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Abstract

A Bayesian framework is proposed for stereo vision where solutions to both the model parameters and the disparity map are posed in
terms of predictions of latent variables, given the observed stereo images. A mixed sampling and deterministic strategy is adopted to
balance between effectiveness and efficiency: the parameters are estimated via Markov Chain Monte Carlo sampling techniques and
the Maximum A Posteriori (MAP) disparity map is inferred by a deterministic approximation algorithm. Additionally, a new method
is provided to evaluate the partition function of the associated Markov random field model. Encouraging results are obtained on a stan-
dard set of stereo images as well as on synthetic forest images.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The goal of stereo matching is to infer the optimal dis-
parity map for a given pair of images. Unfortunately,
hand-crafting of model parameters is often necessary to
ensure satisfactory results for specific image pairs [1]. A
remedy is to adopt the Bayesian paradigm which naturally
solves this problem of automatic parameter tuning, by
treating both the unknown disparity map and the related
parameters as random variables. The problem is then to
infer the optimal distributions of the random variables.
The merit of this scheme has been demonstrated in the
related area of medical image processing by Higdon et al.
[2]. However, the Bayesian approach is typically computa-
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tionally demanding due to the use of sampling algorithms
to explore the space of plausible distributions.

We propose the use of a generative Bayesian framework
for stereo matching, which addresses the inference of dis-
parity map and the estimation of parameters under a uni-
fied scheme. Further, efficient Markov Chain Monte
Carlo (MCMC) methods [3] are proposed for parameter
estimation, and a deterministic approximation algorithm,
loopy belief propagation (LBP)1 [6], is adopted to infer
the disparity map.

Recently, a number of optimization methods have been
used to solve the stereo problem. These include using sim-
ulated annealing [7], dynamic programming [8] and LBP [9]
to infer the optimal disparity map. However, unlike the
proposed method, existing models are not fully Bayesian,
and their solution techniques are substantially different.
The novel contributions of this work are threefold. First,
stereo matching is explicitly addressed as a generative pro-
cess, as illustrated in Fig. 1. Second, a Bayesian framework
that naturally unifies the tasks of inferring the disparity
1 Two other papers of this issue [5] also use the LBP algorithm.
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Fig. 1. A 2 · 2 2D lattice example that illustrates the proposed generative
model for stereo matching. On the bottom, the 3D disparity space y is
compiled by measuring the pixelwise dissimilarities of the left and right
images with respect to shifts along the epipolar line. On the top, the
disparity map d is modelled as a Markov random field. For a node i, given
the latent disparity di, the pre-compiled observation yi is independent of
the rest of the disparity space y.
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map and estimating the model parameters, is proposed.
Third, a new method, based on the path sampling
approach [10], is derived to evaluate the partition function
of the underlying Markov random field (MRF). In partic-
ular, the proposed evaluation method is shown to bear
theoretical advantages over both the coding and the pseu-
do-likelihood method [11]. Moreover, it greatly reduces the
computational load when integrated into the MCMC sam-
plers, and empirical experiments demonstrate the conver-
gence behaviors of the proposed mixing strategy.

The Bayesian model is presented in Section 2, followed
by a mixed updating strategy in Section 3. Details regard-
ing the coding and the pseudo-likelihood methods are
shown in Appendix C.1, and details of the proposed parti-
tion function evaluation method are presented in Appendix
C.2. Finally, experiments are conducted in Section 4, with
an empirical analysis of convergence behavior of the pro-
posed approach addressed in Section 5.

2. The Generative Model

We assume a dense binocular stereo setting (e.g. [1]),
where two views (left and right images, rectified to satisfy
the epipolar constraint) of the same scene are presented.
With the left image being the reference view, the task is to
infer the disparity of each pixel, and to automatically esti-
mate the model parameters for the image pair. This model,
however, could be easily extended to more general scenarios.

Let i = 1, . . .,n index a 2D lattice of image pixels. Let
y = {yi} denote a 3D disparity space with each yi a vector
of length D, where D is the range of possible disparity val-
ues. Essentially, y stores sufficient statistics about the input
images, with each layer (see Fig. 1) storing the pixelwise
dissimilarities of the two images, after shifting the left
image horizontally a certain number of pixels. Therefore,
y is referred to as the ‘‘observed’’ disparity space. The dis-
parity map d = {di 2 {1, . . .,D}} is modelled as a Markov
random field (MRF) [12]. The proposed model consists
of two components: the sensor model and the prior model.
For the sensor model, p(y| d,ry, sy) captures the statistical
dependencies of the observation y on the latent disparity
MRF d, while the prior model p(d |rd, sd) addresses the
neighboring dependencies within the disparity map. For
convenience, denote the model parameters as h = {ry, sy,
rd, sd}, with (rd, sd) parameters of the prior model and
(ry, sy) parameters of the sensor model.

