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Abstract. This paper aims to trace retinal blood vessel trees in fundus
images. This task is far from being trivial as the crossover of vessels are
commonly encountered in image-based vessel networks. Meanwhile it is
often crucial to separate the vessel tree structures in applications such as
diabetic retinopathy analysis. In this work, a novel directed graph based
approach is proposed to cast the task as label propagation over directed
graphs, such that the graph is to be partitioned into disjoint sub-graphs,
or equivalently, each of the vessel trees is traced and separated from
the rest of the vessel network. Then the tracing problem is addressed
by making novel usage of the matrix-forest theorem in algebraic graph
theory. Empirical experiments on synthetic as well as publicly available
fundus image datasets demonstrate the applicability of our approach.

1 Introduction

Topological and geometrical properties of retinal blood vessels in fundus images
can provide valuable clinical information in diagnosing diseases. In particular,
vascular anomaly in retina is one of the clinical manifestations of retinal diseases
such as diabetic retinopathy, glaucoma, and hypertensive retinopathy. Take dia-
betic retinopathy as an example, it is a leading cause of blindness in the working-
age population of most developed countries. Diabetic retinopathy is the result
of progressive damage to the network of tiny blood vessels that supply blood
to the retina. Proliferative diabetic retinopathy is specifically characterized by
the formation of newly formed vessels in the retina [1]. This thus requires the
description of blood vessel tree structure in clinical diagnosis, and as a result,
calls for the tracing and separation of each vessel tree in the fundus images.

Existing efforts in retinal vessel analysis can be roughly categorized into
segmentation-based and tracking-based. The segmentation-based methods (e.g.
[2]) often use pixel classification to produce a binary segmentation (i.e a pixel is
classified into vessel or non-vessel). The tracking-based methods (e.g. [3]) usu-
ally start with a seed, and track the intended vessel based on local intensity or
texture information. Segmentation-based methods tend to produce many dis-
connected and isolated segments, less favourable for retaining the important



Fig. 1. Overview of our tracing pipeline where our focus is the tracing step.

topological properties of vessel networks. Meanwhile vessel tracking methods of-
ten better preserve the connectivity structure of vessel segments. Nonetheless
they encounter great difficulties with the occurrence of crossover at the junction
points. Current methods often fail to trace properly, as it is nontrivial to predict
whether the vessel segments at a junction point belong to one tree or multiple
trees, and for the later case, to which tree each segment belongs. In this paper,
we dedicate our attention to addressing this bottleneck crossover issue.

We consider a different tracing approach that can take into account both
local and global contextual information of the vessel network, as summarized
below: After initial pixel-based segmentation and skeleton extraction, a novel
directed graph (or digraph) representation is formed, where each segment in
the skeleton map becomes a node, and a direct contact between two adjacent
segments corresponds to an edge of the two corresponding nodes. The segments
in the skeleton map touching the optic disk area are considered as the root nodes.
The number of trees to-be-found in the the vessel network thus equals the number
of root nodes. The tracing problem is now formulated as label propagation on
directed graphs or digraphs: The goal is to propagate tree labels from known root
nodes to the rest of the graph, such that the digraph will be split into disjoint
sub-graphs, which corresponds to trees of the vessel network. This allows us
to consider and make novel usage of the recent development of matrix-forest
theorem [4] studied in algebraic digraph theory.

In term of major contributions, our approach offers a principled way of ad-
dressing the tracing with crossover problem. By connecting to the well-established
algebraic directed graph theory [4], local and global contextual information can
be both considered explicitly. We expect the digraph theoretical representation
can open the door to some insightful understanding of the characteristics of
crossover sections in vessel networks. Finally, our algorithm is also simple and
easy to implement.

2 Our Approach

The problem of vessel tracing is to trace blood vessels by separating them into
disjoint vessel trees, each starting from a unique root segment within the optic
disk, as illustrated in red dots at Figure 1(b). Figure 1 describes the pipeline



of our approach that consists of two main steps: The preprocessing step mainly
consists of segmentation, skeleton extraction, and digraph construction; The
tracing step then focuses on digraph-based label propagation using Matrix-forest
theorem — the main focus of this paper.

