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Abstract—The Ising model is useful in searching for (sub)-
optimal solutions of combinatorial optimization problems
(COPs). CMOS implementations of Ising model-based solvers,
commonly referred to as Ising machines, provide reliable and
accurate solutions with flexible and dense connectivities. How-
ever, they incur a significant hardware overhead. Approximate
computing, as a low-power technique, offers a way to reduce
hardware complexity, while stochastic computing is efficient in
simulating the dynamics of the Ising model. The approximations
introduced by these techniques may be beneficial in helping the
system escape from local minima. In this article, we discuss
the potential of using approximate and stochastic computing to
improve the performance of Ising machines.

Index Terms—Ising model, Ising machine, approximate com-
puting, stochastic computing, annealing, p-bit.

I. INTRODUCTION

With the rapid advancement of technology, the growing de-
mands for data-intensive and energy-efficient computing pose
challenges on conventional von Neumann architectures [1].
Combinatorial optimization problems (COPs) are often clas-
sified as non-deterministic polynomial-time (NP)-hard, such
as the traffic flow management in smart city [2] and route
planning in autonomous systems [3]. To solve these problems,
the computational time and hardware of a conventional com-
puter scale exponentially with the size of the problem. This
limitation has motivated studies on building new computing
architecture for improving performance in solving COPs.

The Ising model mathematically describes the energy of a
system constructed with magnetic spins. Given the interactions
between spins and the bias on a spin, the states of the spins
determine the system energy, which evolves toward the ground
state. This convergence closely mirrors the process of mini-
mizing the objective function in COPs. Therefore, the solution
search for a COP can be implemented as the exploration
of spin states with the Ising model. An Ising model-based
solver leads to the development of an Ising machine or Ising
computer as a domain-specific architecture.

As shown in Fig. 1, solving a COP using an Ising machine
follows three key steps [10]: (1) Problem Formulation: This

T. Zhang and W. J. Gross are with the Department of Electrical and
Computer Engineering, McGill University, Montreal, H3A 0E9, Canada (e-
mail: ttzhang@ualberta.ca, warren.gross@mcgill.ca).

S. Liu is with the School of Information Science and Tech-
nology, ShanghaiTech University, Shanghai, 201210, China (e-mail:
liust@shanghaitech.edu.cn).

H. Jiang is with the Department of Micro-Nano Electronics, Shanghai Jiao
Tong University, Shanghai, 200240, China (e-mail: honglan@sjtu.edu.cn).

F. Lombardi is with the Department of Electrical and Computer Engi-
neering, Northeastern University, Boston MA 02115, USA (e-mail: lom-
bardi@ece.neu.edu).

J. Han is with the Department of Electrical and Computer Engineering, Uni-
versity of Alberta, Edmonton, T6G 1H9, Canada (e-mail: jhan8@ualberta.ca).

Stochastic computingStochastic computing
Stochastic 

Representation

1,0,1,1,0,1,1,1,0,1

𝑃 𝑥 = 7/10 

𝑃 𝑦 = 4/10 

𝑥 

𝑦 

Values

711

372
1,0,1,0,1,0,0,0,0,1

Multiplication

𝑥 
𝑦 

1,0,1,0,0,0,0,0,0,1

𝑃 𝑧 =
3

10
 

𝑧 

X

≈ 𝑃 𝑥 ∙ 𝑃 𝑦  

Solution 
Search via the 

Ising Machine

Spin Configuration 

En
er

gy
 

(H
am

ilt
o

n
ia

n
)

Spin Configuration 

En
er

gy
 

(H
am

ilt
o

n
ia

n
)

Noise from 
approximate or 

stochastic 
computing

Ground state

Embedding ProcessEmbedding Process

6

4

9

8

1

11

10 1010

45 7

7

2 3

6

4

9

8

1

11

10 1010

45 7

7

2 3

2

4 5

7

3

6

10 11

1

9

8

2

4 5

7

3

6

10 11

1

9

8

𝐻 = −
1

2
 𝐽𝑖𝑗𝜎𝑖𝜎𝑗
𝑖 ,𝑗

 − ℎ𝑖𝜎𝑖

𝑖

  

h: the bias

J: the coupling 
coefficient 

between spins

: the spin state𝜎  

h: the bias

J: the coupling 
coefficient 

between spins

: the spin state𝜎  

Problem Formulation

𝐻 = −
1

2
 𝐽𝑖𝑗𝜎𝑖𝜎𝑗
𝑖 ,𝑗

 − ℎ𝑖𝜎𝑖

𝑖

  

h: the bias

J: the coupling 
coefficient 

between spins

: the spin state𝜎  

Problem Formulation

energy/Hamiltonian of the system 

The Ising Model

𝑥 

𝑓(𝑥) 

𝑓(𝑥) 
approximate

Approximate Computing UnitApproximate function . . .