Because of the uncertainty of h for different image pairs
(see Fig. 1), Bayesian theory [13] treats h as unknown and
assigns a prior distribution for h. By establishing the likeli-
hood p(y| d,h), the priors p(d | h) and p(h), the joint poster-
ior is defined as

pðd; hjyÞ / pðyjd; hÞpðdjhÞpðhÞ: ð1Þ

Our task is then twofold. First, we want to infer the MAP
disparity map d*:

d� ¼ arg max
d

pðdjh�; yÞ; ð2Þ

where h* denotes the optimal parameter estimate. Second, we
have to estimate the model parameters h by its expectation

h� ¼
Z

h
hpðhjd; yÞdh: ð3Þ
2.1. The Sensor and the Prior Models

Given the random variable x 2 Rn and parameters (r, s),
we consider a class of density functions [2]

pðxjr; sÞ ¼ 1

rnzðsÞ exp � 1

s
uðxjr; sÞ

� �
: ð4Þ

Here uðxjr; sÞ ¼
P

iqðxi=r; sÞ is the energy function, and z(s)
is the normalization constant to ensure p(x|r,s) a valid den-
sity distribution. q(Æ, Æ) is the potential function, with scale
parameter r 2 (0,1) and shape parameter s 2 (0, 2]. We
further decompose x ¼ fxign

i¼1 to represent a random field
that could be either the MRF d or the disparity space y.

One reason for choosing this type of function is that the
potential function, q(Æ, Æ), unifies many existing function
forms, both convex and non-convex, into one general rep-
resentation [2]. In particular, it includes the generalized
Gaussian distribution, when the potential function admits
the following form,

q
x
r
; s

� �
¼ j x

r
js; ð5Þ

when s = 2 we have the Gaussian distribution.
In Fig. 2, the two panels in each row show the effect of

varying the shape parameter s, and the two panels in each
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Fig. 2. Four examples of the potential function q(x/r, s) of the generalized
Gaussian density function. Top-left panel shows a non-convex function
when taking the shape parameter s = 0.7 and the scale parameter r = 1.
Top-right is a convex Gaussian potential function with s = 2 and r = 1.
The bottom two panels have similar interpretations, except that the scale
parameters are changed (r = 5).
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column show the effect of adjusting the scale parameter r,
when the rest remains intact. More precisely, the space of
generalized Gaussian functions spans a spectrum of feasible
density functions, varying from sharper non-convex func-
tions with s < 1 (called Laplace or double exponential func-
tion when s = 1), to smoother convex functions when s fi 2
(Gaussian if s = 2). Note that the shape parameter s plays
the role of controlling the (non-) convexity of the function
p(x|r, s). At the same time, the scale parameter r captures
the variance of data to which the function p(x|r, s) is fitted.

The sensor model is defined by the conditional likeli-
hood of the disparity space given the disparity map

pðyjd; ry ; syÞ /
1

rn
y

exp � uðyjry ; syÞ
sy

� �
; ð6Þ

where the energy function is uðyjry ; syÞ ¼
P

i qðyi=ry ; syÞ.
The conditional independent property of y, as illustrated
in Fig. 1, makes it trivial to compute the partition function
of the sensor model.

The prior model p(d|h) of the MRF is

pðdjrd ; sdÞ ¼
1

zðsdÞrn
d

exp � uðdjrd ; sdÞ
sd

� �
; ð7Þ

where the energy is

uðdjrd ; sdÞ ¼
X
j�k

q
dj � dk

rd
; sd

� �
: ð8Þ

Here {j � k} indexes the set of Markovian interaction of
neighboring pixels over the MRF d. Notice that z(sd) in
Eq. (7) is the partition function, which is known to be com-
putationally intractable for MRFs [14].
3. The mixed strategy for inference and parameter

estimation

Given the proposed generative model (Fig. 1) and the
generalized Gaussian function, we form the parameter
space (h = {ry,rd, sy, sd}). For a stereo pair we seek efficient
procedures to infer the optimal disparity map d as well as
the parameters h. This poses a rather computationally chal-
lenging problem which is tackled by adopting a mixed
strategy containing both deterministic approximation and
stochastic sampling components.
3.1. LBP for approximate inference of d

As a deterministic approximation algorithm, the LBP
algorithm is closely related to the fixed points of Bethe free
energy which is well-studied in statistical physics [6], yet it
is comparably easy to implement. In this section, we
describe how to apply LBP approximation in our setting.

