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Abstract—In this paper, we consider a multi-user single-relay
wireless network, where the relay facilitates transmissions of
the users’ signals to the destination. We study the relay power
allocation among the users, and use bargaining theory to model
the negotiation among the users on relay power allocation.
By assigning a bargaining power to each user to indicate its
transmission priority, we propose an asymmetric Nash bargaining
solution (NBS)-based relay power allocation scheme. We also
propose a distributed implementation for this solution, where
each user only requires its local channel state information(CSI).
We analytically investigate the impact of the bargaining powers
on the relay power allocation and show that via proper selection
of the bargaining powers, the proposed power allocation can
achieve a balance between the network sum-rate and the user
fairness. Then we generalize the NBS-based power allocation
and its distributed implementation to multi-user multi-re lay
networks. Simulation results are shown to compare the proposed
power allocation with sum-rate-optimal power allocation and
even power allocation. The impact of the bargaining powers on
the power allocation is also demonstrated via simulations.

Index Terms: Wireless relay network, power allocation,
Nash bargaining solution (NBS), dual problem, gradient pro-
jection method.

I. I NTRODUCTION

Cooperative relay network is a promising concept to im-
prove the performance of communication in a wireless net-
work. The basic idea is to have multiple nodes in the
network help each other’s transmission to achieve diversity
[1]. It does not require multiple antennas to be equipped
on communication devices, which is especially important for
devices with strict size and complexity limitations. Thereare
numerous works on cooperative strategies that optimize the
global network performance and the analysis of fundamental
limits in cooperative network. A widely used cooperative
strategy with low computational load at the relays is amplify-
and-forward (AF) where the relays simply forward amplified
versions of the signals they receive.

While pioneering efforts in cooperative network focus on
single-user network (e.g., [3]–[8]), research on multi-user
relay network, in which multiple transmissions of different
users can be supported by assisting relays, are important to
meet the demands of future communication systems [9]–[18].
Compared with single-user relay network, multi-user relay
network is more challenging since the users have competitive
demands for limited relay resources. In the literature, themajor
objectives of resource allocation in multi-user relay networks
fall into two categories: achieving optimal network throughput
and achieving user fairness. In [12], the optimal relay power

allocation problem is considered to maximize the network
throughput in an AF multi-user two-way single-relay network.
The problem is solved based on Lagrange dual decomposition
approach. In [13], the joint subcarrier allocation and power
allocation problems are investigated to maximize the capacity
in a relay aided uplink multi-user network. A suboptimal
solution is presented to solve the joint problem. Considering
a total power constraint at the relay and users, the sum-rate
maximization problem is addressed in [14] for a DF multi-user
single-relay network.

If sum-rate maximization is the main objective in relay
resource allocation as in [12]–[14], users with bad channel
conditions may starve since more resources are assigned to
users with good channel conditions. Thus, for some applica-
tions, it is also important to fairly distribute relay resources
to guarantee the quality of service of all users. The relay
resource allocation problem with fairness concerns is inves-
tigated in [15]–[18]. In [15], the joint subcarrier pairingand
power allocation in the downlink multi-destination single-relay
network is investigated with proportional fairness constraint.
[16] considers the subcarrier allocation problem in a multi-
user multi-relay network where a minimum rate requirement
must be satisfied to all users. The work in [17], [18] are on
a two-user network where each user can work as a relay for
the other. They consider the scenario where the sources are
selfish and try to optimize their own quality-of-service, and are
willing to cooperate with each other only when cooperation
is beneficial. Cooperative game theory is used to study how
the sources negotiate to address their conflicting objectives.
By employing a two-source bargaining game, fair bandwidth
allocation [17] and power allocation [18] are found using Nash
bargaining solution (NBS).

To our best knowledge, all prior papers in the literature
focused exclusively on either global performance optimality,
e.g., [12]–[14] or user fairness, e.g., [15]–[18]. However, in
practical networks, different applications may require different
balances between fairness and global performance, e.g., some
applications prefer fairness among the users while others de-
sire better global network performance. Even for the same net-
work application, the desired balance between global perfor-
mance and fairness may change from time to time. Motivated
by this, in this paper we use bargaining game and propose an
asymmetric NBS-based power allocation solution, which can
jointly address these two issues. In addition, most previous
works assume that there exists a trusted central controllerwho
collects all the required channel state information and whohas
sufficient computation capability to implement the proposed
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solutions. This is impractical in systems such as ad hoc
networks and sensor networks, where centralized controllers
do not exist. Such systems therefore require a distributed
cooperative protocol. To improve the scalability of our scheme
for such scenarios, we provide a distributed implementation of
the NBS-based power allocation scheme in which users with
local information only are able to independently decide how
to cooperate with other users and relays.

In this paper, we consider a multi-user single-relay AF
network, and use game theory to analyze the relay power
allocation among the users. We model the interaction among
the users as a bargaining problem, where they negotiate with
each other on relay power allocation. The distinctive novelty
and contributions of this paper are briefly summarized as
follows.

1) We propose a newasymmetric NBS-based relay power
allocation scheme, which can achieve a balance between
global network performance and user fairness. Existing
literature only consider one of the two conflicting issues.
The proposed scheme has potential in satisfying different
and changing requirements of network applications.

2) The effect of bargaining power selection on network
performance are investigated. We show analytically that
via appropriate bargaining power selection, the proposed
scheme can achieve the sum-rate-optimal solution for
best global performance and even power allocation for
best fairness.

3) A centralized implementation of the proposed power
allocation is provided. More importantly, to improve
the scalability of the proposed scheme, we propose a
distributed implementation of our solution, which only
requires local CSI at the users. Convergence conditions
are provided for this distributed algorithm.

4) We generalize the proposed NBS-based power allocation
scheme and its distributed implementation to multi-user
multi-relay networks.

The rest of the paper is organized as follows. Section II
elaborates the network model and the relay power allocation
problem. The NBS-based relay power allocation scheme is
proposed and studied in Section III. In Section IV, we propose
a centralized and a distributed schemes to implement the
proposed relay power allocation. Discussions on bargaining
power selection and how it can balance different network
requirements are given in Section V. In Section VI, we show
the simulation results. Conclusion is given in Section VIII.

II. SYSTEM MODEL

Consider a wireless network withN users communicating
with their destinations with the help of one relay as shown
in Figure 1. Denote the channel from Useri to the relay as
fi, the channel from Useri to Destinationi (the direct link)
ashi, and the channel from the relay to Destinationi as gi.
We consider two channel models in this paper, Rayleigh flat-
fading channel and path-loss channel. We denote the transmit
power of Useri asQi and the maximum transmit power of
the relay asP . We also denote the power the relay uses in
helping Useri asPi.
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Fig. 1. Multi-user single-relay network.

