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Abstract—This paper studies dynamic spectrum leasing in a
cognitive radio network. There are two spectrum sellers, wb
are two primary networks, each with an amount of licensed
spectrum bandwidth. When a seller has some unused spectrum,
it would like to lease the unused spectrum to secondary users
coordinator helps to perform the spectrum leasing stage-bygtage.
As the two sellers may have different leasing periods, therare
three epochs, in which seller 1 has spectrum to lease in Epagh
Il 'and IIl, while seller 2 has spectrum to lease in Epochs | and
Il. Each seller needs to decide how much spectrum it should
lease to secondary users in each stage of its leasing periadth
a target at revenue maximization. It is shown that, when the
two sellers both have spectrum to lease (i.e., in Epoch Il),he
spectrum leasing can be formulated as a non-cooperative gam
Nash equilibria of the game are found in closed form. Solutins
of the two sellers in their leasing periods are then derived.

Index Terms—Cogpnitive radio, dynamic pricing, Nash equilib-
rium.

I. INTRODUCTION

It is difficult to guarantee quality-of-service (QoS) of sec
ondary users in overlay or underlay mode. In overlay mode,
secondary users have to wait until primary users do not have
traffic to transmit. If primary users have high traffic load¢s
ondary users would have little chance to transmit. In urgerl
mode, due to the transmit power constraint, secondary users
may only achieve short-range low-rate communications.

To better serve secondary users, spectrum leasing has been
introduced, in which if a primary user (also callegectrum
selle) has some unused spectrum for a certain amount of
time, it leases the unused spectrum to secondary userqidouri
the leasing period, the secondary users can use the spectrum
exclusively, which guarantees their communication QoS- Fu
thermore, the leasing revenue can motivate the spectruen sel
to use its spectrum more efficiently so as to collect more
unused spectrum for leasing. Optimal spectrum leasing that
maximizes the spectrum seller’s revenue is an interesbipig t
which is also the focus of this paper.

In the literature, spectrum leasing has been well invetgija

Cognitive radio has been considered as a promising solutiender the modes of monopoly spectrum leasing (in which there

to the spectrum shortage problem in the near future.
cognitive radio, spectrum access of unlicensed usersrieeife

im one spectrum seller) and oligopoly spectrum leasing (in
which multiple spectrum sellers exist). In monopoly spestr

to assecondary usejswhich is required not to affect the com-leasing, e.g., the works in [2]-[4], the major target is thiaue

munication of licensed users (referred to @#mary users,

the maximal revenue of the seller. In oligopoly spectrunsiea

is permitted [1]. To implement cognitive radio, two typicaing, e.g., the works in [5]-[12], the major target is to ackie
modes are overlay mode and underlay mode. In overlay mode, equilibrium in the competition among multiple spectrum
spectrum access of secondary users is permitted only wisstlers. In these works, spectrum leasing is performed only
primary users are idle. Thus, secondary users are requrednce, and the spectrum price is fixed for the whole spectrum
perform periodical spectrum sensing to detect possiblesiraleasing duration, referred to agtic spectrum leasingn the
missions of primary users. In underlay mode, secondarysusether handdynamic spectrum leasingn which the spectrum
can access the spectrum when primary users are transmittjprice may change over time, is more appropriate for the cases
Secondary users should carefully manage their transmiepowhat the secondary users may need spectrum at different time

such that their generated interference to primary userslanb
a threshold limit.
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instants. There are limited research efforts in the liteabn
dynamic spectrum leasing, including the works in [13]-[15]
that consider a single spectrum seller and the work in [1&{] th
considers multiple spectrum sellers.

In this paper, we study dynamic spectrum leasing problem
in a duopoly market with two sellefsAs the two sellers may
have different leasing periods, the system has three epochs
in which seller 1 has spectrum to lease in Epochs Il and I,
while seller 2 has spectrum to lease in Epochs | and Il. The
main contributions in this paper are summarized as folldys.
We show that, the spectrum leasing problems of the sellers in

1\We consider two sellers (i.e., a duopoly spectrum markethfe following

reasons. 1) A duopoly spectrum market is a typical and pomdanario for
cognitive radio, and has been adopted by many researchsaffiche literature
[5]-[9]. 2) Sufficient insights can be provided by the dugpstenario into
the spectrum leasing, and our method in this paper can badedeto the
scenarios with more spectrum sellers, with increased aaxiiplin analysis
and presentation. For ease of analysis and presentatioconggder a duopoly
scenario.



Epoch | and Epoch Il are convex optimization problems. For Dynamic pricing: In [13], dynamic pricing in monopoly
Epoch Il, we formulate spectrum leasing of the two sellers apectrum leasing is performed over infinite time horizone Th
a non-cooperative game. We derive closed-form expressi@mectrum price is set dynamically, with a target at long-
for the Nash equilibria of the non-cooperative game. 2) Ttierm average revenue maximization. In [14], dynamic pgcin
amount of spectrum that seller 1 would like to lease in Epodéh monopoly spectrum leasing is performed over a finite
Il affects the non-cooperative game in Epoch Il, and thuduration. The finite duration is divided into a number of st®g
affects the total revenues of the two sellers. By analyzirapd the price in each stage is set up so as to maximize
properties of seller 1's revenue in Epoch Il and Epoch Ill, wihe overall revenue. In [15], dynamic spectrum leasing is
propose a method that finds the optimal amount of spectrunvestigated for a monopoly market. Among all channels,esom
that seller 1 should lease to secondary users in Epoch lll. are allocated as leased channels, and the others are called
The rest of this paper is organized as follows. In Sectiamleased channels. Secondary users can access the leased
II, related works are reviewed. In Section lll, the systerohannels (with higher priority if primary users are als@waid
model is presented, and the spectrum leasing problems tforaccess), as well as the unleased channels with a lower
the two sellers are formulated. In Section IV, Nash equdibrpriority than that of primary users. The number of leased
of the non-cooperative game in Epoch Il are derived. Sectichannels is adjusted following the arrival/departure &ver
V discusses how seller 1 should distribute its spectrum to tiee primary and secondary users. In [16], dynamic spectrum
leased in Epoch Il and Epoch IIl. Numerical results are givdeasing is investigated, considering the competition agnon
in Section VI, and finally the paper is concluded in Sectiomultiple spectrum sellers. A stochastic Cournot game model
VII. is used to derive the leasing strategies (i.e., the amount of
spectrum to lease) of the spectrum sellers.
Il. RELATED WORKS In this paper, we also consider dynamic spectrum leasing.
Monopoly spectrum leasing In the work of [2], there are The difference of our work from those in [13]-[15] lies in
a spectrum provider, a broker, and a number of seconddimat the works in [13]-[15] consider a monopoly market while
users. By a Stackelberg game modeling, the broker optima¥ie consider a duopoly market. The difference of our work
decides on the number of channels it should purchase frdram that in [16] is as follows. In [16], each spectrum séfler
the spectrum provider as well as the price it should use to saVailable spectrum for leasing is determined by the maiket (
the purchased spectrum to secondary users. The work in ¢8her words, the spectrum seller sets the amount of spectrum
also considers a broker. It is assumed that for a given spactrthat it could lease so as to maximize its profit). In our work,
price, the amount of spectrum demand from secondary useesh spectrum seller’s available spectrum is determined by
is random. The work in [4] considers the impact of spectrutnaffic load of its own users. After all its users’ traffic has
leasing on primary user performance (such as possible exteen accommodated, the unused spectrum can be leased to
interference to the primary system). An optimal solution isecondary users.
given for the primary user, which strikes a balance between
the earned revenue and the cost.
Oligopoly spectrum leasing: Two brokers are assumed in ||| SysTEM MODEL AND PROBLEM FORMULATION
[5]. Each broker decides on the amount of spectrum that i
Brice that 1t should anmounce 1o Secondary.usere, i CRordnator, and muliple secondary users. Simiar o153
target at profit maximization. The work in [6] also considergO(.)rd'r.]ator is a centralized unit (e.g., a base statiorrobied)
two brokers, by assuming that the leased spectrum may : I|ch is trusted by the spectrum sellers and secondary .users

shared by multiple secondary users simultaneously. Theref s responsible to collect information (for example, ambu

interference among secondary users needs to be taken I%ftgpectrum to lease) from and get back to spectrum sellers,

account. The works in [7]-[9] consider a duopoly markePOSt SPectrum price to secondary users, lease spectrum to