Define Ni as the set of neighboring nodes of i and
Nj n i as the set of neighboring nodes of j excluding node
i. First, we derive the posterior over the MRF d, by assum-
ing conditional independence of the nodes yi given di, as

pðdjy; hÞ / pðyjd; hÞpðdjhÞ
/
Y

i

pðyijdi; hÞ
Y

j2Ni

weðdi; djÞ; ð9Þ

where we(di,dj) , exp{�1/sd · q((dj � di)/rd, sd)} models
the interaction between di and dj, which are the neighboring
nodes in MRF d. The belief associated with node di is:

bðdiÞ / pðyijdiÞ
Y

j2Ni

mj
iðdiÞ; ð10Þ

where the message update rules are

mj
iðdiÞ /

X
dj

weðdi; djÞpðyjjdjÞ
Y

k2Njni
mk

j ðdjÞ: ð11Þ

After computing the belief at node i, we have

bðdiÞ /
X

1;...;i�1;iþ1;...;n

Y
j

pðyjjdjÞ
Y

k2Nj

weðdj; dkÞ

/ pðdijyi; hÞ: ð12Þ

This implies that the single belief b(di) approximates the
marginal probability p(di|yi,h) in MRF d. In networks with-
out loops, beliefs are exactly inferred [6].

Second, it is easy to derive that the joint probabilities
over the latent MRF d can be factorized as the product
of beliefs over d

pðdjy; hÞ /
Y

i

pðyijdi; hÞ
Y

j2Ni

mj
iðdiÞ

/
Y

i

bðdiÞ: ð13Þ

The LBP algorithm is thus implemented simply by (1) iter-
atively updating the messages by employing Eq. (11) over
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all node variables {di} of the MRF, and (2) computing the
beliefs from Eq. (10).

3.2. Updating ry and rd

Since there is no prior knowledge of ry, we assume a
non-informative prior [13], which is defined in Appendix
B and amounts to allocating equal weights to all possible
hypotheses in the parameter space. From the proposed
generative model (Fig. 1), we are set to derive the full con-
ditional probability of ry as

pðrsy
y j�Þ / pðrsy

y Þpðyjd; ry ; syÞ

/ 1

rnþ2
y

exp � 1

sy

X
i

q
yi

ry
; sy

� �( )
; ð14Þ

where the full conditional probability is defined in Appen-
dix A. The scale parameter ry is gamma distributed as in
[13]

ðr�sy
y j�Þ � c

ny

2
;
nyvy

2

� �
; ð15Þ

where ny is the number of pixels and vy ¼
P

ijyij
sy=ny .rd is

updated similarly with

ðr�sd
d j�Þ � c

nd

2
;
ndvd

2

� �
; ð16Þ

where nd is the number of edges and vd ¼
P

j�kjdj � dkjsd=
nd . The detailed derivations that lead to the aforemen-
tioned update rules are described in Appendix B.

3.3. Updating sy

With no prior knowledge of sy, we assume a uniform
prior distribution over sy. This allows us to derive the full
conditional probability of sy as

pðsy j�Þ / pðsyÞpðyjd; ry ; syÞ

/ 1

rn
y

exp � 1

sy

X
i

q
yi

ry
; sy

� �( )
: ð17Þ

At step t, to ensure that sy is drawn from the (0, 2] interval,
we use the Metropolis sampling algorithm [3], with the pro-
posal distribution

s�y � U ½sðt�1Þ
y � c; sðt�1Þ

y þ c�: ð18Þ

Here U[Æ, Æ] denotes the bounded uniform distribution, t � 1
refers to the previous step, and c is chosen such that s�y is
accepted roughly half of the time. Hence, the candidate
s�y is accepted with probability:

r ¼ minf1; aðsðt�1Þ
y ; s�yÞg; ð19Þ

where
aðsðt�1Þ
y ; s�yÞ ¼

pðs�y j�Þ
pðsðt�1Þ

y j�Þ

¼ exp �

P
i

q yi
ry
; s�y

� �
s�y

�

P
i

q yi
ry
; sðt�1Þ

y

� �
sðt�1Þ

y

0
B@

1
CA

8><
>:

9>=
>;:
ð20Þ

In other words, sðtÞy ¼ s�y with probability r, and sðtÞy ¼ sðt�1Þ
y

with probability 1 � r.