Frequency division multiple access (FDMA) is used, so
transmissions of different users are orthogonal and interference
free. Without loss of generality, we consider the transmission
of User i’s message on Channeli. To send one symbol from
User i to Destinationi, we use the popular half-duplex two-
step AF protocol. In the first step, Useri transmits

√
Qisi,

wheresi is the information symbol normalized asE(|si|2) =
1. The signals received by the relay and Destinationi are
yiR =

√
Qisifi+niR andyiD =

√
Qisihi+niD, respectively,

where niR and niD are additive noises at the relay and
Destinationi in the first step, respectively. They are assumed to
be independent Gaussian following the distributionCN (0, 1).
In the second step, the relay amplifiesyiR and forwards it with
powerPi on Channeli. The signal received at Destinationi
in the second step can be shown to be

yRi =

√

QiPi
Qi|fi|2 + 1

sifigi +

√

Pi
Qi|fi|2 + 1

giniR + niRD,

(1)
whereniRD is the additive noise at Destinationi in Step 2,
which is assumed to be independent to other noises with the
same distribution,CN (0, 1).

To simplify the presentation, we introduce two variables,
namely thenoise forwarding rate and thesignal forwarding
rate. We define

ξi ,
|gi|2

Qi|fi|2 + 1
, (2)

which is the power of the second term at the right hand side of
(1) whenPi = 1. In this paper, we callξi the noise forwarding
rate corresponding to Useri since its physical meaning is the
noise power that the relay forwards to Destinationi if unit
relay power is used. Intuitively, a large noise forwarding rate
means low quality in the user’s relay-path. Similarly, we define
the signal forwarding rate of Useri as

ρi =
Qi|figi|2
Qi|fi|2 + 1

. (3)

It is the power of the first term at the right hand side of (1)
whenPi = 1. Its physical meaning is the signal power that
the relay forwards to Destinationi if unit relay power is used.
A large signal forwarding rate intuitively means high quality
in the user’s relay-path.

After maximum ratio-combining of both the direct and relay
paths, the effective received signal-to-noise-ratio (SNR) of
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User i’s transmission can be shown straightforwardly to be

SNRiRD =
ρiPi

ξiPi + 1
+Qi|hi|2. (4)

If User i’s transmission is not helped by the relay and only
the direct transmission is active, its received SNR becomes

SNRiD = Qi|hi|2. (5)

III. NBS-BASED POWER ALLOCATION

We can see from (4) that all users desire the relay to allocate
as much power as possible to help their own transmissions so
they can achieve the highest SNRs. But the relay power is
limited, so allocating more relay power to one user means
less power available for the rest. To address this conflict
among users, we model the interaction among the users as
a bargaining game, and derive a fair relay power allocation
scheme based on the NBS of the game.

A. Bargaining Game Model

In this section, we use bargaining game model to analyze the
conflict and interaction among independent users.1 The first
step to formulate the power allocation problem as a bargaining
game is to design the utility function. As in [11], we define
User i’s utility function to be the effective received SNR of
User i given in (4), that is,

ui(Pi) , SNRiRD =
ρiPi

ξiPi + 1
+Qi|hi|2. (6)

It represents the received quality-of-service, and is directly
related to the performance of the communication. It can be
seen thatui(Pi) is an increasing function ofPi. Given the
N users in our relay network, we define the utility vector as
u = (u1 u2 · · · uN). We denote the disagreement point as
u0 = (u1,0 u2,0 . . . uN,0), which is the vector of the minimal
utility that each user expects if they do not reach an agreement
and play non-cooperatively. Thus,

ui,0 , SNRiD = Qi|hi|2, (7)

which is the utility of Useri when it does not get any power
from the relay and uses the direct transmission only, i.e.Pi =
02.

Given the above definitions of the utility function and the
disagreement point, a utility vectoru = (u1 u2 · · · uN )
is called feasible if there exists a power allocation strategy
(P1 P2 · · · PN ) wherePi ≥ 0 and

∑N
i=1 Pi ≤ P that gives

User i utility ui for all i = 1, · · · , N . Let S be the set of all
feasible utility vectors. Thus

S ,

{

(u1 · · ·uN )

∣
∣
∣
∣
∣

N∑

i=1

Pi ≤ P, Pi ≥ 0

}

. (8)

1As defined in [21], bargaining theory studies the situation “in which two
(or more) players can mutually benefit from reaching a certain agreement
but have conflicting interests on the terms of the agreement”. This fits our
problem where the users have conflicting demands for relay power, and they
have an interest in agreeing on the share, so they can all benefit and improve
their SNR (achievable rate).

2This is a natural choice since if the users do not agree on the relay
power allocation, the relay will not allocate any power to any user. Similar
disagreement point setting is adopted in [18], [22]–[26].

The first inequality in (8),
∑N

i=1 Pi ≤ P , is from the relay
power constraint. Power allocations that do not satisfy this
constraint are infeasible. The second inequality,Pi ≥ 0, says
that each user has to be allocated non-negative relay power,a
natural condition from practical point of view. This inequality
also guarantees that when cooperates, each user gets no less
utility compared to the case that it does not cooperate and only
the direct link is used for communication. This is a necessary
condition for the game theory formulation of feasible set.

In our relay power bargaining game among the users, we
consider the scenario where different users may have different
priorities in obtaining the relay power. To model this, users
are assigned bargaining powers, denoted asβ1, · · · , βN , that
they agree upon before transmission [20]. The bargaining
powers are normalized as

∑N
i=1 βi = 1. In Section V, we

will investigate the effect of bargaining power selection on the
proposed NBS-based power allocation and provide bargaining
power allocation schemes that can bridge between global
network performance and user fairness.

B. Nash Bargaining Solution (NBS)

In our bargaining game model for the relay power alloca-
tion, given the feasible setS and the disagreement pointu0,
the users negotiate and select one feasible utility vector in S
and the corresponding power allocation strategy. Depending
on how they define “fairness”, the users may choose different
solutions in S. In this paper, we choose the asymmetric
NBS [20] as the bargaining game solution for the following
reasons. First, it has been proved in [21] that NBS is Pareto
optimal, where no user can further improve its utility without
decreasing others’. Thus NBS ensures that all relay power
is efficiently utilized by the users, which is preferred on
system design perspective. Second, NBS achieves proportional
fairness by dividing the additional utility among users in a
ratio that is equal to the rate at which this utility can be
transferred [20]. Third, as will be discussed in Section V, NBS
has flexibility in bargaining power selection, which provides
us a way to balance between global network performance and
user fairness. In this paper, we look for the NBS-based relay
power allocation. For this purpose, we first prove the following
two lemmas.