2.1 Preprocessing

The preprocessing step is comprised of the following three modules: Segmenta-
tion: As illustrated in Figure 1 (a)→(b), an input retinal image is segmented
into a binary image, with vessel pixels being foreground and the rest as back-
ground. Note this step is skipped for synthetic retinal images as they are al-
ready binary images. Skeleton map: Build a skeleton map from the binary
image, and remove the optic disk area as marked within red ellipse in Fig-
ure 1(b). The cusps attached to the removed optic disk are the tips of root
segments, which are also presented as red dots in Figure 1(c), a zoom-in subset
of (b). Skeleton to digraph: A segment is defined in the skeleton as the group
of connected pixels that ends in either a junction or a tip. This segment corre-
sponds to a node in the resulting digraph, as shown in Figure 1(c)→(d). Two
nodes are then linked with a directed edge, when the two coinciding segments
from the skeleton map contact and satisfy the ordering criteria, a modifica-
tion of the well-known stream ordering method from the hydrology community
(http://en.wikipedia.org/wiki/Strahler_number). More details can be found at
our previous work [5].

2.2 Tracing by Matrix-Forest Theorem on Digraphs

The tracing problem becomes that of separating the vessel trees with only tree roots
known, which can be equivalently formulated as a digraph-based label propagation
problem with one labeled node per class (vessel tree). That is, all the source nodes
are labeled in this problem, each with a unique label (tree), and the task is to make
predictions on the remaining unlabeled nodes by propagating the class labels following
the underlying digraph structure.

Problem Set-up Let G = (V, E ,W ) denote a digraph, where V = {v1, v2, . . . vn} is
the set of nodes, E the set of directed edges each connecting two adjacent nodes,
and W = [wij ] ∈ Rn×n the asymmetric non-negative matrix with wij ≥ 0 being the
weight of the directed edge from vi to vj . The out-degree of each node vi is computed
as d+i =

∑n
j=1 wij . Denote the out-degree matrix D = Diag(d+1 , · · · , d+n ), that is,

D = Diag(W1), with 1 an all-one column vector. Define the digraph Laplacian L =
D−W . A row-stochastic transition probability matrix P = [pij ] can be constructed as
pij =

wij

d+i
, or equivalently as P = D−1W . Note undirected graphs can be regarded as

special digraphs characterized algebraically by their symmetric weight matrix W , i.e.
the symmetric pair wij & wji correspond to bi-directional edges with equal weights.
We focus here on a transductive inference scenario where labels from the set of few
labeled nodes Vl are to be propagated to the rest unlabeled nodes Vu, with V = Vl∪Vu.
The labels are multiclass, each corresponds to a separate vessel tree. To simplified the
notation we assume Vl contains the first l nodes, Vl = {v1, . . . , vl}. To accommodate
label information, define a label matrix Y of size n ×K (assuming there are K class



labels available), with each entry Yik containing 1 if node i belongs to Vl and is labeled
with class k, and 0 otherwise. Also define the length n ground-truth label vector y that
includes two disjoint parts yl and yu: yl is the input label vector of length l over the
set of labeled nodes, with each entry yi for the input class assignment of node vi ∈ Vl;
yu is the hold-out ground-truth label for the unlabeled nodes, i.e. a vector of length
n− l. Similarly, define the initial label vector ŷ containing also two parts, ŷl := yl and
ŷu = 0, where 0 is an all-zero vector of length n − l. Define the prediction vector y∗

with also two parts y∗l := yl, as well as y∗u of length n − l, containing the prediction
results, where each y∗i denotes the predicted class assignment for a node vi ∈ Vu.

The proposed label propagation algorithm (shown in Algorithm 1 and referred to
as MFTD) is derived based on matrix-forest theorem [4] of algebraic digraph theory [6],
as follows. Let wmax denote the entry inW containing the strongest signal, i.e. wmax =
maxi,j

∣∣wij∣∣. The forest matrix is defined as

S1 := (I + αL)−1, (1)

a normalized forest matrix where each (i, j)-th entry denotes the number of trees rooted
at node i that also include the j-th node, as in Theorem 4 of [4]. It can be viewed as
a generalization of the celebrated matrix-tree theorem (e.g. [7]) for undirected graphs
to digraphs. Further, let L̃ := limα→∞(I + αL)−1, which is a matrix of normalized
spanning forests. Both S1 and L̃ has a number of interesting properties [8]: Each entry
of both matrices is non-negative, and both matrices are row-stochastic; L̃ resides in the
null space of digraph Laplacian L, as LL̃ = L̃L = 0; rank(L) = n− rank(L̃); L+ βL̃ is
non-singular for any β > 0, and is the “complementary perturbation of L” [9]. Indeed,
this brings forward the second forest matrix,