Approximate Partial 
Product Generation

Approximate Partial 
Product Reduction

Approximate Partial 
Product Accumulation
Approximate Partial 

Product Accumulation

MultiplierAdder

               -bit 
Accurate 

Sub-Adder

 -bit 
Approximate 

Sub-Adder

𝑙 

Approximate computing

(𝑛 − 𝑙) 

Stochastic computing
Stochastic 

Representation

1,0,1,1,0,1,1,1,0,1

𝑃 𝑥 = 7/10 

𝑃 𝑦 = 4/10 

𝑥 

𝑦 

Values

711

372
1,0,1,0,1,0,0,0,0,1

Multiplication

𝑥 
𝑦 

1,0,1,0,0,0,0,0,0,1

𝑃 𝑧 =
3

10
 

𝑧 

X

≈ 𝑃 𝑥 ∙ 𝑃 𝑦  

Solution 
Search via the 

Ising Machine

Spin Configuration 

En
er

gy
 

(H
am

ilt
o

n
ia

n
)

Noise from 
approximate or 

stochastic 
computing

Ground state

Embedding Process

6

4

9

8

1

11

10 1010

45 7

7

2 3

2

4 5

7

3

6

10 11

1

9

8

𝐻 = −
1

2
 𝐽𝑖𝑗𝜎𝑖𝜎𝑗
𝑖 ,𝑗

 − ℎ𝑖𝜎𝑖

𝑖

  

h: the bias

J: the coupling 
coefficient 

between spins

: the spin state𝜎  

Problem Formulation

energy/Hamiltonian of the system 

The Ising Model

𝑥 

𝑓(𝑥) 

𝑓(𝑥) 
approximate

Approximate Computing UnitApproximate function . . .

Approximate Partial 
Product Generation

Approximate Partial 
Product Reduction

Approximate Partial 
Product Accumulation

MultiplierAdder

               -bit 
Accurate 

Sub-Adder

 -bit 
Approximate 

Sub-Adder

𝑙 

Approximate computing

(𝑛 − 𝑙) 

Fig. 1. Solving a combinatorial optimization problem using an Ising machine.

step transforms a given COP into the Ising model using
second-order polynomial representations; (2) Embedding Pro-
cess: This step obtains the coupling coefficients and bias
terms, which are compatible with the topology and precision
constraints in the Ising machine; (3) Solution Search: This
step explores the spin states by decreasing the energy. Table I
summarizes the characteristics of emerging and conventional
Ising machines, categorized by their underlying technologies.
Compared to other types of Ising machines, the maturity of
CMOS digital technology and the stability of its circuits pro-
vide high reliability and the potential for dense connectivity.
High reliability ensures high solution quality, while dense
connectivity reduces the cost of mapping the COP onto the
topology of the Ising machine in Step (2). Due to intrinsic
nonlinearity, the Ising machines based on some emerging low-
power technologies, such as analog and memristive devices,
face a major challenge in the linear modulation of the cou-
pling between spins. CMOS digital Ising machines offer a
better controlled and deterministic platform. In digital circuits,
coupling values are encoded with fixed-point or floating-
point representations. Although quantization and resource
constraints inevitably introduce non-idealities especially when
spin connectivity is dense, these effects can be mitigated
through appropriate bit-width selection and pipelining.