. . . o .gecondary users, manage secondary users’ access to #w leas
in which the price competition of two spectrum sellers ig y ’ 9 y

investigated by using game theoretical approaches. Thk wo ect:u_m, etc. Tthef tl\.NO selcljers arte prlrtr:ar)é ns:\r’:’o'r:ks W'thh
in [10] discusses the case with multiple sellers. By using certain amount ot ficensed spectrum bandwidin. "~or eac

evolutionary game model, a solution is given to secondaP ::er, when tr:_f. da.tta trafﬁ?[ frorrl; ltsdoyér:hqs?rst IS l'gh‘t_j’ the
users for their spectrum selection and to sellers for prié er may partition [ts spectrum bandwidth Into two parso

setting. The work in [11] considers multiple sellers as vesll primary portion and secondary portion. The primary portion

one broker, in which the impact of spectrum leasing on sglle il _be assigned to the seller's own users, and th? _second_ary
performance (i.e., service quality degradation) is takeo i portion can be leased to secondary users. In specific, amsid

account. The work in [12] considers heterogeneous secyndg}at seller 1 an_d seller 2 h_ave bandwidgh and Q» in the|r

users, i.e., different secondary users may have differietia secondary portion, respectively. For each seller, the waiid

on théir sbectrum leasing decisions in its secondary portion can be leased to secondary useess for
Note that in all above works on monopoly and oligopol ura_tion (cglledeasing perioo_l. Consider that the two sellers

spectrum leasing, the spectrum price is fixed for the whofeasing periods are not identicaind overlap with each other.

Spe_Ctrum Ieasmg dlj'ratlon’ and thus, the works all COnSIdeEIf the two leasing periods are identical, it is a special cafsthe problem
static spectrum leasing. considered in this paper.

t .
ngon&der two spectrum sellers (seller 1 and seller 2), one
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Fig. 1. Leasing periods of the two sellers.

Without loss of generality, we assume that the leasing gerispectrum to lease; in Epoch II, both sellers have spectrum to
of seller 2 starts earlier than the leasing period of seller [kase; and in Epoch lll, only seller 1 has spectrum to lease.
We also assume that the leasing period of seller 2 endsrearldenote the set of stages in Epoch I, Il, and Il &5 N,

than that of seller £.An illustration of the two leasing periodsand A, respectively. Denote the set of stages in the leasing
is given in Fig. 1. Here the union of the two leasing periodseriod of seller 1 and seller 2 a%; and N>, respectively.
containsN fixed-length stages. For presentation simplicity, th€hus, we haveV; = N, UAy and A = AU AN,

last stage of seller 1's leasing period is called stage 1llewhi Selleri (i € {1,2}) aims at maximizing its total revenue
the first stage of seller 2’s leasing period is called stdge over all the stages by deciding ah, ;,n € N;. Next, the
Selleri (i = 1,2) would distribute its spectrum bandwidél;  spectrum leasing problem in each epoch is discussed.

to be leased in the stages of its leasing period. In other syord

it needs to decide on the amount of spectrum bandwidth to be

leased in each stage in its leasing period, with a constifaént A. Spectrum Leasing Problem in Epoch |

the total amount of leased spectrum bandwidth in the stages

is bounded byQ;. For selleri, denote the amount of spectrum !N Epoch I, only seller 2 has spectrum to lease, and it does

bandwidth it would like to lease to secondary users in sta§@t know when seller 1 will join the spectrum leasing market

to the coordinator the information af, ;. spectrum leasing. In other words, in Epoch |, seller 2 does

At the beginning of stage, after the coordinator gets theN0t know when Epoch Il will start. So seller 2 assumes a
information ofd,, ; andd,, 2, it would set up a spectrum unit Monopoly market in Epoch I. At a stage in Epoch |, once an
price (the price per unit bandwidth per stage) and lease tR@ount of spectrum is leased to seco_ndary users, the spectru
spectrum bandwidthd,, ; + d,, ») to secondary users. In otherwill be l_Jsed by secondary users until the last stage of seller
words, the coordinator should set up the unit price to attra@S leasing period.

(dp1 + dno) spectrum bandwidth demand from secondary For seller 2's spectrum leasing, it has the following two
users. Denote the pricg to attractd spectrum bandwidth constraints ford,, »:

demand a$>(d), which is a function ofi. Economics analysis
[17], [18] has shown that price and demand typically follow
a linear model, and thus, price and spectrum bandwidth
demandd satisfy the following feature:

0< dn,2 < QQ,VTL ENQa

Z dp2 < Qo.

p=P(d)=Co—Ci-d (1) nen?
in which C; and C; are coefficientd. P(d) is a decreasing Seller 2's  collected revenue at stagen s
function of d. In addition,d - P(d) should be an increasing (Co — C1dn2) dn2 (n — [NMul), in which | - | means

function of d (as the total revenue for more leased spectrum

bandwidth should be higher), based on which we have 5The rationale for this setting is as follows. It is possithatta secondary
user may finish its transmission before the last stage oérséls leasing
Co > 204 (Ql + Qg) (2)

period. The secondary user’s actual transmission duradgmends on the
user’s traffic load as well as its instantaneous channelitguduring the

From Fig. 1, the union of the two sellers’ leasing periodgansmission. However, when a secondary user decidesde tha spectrum,
. . . it is difficult to predict the instantaneous channel qualduring future

can be divided into three epochs. In EpOCh 1, Only seller 2 hé§nsmission over the spectrum, as the instantaneous ehauality may vary
dynamically during future transmission. Thus, when a sdaonuser decides

3Note that the method in this paper can be straightforwardtgreled to
deal with the case when the leasing period of seller 2 ends than that of
seller 1.

4When there are highly demanding secondary us@gscan be set higher
and C; can be set lower. With less demanding secondary usgrscan be

to lease the spectrum, it is unaware when its transmissidrfimish. Then, at
the spectrum seller’s side, when some spectrum is leaseddoamdary user,
the seller assumes that the leased spectrum will be usedebgetondary
user until the end of the seller’s leasing period. If the seélemy user finishes
its transmission earlier, say at stagethen the seller will take the leased

set lower andC; can be set higher, to attract more spectrum requests fraspectrum back, update its spectrum stock, and re-run opopeal scheme at

secondary users.

stagek.



cardinality of a set. To maximize its overall revenue, sefle (which is the length of seller 2’s remaining leasing periaail

should solve the following optimization problém is mathematically equal to\5\ V| or | |), in which |Af]
Problem 1: stands for the length of preceding stages. Then the cododina
max S (Co — Cidp2) dnz (n — [N feeds back to the two sellers by telling 1) that now two_ ssller
{dn 2InEN2}  nEN, have spectrum to lease, 2) how much spectrum bandwidth each
s.t. Y dnp < Q2 (3) seller offers in this stage, and 3) how long the leasing jpeEo

Z€N2> 0.Yn € N. for each seller. Frord; ; and|A4 | in the feedback information,
n2 2 U, VI € Nz seller 2 can find out the available stock of seller 1, by seéagch

Problem 1 is a convex optimization problem, because 1) ifse value of(); (using bisection search) that makés be in
objective function is a concave function with respect to thiae optimal solution of the problem in (4). Similarly, selle
vector of variables{d,, »|n € N>}, and 2) its feasible region can also find out the available stock of seller 2. Based orkstoc
is a convex set. Thus, the global optimal solution of Probleminformation of the other seller, each seller adjusts thewarho
can be achieved by existing numerical optimization methodsf offered spectrum bandwidthl(, or d; ») and resubmits to
the coordinator, and the coordinator decides on a unit price
based on (1) with total spectrum demafd ; + d;2). In
each subsequent stage (say stajy@ Epoch II, by knowing
: _ _ the existence of the other seller, each seller reports to the
has available spectrum bandwidéyy, while we denote the coordinator the amount of offered spectrum bandwidth (

remaining spectrum bandwidth of seller 2 @# (in other d,.2), and the coordinator decides on a unit price based on
words, spectrum bandwidth with amouidd., — @5 ) has been (1) with total spectrum deman@,, ; + d, ).