3.4. Updating sd

Due to the existence of the partition function z(sd), for the
MRF d, updating the model parameter sd is more involved.
Algebraically, the full conditional probability of sd is

pðsd j�Þ / pðsdÞpðdjrd ; sdÞ

/
exp

�
� 1

sd

P
j�kq

dj�dk

rd
; sd

� ��
zðsdÞrn

d

: ð21Þ

To compute the full conditional probability of sd we have
to evaluate the partition function z(sd)—at least up to some
constant of proportionality. Based on the path sampling
paradigm, a new method is proposed to evaluate the log-
ratio of partition functions (see Appendix C.2 for details).
To update sd, at step t, the candidate s�d is randomly
accepted with probability

r ¼ minf1; aðsðt�1Þ
d ; s�dÞg; ð22Þ

where

aðsðt�1Þ
d ;s�dÞ¼

zðsðt�1Þ
d Þ

zðs�dÞ

� exp �
P

j�kq
dj�dk

rd
;s�d

� �
s�d

�
P

j�kq
dj�dk

rd
;sðt�1Þ

d

� �
sðt�1Þ

d

0
@

1
A

8<
:

9=
;:
ð23Þ

Here zðsðt�1Þ
d Þ and zðs�dÞ correspond to the partition func-

tions for the previous and proposed parameters of sd,
respectively. As described in Appendix C.2, we denote
kðsðt�1Þ

d ; s�dÞ, log zðsðt�1Þ
d Þ � log zðs�dÞ and rewrite

aðsðt�1Þ
d ; s�dÞ ¼ exp

(
�kðsðt�1Þ

d ; s�dÞ

�
 P

j�kq
dj�dk

rd
; s�d

� �
s�d

�
P

j�kqð
dj�dk

rd
; sðt�1Þ

d Þ
sðt�1Þ

d

!)
:

ð24Þ
3.5. The mixed updating strategy

An iterative procedure is employed to unify the deter-
ministic approximate inference and the MCMC parameter
estimation using a fixed sampling scheme:
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1. Initialize (d(0),h(0)), set t = 0.
2. At iteration t:

– Inference step: approximately infer the disparity map
d(t) by LBP via Eqs. (10, 11).

– Estimation step: explore the h(t) distribution by draw-
ing Nt cycles of MCMC kernel samples. The Gibbs
sampling method is used to obtain one cycle of the ker-
nels, as:

• Sample ry according to Eq. (15),
• Sample rd according to Eq. (16),
• Sample sy according to Eqs. (19) and (20),
• Sample sd according to Eqs. (22) and (23).
3. t ‹ t + 1, goto 2.

In practice Nt = 4000, and the algorithm terminates
after 2–3 iterations, which are enough to ensure
convergence.
Fig. 3. Experimental results for the ‘‘Sawtooth’’ stereo pair. (a) Presents the le
fixed parameters (sd,rd, sy,ry) = (2,2,2,6). (c) is similarly obtained by fixing (
estimation, the model parameters converge to (1.98,0.26,1.11,3.07) after a few
that both the estimated parameters and the inferred disparity map converge r

Table 1
Table summarizes the rankings compared to existing methods on the four
test pairs, where each row presents the same scenario as the corresponding
row in Fig. 5

Test pairs Tsukuba Sawtooth Venus Map

Rankings on non-occluded regions 12 7 15 1
Rankings on textureless regions 14 9 16
Rankings on discontinuous

regions
17 10 14 1

The comparisons are conducted in March 2004.
4. Experimental results

Experiments are conducted on the well-known Middle-
bury testbed [1] with four stereo pairs: the ‘‘Tsukuba’’,
‘‘Sawtooth’’, ‘‘Venus’’ and the ‘‘Map’’ pairs (along with
the evaluation methodology). In this evaluation methodol-
ogy, the ‘‘bad-pixels’’ errors are defined as the ‘‘percentage
of bad-pixels’’, where each ‘‘bad-pixel’’ refers to a pixel
where the absolute disparity error is greater than 1. In
all, three types of ‘bad-pixels’’ errors are recorded: (1) the
error accumulated over all pixels; (2) the error accumulated
for the pixels in non-textured areas; and (3) the error accu-
mulated for the pixels near depth discontinuities. In all
three cases, only non-occluded pixels are considered (see
Table 1).