Hereafter, this article focuses on CMOS digital Ising ma-
chines, which utilize different algorithms [11] to emulate the
behavior of an Ising model by leveraging principles from
statistical mechanics [12] or oscillator dynamics [13]. De-
spite these advantages, CMOS digital implementations face
significant challenges related to high hardware overhead, pri-
marily due to inherent technology limitations such as lim-
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TABLE I
CLASSIFICATION OF ISING MACHINES

Technology Quantum [4] Optics [5] Spintronics [6] Memristor [7] CMOS Analog [8] CMOS Digital [9]

Spin Type Qubit DOPO pulse Magnetization states Resistive/
conductive states Voltages or currents Digital bits

Coupling Type Qubit flux Optical interference
or electronic feedback

Exchange or
dipolar interactions

Conductive/capacitive/
resistive coupling

Capacitive/
resistive coupling Memory+Logic

Diff. Den. Connec. Moderate High High Moderate Moderate to high Low
Diff. Coupl. Pre. High High High Moderate to high Moderate Low

Power Low Low Low to moderate Low to moderate Moderate High
Area Small Moderate Small to moderate Small to moderate Moderate Large

Energy Low Low Low to moderate Low to moderate Moderate High
Latency Low Low to moderate Moderate Moderate to high Moderate High

Accuracy Moderate to low Moderate Moderate Moderate Moderate High
Reliability Low to moderate Moderate Moderate Moderate Moderate High

Diff. Den. Connec.: The difficulty of achieving dense connectivity; Diff. Coupl. Pre.: The difficulty of extending coupling precision; DOPO: Degenerate
optical parametric oscillator.

ited interconnects, process variability, thermal constraints, and
leakage currents. Therefore, enhancing the hardware efficiency
of CMOS digital implementations is crucial, particularly for
dense spin connectivity. Ising machines are susceptible to
becoming trapped in local minima; introducing controlled
fluctuations can mitigate this issue by enabling the system
to escape from suboptimal states. Hence, there has been
growing interest in integrating CMOS digital Ising machines
with emerging approaches such as approximate and stochastic
computing to reduce hardware overhead and enhance the
ability to escape from local minima, as shown in Fig. 1.

Approximate computing trades off accuracy for hardware
efficiency gains, with techniques spanning over various lev-
els [14]. For example, a complex function can be approximated
by a simpler counterpart, and the arithmetic units can be
implemented using lightweight circuits, such as OR gates for
generating the sum in an addition. Stochastic computing is
a computational framework that encodes numerical values as
probabilities using stochastic bitstreams, in which the ratio of
the number of ‘1’s to the total number of bits can represent the
encoded value [15]. Hence, arithmetic operations are carried
out on these bitstreams using simplistic arithmetic circuits.
Both approximate and stochastic computing introduce errors or
fluctuations in signal values, which in turn generate noise that
may facilitate the system in escaping from local minima. This
article discusses how to efficiently leverage these techniques
in various CMOS digital Ising machine architectures.

The remainder of this article is organized as follows. Sec-
tion II provides an overview of the Ising model and various
types of Ising machines. In Sections III and IV, hardware-
efficient strategies leveraging approximate and stochastic com-
puting for the Ising machine are discussed, respectively. Fi-
nally, Section V concludes the article and discusses prospects.

II. REVIEW

Ising machines differ from one another in their underlying
architectures, which is shaped by the specific physical behavior
they aim to emulate. Current CMOS digital Ising machines are
broadly classified into two categories.

A. Annealing Ising Machines

Annealing Ising machines emulate the thermal annealing
process in metallurgy, employing importance sampling-based
Monte Carlo simulations to explore the energy landscape [12].
A conventional annealing Ising machine sequentially updates
interconnected spins in a stochastic manner [16]. To enhance
energy convergence, various methodologies have been devel-
oped. In an approach using the parallel-trial update in digital
annealing, the feasibility of spin flips is assessed independently
and in parallel, followed by the random selection and update
of a flippable spin [17], [18]. Stochastic cellular automata
annealing [9] and momentum annealing [19] utilize a two-
layer structure. Spin replication without inter-spin or inter-
replica interactions allows the simultaneous evaluation of all
spin states. Another strategy referred to as parallel tempering
employs multiple replicas of the system at different tempera-
tures [20]. Simulated quantum annealing emulates the quantum
fluctuations in annealing [21], [22]. Using probabilistic bits
(denoted as p-bits) as spin states, p-bit based probabilistic
computing [23], [24] shares a similar mechanism with anneal-
ing. It has driven the investigation on p-bit-based annealing
Ising machines [25] that realize the parallel update of spins.