leased out by seller 2 in Epoch 1). At the beginning of stage In every stage in Epoch II, once an amount of spectrum
[, each seller does not know the presence of the other Seligt, i of a seller is leased to secondary users, therspect

and thus, assumes a monopoly spectrum leasing. So eadh sglig e sed by secondary users until the last stage of the
reports to the coordinator the amount of spectrum bandvmﬂl:orresponding seller's leasing period

would like to lease to secondary users in the stage. In specifi A decision that seller 1 should make in Epoch Il is the
seller 1 has the following constraints fdf, amountQT' of spectrum bandwidth it reserves for Epoch I,

B. Spectrum leasing Problem in Epoch Il
At Epoch II's first stage (denoted as stage seller 1

0<dy, <Qp,VneN, where Q' € [0,Q4]. In other words, seller 1 would like to
' lease spectrum bandwidt)( — Q!') in Epoch II.
Z dp1 < Q1. In Epoch Il, the announced unit price at each stage (say
neN stagen) depends on the sum @f, ; andd,, ». Thus, there is

So seller 1 solves the following convex optimization proble & non-cooperative game between the two sellers. In this game
the two players are seller 1 and seller 2, and the strategy of

e ZN (Co — Crdyp1) dpan seller 1 and seller 2 ar; £ {d,ijn € Ny} and S, 2
' = {dn2|n € Ny}, respectively. The payoff function of seller 1
S.t. Z dn71 < @1 (4) )
neN and seller 2 can be expressed as
dn,l >0,Yn ENl,
) , Ry (81,82) 2 > (Co— Cy(dn +dn2))dnn
and reports to the coordinator the valuesdpf (d;,; is from N

the optimal solution of the above problem) apd;| (the q
leasing duration for thé,; ; spectrum bandwidth). On the othe"

hand, seller 2 has the following constraints &y»: R (S1,85) £ Z (Co— Cy (dus + o)) do s (11— [Nt ).
0 < dpa < QY,Vn € Mo\, neN
I respectively. Define the feasible region of seller 1's sggt
Z dn,2 S Qg- as

nENz\M
So seller 2 solves the following convex optimization proble F1 (y) = {{dn,lln € Nu}’ Z dna <y,0 <dp1 < y} ;
neN

max (C — Cidy, )dn, (” - |MII |)
{dn 2|nEN2\N} ne./\zfg:\M ’ e ’ which can be written as a simple form
s.t. Yo dne < QY
neN2\M
dn_zzZ 6,Vn € No\W, Fily) = {{dn’lln € M'}‘ Z n,y S Yy dny = 0} ’
' (5) neN

and reports to the coordinator the valuesdpf (d;,2 is from  when seller 1 would like to lease to secondary users spectrum
the optimal solution of the above problem) and/{| — |[Vi|)  bandwidth amoung in Epoch Il, and define the feasible region

of seller 2’s strategy as
6In Epoch |, seller 2 does not know the value|afy |. However, it knows
the value of(n — |[NMu|) (the length from stage: until the end of seller
2's leasing period). Thus, in Problem 1, we use notatjen— |\ |), for Fo (z) =
consistence of the formulated spectrum leasing problentiseithree epochs.

{dn,2|n S MI}‘ Z dn,2 S Zvdn,Q Z O}
neN



when seller 2 would like to lease to secondary users spectruntor seller 1 at the beginning of Epoch II, it knows that
bandwidth amount in Epoch Il. The objective of seller 1 is both sellers will be present in Epoch Il and it will be the

to solve the following optimization problem only seller in Epoch Ill. Thus, seller 1 can use the amount of
Problem 2: spectrum it reserves for Epoch I, i.&Q!', as an input for
max Ry (S1,8) Epoclﬁl II's non—cpoperat_lve game, and find the optimal value
S " (6) of @) that maximizes its overall revenue. Thus, seller 1's
st Sieh (Q1 - Q) ) g leasing strategies in Epoch Il and Il are jointly deterntine
and the objective of seller 2 is to solve the following opti@S follows. . _ _
mization problem From the perspective of selldr, it can adjustQ!'. For a
Problem 3 specificQ!!', the two sellers need to follow a Nash equilibrium

in the non-cooperative game in Epoch Il. Thus, the strategy
max R; (81,82) (7) Of seller 1 can be written aQ!' and S;, while the strategy
st. Sy e Fy ( g) . of seller 2 can be written as$..

. When seller 1 reserves spectrum bandwi@th for Epoch
For the non-cooperative game of the two sellers, a Na p P ot P

flibrium defi rat § S that I tﬁ’ it means that seller 1 would like to lease spectrum
equilibrium defines a strategy pai,, S;) that a seller canno _bandwidth Q; —Q"") in Epoch II. Accordingly, we denote the

teharn ;Eore rel;/efluetbytdewatm?]frométslstratt:gy wh|clje k?,‘\)l' revenue of seller 1 in Epoch Il d8(Q; — Q!"), a function of
€ other seflers strategy unchanged. In other words, 3 1 — Q). Then for seller 1 to maximize its overall revenue,

equilibrium should be a joint optimal solution of Problem he following optimization problem should be solved
and Problem 3. Problem 5:

max U (Qq — 4y in
C. Spectrum Leasing Problem in Epoch IlI QY ( 1) (@) 9)
B st. 0<QY <@
In Epoch 1ll, only seller 1 is active in the spectrum market,
and thus, monopoly spectrum leasing is performed. Once ianwhich V (Q!') is defined in (8).
amount of spectrum bandwidth is leased to secondary userdn the following, in Section IV we find out Nash equilibria
the spectrum will be used by secondary users until the endinfEpoch Il for a specifi@!', and in Section V we select the

Epoch lI. optimal value ofQ' for seller 1.
Seller 1 has the following constraints féy, ; in its spectrum
leasing in Epoch I IV. NASH EQUILIBRIA IN THE NON-COOPERATIVE GAME

IN EPOCHII WITH GIVEN Q"

0<d,1 <Q,Vn € Ny, _ . o
S dna < Q1,0 . A. Existence and Uniqueness of Nash Equilibrium in the Non-

Z dpy < QU Cooperative Game in Epoch I
neN Recall that a Nash equilibrium of the non-cooperative game
To maximize its revenue in Epoch Il, seller 1 solves th#! EPoch Il should be a joint optimal solution of Problem 2
following optimization problem. and Problem 3. Since the objective functions of Problem 2
Problem 4: and Problem 3 are continuous and concave, and the feasible
Wy A regions of the two sellers’ strategies are convex, closed,
V(@) :{dnll;??f\/ln} gf (Co = Crdn) dnan bounded, and uncouplédthere exists at least one Nash
st "Z"' d, < QI (8) equilibrium point for the non-cooperative game in Epoch I
neMu ! according to Theorem 1 of [19].
dn1 > 0,Yn € Ny For unigueness of Nash equilibrium, we have the following
Similar to Problem 1, Problem 4 is also a convex optimizébeorem'

tion problem, and thus, can be solved by existing numericaITh.eo.rem 1:When |Niy| < 12.’ there IS only one Nash
L equilibrium for the non-cooperative game in Epoch II.
optimization methods.