Lemma 1: Given the utility function ui(Pi) in (6), the
feasible setS defined in (8) is convex.

Proof: From (6) and (7),

ui(Pi) =
ρiPi

ξiPi + 1
+ ui,0. (9)

It is a strictly increasing function ofPi and limPi→∞ ui =
ρi/ξi + ui,0 = Qi|fi|2 + ui,0. Also, we can show thatPi =

ui−ui,0

ρi−(ui−ui,0)ξi
. So S can be rewritten as

S=
{

u

∣
∣
∣
∣
∣
φ(u)

△
=

N∑

i=1

ui − ui,0
ρi − (ui − ui,0)ξi

≤ P,

ui,0 ≤ ui < Qi|fi|2 + ui,0, i = 1, · · · , N
}

, (10)

where the last constraint ensures that0 ≤ Pi <∞ for all i’s.



4

Define S1 , {u|ui ≥ ui,0, i = 1, · · · , N} and S2 ,

{u|φ(u) ≤ P, ui < Qi|fi|2 + ui,0, i = 1, · · · , N}. We thus
haveS = S1 ∩ S2. S1 is a convex set by definition. To prove
thatS is convex, we only need to show thatS2 is also convex.

We first prove thatφ(u) is a convex function. From the
definition of φ in (10), the Hessian or the second-order
derivative ofφ(u) is

∇2f(u) =










∂2f(u)
∂u2

1
0 · · · 0

0 ∂2f(u)
∂u2

2
· · · 0

...
...

. . .
...

0 0 · · · ∂2f(u)
∂u2

N










, (11)

which is a diagonal matrix whoseith diagonal element is

∂2φ

∂u2i
=

2Qi|fi|2
ξi [Qi|fi|2 − (ui − ui,0)]

3 . (12)

For any finite Pi , we haveQi|fi|2 − (ui − ui,0) > 0

, so ∂2φ

∂u2
i

> 0 for all i = 1, · · · , N . Thus, ∇2φ(u) is
positive definite, which shows thatφ(u) is a convex function.
Consequently, from the definition ofφ(u), S2 is convex [29],
and this completes the proof.

Lemma 2: There is at least one point inS with ui > ui,0
for all i = 1, · · · , N .

Proof: We show this lemma by construction. Consider the
even power allocation wherePi = P/N for all i = 1, · · · , N .
Sinceui is an increasing function ofPi, we haveui > ui,0
for all i = 1, · · · , N .

With the results in Lemma 1 and Lemma 2, the asymmetric
NBS is the solution to the following optimization problem [20]

arg max
P1,··· ,PN

N∏

i=1

(ui − ui,0)
βi , s.t.Pi ≥ 0,

N∑

i=1

Pi ≤ P, (13)

whereβi is User i’s bargaining power. This problem can be
simplified by the following lemma.

Lemma 3: The optimization problem in (13) is equivalent
to the following problem:

arg max
P1,··· ,PN

N∑

i=1

βi log

(
ρiPi

ξiPi + 1

)

s.t. Pi > 0,

N∑

i=1

Pi = P. (14)

Proof: As the logarithm function is monotonically in-
creasing, we can take the logarithm of the objective function in
(13) without changing its solution. Thus the objective function
in (14) is obtained using the definitions in (6) and (7).

Furthermore, notice that whenPi = 0 for some i, the
objective function of (14) becomes−∞. This is obviously
non-optimal since any feasible power allocation with non-zero
Pi for all i’s (e.g.,Pi = P/N ) will result in a higher objective
function. Thus, we can replacePi ≥ 0 by Pi > 0. This ensures
that all users will enter the bargaining game.

Next, we show by contradiction that the optimal solution,
denoted asP∗ = (P ∗

1 · · · P ∗
N ) satisfies

∑N
i=1 P

∗
i = P .

Assume that the optimal solutionP∗ gives the utility vector
u∗ = (u∗1, u

∗
2, · · · , u∗N ) and satisfies

∑N
i=1 P

∗
i < P . Let

∆P = P −∑N
i=1 P

∗
i . We consider another power allocation

strategyP′ , (P ∗
1 +∆P , P

∗
2 , · · · , P ∗

N ), which gives the utility
vectoru′ = (u′1 u

′
2 · · · u′N). It is straightforward to show

that u′ is in the feasible setS, u′1 > u∗1, and u′i = u∗i for
i = 2, · · · , N . Thus this new solution results in a higher
objective function thanP∗, which contradicts the assumption
thatP∗ is optimal. This completes the proof.

Thus, to find the NBS-based relay power allocation, we
should solve (14). DefineP ,

[
P1 · · · PN

]
. We write

the Lagrangian function for problem (14) as

L(P, α),
N∑

i=1

βi log
ρiPi

ξiPi + 1

−
N∑

i=1

λiPi + α

(

P −
N∑

i=1

Pi

)

. (15)

Here λi and α are Lagrangian multipliers associated with
the inequality and equality constraints. In (14), the objective
function can be shown straightforwardly to be concave, the
inequality constraint functions are convex, and the equality
constraint function is affine, so it is a convex optimization
problem. Its first-order Karush-Kuhn-Tucker (KKT) condi-
tions, which are necessary and sufficient for the solution of
(14) (see (5.49) on Page 243 in [29]) are

∂L(P, α)
∂Pi

=
βi

(ξiPi + 1)Pi
− λi − α= 0, (16)

−Pi < 0,

N∑

i=1

Pi = P, λi ≥ 0, λiPi = 0, (17)

for i = 1, · · · , N . As Pi > 0, we haveλi = 0 and thus

Pi =
2βi
α

(√

1 +
4ξiβi
α

+ 1

)−1

and
N∑

i=1

Pi = P. (18)

Using (18), we have

2

α

N∑

i=1

βi

(√

1 +
4ξiβi
α

+ 1

)−1

= P. (19)

It can be shown that whenα changes from 0 to∞, the left-
hand-side of (19) monotonically decreases from∞ to 0. Thus,
(19) has a unique positive solution and the solution can be
found using bisection method3. Once the optimalα satisfying
(19) is found, the NBS-based relay power allocation solution
can be found using (18).