Fig. 2(a) shows a generic diagram for the annealing Ising
machine. The annealing controller consists of several key
components: a random number generator for determining
the spin-flip probability, a temperature scheduler to regulate
system temperature, and a time-changing parameter calculator
for dynamically adjusting the annealing conditions. The spin
operator evaluates whether a spin should flip at each simulation
step. The energy variation calculator assesses the impact of a
spin flip on the system’s energy. This variation is then used
by the spin-flip probability calculator to determine the transi-
tion likelihoods. The decision hardware ultimately examines
whether spin states can be flipped, and the spin state updater
finalizes the updated spin states at each simulation step. Note
that the time-changing parameter calculator is only required
in certain variants of annealing Ising machines, such as those
for computing dynamic offsets [18] or modeling the self-
interaction between duplicated spins [9]. For a p-bit annealing
Ising machine, the spin operator is simplified to a weighted-
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(a) Annealing Ising Machines.
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(b) Dynamic Ising Machines.

Fig. 2. Different types of digital Ising machines.

sum calculator, an activation function logic module primarily
implementing the tanh function, and a comparator.

B. Dynamic Ising Machines

A dynamic Ising machine digitally emulates the behavior
of various oscillator networks, such as the Kerr-nonlinear
parametric oscillators via the simulated bifurcation (SB) al-
gorithm [26]–[30], the degenerate optical parametric oscil-
lators (DOPOs) through emulated coherent Ising machines
(ECIMs) [31], and the electronic nonlinear oscillators using
emulated oscillator Ising machines (EOIMs) [32], [33]. Dif-
ferent from an annealing Ising machine, it is interpreted as
numerical solvers for ordinary differential equations govern-
ing the oscillator dynamics. The discrete spin state (σi) is
represented by a continuous spin variable (xi) associated with

the oscillator’s position or phase. At the end of the evolution
of spin variables, their signs determine the final spin states.

As shown in Fig. 2(b), a dynamic Ising machine consists
primarily of an evolution controller and a differential equa-
tion solver. The evolution controller computes time-dependent
parameters (for SB, ECIMs, and EOIMs) and generates ran-
dom numbers (for ECIMs and EOIMs). Within the differen-
tial equation solver, the coupling effect calculator computes∑

j Jijxj + hi for SB and ECIM, and
∑

j Jijc(xi − xj) + hi

for EOIM (where c(·) is a nonlinear activation function).
The derivative calculator calculates the derivative information
based on the time-dependent parameters and the coupling ef-
fect. The nonlinear effect injector introduces inelastic barriers
for the oscillator position evolution in SB, and Gaussian noise
from the random number generator for ECIMs and EOIMs.
Finally, the variable updater changes the spin variable values
accordingly.

III. APPROXIMATE ISING MACHINES

The use of Ising machines in optimization is inherently
approximate for several reasons: (1) COPs with constraints
are typically formulated by embedding constraints into the
objective function when mapped to the Ising model, which
may increase the risk of converging to suboptimal solutions.
(2) The energy landscape of many real-world COPs is highly
complex, with numerous local minima. The difficulty of reach-
ing the ground state increases with problem size. (3) Hardware
implementations introduce approximations due to the finite
precision in hardware and limited spin connectivity, often
necessitating approximate embeddings of COPs into the Ising
machine. Therefore, Ising machines can be regarded as error-
tolerant systems, making them well-suited for approximate
and stochastic computing. This section discusses multi-level
strategies aimed at optimizing the hardware design for digital
Ising machines, spanning from data representation to the
circuit level.

A. Data Representation-level Approximation

Quantization is often employed when designing comput-
ing architectures. By discretizing values into a finite set of
quantized levels, arithmetic operations are greatly simplified,
resulting in reduced hardware. Uniform quantization is widely
used in building CMOS digital Ising machines, in which
the quantization levels are determined through experimental
investigations or by analyzing the data distribution. In partic-
ular, quantization provides even greater benefits in dynamic
Ising machines, where continuous spin variables are used to
represent spin states.