Proof:
Define the vectorized strategy of seller 1 and
D. Overall Leasing Strategy of the Sellers seller 2 in Epoch Il as x; = COYAFYARE
In Epoch I, since seller 2 does not know when Epoch AN (N =1), 1> e d\Mu\H,l]T and  x; =
will start, it assumes a monopoly market, and solves Probleld x|+ i |25 a4 (i | =1),25 - dWmHLQ}T, respectively,
1 to get its leasing strategy in Epoch I. in which []7 means transpose operation. The payoff

At the beginning of Epoch Il, some of seller 2's spectrurfunction of seller 1 and seller 2 can be rewritten as
has been leased to secondary users in preceding stageskiS1,S2) = R (1, 22) and Ry (S1,S82) = Rs (1, x2),
other words, seller 2 could not “go back” to revise its legsinrespectively. Denote: = (z7, :cQT)T and define
strategy in Epoch I. Thus, seller 2’s leasing strategy datis
for Epoch Il is separate from that in Epoch I. In specific,

n EpOCh_ I, seller 2 follows a Nash eqU|I|b”um of the non- "When the two feasible regions are independent from eactr, otieesay
cooperative game. that the two feasible regions are uncoupled.

0'(.’13) = Rl (:131, .’132) + R2 (.’131, :132) . (10)



Then the pseudo-gradient efx) can be given as

_ [ ViR (w1, 35) }

VaRs (x1,x2)
where |NVy| x 1 matrix ViR, (z1,x2) is the gradient of
Ry (x1,x2) with respect to vector, and |Ay| x 1 matrix

k (x) (11)

B. Finding Nash Equilibria in the Non-Cooperative Game in
Epoch I

As aforementioned, a Nash equilibrium of the non-
cooperative game in Epoch Il is a joint optimal solution of
Problem 2 and Problem 3. As both Problem 2 and Problem 3
are convex problems and satisfy the Slater’s condition, KKT

V2R (z1,x2) is the gradient of?; (x1,x2) with respect to condition is a sufficient and necessary condition for optima
vector x,. According to Theorem 2 and Theorem 6 of [19]solution for each problem [22]-[24].

Nash equilibrium of the non-cooperative game in Epoch Il For the ease of presentation, we den@ﬂh =Q — QY

is unique if the2|NVy| x 2|V, | symmetric matrixL(x) as the spectrum bandwidth amount that seller 1 would like to
— [K(x) + K*(x)] is positive definite, wherd< () is the lease to secondary users in Epoch Il. For Problem 2, the KKT
Jacobian matrix of(x) with respect tox. After some math condition is

manipulation, the matrixL(x) can be written as the following
form

QOlndn,l—(Co—Cldn,Q) n—+\— tn =0, Vn € M| (163)

A ( Qc) =0 (16b)
neNj

Z dn,l -
pndn1 =0, ¥n € Ny (16c)
> duy < QY (16d)

_ | Lu(=)
B L21 (iL‘)

ng(m)
ng(m)

where Lyy(z) = Diag(4C1(|Nu| + [Nal),4C1 (V| +
Wil = 1),..,4C1 (M| + 1)), Lio(z) = Lai(x)

L(x) (12)

Diag(cl(lf\/m|+2|/\/|||_),Cl(|/\/n||+2|/\/]||—2)7---7 (M [+ neN:
2)), anq ng(m) = Dlag(401 |./\/|| |7401(|M|| - 1)7 ,401) dn,l > O’Vn c MI (16e)
Here Diad- - -) means a diagonal matrix with all diagonal A> 05, >0, Yne Ny (16f)

elements listed ir{- - -). The matrixL(«) can be guaranteed
to be positive definite, if the leading principal minors argnere\ and,, are Lagrange multipliers associated with the

all positive [20], i.e., the determinant ofi x m upper-left
submatrix of L(x) is larger than 0 form = 1,2,..., 2|\ |.
Since there is

Det([A B

C D
when matrix A is invertible [21], the determinant ofn x
m upper-left submatrix ofL(x) is larger than 0 form =
1,2, ..., 2|\ | when the following inequalities hold

D — Det(A) Det(D — CA™'B)

12 (IN] = k)% + 12| N | ((Na| = &) — [N |2 > 0,

Vk=0,1,...,(Mi|—1), (13)
i.e., when
(V| = k) < 1,1 )
> =+ —=],Vke0,1,.... (M| = 1).
N 3t A (M| = 1)
(14)
The inequalities in (14) hold if
1
|M||| <—T——T = 12.9282. (15)
—1+%
This completes the proof. [ |

constraints Y d, 1 < Q!C andd, 1 > 0, respectively.

neN
For ProblemI| 3, the KKT condition is

2C1 (n — [Nui|) dn,2 — (Co — Cidyp 1) (n — [NMu )

+(—-v,=0,VneN, (17a)
c(Z dn2 — 3) =0 (17b)
neN,

Undno =0, Vne Ny (17c)
> dnp < QY (174)
neN,

dn,2 > O,VTL € Ml (17e)
¢>0;v, >0, Vne Ny (17f)

where( andv,, are Lagrange multipliers associated with the

constraints Y dy 2 < QY and dn2 > 0, respectively.
neN
To get Nash equilibrium of the non-cooperative game in

Epoch Il, the equations (16) and (17) should be solved jpintl
We have two properties for the joint optimal solution:

o Property 1: Equality should hold in (16d) and (17d) (in

other words, we have" d, 1 =Q“and Y d,,=
neN neN

From the proof, it can be seen that the derivation of value Q).
12 largely depends on the fact that there are two sellersein th » Property 2:If d,; >0 (n € M), then we havey,, = 0;

spectrum market.

if d,, 2 >0, then we have,, = 0.

As the number of stages in Epoch Il is normally limitedProperty 1 is due to the facts that the objective function of
it is very likely that the value of\Vy, | is bounded by 12, and Problem 2 is a monotonically increasing function @&f ;
thus, Nash equilibrium of the non-cooperative game in Epo¢h € ;) and that the objective function of Problem 3 is a
Il is unique. Nevertheless, in next subsection, we show hawonotonically increasing function @f, » (n € Njj). Property
to find Nash equilibria in the non-cooperative game in Epo¢hcan be obtained directly from the equalities (16c) and)17c

Il without constraint|\y;| < 12 (i.e., Nash equilibrium may

or may not be unique).

Next, we try to find the expressions df,; andd, 2 by
solving (16) and (17).



From the equalities (16a) and (17d),; andd,, » for n €
Ny can be expressed as

(Co — Crdp2)n — A+ pip

dn71 - 201’[1 9 (18)
(Co — Crdn 1) (n—|Nu|) = (+ vy
dp o = : . (19
2 2Cy (n — [Nul) (19)
from which we have
2(Con—A+pn)  Co(n—|NMul) =+ vy

dp1= — , (20
o1 3Cn 3C1 (n — [Nul) (20)

d :_Con—)\—F/Ln 2(Oo(n—|MII|)_C+Vn)

m,2 3Cin 3C1 (n— [Nui|) .
(21)

Define 2, = {n|d,1 > 0,d,2 > 0,n € Ny}, 25 =
{n|dn71 > O,dng =0,n € M|}, Z3 = {n|dn71 = O,dn,Q >
0,n e My} and 24 = {n|d,1 =0,dn2 = 0,n € Nj}. Then
{Z1, 24, Z3, Z4} constitutes a decomposition of the 9¢,
which means thag, |y 22U Z3 U 24 = My andZ, N Z; =0
(0 being a null set) for # j andi,j € {1,2,3,4}. Totally
there are22Vil decompositions.

Next we find out the expressions df,; andd, » for a
specific decompositiofZ,, 25, Z3, Z4}.

From Property 1, we have

Z dn,l + Z dn,l = !Ca

nez; nezsa
§ : § : 1l
dn,2 + dn,2 = Wa-

nez, nezs

In the two equations, substituting the expressiond,of and

A e C C
(= _A11A22—21421A12 ( I Z ﬁ - Z ﬁ)
nezy nezs
A C C
(28)
With the aid of Property 2 and using equations (18), (19),

(20), and (21), the closed-form expressionsdpfy andd,, o
for n € Ay are given as follows:

2(Con=X) _ Co(n—|NuD—¢ ;
5 e, T nEZ
dn,l = C;Ocr«l;n)\ if ne 2y (29)
0 if ne Z3 U Zy
Con=X | 2(Co(n—=|Nu)—¢0) ;
; (3001‘7\[ _‘t 381 (n_‘/'{'/l“ N if ne 2
dn 2 = 2001("7‘%[”") if ne Z3
0 if ne 2, U Zy
(30)

where\ and¢ are given in (27) and (28), respectively.