3The range ofα can be set as(0, 1

P
). The upper bound ofα can be

derived as follows. Sinceξi =
|gi|

2

Qi|fi|
2+1

> 0 and βi > 0, from (19),

we haveP = 2

α

∑N
i=1

βi

(

√

1 + 4ξiβi

α
+ 1

)−1

< 2

α

∑N
i=1

βi

2
= 1

α
,

which givesα < 1

P
. For the lower bound ofα, we can set it to0 sinceα is

nonnegative.
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IV. I MPLEMENTATION OF THE NBS-BASED RELAY POWER

ALLOCATION

In this section, we give possible implementations of the
proposed NBS-based relay power allocation. First, we propose
a centralized implementation, which requires no iterations
and no computation at the users. But it requires global and
perfect CSI at the relay. Also, the centralized implementation
is based on the assumption that the relay is trustworthy. We
then propose a distributed implementation, which requiresonly
local CSI at each user and no computation is required at the
relay.

A. Centralized Implementation

For the centralized implementation of the proposed relay
power allocation, the relay, assumed to have global and per-
fect CSI, computes the NBS-based power allocation solution
proposed in Section III and uses the corresponding power
values to help the users. To get the NBS-based relay power
allocation solution, the relay first finds theα that satisfies
(19) using bisection method, then finds the NBS-based relay
power allocation solution using (18). For the relay to know the
channel gains from the users to itself,f1, · · · , fN , training and
channel estimations can be performed. For the relay to know
the channel gaingi from itself to Destinationi, Destinationi
first estimatesgi, then feeds the coefficient back to the relay.

With this implementation, we actually assume that the relay
is trustworthy. All users believe that 1) the relay will not
change the parameter values (e.g., the bargaining powers and
the CSI) to favor any user, and 2) the relay follows the
NBS-based power allocation results to help all users in their
transmissions.

B. Distributed Implementation

In practical wireless networks, especially for networks with
a large number of users, it may be impractical to implement
the aforementioned NBS-based power allocation in a central-
ized way at the relay. The reasons are threefold. First, the
centralized scheme assumes accurate and complete CSI at the
relay, which brings overhead for training, channel estimation,
and CSI feedback from the destinations to the relay. Second,in
the centralized scheme, all computational load is at the relay,
which may not have high computational capability for many
real network applications or may not be willing to conduct
such computations. Third, in some applications, the users may
distrust the relay and are unwilling to have the relay being the
controller in power allocation.

To overcome these problems, we propose a distributed
algorithm4 to solve (19) at the users, each having local CSI
only, i.e., Useri knowsfi andgi. Similarly, the CSI can be
obtained via training and feedback channel. Similar to [31],
[32], we implement the distributed algorithm based on the

4It should be noted that, compared with the centralized implementation, the
distributed methods have drawbacks such as estimation error accumulation,
delay, quantization error, and extra bandwidth cost. In this paper, since the
focus is on providing a possible distributed implementation scheme, we use
the ideal assumption that the estimation/quantization error accumulation and
delay are negligible.

gradient projection of the dual problem associated with the
original problem (14).

The dual problem of (14) is:

min
α≥0

D(α), (20)

whereD(α) is the dual function defined as follows:

D(α),max
P

L(P, α)

=max
P

{
N∑

i=1

(

βi log
ρiPi

ξiPi + 1
− αPi

)

+ αP

}

.(21)

L(P, α) is the Lagrangian function defined in (15). We have
shown thatλi = 0, so the term withλi is omitted.

Note that the summation term inL(P, α) is separable in
Pi. Hence, we have from (21)

D(α)=

N∑

i=1







max
Pi

(

βi log
ρiPi

ξiPi + 1
− αPi

)

︸ ︷︷ ︸

△
=Fi(Pi)

+ αP







.(22)

Since Problem (14) is a convex optimization problem, by
duality theory, ifα∗ is the optimal solution of the dual problem
in (20), (P1(α

∗), · · · , PN (α∗)) calculated from (18) is the
optimal solution of (14). Therefore, we can focus on the dual
problem (20).

The gradient ofD(α) can be calculated to be:

∂D(α)

∂α
= P −

N∑

i=1

Pi(α). (23)

We can now solve the dual problem with the gradient projec-
tion method [33] whereα is adjusted in the opposite direction
to ∂D(α)

∂α
as:

α(t+ 1) =max

{

0, α(t)− γ
∂D

∂α
(α(t))

}

=max

{

0, α(t)− γ

[

P −
N∑

i=1

Pi(α(t))

]}

,(24)

whereγ > 0 is the step-size.
The gradient projection method generates a sequence of

α values:α(0), · · · , α(t), α(t + 1), · · · that approaches the
optimal solutionα∗. With a constraint on the step sizeγ,
the convergence of the gradient projection method can be
guaranteed, which is stated in the following theorem.

Theorem 1: Let βmin , min{β1, · · ·βN} and |gmax| ,

max{|g1|, · · · , |gN |}. If the step-size satisfies0 < γ <
2βmin

NP 2(|gmax|2P+1) , for any initial α(0) ≥ 0, the gradient
projection method will converge to the primal and dual optimal
point, i.e.,

lim
t→∞

α(t) = α∗, lim
t→∞

Pi(α(t)) = P ∗
i . (25)

Proof: See the Appendix.
We now comment on the convergence speed of the dis-

tributed scheme. Using Tylor’s theorem to∂D(α(t))
∂α(t) at the

optimal α∗, it can be readily shown thatα(t) − α∗ ∼=
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∂D(α(t))
∂α(t)

(
∂2D(α(t))
∂2α(t)

)−1

+ o(α∗ − α(t)). Combining thetth

and (t + 1)th iterations, we get that aroundα∗, S =
α(t+1)−α∗

α(t)−α∗
∼= 1 + γ

∑N
i=1

1
Θ′′

i
(Pi(α))

, where
∑N
i=1

1
Θ′′

i
(Pi(α))

is non-positive (as can be seen from the proof of Lemma
5 in the appendix). Note thatS determines the convergence
speed [28] and a largerS means a faster convergence speed.
So when1 + γ

∑N
i=1

1
Θ′′

i (Pi(α))
is positive, a larger step size

gives a higher convergence speed. When1+γ
∑N
i=1

1
Θ′′

i
(Pi(α))

is negative, however, oscillation of the gradient projection
method might occur, which impedes the convergence speed
of our distributed algorithm.

We have shown how to get the NBS-based power allocation
based on gradient projection method of the dual problem. Now,
we discuss the distributed implementation of the proposed
NBS-based power allocation scheme based on the above
results.