Given the SB Ising machine as an example, the position val-
ues are frequently updated through multiply-and-accumulate
(MAC) operations, which dominate the computing hardware.
Binary, ternary, and logarithmic quantization strategies have
been investigated for hardware savings in MAC by quantizing
the position value xj to q(xj) for computing

∑
j Jijxj as∑

j Jijq(xj) [27], [28]. Fig. 3 shows the performance of using
different quantization strategies for the MAC operations in
SB Ising machines, compared to using full precision ones,
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(a) Full precision. (b) Binary quantization. (c) Ternary quantization. (d) Logarithmic quantization.

Fig. 3. Performance of quantization strategies for SB Ising machines in terms of position values (x1 and x2) versus the time step (Ts) as well as the potential
energy (V ) and Hamiltonian (H) versus the time step (Ts) on an example two-spin Ising problem with coupling coefficients J12 = J21 = −1. (a) ballistic
SB (bSB) uses full precision xj [27]; (b) dSB uses binary quantization, which discretizes xj to +1 when xj is positive or to −1 when xj is negative [27];
(c) tSB uses ternary quantization, which discretizes xj to 0 when the absolute value of xj is no larger than a threshold, which linearly increases from 0 to
1, or otherwise to ±1 like binary quantization [28]; and (d) lSB uses logarithm quantization with nine quantization levels, which rounds up xj to quantized
values logarithmically spaced within [−1, 1] [28].

in terms of evolutions of position values on an example
two-spin Ising problem. Due to the use of binarization or
ternarization, the position values significantly fluctuate early,
as shown in Figs. 3(b) and (c). As shown in Fig. 3(d),
logarithmic quantization results in smaller changes in the
position values with time. Fig. 3 also gives the potential energy
and Hamiltonian versus the time step. For the ternary SB
(tSB) and discrete SB (dSB) systems, the Hamiltonian and
potential energy fluctuate significantly at the beginning and
then gradually decrease with the time step. The logarithmically
quantized SB (lSB) system shows a small fluctuation at the
start and then quickly reaches the lowest Hamiltonian value.
Compared with using full precision, as shown in Fig. 3(a),
the use of quantized position values also introduces inherent
noise. This noise may act as a form of stochastic perturbation,
aiding the system in further exploring the solution space
and avoiding local minima. However, it may also increase
the search time, because additional iterations are required to
thoroughly explore more local minima. For example, when
applying ternarization in an SB Ising machine, it enhances the
performance when the number of time steps is 10k, which
achieves a high probability of obtaining 99.9% of the best-
known value for a 2000-spin max-cut problem [28].

B. Function-Level Approximation

Function-level approximation in Ising machines offers a
compelling approach to mitigate the significant hardware
overhead associated with implementing computationally in-
tensive functions. Critical components, such as the spin-flip
probability function in annealing Ising machines [9], [16],
[35], [36], and the second harmonic injection locking (SHIL)
function for computing the coupling effect in EOIM [32],
[33], involve complex mathematical operations, including the
computation of exponential or nonlinear functions. These op-

TABLE II
FUNCTION-LEVEL APPROXIMATION IN CMOS DIGITAL ISING MACHINES

Ising Machine
Type

Annealing Ising
Machine

Emulated Oscillator
Ising Machine

Functions Spin (Non-)Flip
Probability Coupling Effect

Accurate vs
Approximate

Function

-2 0 2
x

0

0.5

1

Sigmoid(x)

Approximate

[9]

-5 0 5
x

0

0.5

1

min(1, e
-x

)

Approximate

[34]

-2 -1 0 1 2
x

-1

0

1

tanh(10sin(  x))

Approximate

[33]

0 1 2
x

-1

0

1

sin(  x)

Approximate

[33]

erations impose substantial demands on hardware. To address
these challenges, function-level approximation seeks to replace
precise but resource-intensive implementations with simplified
or approximate models that capture the essential behavior of
the original functions.

In most annealing Ising machines, the spin flip prob-
ability function follows the Boltzmann distribution, which
involves computationally expensive exponential functions. In
some variants of annealing Ising machines, the spin non-flip
probability must be calculated instead, requiring the sigmoid
function to be computed. These nonlinear functions are critical
for simulating the probabilistic nature of spin dynamics during
the annealing process. In contrast, the coupling effects are
implemented in EOIMs through more complex mathematical
expressions, often involving nonlinear functions such as the
sine (sin) and hyperbolic tangent (tanh). These functions
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are used to model the dynamic behavior of oscillator-based
systems.