By now, given the decompositiofZ,, 2o, Z3, Z,}, expres-
sions ofd,, ; andd, » for n € N are derived. To guarantee
that every equality or inequality in (16) and (17) is satidfia
feasibility check is further required, which is given addals:

1) X and ¢, which can be calculated from (27) and (28),

are non-negative.
2) d,1 andd, 2, which are calculated from (29) and (30),
are non-negative fon € V.

3) u, andv,, which can be calculated from (18) and (19)
given the obtained,, 1, d,, 2, A and(, are non-negative
forn € \y.

dn2 in (20) and (21) forn € Z;, substituting the expressionsif the above feasibility check passes, the decomposition

of d,, 1 andd,, 2 in (18) and (19) fom € Z, andn € 25, and
using Property 2, we have the following equations:

—A11A+A12<:QI1IC_ > 30701_ > 20701’

nGZé nGZgV (22)
Az ) — Az = QY — 2, 50k T 2 ook
nezy nezs
where W Z 5 N Z ] )
e 3Cin 201n’
nezi nezs
1
Ap = _— 24
12 Z 3Cl(n_|j\/lll|)’ ( )
nez;
1
AQI - Z 301’”’ (25)
nez;
2 1
Ao — S ——— . (26
. ;1 3C1 (n — [Nu) n;g 2 - 2

Note thatA1, A1z, A1 and Ay are all nonnegative. Accord- z,  \which indicates thatd

ing to the equations in (22), the Lagrange multipliarand ¢
can be expressed as

_ Aoo e Co _ Co
A= A11A22—A21A12< 1 Z 3C Z 201)

nez nezs
A I _ Co _ Co_
A1 Asa—Az1 Ao 2 Z 3C1 Z 2C, |
nez, nezs
(27)

{21, 24, 25,24} is said to befeasible and the derived,, 1
andd,, » expressions in (29) and (30) for € N given the
decomposition{ Z1, Z», Z3, Z4} form a Nash equilibrium of
the non-cooperative game in Epoch Il

For the set\), there are22lVil possible decompositions.
To find all Nash equilibria of the game in Epoch II, an
exhaustive search of aPVil decompositions is required. As
the number of stages in Epoch Il is normally very limited, and
the calculations in checking feasibility of each decompiosi
are simple, an exhaustive search 0P8Vl decompositions is
considered to be acceptable. In addition, the followingthm
is helpful in reducing the complexity in the exhaustive sbar

Theorem 2:For a feasible decomposition, if there exists a
stage (say stage) in 2 (i.e., d,1 = dno = 0), then all
stages with a lower index in Epoch Il should belongZe.

Proof: We use the proof by contradiction. In the Nash

equilibrium of the decomposition, suppose therenis sat-
isfying nt < n,nt € Nj\Z4. We first assume thatt €
nt,1 > O,dmt_g = 0. Then
the total revenue collected over stageand stagent by
seller 1 is (Cy — Cidnt,1) dnt,int. By interchanging seller
1's offered spectrum bandwidth amounts in stageand
stagenf, the total revenue that seller 1 collects in stages
andnt becomegCy — C1dy+,1) dnt 11, Which is larger than
(Co — Cidnt,1) dpyint sincent < n. This contradicts the
definition of Nash equilibrium.

Similarly, nt € Z; ornt € Z5 also leads to a contradiction.



This completes the proof. B Therefore, next we show how, ; andd,, » change when:
Remark: Theorem 2 shows that in a feasible decompositiomries.
if Z, is not empty, then it contains consecutive stages unt”Consider a decompositi Z. 2. Z,1. Consider two
the end of Epoch I1. Therefore, in the exhaustive searchlof g, . oo (recallingpthag'{']czh: 22’1 > Q%'%j- O and F
possible decompositions, we can skip those decompositi%%n O < QF. Assume theldecompositioirz.l 2, Zs 24}’

in which Z, contains non-consecutive stages or does not lqutfeasibIe for both”C values. For the decomposition, denote
until the end of Epoch Il. Thus, the number of decompositioqﬁe corresponding l\llash equilibrium Wh@lfc —Qtas
that we should check reduces fro2AMil to S°Mi3i. The

term ZN”'ZV is calculated as follows. We only need to

=0
check decompositions in which, contains consecutive stages f o) a ; ;
until the end of Epoch Il. WhenZ; contains the last (51732) = ({dn,1|n€M|}’{dn,2|nEA[”})’

(i € {0,1,2,...,|Ny|}) stages in Epoch Il, there agMil—
decompositions since each of the fi§lV} | — i) stages in
Epoch Il can be inZ;, Z,, or Z3;. Thus, the number of

decompositions that we should checki™M ! 31Vil=i which

is mathematically equal tEng‘ 3t

So far all Nash equilibria of the non-cooperative game in oot o ; ;
Epoch Il have been found. If there exists only one unique Nash (51752) = ({dn,1|” € NII} g {dn,an €N }) :
equilibrium (e.g., wheri\Vy; | < 12), then both sellers follow
the unique Nash equilibrium. If there are two or more Nash
equilibria, the two sellers need to select one Nash equilibr Then the following lemmas can be expected.
to follow. Here the two sellers agree to follow theax-
min Nash equilibriumdefined as the Nash equilibrium that
maximizes the minimum unit-bandwidth revenue of the twén,1 =0 for n € ZsJ ..
sellers. Here for seller 1, its unit-bandwidth revenue ésrtitio Proof: By the definitions of seg; and 2y, seller 1 does
of its total revenue in Epoch Il t@)!; for seller 2, its unit- not offer spectrum bandwidth to be leased in stage&simnd
bandwidth revenue is the ratio of its total revenue in Epdch k&, and thusdlyl — dfz,l =0 forn e 23| 2.

and the corresponding Nash equilibrium wr@ﬁ‘lc = Q' as

Lemma 2:For seller 14}, < d}, | forn € 25, andd], , =

1]
to Q2. From (23), (25), and the fact tha; U Z, # 0, we have
A1 > Ay > 0. From (24), (26), and the fact thaf; U
V. TOTAL REVENUE MAXIMIZATION FOR SELLER 1 Z5 # (0, we haveAds, > A;, > 0. Thus, we havedi; Ayy —

In the previous section, we have found the strategies of tHe1 A12 > 0.
two sellers in Epoch Il with a specifiQ}' (the bandwidth that k4, < 2,, with the aid of (29) and (27), we have
seller 1 reserves for Epoch IIl). Now, we try to solve Problem
5, i.e., find out the optimal value @' that maximizes seller
1's total revenue. A method by exhaustive search could be: t
1) for each possible value @', search all possible Nash Ay = dy g
equilibria, find the max-min Nash equilibrium, and calcalat
the revenue that seller 1 can earn during its leasing peritid w
the max-min Nash equilibrium; 2) for differe}!', compare
the revenue values that seller 1 can earn during its leasingwhich the inequality comes from the fact thdb, > 0,
period, and select the optim&)!' that makes seller 1 earnQ" < Q*, and (A1 Az2 — A21A412) > 0.
the most revenue. However, the complexity of the exhaustiverps completes the proof. -
search method is huge, due to the infinite number of values _ ; i ;
of Q! € [0, Q1]. Thus, we target at an approximation method Lemma 3:For seller 2d,, , < d,, , forn € 23, andd,, , =

_ CoA
- 20171(14111(‘)1222314211412) (QT B Qi) (31)
<0

to select@!'. dfw =0forne ZJ2Z,.
WhenQY' =z, U(Q: — ) andV (z) given in (8) are the Proof: The proof is similar to the proof for Lemma 2,
revenue of seller 1 in Epoch Il and Epoch lll, respectivelyq thus, is omitted here. -

To selectz (i.e., Q!'), we need to evaluate hoW (z) and
U (Q, — ) change when: varies.
Lemma 1:The functionV (z) is an increasing and concav

Theorem 3if a decompositiod 21, 2, Z5, Z,} is feasible
when QY = z € 7 whereZ C [0,Q,] is an interval,
function with z then when the Nash equilibrium corresponding to the de-

Proof: The proof follows a similar procedure to the proof:ompos'ition is followed by t.he two sellers in Epo.ch I,
of Lemma 6 of [25]. seller 1's revenue/(Q, — z) in Epoch Il can be written

Now we evaluate function/(Q; — z) when z varies. 2% U(Q1 - z) = G(z) — H(z) whereG(z) and H(z) are
To evaluate U(Q, — z) for a specific decomposition monotonically increasing functions with respectite Z.