According to the proposed update strategy described in
Section 3.5, we first apply the Gaussian models to the
testbed pairs with fixed model parameters. Two of them
are shown (left view image only) in the top-left corners
of Figs. 3, and 4, respectively. Figs. 3(b), 4(b), 3(c) and
4(c) show the obtained MAP disparity maps with different
sets of Gaussian parameters. With fixed Gaussians, we
obtain the inferred disparity maps in Fig. 3(b), (c), 4(b).
By estimating the scale parameters {rd,ry}, we obtain
improved disparity map estimates as shown in Fig. 4(c).
As expected, we observe that the Gaussian models tended
to oversmooth edges. By estimating h from the data, we
obtain the results in Figs. 3(d) and 4(d), where the
inferred disparity maps preserve sharp disparities along
ft view of the stereo pair. The resultant disparity map is shown in (b) for
sd,rd, sy,ry) = (2,5,2,10). Using the Monte Carlo samplers for parameter
iterations, with the fixed-point inferred disparity map shown in (d). Notice
egardless of different starting values of (d).



Fig. 4. Experiments on the ‘‘Map’’ stereo pair. (a) Presents the left view of the stereo pair. (b) Displays the resultant disparity map by fixing
(sd,rd, sy,ry) = (2,2,2,6). (c) Is the inferred disparity map, by fixing (sd, sy) as Gaussians and estimating the scale parameters (rd,ry). By estimating all
parameters (sd,rd, sy,ry), the inferred disparity map is shown in (d).

90 L. Cheng, T. Caelli / Computer Vision and Image Understanding 106 (2007) 85–96
the edges and corners. Notice the mean model parameters
always converge, despite different initial values. Fig. 5
compares the evaluation results of four testbed pairs,
where the first row is for the non-occluded regions, the
second row for the textureless regions, and the third
row corresponds to the discontinuity regions. The dispar-
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Fig. 6. In the first column, the resultant disparity maps are shown for the
four image pairs by estimating h, and the predicted disparity errors are
shown in the second column. Here, black pixels are counted as errors,
while gray pixels are those located in occluded patches and are not
counted. Proposed

Sun et al.
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Fig. 7. Comparisons of our algorithm to Sun et al. [9] on the testbed pairs,
using the ‘‘bad pixels’’ error score.
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The performance of the Gaussian (sd = sy = 2), the
Laplacians (sd = sy = 1) and the proposed generalized
Gaussian models where h is estimated from specific inputs,
are compared in Fig. 5. In general, the Laplacian models
perform better than the Gaussian models, largely due to
their noise-resistance property. As expected, the general-
ized Gaussians perform best, since all model parameters
h are allowed to adapt to specific image pairs. The
‘‘Map’’ benefits most from the proposed approach, with
a drastic reduction of errors and the best ranking. Improve-
ments to the other three image pairs are relatively modest,
probably due to the following reasons. First, to keep the
model simple, one set of estimated model parameters was
shared over all image pixels. Second, the proposed genera-
tive model is in a sense a simplification of the ‘‘true’’ model,
where some important properties of the image formation
process are ignored. Third, the LBP algorithm can fail in
cases where the loops in the MRF are strongly correlated
[6].

We have compared the proposed method with the closely
related method reported in the literature, namely, that of
Sun et al. [9], which also employs the LBP algorithm, but
with a different statistical model and hand-tuned parame-
ters. Empirical results show that the proposed method per-
forms better on the ‘‘Map’’ pair but worse on the other
three. Fig. 7 presents comparisons of the testbed pairs.
The adaptability of the model parameters h leads to supe-
rior performance observed in the ‘‘Map’’ pair, which is
obviously different from the other three image pairs in term
of the shape parameter sd. The difficulty of obtaining a set
of ‘‘good’’ hand-tuned parameters over generic image pairs
was also observed by Sun et al. [9] (p. 9):

‘Obviously, this set of parameters (that are good for the
other three) is not the optimal for ‘‘Map’’ because the
disparity range of this data is almost twice that of
‘‘Tsukuba’’.’

The inferior performance on the three remaining pairs in
comparison to Sun et al. [9] are a result of the following.
First, in Sun et al. [9] the image pairs are segmented and
then integrated with the stereo matching results to boost
performance. Second, Sun et al. consider a more complicat-
ed model that takes into account additional information
such as the occlusion factor, while our proposed model is
much simpler.

Due to our interest in applying computer vision to for-
estry inventory, we have conducted some experiments on
a set of synthetic tree stand image pairs with varying
degrees of overlapping canopies. Fig. 8 illustrates one rep-
resentative example. We choose the disparity range to be



Fig. 8. Experimental result on one of the synthetic tree stand image pairs applying the proposed approach. The left view of the forest is presented in (a),
which contains four aspens and two spruces. Its side view is also shown in (c). The true disparity map is shown in (b), and in comparison, (d) is the inferred
disparity map. See text for details.
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[0, . . ., 12], then scale it by 16 to form the grey-scale dispar-
ity map. The initial and the estimated (sd,rd, sy,ry) hyper-
parameter values are (2,2,2,6) and (1.26, 0.02,0.80,1.46),
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Fig. 9. The h = {sd,rd, sy, ry} dynamics of six parallel sam
respectively. We adopt the root mean square (RMS) error
as ð1n

P
x;ydiffðx; yÞ2Þ

1
2, where diff(Æ) is the disparity differences

and n is the number of pixels involved. The RMS error
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pled chains for the ‘‘Map’’ pair. See text for details.
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(calculated only on the tree-related regions) of the inferred
disparity map is 0.78.