As summarized in Table II, the computational challenges
posed by these nonlinear functions, particularly in hardware
implementations [9], [33], [34], have led to the exploration
of function-level linear approximations. A common approach
is to simplify these nonlinear functions into piecewise linear
ones, so the original functions are replaced with segmented
linear representations. Piecewise linear approximation signifi-
cantly reduces the complexity of complex functions, making it
easier to implement in hardware while achieving an acceptable
accuracy. In [36], a hybrid approach combining Taylor series
expansion and LUT-based approximation was employed to
enhance the accuracy of sigmoid function approximation. It
was reported in [33] that an accuracy of 99.1% can be
achieved when solving max-cut problems.

C. Circuit-Level Approximation

Circuit-level approximation focuses on optimizing the phys-
ical hardware implementation of computational processes in
Ising machines. It directly targets the resource-intensive nature
of hardware. Some published works are aimed at saving
the hardware of random number generators (RNGs), such as
introducing randomness by the variability in the minimum op-
erating voltage of static random access memory (SRAM) [37].
Approximation strategies have also been investigated for the
hardware-consuming energy variation calculation. To extend
the numerical range when solving large-scale complex prob-
lems, half-precision floating-point coefficients are utilized
in [38], [39]. However, this approach incurs high hardware
overhead due to floating-point arithmetic operations. To miti-
gate this issue, low-cost floating-point logarithmic multipliers
are employed in the SB machine [39], which, interestingly,
shows improved accuracy for some datasets of max-cut prob-
lems. Furthermore, an approximate adder, known as the lower-
part-OR and truncated adder (LOTA), is utilized in [40] for
the mantissa addition in an annealing-based Ising machine. In
this design, the k least significant bits of the mantissa adder
are approximated by truncating the least significant l bits and
applying OR gates to the remaining (k− l) bits. Fig. 4 shows
the LOTA and the performance of solving an example 8-city
traveling salesman problem (TSP) using a 64-spin annealing
Ising machine with LOTA. A TSP finds the shortest route
that visits each city exactly once. Compared to its accurate
counterpart, the use of LOTA (k = 4, l = 3) results in a 1.4%
degradation of solution quality but saves 4.1% hardware.

IV. STOCHASTIC ISING MACHINES

The use of stochastic computing necessitates architectural
changes. As shown in Fig. 5, a stochastic computing system
typically consists of three components: stochastic number
generators (SNGs), stochastic computing elements, and a
signal reconstruction unit. In classical stochastic computing,
a bitstream with 50% being ‘1’s, generated by using an RNG
and a comparator, can encode a value of 0.5. This probabilis-
tic representation enables arithmetic and logical operations
to be performed with remarkable simplicity using standard
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Fig. 4. Using approximate adders in an annealing Ising machine. Hardware
simulation results are obtained by using the Synopsys Design Compiler.
A CMOS 28 nm technology is applied with a supply voltage of 1.0 V, a
temperature of 25◦C, and a clock frequency of 200 MHz. Some data in the
figure are reported in [40].

logic gates. For examples, when using unipolar encoding,
multiplication can be implemented using a single AND gate,
while addition can be realized using multiplexers; an integrator
can be built by using a counter and a SNG. This section
discusses the probabilistic nature and hardware efficiency of
novel stochastic computing paradigms in the construction of
the fundamental components of an Ising machine.
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Fig. 5. Stochastic computing components.

A. Integral Stochastic Computing (ISC)-based Ising Machines

For a p-bit-based annealing Ising machine, p-bits can be
implemented as bitstreams, in which each bit is a sample from
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(a) Stochastic p-bit [41].
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Fig. 6. Stochastic computing cells for CMOS digital Ising machines.

a Bernoulli sequence with a probability for the spin’s state.
The p-bit (spin) operator first evaluates

∑
j Jijσj + hi. The

result is then scaled by a time-decreasing parameter (acting
as the temperature), I0, for the activation function logic,
which implements the hyperbolic tangent (tanh) function. The
updated spin states are determined by comparing the activation
output to a random number. To represent values with a larger
range, ISC [43] is utilized to compute the p-bit function [41].
In ISC, a stochastic stream is obtained by accumulating the
conventional stochastic signals, which is a sequence of integer
numbers. A real number larger than 1 is first represented as
a summation of multiple numbers in the interval [0, 1]. As
shown in Fig. 5, a real number 1.25 can be implemented
as the addition of the stochastic bitstreams for 0.5 and 0.75.
In this way, the stochastic multiplication and addition can be
implemented by using a binary multiplier and adder.

