVMs labels it as unknown,
since neither of the 1SVMs accepts it as inlier. In the second case
(b), binary SVM cannot confidently classify the test example since
the margin is too small, whereas C-1SVMs is able to correctly la-
bel it as background.

Previous studies [3] have shown that a similar or even bet-
ter generalization performance can be achieved using online
learning with a much less computational cost, by showing
all examples repetitively to an online learner, when com-
paring to that of batch learning. A less noticed but distinct
advantage of online learning is that it produces a partially
trained model immediately, which is then gradually refined
toward the final solution. As will be discussed later, this
turns out to be very helpful in this paper.

The online learner we use follows the one proposed by
[7, 6]. Let ft(·) be a score function of examples at time
t and k(·, ·) be a kernel function, and denote αt a non-
negative weight of example of time t. We further denote
clamp(·, A,B) an identical function of the first argument
bounded from both sides by A and B. When a new ex-
ample xt arrives, the score function becomes ft(xt) =∑t−1
i=1 αik(xi, xt), the update rule for weights is:

αt = clamp
(
γ − (1− τ)ft(xt)

k(xt, xt)
, 0, (1− τ)C

)
,

αi ← (1− τ)αi ∀i = 1, . . . , t− 1, (1)

where γ := 1 is the margin, τ ∈ (0, 1) the decay parameter,
and C > 0 the cut-off value.

In what follows, we make a notable change to this online
learning algorithm. Since it does not consider the situation
where a given example is used repetitively during training,
directly applying Eq.(1) adds multiple support vectors to the
model, all come from the same sample but have different
weights. In addition, once a support vector (xt, αt) is added
to the 1SVM, over the time its weight αt is only affected by
the decay rate (1− τ). This leads to an explicitly reweight-
ing scheme executed in our approach: If a training example
xt arrives and it turns out identical to an existing support
vector (xt, αt) inside the model, this support vector is first
taken out when computing the score function, it is then in-



cluded with its newly obtained weight, α′t, to substitute the
original one αt.

ft(xt) =

t−1∑
i=1

αiχ(xi 6= xt)k(xi, xt), (2)

αt ← α′t = clamp
(
γ − ft(xt)
k(xt, xt)

, 0, C

)
, (3)

where χ(·) is an indicator function: χ(true) = 1 and
χ(false) = 0.

Empirical simulations such as the ones reported in Fig-
ure 5 confirm that the performance of the learned model us-
ing this online learning with reweighting scheme is as com-
petitive as that of batch learning.

2.3. Max-pooling of subgroups

Training 1SVMs with large scale examples is known to
be computationally expensive, which becomes a serious is-
sue in our real-time processing scenario. In addition to on-
line learning, we propose a novel idea to alleviate this by
what we term as max-pooling of subgroups: We divide the
whole example set Ψ into N non-intersecting groups ψi
(0 ≤ i < N ) and train a 1SVM on each group. Then
the original 1SVM score function is approximated by the
maximum operation of these 1SVM score functions from
subgroups. That is:

f(x) ≈ max
0≤i<N

fψi(x), (4)

where fψi(·) is the score function trained using examples
in subgroup ψi.

As will become more clear in later sections, when di-
viding examples into subgroups, our approach exploits the
spatial coherence of images so that the 1SVM trained on
each subgroup models local appearance density. Neverthe-
less, Empirical simulations show that the error introduced
by the above approximation is acceptable even when the
subgroups are randomly generated (see Figure 5).

3. Our approach
The core of our approach is a train-relabel procedure:

Two competing 1SVMs, Fp for foreground and Bp for
background, are trained locally for each pixel p using pix-
els with known labels within the local window Ωp. Once
trained, Fp and Bp are used to jointly label p as either fore-
ground, background, or unknown. Since the knowledge
learned from neighboring pixels in Ωp is used for label-
ing p, the above procedure effectively propagates known
fore/background information to its neighborhood. As a re-
sult, based on only a few initial strokes, the algorithm can
segment the whole image accordingly (see Figure 1(a-f)).