Assume that each user has local CSI only. In each iteration
of the distributed scheme, Useri individually calculatesPi(α)
according to (18) and broadcasts this information to all other
users. Then each user updatesα according to (24). We assume
that user updates are synchronized. This cycle repeats until
convergence. The distributed implementation is written as
Algorithm 1.

Algorithm 1 Distributed Relay Power Allocation

1: Initialize α andγ, e.g.,α = 1
P

andγ = βmin

NP 2(|gmax|2P+1) .
2: Each user calculatesPi(α) according to (18) and broad-

casts it to all other users.
3: Each user updatesα according to (24). Go to Step 2 until

convergence.

To guarantee convergence, as specified in Theorem 1, the
step size in updatingα needs to satisfy the condition0 <
γ < 2βmin

NP 2(|gmax|2P+1) . Thus the users need to knowβmin and
|gmax| to agree on a step size.βmin is the smallest bargaining
power, which is pre-determined and known to all users. For
the users to know|gmax|, a distributed scheme based on timer
[34] can be used: each user starts a timer whose value is an
increasing function of1/|gi|. The timer of the user with the
smallest1/|gi| stops first, then it broadcasts its|gi|, which
is also |gmax|. Other users will hear this signalling and get
|gmax|. Then the users decide on a step size inside the interval
for convergence, e.g.,γ = βmin

NP 2(|gmax|2P+1) .
This distributed scheme based on updatingα(t) can be seen

as “price-based” power allocation. The parameterα can be
interpreted as the price per unit power charged by the relay
depending on the requested power from the users, andFi(Pi)
defined in (22) represents the maximum benefit that Useri
can receive at priceα. Equation (24) says that at timet, if the
total demand

∑N
i=1 Pi(α(t)) is larger than the available relay

powerP , the price should be raised; otherwise it should be
reduced.

For the broadcasting ofPi(α), we can adopt a scheme
similar to that in [24]: For each channel assigned to the users,
a portion of the frequency band is used as the guard channel.
Since the guard channels are orthogonal, users can broadcast
their power demands simultaneously on these channels. To

manage the error accumulation problem, we can use error-
correcting codes [35] when broadcastingPi(α).

V. I NVESTIGATION ON BARGAINING POWER SELECTION

In this section, we discuss the impact of the bargaining
powers on the relay power allocation and show that by
proper selection of the bargaining powers, the proposed NBS-
based power allocation can bridge the even power allocation,
which has the best fairness, and the sum-rate-optimal power
allocation, which has the best global performance.

A. Impact of Bargaining Power Selection on Power Allocation

First, we investigate the effect of bargaining power selection
on the proposed NBS-based power allocation. In the following
proposition, we show that a user’s bargaining power deter-
mines its priority and thus its allocated relay power.

Proposition 1: If User k’s bargaining powerβk is increased
while other users’ bargaining powers are either decreased or
remain unchanged, more power will be allocated to Userk.

Proof: We use contradiction to prove this lemma. For a
given set of bargaining powersβ1, · · · , βN , let (P1 · · · PN )
be the solution to (14), which satisfies (16)-(18). From (16)
and the fact thatλi = 0, we have

ψ(Pi) , (ξiPi + 1)Pi = βiα
−1, for all i. (26)

Therefore,ψ(Pk)
ψ(Pj)

= βk

βj
. Now consider another set of bargain-

ing powersβ′
1, · · · , β′

N with (P ′
1 · · · P ′

N ) being the solution
to (14). For the same reason, we haveψ(P ′

k)/ψ(P
′
j) = β′

k/β
′
j.

Assume thatβ′
k > βk and β′

j ≤ βj for all j 6= k but

P ′
k ≤ Pk. We haveβ

′

k

β′

j

> βk

βj
and thus

ψ(P ′
k)

ψ(P ′
j)
>
ψ(Pk)

ψ(Pj)
for all j 6= k. (27)

Note thatψ(Pi) is a strictly increasing function ofPi. So
ψ(P ′

k) ≤ ψ(Pk) due to the assumption thatP ′
k ≤ Pk.

Consequently, from (27), we haveψ(P ′
j) < ψ(Pj), and thus

P ′
j < Pj for all j 6= k, sinceψ(·) is monotonically increasing.

Thus,
∑N

i=1 P
′
i <

∑N
i=1 Pi = P and (P ′

1 · · · P ′
N ) cannot be

a solution to (14). This completes the proof.
In this paper, we assume that bargaining powers of users

are determined by service providers and they are initiated
before the bargaining process. Proposition 1 implies that we
can adjust the NBS-based relay power allocation solution via
adjusting the user bargaining powers. Priorities of users can be
materialized with this adjustment. For example, in scenarios
where service providers aim to receive the most monetary
revenue, larger bargaining powers can be assigned to users
who pay higher price for higher priority. In this way, according
to Proposition 1, these users will receive more relay power.

B. Bridging between Global Sum-Rate Optimum and Fairness

In this subsection, we connect the proposed NBS-based
relay power allocation with even power allocation, which
has the best fairness, and the global sum-rate-optimal power
allocation, which has the best global performance. We show
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that via appropriate bargaining power selection, the proposed
NBS-based solution provides a balance between fairness and
global performance.

In the even power allocation, the amount of power the relay
allocates to each user isP/N . The following proposition is
proved.

Proposition 2: If

βi =
N + Pξi

N2 + P
∑N
j=1 ξj

, (28)

the proposed NBS-based power allocation is the same as even
power allocation.

Proof: It is shown in the proof of Proposition 1 that with
given bargaining powersβ1, · · · , βN , the NBS-based power
allocation satisfies (26). With the value ofβi in (28), we have

(ξiPi + 1)Pi
(ξjPj + 1)Pj

=
βi
βj

=
N + Pξi
N + Pξj

. (29)

By observation, we can see that this is true if and only if
Pi = Pj = P/N for anyi, j, which shows that the NSB-based
power allocation coincides with the even power allocation
whenβi is selected as in (28).

Recall thatξi defined in (2) is the noise forwarding rate
of User i. From (28) we can see that to achieve even power
allocation, a user with a larger noise forwarding rate (whose
relay-path has a lower quality) should be assigned a larger
bargaining power.