In practice, we observe that 80 iterations of the LBP
algorithm are enough to ensure convergence, which take
from 1 to 5 min on an Intel Pentium 4 PC depending on
the size and the maximum depth of the input images. Fur-
ther, it takes several minutes for the sampling algorithms to
generate the h values. Typically we run this twice, which is
observed to be enough to guarantee the convergence of
both h and d. As a result, the average running time is
approximately 10 min.
5. Convergence monitoring

Ideally, the sampled chains asymptotically converge to
the invariant distribution after a sufficient number of itera-
tions, according to the ergodic property of MCMC
samplers [3]. In practice, however, we have to monitor
the convergence behavior of the sampled chains, and
empirically detect the number of ‘‘burn-in’’ sweeps to be
discarded in order to ensure that the rest of the chains
are sampled from the invariant distribution. Our approach
is to run parallel chains with different starting positions.
Their converging statistics are measured by the ‘‘Gelman
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Fig. 10. The ‘‘Gelman statistic’’ of h = {sd,rd, sy,ry} for six parallel sam
statistic’’ [3] which describes, at any time, the convergence
behavior in terms of a scalar function by measuring how
the ratio of maximum and minimum sample variances
R2

max=R
2
min differs. This ratio is further computed from the

between-chains variance and the within-chain variance of
the multiple chains (Refer to Chapter 8, pp. 131–144 of
[3] for the algorithmic details and related analysis.). Obvi-
ously, this ‘‘Gelman statistic’’ equals 1 at convergence.

In the experiments of the Middlebury testbed, for each
image pair, multiple chains are run to ensure the conver-
gence property. Fig. 9 presents the chain dynamics for the
‘‘Map’’ pair, where, from top-left to bottom-right, there
are four panels showing the sampled chains dynamics for
sd, rd, sy and ry, respectively. Each panel presents six paral-
lel chains starting from the following positions:
{0.2, 9,0.2, 27}, {0.5, 8,0.5,26}, {0.8,7,0.8, 23}, {1,5,1,20},
{1.5, 4,1.5, 15}, and {2,2,2,10}, respectively. After a short
period of burn-in, these chains start to mix. The mixing or
convergence behavior is then monitored by the ‘‘Gelman
statistic’’ and is shown in Fig. 10. Empirically, these chains
appear to mix well after 2000 iterations. We also observe
similar convergence results for the rest of the image pairs.
Based on these results, we, in practice, run one chain of
4000 sweeps (iterations), and discard the first half as the
burn-in period, as suggested in [3].
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6. Discussion and future work

A Bayesian perspective to stereo computation enables
the estimation of model parameters together with the infer-
ence of the MAP disparity map within a unified frame-
work. A rather simplified model is proposed for the
stereo matching task, which does not explicitly address
the occlusion factor. Nevertheless, experimental results
show convincing evidence that the estimated model para-
meters do consistently produce more accurate disparity
maps.

The proposed generative model is rather flexible and
can be extended in many ways to boost its performance.
One natural direction is to go beyond the homogeneous
and isotropic assumption of the MRF which applies one
set of model parameters h over the entire image. For
example, pixels with similar (inferred) depth values can
be spatially clustered together, so that h could be tied
only within clusters. This strategy is in line with the
Swendsen–Wang type block-sampling techniques [15].
Furthermore, we can explicitly address the discontinuity
and occlusion factors within such a framework, as did
in Sun et al. [9].
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Appendix A. Full conditional probability

Given a graphical model with node (variable) set
V = {v}, let pa[v] be the parent nodes of v, ch[v] be the chil-
dren nodes of v, and Vnv be all nodes except v. The joint
density can be factorized as

pðV Þ ¼
Y
v2V

pðvjpa½v�Þ: ðA:1Þ

The full conditional probability for each node is condi-
tioned only on its Markov Blanket [14]. This amounts to

pðvjV n vÞ / pðv; V n vÞ
¼ pðvjpa½v�Þ

Y
w2ch½v�

pðwjpa½w�Þ: ðA:2Þ
2 Define a real value function T = f(X) where X is the observations that
are generated by the distribution p(X|n), where n denotes the associated
parameter. We says T is the sufficient statistic if the conditional
distribution p(n|T,X) = p(n|T).
Appendix B. Updating ry