 

5x5 pixel 

subgroup (Ω)

2‐pixel wide gap

33x33 local 
neighborhood (Ω)

Figure 3. The neighborhood system used for 1SVM training. For
the center pixel p shown in red, the pixels within the local 33× 33
window is divided into 25 subgroups, with each subgroup having
25 pixels and a 2-pixel wide gap between adjacent subgroups.

The same train-relabel procedure is used for handling
temporal changes as well. When a new frame t+ 1 arrives,
the label Lt+1(p) is initialized automatically using the ex-
isting Fp and Bp. The initial labels, together with newly
observed colors, are then used to conduct the train-relabel
process. Since Fp and Bp are trained using all pixels within
Ωp of frame t, if any of these pixels moves to p, Fp and Bp
can properly classify it. Consequently, the algorithm can
cope with arbitrary foreground and background movement
without a prior motion information, as long as the amount
of movement is less than the radius of Ω.

Under ideal situations, where the appearance distribu-
tions of fore/background pixels are locally separable, the
above baseline procedure is sufficient. However, the two
distributions may intersect due to fuzzy object boundary,
motion blur, or low color contrast. To address these cases,
global optimization is applied to enforce the smoothness of
the solution. In addition, when moving to a new frame,
decaying is applied to existing support vectors for better
adapting to temporal changes. Details for the above steps
are discussed in each of the following subsections.

3.1. Train local C-1SVMs at each pixel location

When training the two competing classifiers, Fp and Bp,
at each pixel p, the size of the local window Ωp is an im-
portant parameter. It needs to be sufficiently small so that
the local fore/background appearance distributions are sep-
arable, while remain large enough for effective propagation
of label information and for covering fore/background mo-
tions. Throughout the experiments of this paper, we set Ωp
to 33 × 33 pixels, large enough to deal with motions of up
to 16 pixels between adjacent frames.

Using a 33× 33 window means 1089 examples are used
for training each 1SVM. Considering training is performed
for 1SVMs at all pixel locations, this is not affordable for
real-time processing. To reduce the training cost, the tech-
niques proposed in Sections 2.2 and 2.3 are applied here.

First, based on the max-pooling scheme of Section 2.3,
the 1089 examples inside Ωp are divided into 25 subgroups.
To further take advantage of the spatial coherence among



(a) after 1 iteration (b) after 2 iterations (c) after convergence

Figure 4. The incurred losses calculated for frame 0 of the “walk”
sequence after different numbers of iterations. These loss values
are used to produce the label maps of Figure 1(c-e). Red channel
encodes the losses from background 1SVMs and green encodes
those from foreground 1SVMs. Yellow and black colors indi-
cate that the corresponding areas are ambiguous in cases where
the foreground and background losses are both high or both low.

neighboring pixels, we leave a 2-pixel wide gap between
adjacent subgroups (see Figure 3). Pixels inside the gap are
not used to train Fp and Bp, but are used for their imme-
diate neighbors. Since these local 1SVMs are trained at all
pixel locations simultaneously, after splitting the examples
into subgroups, we only need to train the center subgroup
at each pixel location. The training for the remaining 24
subgroups will occur at their corresponding center pixel lo-
cations. This strategy endorses us to cut the computational
costs of training from using 1089 examples to just 25 ex-
amples. For the sake of clarity, we reserve symbols Fp and
Bp for the two C-1SVMs obtained through training with all
examples in Ωp, and we use F̂p and B̂p to denote the C-
1SVMs trained using pixels in the center subgroup Ω̂p.

Moreover, as suggested in Section 2.2, online learning
is employed to provide an on-demand feedback during the
train-relabel process. As shown in Algorithm 1, instead of
repetitively showing examples in Ω̂p to F̂p and B̂p and wait-
ing for the training to converge, we only show these exam-
ples once in each train step. The partially trained 1SVMs
are then immediately used to perform relabeling. This en-
able a faster propagation of labeling information through
neighborhoods, hence empirically it allows a faster con-
verge of the train-relabel process. For example, starting
from the input user stokes shown in Figure 1(b), it takes
about 40 iterations to propagates labeling information to the
whole image and generate segmentation for the first frame.
Afterward, it only takes 2-3 iterations to update the 1SVMs
and segment a new frame.