The sum-rate-optimal power allocation is the power alloca-
tion that maximizes the sum-rate of all users in the network.
The sum-rate optimization problem of the network is as
follows

argmax
P

(C1RD + · · ·+ CNRD)

= argmax
P

N∑

i=1

log2

(
ρiPi

ξiPi + 1
+Qi|hi|2 + 1

)

,

s.t.
N∑

i=1

Pi ≤ P . (30)

Using the same techniques as in (16)-(19), we can show
that the solution of (30) satisfies (31) on the next page, where
α1 is the Lagrangian multiplier associated with the equality
constraint. The solution to (31), denoted asPo (the superscript
‘o’ stands for sum-rate-optimal), can be found by first using
bisection method to solve the optimalα1 using the second
equation in (31), then using the value ofα1 in the first equation
in (31) to obtain thePi’s.

OncePo is found, we can find the bargaining powers that
equate the NBS-based power allocation with the sum-rate-
optimal solution as

βi =
ψ(P oi )

∑N
i=1 ψ(P

o
i )
, (32)

whereψ is defined in (26). The proof of this result is similar
to the proof of Proposition 2, thus is omitted.

We would like to note that the representation of the bargain-
ing power in (32) is not in a closed-form but in an implicit
form. To find the values, a numerical bisection method as

explain above is required. The purpose of the discussion is to
show that through proper selection of the bargaining powers,
the proposed NBS-based power allocation can achieve the
global sum-rate-optimal.

In order to better understand how to select the bargaining
powers for global performance, in the following, we use a
high SNR approximation for further investigations. One of the
widely-used high SNR approximations is to neglect the noise
term that is forwarded by the relay, i.e.,

√
Pi

Qi|fi|2+1gniR.
This approximation has shown to be sufficiently tight [27],
especially in medium to high SNR regions, e.g., when the
users are transmitting with a high power, or the relay is close
to users. In the following proposition, we give the bargaining
powers that equate the NBS-based power allocation with the
sum-rate-optimal power allocation.

Proposition 3: Let

βi =
1

N
+

N∑

j=1

Qj |hj |2 + 1

ρjNP
− Qi|hi|2 + 1

ρiP
. (33)

For high SNR, if the relay noise is neglected, the proposed
NBS-based power allocation maximizes the network sum-rate.

Proof: When the noise at the relay is neglected, the utility
of User i is approximated as

SNR′
iRD = ρiPi +Qi|hi|2. (34)

The disagreement point of Useri is the same as in (7). So
NBS is the solution to the following optimization problem:

arg max
P1,··· ,PN

N∑

i=1

βi log (ρiPi)

s.t. Pi > 0,
N∑

i=1

Pi = P. (35)

Using the same optimization techniques in (16)-(19), we can
show straightforwardly that the solution to (35) is

PNBSi = βiP. (36)

For sum-rate-optimal solution, with the high-SNR approxi-
mation, (30) is equivalent to the following problem:

arg max
P1,··· ,PN

N∑

i=1

log
(
ρiPi +Qi|hi|2 + 1

)

s.t. Pi > 0,

N∑

i=1

Pi = P. (37)

Again by using the KKT conditions, the solution is

P oi =
P

N
+

N∑

j=1

Qj |hj |2 + 1

ρjN
− Qi|hi|2 + 1

ρi
(38)

Whenβi is defined as in (33), we havePNBSi = P oi .
We can see that the first two terms in (38) are the same

for all users. So the last term is the dominant factor in
the bargaining power selection in achieving global sum-rate-
optimal. Recall thatρi defined in (3) is the signal forwarding
rate of Useri. (33) shows that for global optimum, a user with
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Pi =
−
(

Qi|fi|
2

Qi|hi|2+1 + 2
)

+

√
(

Qi|fi|2

Qi|hi|2+1 + 2
)2

+ 4
(

Qi|fi|2

Qi|hi|2+1 + 1
)(

ρi
α1(Qi|hi|2+1) − 1

)

2ξi

(
Qi|fi|2

Qi|hi|2+1 + 1
) and

N∑

i=1

Pi = P, (31)

a larger signal forwarding rate (whose relay-path has a higher
quality) should be assigned a larger bargaining power. This
has the opposite trend as the even power allocation case. The
other coefficient(Qi|hi|2 + 1) in the last terms relates to the
direct link and is independent of the relay link.

Based on the above discussions, for networks with different
requirements, we can adjust the NBS-based relay power al-
location toward the requirements by adjusting the bargaining
powers. For example, in a network design, if the global sum-
rate-optimal power allocation is desired, users whose relay-
paths have higher quality should be allocated more relay
power. With the proposed NBS-based power allocation, we can
obtain good network sum-rate by assigning larger bargaining
powers to such users. On the other hand, if fairness is the
major concern, we can assign larger bargaining powers to users
whose relay-paths have lower quality. Those users can thus
obtain more relay powers to ensure a certain level of quality,
which helps the fairness consideration of the network. But this
improved fairness is at the cost of lower network sum-rate.

VI. SIMULATION RESULTS

In this section, we show the performance of our NBS-
based power allocation solution and compare it with the
sum-rate-optimal solution, the even power solution, and the
rate-fair solution. The sum-rate-optimal solution is the relay
power allocation that maximizes the network sum-rate while
fairness is not considered. With the even power solution,
the relay power assigned to each user isP/N . It has the
best fairness in the sense of power. The rate-fair solution
is the relay power allocation that makes all users in the
network have the same achievable rate. It has the best fairness
in the sense of achievable rate. It is not always possible,
depending on the values of the channel coefficients. We com-
pare four parameters: network sum-rate, individual achievable
rate γi, the normalized-rate-difference, which is defined as
E{[maxi(γi) − mini(γi)]/maxi(γi)}, and the normalized-
power-differenceE{[maxi(Pi) − mini(Pi)]/maxi(Pi)}. A
smaller normalized-rate-difference (or normalized-power-
difference) indicates a fairer solution. Other fairness metrics,
e.g. Jain’s fairness index [36], show the same performance
trend. Two channel models are considered: Rayleigh flat-
fading channels and static channels with path-loss only.

A. Rayleigh Flat-Fading Channels

For the Rayleigh flat-fading model, the channel gains,fi, hi,
andg, are modeled as independent and identically distributed
(i.i.d.) random variables following the distributionCN (0, 1).
We consider a three-user network and all users have the same
bargaining power:β1 = β2 = β3 = 1/3. The transmit power
of each user is set to be10 dB. The relay power constraintP
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Fig. 2. Sum-rate, normalized-rate-difference, and normalized-power-
difference of a 3-user network with Rayleigh channels.

is in the range of0 to 30 dB. Since for this channel mode, rate-
fair solution is not always possible, the proposed solutionis
only compared with the sum-rate-optimal and the even power
solutions.