{21, 24, 23, 24}, we need to knowd,, ; andd, 2 (n € \y) Proof: Suppose the Nash equilibrium corresponding
in the Nash equilibrium corresponding to the decompositioto the decomposition{ 21, Z2, Z3, Z,} is ({dn1]n € M},



{dn2|n € Mi}). ThenU(Q: — ) can be written as specific value ofr, will it continue to be feasible if: increases
or decreases?

U(Q1—x)
= > (Co—=Ci(dni1+dnz2))dnin Theorem 4:Assume a decompositiohZ,, Z,, 25, Z,} is
neN feasible forx = z¢ € [0,Q4]. If = increases fromx,, then
(a) . )
= é (Co = C1 (dny +dn2))dnin there exists a point denoted, € [zo,Q:] such that the
ne= decomposition is always feasible in interval, 2], and is
Co — Crdp.1)dy, s L e
+ néz( 0 1n,1) dn1m always infeasible in interval:;, Q4]. If = decreases fromy,
® > (g n ¢ + A) ( ¢ _ 2 then there exists a point denoted € [0, z¢] such that the
nez, \ 30 3Nl T sn A BCHn—Nul) - 3Cin decomposition is always feasible in intenjah, zo], and is
+ ?%)HJF S (Co — Chdp1) dpan always infeasible in interveD, ).
nez
_ ¥ ( 2 € _2|_ _ N c_g) . Proof: Here we only prove the case wherincreases, as
nez, \9C1(=INuD? T 9C1(n—[Nul) " 9C1 the case when decreases can be proved similarly.
A 2 CoX
- é (QCln(fz—L/\/m\) + 587 + 969171) n For anz (i.e., Q') value, the feasibility of decomposition
N Zl (Co — Crdn ) do 1 {Z1,25,25,24} is checked as follows: calculate and ¢
nEZs based on (27) and (28), calculatk, ; and d,, » based on

(32) (29), (30), and the calculatedl and ¢ values, and calculate
where(a) holds sincel,; = 0forn € Z3\J Z, andd,2 =0, andv, based on (18), (19), and the calculatg;, d,, -,
for n € 25, and(b) can be obtained by substituting,; and ) and ¢ values. If all the values of\, ¢, A1, dn, i,
dn 2 according to (29) and (30). andv, (n € Ny) are non-negative, then the decomposition

As the decompositiofi 2y, 25, Z5, 24} is feasible A and(  (z, z, z, z,} is feasible; otherwise, it is infeasible.
are non-negative. Additionally, from (27) and (28), it cam b

seen that\ and(¢ are monotonically decreasing with <, i.e., ~ Expressions (27) and (28) show thatand ¢ are linear
(Q1 — z). So in the expression (32), both the term functions ofz (i.e., QY').
Z ¢? n 2Cu¢ n C_g Expressions (29) and (30) show th&t; andd,, » are linear
- 9C) (n— |Nul)2  9Cy (n— [Nul|) 9C, functions of A and(, and thus, are linear functions of
and the term Expressions (18) and (19) show that andv,, are linear
) 2)2 CoA functions of}, ¢, dy,,1, andd,, », and thus, are linear functions
Z (901n (n— |NMul) + 9C n? + QC’ln) of .

nezi

) ) L Overall,\, ¢, dn.1, dpn 2, pin, andu,, (n € Ny) are all linear
are monotonically decreasing with;°, and thus, are mono- ,nctions of G.e., Q.

tonically increasing withe (asQ!C = (@1 — ). It can be also
checked that the term)_ (Cy — C1dp 1) dpan in (32) is a When 2 = z(, as the decompositiofiZ1, Zs, Z3, Z4} is

. . nez, . _ . feasible, all the\, ¢, dy, 1, dp.2, pin, andv,, (n € Nj;) are non-
monotonically increasing function with respectaﬂc (since negative. When: increases from:o, values of\, ¢, dy 1, dy 2,
the function(Cy — C1y) v is monotonically increasing withy 1in, and v, linearly change accordingly. If at oneypoinf, say
and d,, 1 grows with Q'l'c [from Lemma 2]), and thus, is a, _ 1, ON€ OfA, €, dp.1, dn.2, i, andu, decreases to value

monotonically decreasing function with respectito 0, then we can see that far € [zo,21], the decomposition

Define {21, 25, 23, 2,} is always feasible, and far € (z1,Q4], the
2 2 2 e ; ;
Glz) = Z (QC (nEV\[ |)2+9C (nC_o|CN ; 9%)) decomposition is always infeasible.
nez ! . ! . 1(33) This completes the proof. |
and Remark: Theorem 4 shows that if a decomposition
A 9\2 O {21, 22, 23, Z,} is feasible forz = xg, then there exists an
H(z) = Z ¢ + + 2 )n interval of x containingz, such that the decomposition is
9CIn (n— [Mul)  9Cin?2  9Cin

nez, feasible inside the interval, and infeasible outside theriral.

- Z (Co = Crdn1) dnan. (34) Based on Lemma 1, Theorem 3, and Theorem 4, we propose
neZ that seller 1 uses the following Algorithm 1 to selec{i.e.,

It can be seen th:ﬂf.(Ql —_ac) = G(z) .—H(x), and bothG(z)  Q").
and H (z) monotonically increase with.

This completes the proof. |

In Lemma 2, Lemma 3, and Theorem 3, it is assumed that
the decompositiod 21, 25, Z3, Z4} is feasible forz = Q1 —
QT' T = Ql - Qi O_r z € Z. The next t_h_eore_m W'"_answer 8As an extreme case, X, ¢, dn.1, dn,2, tin, andu,, all keep non-negative
the following question: If a decomposition is feasible for ahenz increases fromzg to Q1, then we haver; = Q.
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Algorithm 1 Searching procedure far (i.e., Q\"). < 10°

1: Setz* = 0, and R* = 0. 12 ' ' ' '

2: Setaf =0

3: For z = zf, find out all feasible Nash equilibria, and 10t
pick up the max-min Nash equilibrium and corresponding
decomposition 21, 25, Z3, Z,}.

4: Find (using bisection search) a point denotgdsuch that
the decomposition picked in Step 3 is feasible for=
[zf,21], and infeasible for € (z1, Q).

5. Setat = 24.

6: For complexity reduction, approximately seller 1 consider
that the decomposition picked in Step 3 always leads to the
max-min Nash equilibriunof the non-cooperative game
with anyz € [z, z#]. In other words, for any: € [z, z7], o/ V(x) _
both sellers always follow the Nash equilibrium corre- / — _ _ Reference Line
sponding to the decomposition picked in Step 3. Then the 0
revenue of seller 1 can be written 83Q, — =) + V(z).
Here U(Q: — x) is the difference of two monotonically
increasing functions ot (from Theorem 3), whilé/(x)
is an increasing function of (from Lemma 1). Thus,
U(Q1—z)+V(x) can be viewed as the difference of two

monotonically increasing functions of € [zF,2%]. To . .
y 9 [", %) %Ilow the max-min Nash equilibrium. In Epoch I, seller

The Revenue of Seller 1 in Epoch Il
[}

0 20 40 60 80 100

Fig. 2. V(z) versusz (i.e., Q).

maximize the difference of two monotonically increasin derive it timal strat b \ving Problem 4 with
functions, a polyblock method can be used to find th ”clzan erive 1is optimal strategy by solving Froblem & wi

global optimal solution (please refer to [26]—[28] for de-*1
tails). Denote the optimal point @sand the corresponding
revenuel (Q1 — &) + V() of seller 1 asR. VI. NUMERICAL RESULTS

7. If R > R*, then setz* = & and R* = R.

8: If ¥ = Q,, then terminate the algorithm, and outptit A, Verification of the Analysis

9: Setz’ = 2, and proceed to Step 3.