S2 := (L+ βL̃)−1, (2)

which is also termed the matrix of dense forest in [4]. As presented in what follows,
varying the preprocessing schemes of normalizing W , we have two variants: MFTDa

starts with a preprocessing effort to normalize W , W ← W
wmax

; MFTDb considers a
different normalization of W as W ← D−1W instead, i.e. P =W .

Proposition 1. Under normalization scheme of W ← D−1W , the forest matrix be-
comes S1 = (1− τ)(I − τP )−1, with τ = α

1+α
.

When applied on the second forest matrix S2 using (2), this clearly leads to two addi-
tional variants that are denoted as MFTDc & MFTDd, respectively.

Algorithm 1 Label Propagation by Matrix-Forest Theorem of Digraphs (MFTD)
Input: A digraph G = (V, E ,W ), label information Y , yl, and α ∈ (0, 1).
Output: y∗u
Compute the out-degree matrix D.
Compute the affinity matrix by A = SY and (1) (or (2)).
Predict y∗u: Compute the i-th entry by (3), for any unlabeled node vi ∈ Vu.

One can interpret the (i, j)-th entry Sij of the forest matrix S (being either S := S1

or S := S2) as quantifying the accessibility of a particle from a node vi to visit node



vj along the digraph structure. This provides a notion of affinity from state i to j. The
intuition is, if a state j is close to the initial state i in terms of graph structure, it
will be visited by the particle more often than if it is far away from initial state, i.e.,
we visit our close relatives more often than our distant ones. Now define the affinity
matrix as A = SY , a matrix of size n×K, with each entry aik being associated with
an affinity score of state i belonging to class k. To infer y∗u of the unlabeled states Vu,
our algorithm predicts each entry’s class assignment by identifying a label with the
largest affinity score,

y∗i = argmax
k

aik, ∀vi ∈ Vu. (3)

MTTDa MFTDb MFTDc MFTDd
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Fig. 2. Performance (AC) as a function of varying α or β of MFTDa−d.

PAC-Bayesian Label-propagation Bound We report an investigation of the general-
ization bound of our approach on unseen data, which is an adaptation of [10]. We start
by reformulating our algorithm (i.e. both (1) and (2)) as an equivalent representation
h = Sŷ, where ŷ is the initial label vector with partial labels ŷi ∈ {±1} for vi ∈ Vl,
and ŷi = 0 otherwise. The obtained h is the “soft” label vector with hi being the ”soft”
label for node vi, which will be assigned with class label sign(hi) when making pre-
dictions. The hypothesis space is defined as H :=

{
h
∣∣∣ h = Sŷ, ‖ŷ‖2 ≤

√
l
}
. For any

label vector h, define the test error as Ll,n(h) := 1
n−l

∑n
i=l+1 `(hi, yi) w.r.t. its 0/1

loss function ` satisfying `(hi, yi) = 1 if hi 6= yi and 0 otherwise, and let the empirical
error of h be L̂l,n(h) := 1

l

∑l
i=1 `(hi, yi).

Theorem 1. For any δ ∈ (0, 1), with probability at lest 1− δ over random draws of Vl
from V, the following bound holds for any h ∈ H

Ll,n(h) ≤ L̂l,n(h) +

√√√√( 2L̂l,n(h)n

n − l

)
ln l
δ

+ 7ln(n + 1)

l − 1
+

2
(
ln l
δ

+ 7ln(n + 1)
)

l − 1
.



3 Experiments

Our approach is evaluated in our in-house synthetic dataset 5, as well as two testbeds,
DRIVE [11] and STARE [12]. The synthetic dataset contains 17, 000 synthesized retinal
images with varying densities of blood vessels. Meanwhile, DRIVE dataset contains 40
retinal fundus images, and STARE has 20 fundus images. Exemplar images of the three
datasets are illustrated in Figure 3.