As shown in Fig. 6(a), the p-bit based on ISC is constructed
by using multiplexors (MUXs) for multiplication of σi ·Jij , an
adder for addition for computing

∑
j Jijσj +hi, a counter for

implementing the tanh(
∑

j Jijσj +hi) function, a sign block
for identifying the spin states and some registers for storing
the values. In particular, the tanh function is approximated
by using a saturated up-down counter. The output Ii(t+1) is
truncated with a range of 2I0 states to obtain Itanhi(t+ 1),
ideally equivalent to tanh(I0 · (

∑
j Jijσj +hi)), where I0 is a

parameter that decreases with time. It has been reported in [41]
that the ISC-based Ising machine shows faster convergence
compared to the conventional annealing method, achieving an
annealing time of 1.00 ms for an example max-cut problem.

B. Dynamic Stochastic Computing (DSC)-based Ising Ma-
chines

A dynamic Ising machine inherently functions as a differ-
ential equation solver. For example, the SB Ising machine
is essentially to solve a pair of differential equations related
to oscillator positions and momenta by using Euler integra-
tion. Unlike conventional stochastic computing, DSC encodes
changing signals by stochastic sequences. The probability of

each bit being ‘1’ is equivalent to the corresponding sample
value from the digital signal [44]. Taking the stochastic inte-
grator as shown in Fig. 5, as the basic building element, DSC
provides an efficient means of implementing accumulation-
based iterative computation. The efficiency of DSC in per-
forming integration has motivated research into its application
for implementing the integration in dynamic Ising machines.

Fig. 6(b) shows the circuit diagram of a stochastic SB cell,
which updates the momentum and position values by taking
the gradient information as the input [42]. For the ith spin,
after converting the gradient information in the tth time step
(gi(t)) to its dynamic stochastic sequence (Gi(t)), a stochastic
integrator is used to obtain the updated momentum value
(yi(t+1)) and a dynamic stochastic sequence (Yi(t+1)). Then,
the second stochastic integrator updates the position value
(xi(t+1)) encoded in a dynamic stochastic sequence (Xi(t+
1)). The stochastic SB cell can be used as the basic building
block in an SB Ising machine. To further improve the power
efficiency, one of the two stochastic integrators in Fig. 6(b)
can be replaced by a binary Euler integrator. Quantization in
the MAC operation within SB not only introduces beneficial
noise, but it also reduces hardware complexity, as discussed
in Section III-A. Random ternary quantization is considered
for the stochastic integrator-based SB Ising machine, in which
the stochastic sequence for position values from the stochastic
SB cell is used as the randomly ternarized position values
for MAC computation for hardware savings. Figure 7 further
illustrates the dynamics of a two-spin SB system with random
ternary quantization. Compared to the ternary quantization
results shown in Fig. 3(c), random ternary quantization ex-
hibits lower fluctuations in the initial phase, indicating a higher
likelihood of becoming trapped in local minima. Consequently,
it becomes challenging to achieve further improvements in
solution quality over extended search time, compared to the
original ternary quantization. Nevertheless, employing one or
two stochastic integrators to construct a stochastic SB cell
for a 2000-spin system results in at least a 44% reduction
in power consumption and a 1.19× speedup, while achieving
higher solution quality over extended searches, compared to
conventional SB machines [42]. Utilizing a stochastic integra-
tor and a binary Euler integrator reduce power consumption
by 12% but it requires 1% larger area than a design using
two stochastic integrators [42]. Note that while decorrelators
and correlators play crucial roles in conventional stochastic
arithmetic circuits, particularly in multi-level architectures like
cascaded multiplication circuits, the processing element (i.e.,
the stochastic integrator) performs integration through tempo-
ral averaging rather than relying on correlation/decorrelation
manipulation between bitstreams. This architectural distinction
eliminates the need for explicit correlators or decorrelators
in the implementation. Furthermore, the implementation in-
tentionally leverage fully correlated sequences generated by a
shared RNG across processing elements. This design choice
not only maintains computational fidelity but also substantially
reduces hardware overhead by eliminating redundant RNG
circuits.
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TABLE III
APPROXIMATE AND STOCHASTIC ISING MACHINES