3.2. Relabel each pixel using learned C-1SVMs

OnceFp and Bp are trained, they are used jointly to clas-
sify pixel p. That is, p is labeled as fore/background only if
the two competing classifiers output consistent predictions.
Otherwise it is labeled as unknown.

As shown in Algorithm 2, the relabeling module starts by
computing the scores of observation I(p) based on Equa-
tion (2) with both Fp and Bp. As depicted in Section 2.3,
these two quantities are approximated by the scores of F̂

(or B̂) from a set of nearby subgroups and by taking the
maximum. To allow examples closer to p have higher influ-
ence than those further away, we additionally incorporate a
spatial decay parameter τspatial.

Both scores are then used to compute the incurred losses
for labeling p as either foreground or background (see Fig-
ure 4), respectively. p is thus classified as foreground (or
background), iff. the loss of Fp (or Bp) is low and the loss
of Bp (or Fp) is high. This dual thresholding strategy facil-
itates the detection of ambiguities, which is crucial to pre-
vent incorrect labeling information from being propagated.

Algorithm 1 Train C-1SVMs using frame It and label Lt

for each pixel p do
for each pixel q in Ω̂p do

if Lt(q) equals foreground then
Use It(q) to train F̂p based on Equation (2) & (3);

else if Lt(q) equals background then
Use It(q) to train B̂p based on Equation (2) & (3);

end if
end for

end for

Algorithm 2 Relabel input frame It using C-1SVMs
Require: Threshold parameters: T low

F , Thigh
F , T low

B , Thigh
B ;

for each pixel p do
Initialize approximate scores fF (p) and fB(p) to 0;
for each subgroup Ω̂q in Ωp do

Set w = (1− τspatial)‖p−q‖;

Set fF (p) = max
(
fF (p), w f

Ω̂q

F̂

(
It(p)

))
;

Set fB(p) = max
(
fB(p), w f

Ω̂q

B̂

(
It(p)

))
;

end for
Set foreground loss lF (p) = max

(
0, γ − fF (p)

)
;

Set background loss lB(p) = max
(
0, γ − fB(p)

)
;

if
(
lF (p) < T low

F
)

&&
(
lB(p) > Thigh

B
)

then
Set Lt(p) to foreground;

else if
(
lB(p) < Thigh

B
)

&&
(
lF (p) > T low

F
)

then
Set Lt(p) to background;

else
Set Lt(p) to unknown;

end if
end for

3.3. Apply global optimization

While explicitly labeling ambiguous pixels as unknown
helps to prevent error propagation during the train-relabel
process, decisions still need to be made for these pixels
in the final segmentation. In addition, the pixel-wise pre-
diction result based on previous sections often tends to be
noisy (see Figure 1(e)). To obtain a clean binary segmen-
tation, our final step is to compute the global optimal so-
lution Gt for a Markov random field based energy func-
tion, which consists of a data term and a contrast term. The
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Figure 5. Performance of batch learning vs. online learning with
and without reweighting/max-pooling over 100 trials. (a) data
used for one trial, where foreground and background examples
are colored in blue and red, respectively. (b) the mistake made
by batch learning for each trial is compared against the conven-
tional online learning (shown in red plus), the online learning
with reweighting (blue circle), and the online learning with both
reweighting and max-pooling (green square).

data term, i.e, the costs of assigning pixel p to foreground
or background, is set using lF (p) or lB(p) directly. The
contrast term is the same as the ones used in previous ap-
proaches [9, 15], which adaptively penalizes segmentation
boundaries based on local color differences.

It is well known that Gt can be calculated efficiently us-
ing graph cuts. We implement a version of the push-relabel
algorithm to compute the min cuts. In practice we limit the
number of push-relabel steps to 20, which is found suffi-
cient throghout our experiments.