= x*.

We use numerical results by Matlab to verify the theoretical
analysis in this paper. Since the spectrum leasing probtem i

In the algorithm,z* denotes the optimal selection of sellefEPoch I and Epoch 1l are both convex optimization problems,
1 for z, and R* denotes the corresponding overall revenugere we focus on Epoch II, and the number of stages in
of seller 1. Forz = zf = 0, in Step 3 we first select the Epoch Il is fixed as|AV| = 3. At the beginning of Epoch
max-min Nash equilibrium and corresponding decompositidh seller 1 has spectrum bandwidth with amoupt = 100,
{21, 25,23, Z4}. In Steps 4 and 5, we find the interval of while seller 2 has available spectrum bandwidth with amount
denoted[z', zf], such that the previously picked decomposi@s = 60. Here the unit o9, and@3 is MHz, which can also
tion is feasible inside the interval and infeasible when 2. be approximately transformed to sub-carriers if the system
In Step 6, we approximately consider that fere [z, %], based on orthogonal frequency division multiplexing (OFDM
both sellers always follow the Nash equilibrium corresgngd  ~ We take Cy = 480 and C; = 1, which satisfies the
to the decomposition picked in Step 3. Then foe [z, 2%], requirement in (2). Other configurations 6f and C; that
seller 1's revenud/(Q; — z) + V(x) can be shown as thesatisfy the requirement in (2) can also be adopted.
difference of two monotonically increasing functionsaafA 1) Effectiveness of Theorem 2n this subsection, the
polyblock algorithm can be used to find the global optimaffectiveness of Theorem 2 in complexity reduction is vedfi
value ofz € [2T,2%], denotedi, such that the overall revenueTable | lists the number of all possible decompositions dued t
of seller 1 is maximized. Then thieis a candidate for seller 1's number of decompositions that should be checked for fdasibi
selection ofz (Step 7). Since intervdl:', 2*] has been dealt ity with the aid of Theorem 2. It is clear that using Theorem
with in Step 6, we proceed to the next interval starting fror can significantly reduce the number of decompositions that
2% in Step 9, to repeat the procedure and find other candidasé®uld be checked.
for seller 1's selection of. Among all the candidates, the one 2) Verification of Lemma 1In this subsection, Lemma 1 is
that has the maximal overall revenue of seller 1 is evergtuallerified. Fig. 2 plots the functio’ () (the revenue of seller
selected by seller 1. 1 in Epoch Ill) asz (i.e., Q!') grows from 0 to 100. From

Overall, the strategies of the two sellers are as followbig. 2, it can be seen that the functidf(x) is an increasing
In Epoch I, seller 2 derives its optimal strategy by solvingnd concave function with respect 19 which is consistent
Problem 1. At the beginning of Epoch IlI, seller 1 usewith Lemma 1. Note that the reference line in Fig. 2 is a
Algorithm 1 to find the value of:, denotedz*. Then in the straight line connecting point®, V(0)) and (100, V' (100)),
non-cooperative game in Epoch Il wi]' = 2*, both sellers which helps to observe the concavity of functibiiz).



TABLE |
THE NUMBER OF DECOMPOSITIONS WITHOUT AND WITH THE AID OFTHEOREM 2.

11

N 2 | 4 6 8 10 15 20
Total number of decompositions 16 | 256 | 4096 | 6.6 x 10° | 1.0 x 10° | 1.1 x 10 | 1.1 x 102
Checked decompositions (with Theorem P)13 | 121 | 1093 9841 8.9x 10% | 22 x 107 | 5.2 x 10Y
TABLE 1l
THE DECOMPOSITIONS USED WHEN VERIFYINGHEOREM 3
60 . : : Z Z | Z3 Z1
1st decomposition| {7,8} | {6} [ {4,5}
5 Q'1'c=70,d 1 2nd decomposition| {7,8} | 0 0 {4,5,6}
50f " &
e I _ /)
o) Q1°_70'dn,2 ;
—o—ql=80,d 7 I :
40l 1 nt 3) Verification of Lemma 2 and Lemma 8 this subsec-

dn’1 and dn,2
w
o

201

10f

~o-- Q=804 ,

—v— Q=90d_,

-v- Q=904 ,

&
4

Fig. 3. d,,1 anddy 2 versusn for 2, = {7,8}, Z2 = {6}, Z3 = 0,

Stage Index n

Z4 = {4,5}, andQ\* = 70,80, 90.

60

50

40F

dn’1 and dn,2
w
o

201

10f

tion, Lemma 2 and Lemma 3 are verified. Considgr =
{4,5,6,7,8}. Fig. 3 plotsd, ; and d,» versus the stage
index n for a feasible decomposition in which; = {7,8},

Zy = {6}, Z3 =0, andZ, = {4,5} whenQ“ is set to be 70,
80, and 90. Fig. 4 plotg,, ; andd,, » versus the stage index
for a feasible decomposition in whicB; = {8}, Z; = ),
Z3 = {7}, and 2, = {4,5,6} whenQ!* is set to be 2, 5,
and 8. From Fig. 3 and Fig. 4, it can be seen that, \A@éﬂ
changesd,, ; andd,, » vary in the same way as Lemma 2 and
Lemma 3 describe.

4) Verification of Theorem 3in this subsection, the char-
acteristic ofU(Q, — =) described in Theorem 3 is verified.
Still considerN, = {4,5,6,7,8}. Two decompositions are in-
vestigated, which are listed in Table Il. Consider two inéds
of z: [0,30] and [40, 70], in which the two decompositions
are feasible, respectively. Fig. 5 and Fig. 6 plot the fiorcti
U(Q1 — x) as well asG(x) and H(z) (from Theorem 3) for
the two decompositions over the two corresponding interval
respectively. It can be seen that both the functi6f{s) and
H(xz) are monotonically increasing for each decomposition
in the corresponding interval of, which is consistent with

" é Theorem 3.
—5— Q=24 ,
-0-- Q=24 , f
—e—al=s4, , // B. Performance of Algorithm 1
-0—- Q=5 , / ] 1) Computation complexity of Algorithm 1Computation
—v—al=8d_, / complexity of Algorithm 1 largely depends on the number of
o Qg ' / 1 iterations (i.e., how many times are Steps 3—-7 repeatedBle T

T "n2 / Il shows the iteration number for different settings |0 |

/ | and|Q!'“|. It can be seen that in all the cases, the number of
/ iterations is 2 or 3, which shows that Algorithm 1 is efficient

F
4

Fig. 4. dn,1 anddy versusn for 2, = {8}, 22 = 0, Z3 = {7},

o
\
A
AN
N
N
\

Stage Index n

Z4={4,5,6}, andQ'c = 2,5,8.

in reducing computation complexity.

2) Suboptimality of Algorithm 1In Algorithm 1, to search
optimal z (i.e., Q!"), an approximation is used to reduce the
computation complexity, as follows. For the non-coopegati
game withzf, in Step 3 of Algorithm 1, we first find the max-
min Nash equilibrium and the corresponding decomposition
{Z1,25,25,24}. We then find an interval ofz, denoted
[zf,2%], such that the decomposition picked in Step 3 is
a feasible decomposition of the non-cooperative game with
any z € [27,2%]. Then we approximately consider that the
decomposition, which leads to the max-min Nash equilibrium
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TABLE Il
NUMBER OF ITERATIONS INALGORITHM 1

Q=2 [1Qr =10 [ 1@ =60 [1&7] =50 [ 1071=100
M =4 2 2 2 3 3
MNi| = 2 2 3 3 3
Ni] =8 2 3 3 3 3

of the non-cooperative game witli, also leads to thenax-
min Nash equilibriumof the non-cooperative game with any
x 10° x € [2f,z%]. In other words, for anyx € [zf,2%], both
' ' ' ' ' sellers always follow the Nash equilibrium correspondiag t
the decomposition picked in Step 3. Due to this approxinmatio
12T 1 Algorithm 1 in general is suboptimal in finding the optimal
From Theorem 1, if Ay | < 12, then the non-cooperative
- game in Epoch Il always has a unique Nash equilibrium, which
B ' means that the decomposition picked in Step 3 of Algorithm
1 is the only feasible decomposition for amyc [z, z*]. In
other words, the decomposition indeed always leads to the
max-min Nash equilibriunof the non-cooperative game with
anyz € [z7, 2%]. Thus, Algorithm 1 is optimal if V| < 12.