Figure 2 compares the average sum-rate, normalized-rate-
difference, and normalized-power-difference of the sum-rate-
optimal solution, even power allocation, and the NBS-based
power allocation. For even power allocation, as the relay
allocates the same power to all three users, the normalized-
power-difference is0, thus is not shown in Figure 2. It can be
seen that in the simulated power range, the sum-rate difference
between the proposed NBS-based and the sum-rate-optimal
solutions is within4%, while it is within 14% between the
sum-rate-optimal and the even power solutions. The proposed
solution is about4 dB superior to the even power solution in
global performance. From the normalized-rate-difference, we
find that our NBS-based solution has similar rate-fairness to
the even power solution and is fairer than the sum-rate-optimal
solution. From the normalized-power-difference, we find that
our NBS-based solution is fairer in the sense of power than
the sum-rate-optimal solution.

B. Static Channels With Path-Loss Only

In this section, we consider a static network whose channels
are only related to the path-loss, which is inverse proportional
to the distance squared. The network has two users, one relay,
and two destinations. The relative positions of the nodes are
shown in Figure 3, where the coordinates of User1, User2,
the relay, Destination1, and Destination2 are (-9, 0), (-3, 0),
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User 2User 1

Destination 1

Relay Destination 2

Fig. 3. Two-user network with static channels.
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Fig. 4. Achievable rates of a two-user network with static channels.

(0, 0), (7, 12), and (13, 0), respectively. Thus, User2 has a
better relay channel. The transmission power of both users are
20 dB, and the relay power constraintP ranges from20 dB
to 30 dB.

To investigate the global network sum-rate, the fairness, and
the effect of the bargaining powers on network performance,
we show the individual achievable rates of the users (in Figure
4), network sum-rate, and the normalized-rate-difference(in
Figure 5) under the proposed solutions with two different sets
of bargaining powers:β1 = 0.3, β2 = 0.7 andβ1 = 0.7, β2 =
0.3. For comparison, the individual achievable rates under the
sum-rate-optimal solution and the rate-fair solution are also
shown. As the achievable rates of the two user are the same
for the rate-fair solution, the normalized-rate-difference is 0
for this scheme and is not shown in Figure 5.

Comparing the two NBS-based power allocation schemes
with different bargaining powers, we can see from the two
figures that a user achieves a higher rate with a larger
bargaining power, and the bargaining power can be tuned to
gain the desired balance between the global network sum-
rate and individual rate-fairness. When User2, who has a
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Fig. 5. Sum-rate and normalized-rate-difference of a two-user network with
static channels.

better channel, is assigned a higher bargaining power, the
NBS-based solution emphasizes more on the network sum-
rate and allocates more relay power to User2. In Figure 4
and 5, the sum-rate performance of the NBS-based solution
with β1 = 0.3, β2 = 0.7 is very close to that of the sum-rate-
optimal solution. In this case, User1, with a worse channel,
experiences low achievable rate, which is37% to 50% of the
achievable rate of User2. On the contrary, when a larger
bargaining power 0.7 is assigned to User1, the NBS-base
solution allocates more power to User1, and the performance
is closer to the rate-fair solution. In this case, the network sum-
rate is reduced to90% of that of the sum-rate-optimal solution
whenP is small and93% whenP is large. The normalized-
rate-difference justifies the above-mentioned analysis, which
shows that NBS-based solution withβ1 = 0.7, β2 = 0.3 is
fairer in the sense of rate than the other two schemes.

To further illustrate the effect of the bargaining powers
on network performance, we show the network sum-rate,
normalized-rate-difference, and normalized-power-difference
(in Figure 6) under the proposed solution with the bargaining
power of User1 changing from0 to 1. We consider three relay
powers:25 dB, 30 dB, and35 dB. Other network conditions
are the same as the static network shown in Figure 3. When
β1 = 0 or β1 = 1, all relay power is allocated to User
2 or User 1, so the normalized-rate-difference is1. For the
three different relay powers, network sum-rate is maximized
at approximatelyβ1 = 0.25. After that, we can see a reduction
in the network sum-rate asβ1 increases, which verifies the
conclusion in Section V-B: by assigning a larger bargaining
power to User2 which has a higher signal forwarding power,
the solution approaches the sum-rate-optimal solution. For
fairness in the sense of both rate and power, the normalized-
rate-difference and the normalized-power-difference decrease
as β1 increases until rate-fair or power-fair is achieved. For
P = 25, 30, and35 dB, whenβ1 = 0.6, 0.64, and0.675, the
proposed NBS-based power allocation becomes even power
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allocation. These values ofβ1 are the same as been calculated
with Proposition 2. This verifies our claim in Section V-B
that on the contrary to sum-rate optimum, power fairness can
be approached by assigning higher bargaining power to User
1 which has a larger noise forwarding rate, and thus lower
quality in the relay path. Similar to power-fairness, for rate-
fairness, the user with a higher noise forwarding rate should
be assigned a higher bargaining power. ForP = 25, 30, and
35 dB, rate-fair power allocation can be achieved using the
proposed NBS-based power allocation whenβ1 = 0.9, 0.95,
and0.97, respectively.

Figure 7 illustrates the convergence of the distributed relay
power allocation. In this simulation, the relay power is set
to be 30 dB, the bargaining powers of the two users are
β1 = 0.7, β2 = 0.3, and all other network settings are the
same as the network in Figure 3.α is initialized as0.1. We
can see from Figure 7 that the proposed distributed scheme
converges after2 iterations and similar performance is verified
with different initial values ofα.

VII. E XTENSION TO MULTI -USERMULTI -RELAY

NETWORKS

In this section, we discuss the extension of our work to
multi-user multi-relay networks where users can receive help
from multiple relays. Assume that there areN users andR
relays. Assume that the relays also use orthogonal channels.
Denote the channel gain from Useri to Relayr asfir, and the
channel gain from Relayr to Destinationi asgir. Denote the
power constraint of Relayr asP (r) and Relayr uses power
Pir to help Useri. So the power allocation for all users from
all relays can be denoted as a matrix{Pir}, where the row
index is the user index and the column index is the relay index.
DenotePi = [Pi1, Pi2, · · · , PiR]T as the power allocation for
User i from all relays, andP(r) = [P1r , P2r, · · · , PNr]T as
the power allocation vector of Relayr for all users. Define
ξir ,

|gir |
2

Qi|fir|2+1 andρir ,
Qi|firgir |

2

Qi|fir |2+1 as the noise forwarding
rate and signal forwarding rate of Useri at Relayr. Other
assumptions and notation are the same as the single-relay case.