Synthetic Dataset
CDRN WVRN CTKd CTKu SGL MFTD

AC 0.63 0.65 0.63 0.71 0.71 0.75
DS 0.62 0.62 0.61 0.68 0.64 0.72

DRIVE [11]
CDRN WVRN CTKd CTKu SGL MFTD

AC 0.69 0.67 0.73 0.79 0.76 0.81
DS 0.68 0.64 0.72 0.74 0.75 0.76

STARE [12]
CDRN WVRN CTKd CTKu SGL MFTD

AC 0.71 0.73 0.75 0.83 0.79 0.89
DS 0.68 0.69 0.74 0.78 0.76 0.84

Table 1. Comparison with leading label propagation methods. See text for details.

Our approach is compared with the following label propagation methods: Class
Distribution Relational Neighbor classifier (CDRN) [13], Weighted Vote Relational
Neighbor classifier (WVRN) [13], Digraph variant of the Commute Time Kernel clas-
sifier (CTKd), and the original Commute Time Kernel classifier for undirected graphs
(CTKu) [14], and Symmetrized Graph Laplacian (SGL) [15]. To summarize, CTKu is
an undirected graph-based method, CTKd, SGL, and the proposed MFTD are digraph-
based methods, while the rest methods are not graph-theoretical. To ensure fair evalu-
ations, the internal parameters of the comparison methods are either set to as is from
the authors’ original source code, or as suggested in the papers. In terms of evalua-
tion metric, the micro-averaged accuracy (AC)is utilized, which is the sum of all true
positive counts divided by the total number of instances. Besides, the DIADEM score
(DS) [16] is also employed, being a dedicated measure that has been widely used by
the biological tracing community.

Effect of Varying α (or β) of Our Approach Our first experiment is to evaluate
the effect of varying the value of our algorithmic parameter, namely α in MFTDa−b,
or β in MFTDc−d. This is performed on all three datasets. As presented in Figure 2,
the performance (AC) is displayed as a function of varying parameter value (α in
row 1 & β in row 2) of our proposed algorithms MFTDa−d, with x-axis being in log-
scale. Surprisingly, all four variants of our MFTD framework produces exactly the same
results when α ≥ 1 and β ≤ 10−4, which is also verified under the AC criterion as in the
figure. This is very interesting as despite their differences in algebraic forms and graph-
theoretical interpretations, effectively these variants are equivalent characterized by

5 Downloadable at http://web.bii.a-star.edu.sg/~jaydeepd/tracing.htm.



their ability of tracing retinal blood vessels. To avoid redundancies, we will collectively
refer to the performance of all these four variants as MFTD, and fix α = 1 and β = 10−4

during the rest experiments.

Fig. 3. Each row presents two exemplar retinal tracing results on Synthetic dataset,
DRIVE, and STARE, respectively. Segments with the same color form a distinct vessel
tree. Thus the number of colors equal to the number of classes (vessel trees). Selected
correct (wrong) tracing segments are shown in green circles (red squares).

Comparison with the State-of-the-art Label Propagation Methods The performance
of our approach is evaluated on three scenarios and is compared with nine label prop-
agation methodsas reported in Table 1.Overall our approach consistently outperforms
the other methods by a large margin. The second best performer is usually CTKu, which
are followed by SGL and CTKd. To facilitate visual inspection, Figure 3 presents exem-
plar images and comparison results. It suggests that empirically our approach delivers
visually plausible tracing results when comparing to the ground-truths side-by-side,
and the errors occur at those challenging spots that are often also difficult for human
observers.

Comparison with State-of-the-art Tracing Systems We also compare with GOGP
of [3] on DRIVE. DIADEM scores (DS) of the proposed MFTD on image no. 19 of
DRIVE is 0.81, which is significantly higher than that of 0.71 obtained on the same
image by [3]. We note in the passing that MFTD slightly outperforms the 0.765 of our
earlier work [5], meanwhile we expect further gain would be achieved with the adoption
of a better skeleton to digraph conversion.



4 Conclusion and Outlook

A novel approach is proposed for tracing vessels in fundus images. The tracing problem
is solved by utilizing matrix-forest theorem of digraphs. Empirical evaluation demon-
strates the superior performance of our approach. For future direction we plan to work
with broader applications such as neurite tracing.
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