Function Value
<]
L

U(Q;~x)=G(x)-H(x)

° _ (H;g; We have tried a large number of scenarios Wit | €
{13,14,...,30}, and have found that the associated non-
4r 1 cooperative games in Epoch Il all have unique Nash equi-
R librium, which means our Algorithm 1 is optimal in those
2 ‘ ‘ ‘ ‘ ‘ considered scenarios. However, we find that it is hard togrov
0 5 10 15 20 25 30 theoretically that Nash equilibrium of the non-coopermativ

X

game in Epoch Il is unique or not unique whgf, | > 13.
This is an interesting problem, and we leave it for future

Fig. 5. FunctionsU (Q1 — =), G(z) and H(z) (z € [0, 30]) for the first investigation

decomposition in Table II.

C. Comparison with a Cooperative Scheme

Now we compare with a cooperative scheme. The difference
of the cooperative scheme from our proposed scheme is as
«10° follows. When the two sellers know the existence of eachrothe

“ (i.e., at the beginning of Epoch Il), the two sellers coofera
i it T to jointly maximize the total revenue of them over Epoch I
12r e and IlI, by solving the following optimization problem.
101 1 max Co—Ci(dp1 +dn dpan
{dn,llne./\/l}v ng:/\f”( 0 1( 71 .’2)) 71
o U(Q~x)=G(x)-H(x) {dn,2|nENI}
s - - -6 1 + 3 (Co— Crdp1)duan
5 ) neN
En ] + ZN Co—Cr(dny + dp,2)) dn2(n—[Nul)
neiNj
s.t. Yo dna <@
b . R neNIUNy
Z dn,2 S Qg
neN,
ZN dy1 > 0,Yn € Ny UN,
dn_g > O,VTL S M|.
0 ‘ ‘ ‘ ‘ ‘ (35)
40 45 50 55 60 65 70 F . . . .
X or performance comparison, the simulation is set up as

follows. Since the cooperative scheme and our proposed
Fig. 6. Functiond/(Q1 —z), G(z) andH(z) (z € [40, 70]) for the second scheme perform the same in EpOCh l, we Agt= (). And
decomposition in Table II. Ni = {6,5,4,3}, Ny = {2,1}. We fix the sum of@; and

()2 to be 200, and consider three configurationg®f, Q-):

(50, 150), (100, 100), and(150, 50). Fig. 7 shows the achieved
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Seller 1(Proposed Scheme)

3} | = — — Seller 2(Proposed Scheme)
(

(
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Revenue of Seller
N

Q_1=100,Q_2=100
Q1 and 02

0.5
Q_1=50,Q_2=150 Q_1=150,Q_2=50

Fig. 7. The revenue of the two sellers in our proposed schendke tiae
cooperative scheme.

revenue of the two sellers in our proposed scheme and the
cooperative scheme. It can be seen that each seller’s revenu
in our proposed non-cooperative scheme is very close to that

in the cooperative scheme, thus verifying the efficiencywf o
proposed scheme.

D. Performance with Random Leasing Periods

We consider that each seller has alternating ON and OFF
states. Here an ON and OFF state mean that the seller has
and does not have spectrum to lease, respectively. When the
state of the seller changes from OFF to ON, we call it an
arrival, and when the state of the seller changes from ON to

OFF, we call it a departure. Thus, for the seller, the dumatio
from an arrival to the following departure is its leasingipdr
For selleri € {1,2}, the ON duration and OFF duration are
exponential distributed with mean value beihg:; and1/\;,
respectively. Here,; andy, are called the arrival and departure

13

strategy in the two-seller epoch can be obtained similar
to our treatment for our Epoch Il in Section IV with

Q! o

Without loss of generality, the average revenue of seller 1
per leased stage (i.e., the total revenue of seller 1 diviged
the number of total stages in which seller 1 has spectrum to
lease) is plotted in Fig. 8, for varying:, u2, A1, and . We
have the following observations.

o Wheny; increases, seller 1's average revenue decreases.
This is because for a higher;, seller 1's leasing period
has less duration. A shorter leasing period reduces the
flexibility in seller 1's spectrum leasing, thus reducing
seller 1's average revenue.

o Whenpus increases, seller 1's average revenue increases.
This is because higher, leads to shorter leasing period
of seller 2, which means less competition of seller 2 to
seller 1. Thus, seller 1's average revenue increases.

« When \; increases, seller 1's average revenue almost

keeps the same. The reason is as follows. Wherin-

creases, seller 1's average OFF state duration (expressed
as 1/)\) decreases. However, when seller 1 is ON, its
chance to overlap with seller 2’s leasing period is not
affected by seller 1's average OFF duration. In other
words, seller 1's average OFF duration length does not
affect the competition that seller 1 receives from seller

2 when seller 1 is ON. Thus, seller 1's average revenue

almost keeps the same.

When )\, increases, seller 1's average revenue decreases.

The reason is as follows. When increases, seller 2's av-

erage OFF state duration (expressed a%;) decreases.

Thus, when seller 1 is ON, its chance to overlap with

seller 2’s leasing period is higher. In other words, seller

1 receives more competition from seller 2, and thus, its

average revenue decreases.

VII. CONCLUSIONS
In this paper, we investigate spectrum leasing with two

rate, respectively. The time duration of one stage is set assg|lers, in which seller 1 leases spectrum in Epoch Il and
We vary i1, 12, A1, and Ao. For seller 1 and seller 2, whengpoch |11, and seller 2 leases spectrum in Epoch | and Epoch
an ON state begins, the amount of available spectrum to leqses shown in Fig. 1. In Epoch I, only seller 2 has spectrum to

two-seller epochs.

is Q1 = 100 and Q2 = 60, respectively. lease, and its strategy is derived by solving a convex proble

Following the random arrival and departure processes of theEpoch 11, since the two sellers both have spectrum to lease

two sellers, we have a number of zero-seller, one-sell&t, agompetition between the two sellers exists. Thus, the spect

leasing in Epoch Il is formulated as a non-cooperative game.

« Azero-seller epoch means a number of consecutive staddash equilibria of the game are derived in closed form by
in which neither seller has spectrum to lease. jointly solving two optimization problems. By analyzingeth

o A one-seller epoch means a number of consecutive stagésice of seller 1 for Epoch llI, seller 1's strategy in Epsch
in which only one seller has spectrum to lease. The sellérand Il and seller 2’s strategy in Epoch Il are developed.
can get its leasing strategy by solving an optimization In this paper, we consider a duopoly market. When there
problem similar to Problem 1 in Section IlI-A. are three or more sellers, similarly the union of their legsi

« Atwo-seller epoch means a number of consecutive stageriods can be divided into a number of epochs. For an epoch
in which both sellers have spectrum to lease. If a twavith one seller, the seller can derive its leasing strategy b
seller epoch is followed by a one-seller epoch, the leasisglving a convex optimization problem similar to Problem
strategy in the two-seller epoch and the following onet in this paper. For an epoch with two or more sellers,
seller epoch can be obtained similar to our treatment far game model can be set up, and all sellers follow the
Epoch 1l and Epoch Il in Section IV and V. If a two- Nash equilibrium that maximizes the minimum unit-bandwwidt
seller epoch is followed by a zero-seller epoch, the leasingvenue of the sellers. If a seller’s leasing period alsdinaas
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