First of all, consider the specific case where sy = 2.
Define the prior pðr2

yÞ as the inverse gamma density func-
tion [13]

pðr2
yÞ ¼

r2
y0

r2
y

 !v0=2þ1

exp �
v0r2

y0

2r2
y

( )
: ðB:1Þ
where v0 is confined to a small positive value, to ensure
pðr2

yÞ a non-informative prior. We then rearrange the like-
lihood as

pðyjd; ry ; syÞ / ðr2
yÞ
�n

2 exp � nv
2r2

y

( )
; ðB:2Þ

where v is the sufficient statistic:2

v ¼
P

iy
2
i

n
: ðB:3Þ

From the prior, the likelihood, and Eq. (A.2), the full con-
ditional probability of r2

y follows

pðr2
y j�Þ / pðr2

yÞpðyjd; ry ; syÞ

/ ðr�2
y Þ

v0þn
2 þ1 exp �

v0r2
y0 þ nv

2r2
y

( )
: ðB:4Þ

However, the degrees of freedom v0 in the prior pðr2
yÞ are

far smaller than the degrees of freedom n in the likelihood
p(y|d,ry, sy). For the sake of simplicity, the posterior is then
approximated by setting v0 = 0, resulting in the following
posterior

ðr�2
y j�Þ � c

n
2
;
nv
2

� �
: ðB:5Þ

Based on similar derivations, for the generalized Gaussian
functions, we have

ðr�sy
y j�Þ � c

ny

2
;
nyvy

2

� �
ðB:6Þ

where ny is the number of pixels, and vy ¼ ð1=nyÞ �
P

ijyij
sy .
Appendix C. Evaluating the partition functions

C.1. Connection to the Coding [12,11] and the

Pseudo-likelihood Methods [11]

We provide an example to illustrate why the partition
function is difficult to evaluate. We then proceed to intro-
duce the coding method and the pseudo-likelihood method,
respectively. Finally, we make some comments which lead
to our proposed method to evaluate the partition
functions.

Example (the partition function). Let a discrete MRF
X = {xi 2 {1, . . .,D},"i} be defined over a 4 · 1 lattice,
which consists of four nodes indexed by i 2 {1, . . .,n = 4},
and three edges (i � j) 2 {(1, 2), (2,3), (3, 4)}. Given the
parameter n 2 RK , we define the conditional probability
of X admitting a configuration x (for example, (x1,x2,x3,
x4) = (1, 1,D,D)) as
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pðxjnÞ ¼ expf/ðn; x1; x2Þ þ /ðn; x2; x3Þ þ /ðn; x3; x4Þg
zðnÞ ;

ðC:1Þ
where zðnÞ ¼

P
x1;x2;x3;x4

expf/ðn; x1; x2Þ þ /ðn; x2; x3Þ þ
/ðn; x3; x4Þg is the partition function for this MRF, and
/ðn; xi; xjÞ : RK � R� R! R is the sufficient statistic de-
fined over the edge (i � j).

As shown in this example, the partition function z(n) is
evaluated by marginalization over all possible configura-
tions of X. As a consequence, the computational complexity
grows exponentially (on the order of O(Dn)) with respect to
n, the size of the MRF. Due to this inherit difficulty of eval-
uating z(n), two types of approaches have been developed.

The coding/pseudo-likelihood methods of Besag [12,11]
are representatives of the first type of approaches that
avoid evaluating z(n) at all. Continuing with Example 1,
the coding method partitions the nodes into two sets such
that no two nodes from the same set are connected. Conse-
quently, all nodes in the same set are conditionally inde-
pendent providing that the remaining nodes are known
[16]. Within one set, the conditional probability can thus
be factorized as products of independent local probabilities
p(x1,x3 | n) = p(x1 | n)p(x3 | n), where pðxijnÞ ¼ expf/ðn;
xiÞg=ziðnÞ, ziðnÞ ¼

P
xi

expf/ðn; xiÞg, and /ðn; xiÞ is the local
sufficient statistic defined on node i, such that

/ðn; xiÞ �
X
8j:j�i

/ðn; xi; xjÞ=2: ðC:2Þ

The conditional probability of the other set is computed
similarly. Then we iterate between the two sets until we have
convergence. Instead of the conditional update scheme pro-
posed in the coding method, the pseudo-likelihood method
approximates the true conditional probability (Eq. (C.1))
over all node variables x = {xi} directly as a product of
independent local probabilities

pðxjnÞ �
Y4

i¼1

pðxijnÞ; ðC:3Þ

which essentially decomposes the joint features on edges to
local ones on single nodes. Obviously, this can lead to a
valid approximation of the original joint density probabil-
ity only if the node variables {xi} are weakly correlated
(such that Eq. (C.3) holds).