Ising Machines Approximate /
Stochastic Computing

Platform /
Technology

# of
Spins Topology Coupling

Precision Frequency Power
per Spin

Area
per Spin Problems

Annealing
SA

[16] Linear Approximation CMOS 40 nm 2× 30k King’s grapha 3 bit 100 MHz - 788 µm2 MCP

[36] Taylor-LUT
Hybrid Approximation Virtex Ultrascale+ 11k

Modified
Completeb 8 bit 125 MHz 1.8 mW - TSP

PA [38] Approximate Adder/
Linear Approximation CMOS 28 nm 64 Complete 16 bitc 200 MHz 0.6 mW 0.09 mm2 TSP

[9] Linear Approximation CMOS 65 nm 512 Complete 5 bit 320 MHz 1.2 mW 0.01 mm2 MCP
PbA [41] Integral Stochastic Computing Xilinx Kintex-7 800 2D latticed 4 bit 100 MHz 2.6 mW - MCP

Dynamic
SB [42] Quantization/Dynamic

Stochastic Computing CMOS 40 nm 2k Complete 2 bit 250 MHz 0.64 mW 0.06 mm2 MCP

[45] Quantization Virtex UltraScale+ 2k Complete 8 bit 200 MHz 1.9 mW - MCP
EOIM [32] Linear Approximation TSMC 65 nm 33 Complete - 120 MHz 9.1 mW 0.09 mm2 MIMOD

a: Each spin interacts with 8 spins; b: Modified layer-by-layer fully-connected topology; c: Floating-point; d: Each spin interacts with 4 spins; SA: Simulated
annealing; PA: Parallel annealing based on the two-layer Ising model; PbA: p-bit-based annealing; SB: Simulated bifurcation; EOIM: Emulated oscillator
Ising machine; #: The number of; MCP: Max-cut problems; TSP: Travelling salesman problems; MIMOD: Multi-input multi-output detection.

V. CONCLUSION AND PROSPECTS

In this article, we discuss the role of approximate and
stochastic computing in the design of digital Ising machines.
The simplicity of stochastic logic operations and hardware-
friendly approximation techniques enable the development of
compact hardware architectures.

Table III shows the main features of the state-of-the-art
approximate and stochastic Ising machines. Approximate com-
puting techniques have been applied at various design levels
to achieve hardware savings. A key challenge is to efficiently
integrate approximation strategies across these various levels
by taking into account their interdependencies to improve the
overall efficiency. Classical stochastic computing often relies
on random number generation and long bit-streams, leading to
increased energy consumption and latency, which in turn limit
scalability. Innovative stochastic Ising machines using integral
and dynamic stochastic computing mitigate the long bit-stream
issue. However, the need for random number generation is not
eliminated.

Approximate and stochastic computing inherently introduce
errors, which can impact the convergence and solution quality
of Ising machines. In some cases, the introduced noise can
enhance the system’s ability to escape from local minima,
such as using quantization in the simulated bifurcation Ising
machine and approximate functions in the emulated oscillator
Ising machine. However, it may cause a loss in solution
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Fig. 7. Performance analysis of the SB Ising machine using stochastic SB
cells and random quantization on an example two-spin Ising problem with
coupling coefficients J12 = J21 = −1.

quality, such as the annealing Ising machine using approximate
adders. This indicates that different types of Ising machines
exhibit varying degrees of error resilience. The effectiveness of
approximate and stochastic computing in Ising machines de-
pends on how well these techniques align with the mechanisms
of Ising machines. Since the energy landscape varies across
different optimization problems, the effects of approximate
and stochastic computing strategies differ significantly. There-
fore, developing application-driven approximate and stochastic
Ising machines is crucial to enhance their practicality for
industry.
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