3.4. Deal with incoming frames

When a new frame t + 1 arrives, the following prepara-
tion procedures are performed before the train-relabel pro-
cedure: First, Gt is used to train the C-1SVMs one more
time. Since the ambiguous areas are labeled in Gt using
smoothness constraints, using it to train F and B helps to
resolve ambiguities in future frames. Nevertheless, pixels
along the fore/background boundary often have mixed col-
ors. Using these pixels for training may introduce bad ex-
amples to F and B, which in turn may lead to incorrect la-
beling. This problem is circumvented in practice by apply-
ing a 2-pixel morphological erosion to both the foreground
and the background regions in Gt to remove ambiguities.
Next, To facilitate the adaptation of C-1SVMs to temporal
changes in the fore/background appearance distributions,
a temporal decay is applied: after Lt+1 is predicted, the
weights of existing support vectors in F and B are down-
weighted by a factor (1− τtemporal).

4. Experiments
To exploit the inherit parallel structure of the proposed

algorithm, we implement it on GPU using DirectCompute,

(a) train w/ stroke (b) labeled trimap (c) train w/ trimap

Figure 6. Classification using the LibSVM implementation of C-
SVM. The SVM trained using user strokes shown in Figure 1(b)
cannot properly segment the image (a). Allowing the binary SVM
to access manfully labeled trimap (b) only marginally improves
the result (c).

which is proposed by Microsoft as an alternative to CUDA
and is included in the Direct3D11 API. For VGA-sized
videos, our current implementation runs at 14 FPS on a
Lenovo ThinkStation S20 with nVidia GeForce GTX 480
GPU. Except for the cases presented in Figure 10 that we
will explain later, the same set of parameter values are used
throughout the experiments: C = 0.5, τtemporal = 0.25,
τspatial = 0.05, T lowF = 0.1, ThighF = 0.3, T lowB =

ThighB = 0.4. Notice that we set the background labeling re-
quirements (lB < T lowB and lF > ThighF ) to be looser than
those for foreground objects. Leveraged with a relatively
high temporal decay τtemporal, this introduces a tendency
of accepting unseen examples as background, which allows
proper management of background changes. Besides, the
kernel function k(·, ·) is computed as a Gaussian kernel with
σ = 10. The batch learners used for comparison is from
LibSVM [4], where the Gaussian kernels are used and the
parameters are tuned through cross-validation.

Comparison of batch and online learning: To evaluate
the performance of our dedicated online learning method
using reweighting and max-pooling strategies, we also com-
pare it to standard batch learning method on synthesized
dataset. As shown in Figure 5(a), 2000 two-dimensional
instances are sampled under a predefined Bernoulli prior
from two partially overlapped stationary distributions, each
forms a mixture of two Gaussians. The Bernoulli prior is bi-
ased so more instances are drawn from the distribution rep-
resenting the background than that from the foreground one.
The task is to train a background 1SVM model with 1000 of
the instances, which is then used to classify the remaining
instances into one of the two classes. When applying max-
pooling, the 1000 training instances are randomly split into
25 non-overlapping subgroups, each is used to train a local
1SVM. The sequence of training instances are presented to
the learner in 20 repeats for all online learning methods.

Figure 5(b) shows that the online learning method [7] us-
ing Eq.(1) performs inferior to the batch learning counter-
part, which is to be expected and well aligned with previous
work [7]. The online learner with reweighting using Eq.(3)
is shown to perform as well as, or slightly better than, the
batch learner. The performance drops when both reweight-



(a) first frame (b) input user strokes (c) test frame (d) converged label (e) final segmentation (f) foreground mask

Figure 7. Results on testbed sequences referred to as (from top to bottom) “talk”, “jug”, “hand”, and “car”. The results clearly demonstrate
the capacity of our algorithm to deal with different challenges, such as background changes (in “talk”), repetitive background motion (in
“jug”), camera motion (in “hand” & “car”), strong motion blur (caused by camera zooming in “jug”), non-rigid foreground deformations
(in “talk” & “hand”), topology changes (holes in “hand” & “car”), and low fore/background color contrast (in “talk” & “car”).

ing and max-pooling is applied, but is still comparable to
the conventional online learning approach.

Comparison with binary SVM: To verify our previous
claim that a global binary SVM does not work well for
challenging sequences such as “walk” due to overlapping
fore/background distributions, a comparison is carried out
and shown in Figure 6. The results empirically confirm
that global binary SVM cannot properly segment the image
even when having access to much richer labeling informa-
tion during training.