However, the reduction of computation demands relies
on the independence assumption which essentially dis-
cards the statistical dependencies among neighboring
nodes of the image. Further, the partition function z(n)
cannot even be evaluated, since the objective function
p(x j n) is essentially changed by the approximation in
Eq. (C.3). On the contrary, the second type of approaches
attempts to evaluate the partition function, when dealing
with parameter estimation in the MRF. One such method
is proposed by Higdon et al. [2]. Here, we propose an
alternative and efficient method, based on the idea of path
sampling [10].
C.2. Evaluating the ratios of partition functions z(sd)

We choose to estimate the partition function (z(sd) in
Eq. (7), sd 2 (0..2]), as similarly done in Higdon et al. [2].
One possible method is to derive variational algorithms
to bound the Bethe free energy [6]. This turns out to have
many difficulties, since the Bethe free energy is (a) not a
convex function, and (b) only an approximation of the ori-
ginal objective function logz(sd). Instead, we adopt the
path sampling scheme [10]. To simplify the notation, we
denote s ” sd in this section.

We are specifically interested in estimating the log-ratio
of the partition function. Gelman et al. [10] provides a
framework which unifies various approaches toward this
goal. Without loss of generality, we follow the notation
of Gelman et al. [10]. The Gibbs prior can be written as
p(d | s) = q(d|s)/z(s), where d denotes the collection of node
variables in the MRF, z(s) is the partition function with s

taking the range of (0..2]. In details, we have

qðdjsÞ ¼ 1

rn
d

exp � 1

s

X
j�k

dj � dk

rd

����
����
s

( )
; ðC:4Þ

the un-normalized density function with respect to certain
fixed s, while p(d|s) is normalized. Similar to Eq. (7), the
partition function could be expressed as a summation of
q(d|s) over all possible configurations, zðsÞ ¼

P
dqðdjsÞ. Then

by taking the logarithm of z(s) and differentiating with
respect to s, we can easily obtain the identity (Eq. (6) in [10]):

o

os
log zðsÞ ¼ Edjs

o

os
log qðdjsÞ

	 

ðC:5Þ

where Edjs is the expectation with respect to q(djs). To sim-
plify the equations, we can further derive

Uðd; sÞ ¼ o

os
log qðdjsÞ

¼ o

os
�n log rd �

1

s

X
j�k

q
dj � dk

rd
; s

� �( )

¼
X

j�k;dj 6¼dk

1

s
dj � dk

rd

����
����
s

1

s
� log

dj � dk

rd

����
����

� �� �
: ðC:6Þ

Note that here we only compute those j,k pixels such that
dj „ dk, because the others do not contribute to this
equation.

Define the log-ratio and, by applying Eqs. (C.5 and C.6),
transform it into an integral form

kða; bÞ ¼ log
zðbÞ
zðaÞ

	 


¼
Z b

a
Edjs½Uðd; nÞ�ds ðC:7Þ

where 0 < a < b 6 2.
As pointed out in Gelman et al. [10], Eq. (C.7) can be

approximated by numerical integration. Define ja and jb
as the indexes such that sja

6 a < sjaþ1 < � � � < sjb�1 <
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b 6 sjb
. Using trapezoid rule, we have the numerical

approximation (Eq. (15) of [10]):

k̂ða; bÞ ¼ 1

2
ðsjaþ1 � aÞðÛ jaþ1 þ ÛaÞ

þ 1

2

Xjb�2

j¼jaþ1

ðsjþ1 � sjÞðÛ jþ1 þ Û jÞ

þ 1

2
ðb� sjb�1ÞðÛb þ Û jb�1Þ

where Ûa and Ûb could be obtained by interpolation, and
Ûi is the average of the values of U(di, si) for all simulations
drawn from si.

Based on the above derivations, we propose the follow-
ing steps to estimate the log-ratio of z(sd), " sd 2 (0..2]:

1. For specific sl
d , sr

d values, interpolate existing log{zl/zr}
values to obtain an approximate guess of log{zl/zr},

2. Divide the parameter space z(sd) into evenly spaced
intervals l = 1, . . .,L and define z1 = z(sd = l), zL =
z(sd = r), with fixed rd value,

3. Compute the log-ratio k(l, r) via trapezoid rule.
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