Results on testbed videos: As displayed in Figure 1 and
7, our algorithm is tested over a variety of video scenar-
ios used by previous papers [18, 5, 13, 11, 9, 17, 1]. The
segmentation results are visually satisfactory and are com-
parable to the state-of-the-art approaches that are designed
specifically for video conferencing [11, 9, 17], background
subtraction [18, 5], or for handling freely moving cam-
era [13]. Due to the space limit, we refer readers to these
papers for their results on the same sequences.

Quantitative evaluation using ground truth: We fur-
ther evaluate the segmentation quality quantitatively on
two sequences. For a fair comparison with previous ap-
proaches [11, 9, 17], which uses multiple annotated images
for training, here the C-1SVMs are trained using both the
first frame and one more selected frame where the initially
occluded foreground portion is visible. The quantitative
evaluations (see Figure 8) show that the median segmen-
tation errors are 0.07% and 0.88% for the two sequences,

respectively. In comparison, [17] reports higher median er-
rors of 0.27% and 2.56% for the same sequences.

Ability to recover from incorrect predictions: While
the aforementioned tendency of accepting unseen exam-
ples as background helps to correctly handle background
changes, such as the background person in “talk” and new
background scene in “walk”, it occasionally introduces er-
rors if locally unseen foreground appearances are presented
(see e.g. Figure 9). Nevertheless, thank to the redundancy
of using two competing 1SVMs, the incorrect labels do not
affect the training of foreground 1SVMs, which gradually
recognize the novel foreground colors. As a result, the mis-
takes are corrected after a few consecutive frames without
any user intervention.

Ability to work in background subtraction scenario:
With a different set of threshold settings (T lowF = ∞ and
T lowB = 0.2), the algorithm can also be initialized by one
or a few pure background image(s) instead of any stroke.
Under this setup, only the local background 1SVMs are
trained initially. As new frames are processed, outliers to
the background 1SVMs are classified as foreground, which
are then utilized to initiate the training of local foreground
1SVMs. Meanwhile inliers are used to update the back-
ground 1SVMs, allowing the algorithm adapt to dynamic
changes and background motion. As displayed in Figure 10,
the additional foreground 1SVMs help our algorithm re-
membering the detected foreground appearance, and as a
result, lead to better performance than previous work using
only local background models such as [18, 5].
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(a) sequence “JM” used in [9, 17]
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(b) sequence “IU” used in [11, 17]

Figure 8. Segmentation accuracy for two sequences, where a
ground truth segmentation is available for every 5 or 10 frames.
The errors of tree-based approach in (a) are based on our readings
from the Figure 12(a) in [17].

(a) input frame (b) converged label (c) final segmentation

Figure 9. A failure case. When the hand first shows up in (a),
both local foreground and background 1SVMs classify pixels with
unseen colors as outliers, resulting unknown (grey) labels (b). The
final segmentation (c) labels these pixels incorrectly due to the bias
toward background. However, the algorithm corrects the mistakes
in 10 frames without any user intervention (2nd row).

(a) input frame (b) result of [18] (c) result of [5]

(d) pure background (e) ours w/o user label (f) ours w/ user label

Figure 10. Comparisons to background subtraction algorithms on
the “jug” sequence. The results of existing algorithms (b & c) are
reported in their respective papers. Our algorithm labels the reflec-
tion as foreground (e) when initialized using a single background
image (d), and labels the reflection as background (f) when initial-
ized using user strokes shown in Figure 7 (b).

5. Outlook and discussion

A novel foreground segmentation algorithm is proposed
in this paper that is able to efficiently and effectively deal
with live videos. The algorithm is easy to implement, sim-
ple to use, and capable of handling a variety of difficult sce-

narios, such as dynamic background, camera motion, topol-
ogy changes, and fuzzy object boundaries. Experiments on
standard testbed videos demonstrate that our algorithm pos-
sesses comparable or superior performance comparing to
the state-of-the-art approaches designed for specific appli-
cations [11, 9, 17, 18, 5, 13].

Possible future research directions include incorporating
other visual cues such as texture and shape into the pro-
posed algorithm, as well as integrating the algorithm with
real-time video matting approaches.
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