With maximum ratio-combining, the received SNR of User
i’s transmission isSNRiRD =

∑R
r=1

ρirPir

ξirPir+1 + Qi|hi|2.
Similarly, define the utility of Useri as:

ui(Pi) , SNRiRD. (39)

ui,0 = Qi|hi|2 is the minimum utility that Useri expects.
Similar to the single-relay case, to use the NBS-based power

allocation, we first need to prove that the feasible set

SM ,

{

(u1 · · ·uN )

∣
∣
∣
∣
∣
Pir ≥ 0,

N∑

i=1

Pir ≤ P (r), r = 1 · · ·R
}

(40)
is convex.

Lemma 4: Given the utility functionui(Pi) in (39), the
feasible setSM in (40) is convex.

Proof: Given{xir} as a feasible power allocation matrix
wherexir is the power allocation from Relayr to User i,
denotex(r) = [x1r · · ·xNr]T as the power allocation vector
at Relayr for all users andxi = [xi1 · · ·xiR]T as the power
allocation for Useri from all relays. To prove thatSM is
convex, we need to show that given two arbitrary power
allocation matrices{xir} and {yir} and the corresponding
utility vectorsu = [u1(x1), u2(x2), · · · , uN(xN )]T andv =
[u1(y1), u2(y2), · · · , uN (yN )]T in the feasible setSM , we
haveθu+ (1 − θ)v ∈ SM for any 0 ≤ θ ≤ 1.

Note that

u=







u1(x1) =
ρ11x11

ξ11x11+1 + · · ·+ ρ1Rx1R

ξ1Rx1R+1 + u1,0
u2(x2) =

ρ21x21

ξ21x21+1 + · · ·+ ρ2Rx2R

ξ2Rx2R+1 + u2,0
· · ·

uN (xN ) = ρN1xN1

ξN1xN1+1 + · · ·+ ρNRxNR

ξNRxNR+1 + uN,0







=








ρ11x11

ξ11x11+1
ρ21x21

ξ21x21+1
...

ρN1xN1

ξN1xN1+1







+ · · ·+









ρ1RP1R

ξ1RP1R+1
ρ2RP2R

ξ21P2R+1
...

ρNRPNR

ξN1PNR+1









+








u1,0
u2,0

...
uN,0








=f1
(

x(1)
)

+ f2
(

x(2)
)

+ · · ·+ fR
(

x(R)
)

+ u0, (41)

where fr
(
P(r)

)△
=
[

ρ1rx1r

ξ1rx1r+1 · · ·
ρNrxNr

ξNrxNr+1

]T

for
r = 1, · · · , R. Similarly, given the power allocation
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matrix {yir}, the corresponding utility vector is
v = f1

(
y(1)

)
+ f2

(
y(2)

)
+ · · ·+ fR

(
y(R)

)
+ u0. Therefore,

we have

θu+ (1 − θ)v =
[
θf1
(
x1
)
+ (1− θ)f1

(
y1
)]

+ · · ·+
[
θfR

(
xR
)
+ (1− θ)fR

(
yR
)]

+ u0. (42)

Note that
{

fr
(
P(r)

)
+ u0

∣
∣Pir ≥ 0,

∑N
i=1 Pir ≤ P (r)

}

is the
feasible set of a network with a single relayr, and is convex
from Lemma 1. Therefore, for any Relayr and any0 ≤ θ ≤ 1,
we can find another power allocation vectorz(r) with zir ≥ 0
and

∑N
i=1 zir ≤ P (r) such thatfr

(
z(r)
)
= θfr

(
x(r)

)
+ (1−

θ)fr
(
y(r)

)
. Combining the power allocation vectors{z(r)}

for all relays, we can find the feasible power allocation matrix
{zir} such thatθu + (1 − θ)v=f1

(
z(1)

)
+ f2

(
z(2)

)
+ · · ·+

fR
(
z(R)

)
+ u0 ∈ SM . This completes the proof.

In addition, Lemma 2 is also valid for the multi-relay case,
that is, there is at least one point inSM with ui > ui,0 for all
i = 1, · · · , N . Therefore, the asymmetric NBS for the multi-
relay network is the solution of the following optimization
problem:

arg max
P1,··· ,PN

N∑

i=1

βi log

(
R∑

r=1

ρirPir
ξirPir + 1

)

s.t. Pir > 0,

N∑

i=1

Pir = P (r). (43)

This is a convex optimization problem and can be solved
efficiently using standard convex optimization techniques[29]
for centralized implementation.

To implement the distributed NBS-based power allocation,
we can follow the same technique in Section IV.B. First, we
write the Lagrangian function for (43) as

L({Pir}, ~α) =
N∑

i=1

βi log

(
R∑

r=1

ρirPir
ξirPir + 1

)

−
NR∑

i=1

λirPir −
R∑

r=1

αr

(
N∑

i=1

Pir − P (r)

)

. (44)

Here λir and ~α = [α1 · · ·αR] are Lagrangian multipliers
associated with the inequality and equality constraints. Same
as the analysis of the single-relay networks in Section III.B,
we haveλir = 0 for all i = 1, · · · , N and r = 1, · · ·R as
Pir > 0.

Then, similar to the analysis of the single relay network in
Section IV.B, the dual problem of (43) is:min~α≥0D

M (~α),
whereDM (~α) is the dual function defined as in (45) on the
next page. As explained in the single-relay case, the equality
in (45) holds since the summation term inL({Pir}, ~α) is
separable inPi.

The gradient ofDM (~α) is

∂DM (~α)

∂αr
= P (r) −

N∑

i=1

Pir(~α), r = 1, · · · , R, (46)

where{Pir(~α)}Ni=1 is the maximizer ofFi(Pi) in (45) for a
given ~α. SinceFi(Pi) is a convex function,{Pir(~α)}Ni=1 can
be calculated with standard convex optimization techniques.

The dual problem can be solved with the gradient project
method whereαr can be adjusted in the opposite direction to
∂DM (~α)
∂αr

as:

αr(t+ 1)=max

{

0, αr(t)− γr
∂D

∂αr
(~α(t))

}

=max

{

0, αr(t)− γr

[

P (r) −
N∑

i=1

Pir(
−→α )

]}

.(47)

Similar to Theorem 1, we can show that if the step-size
satisfies0 < γr <

2βmin

NP (r)2(|g
(r)
max|2P (r)+1)

for all relays, the

gradient projection method converges to the primal and dual
optimal point. Here,|g(r)max| , max{|g1r|, · · · , |gNr|}.

Assume that each user has local CSI only. In each itera-
tion of the distributed scheme, Useri individually calculates
Pir(

−→α ) (for r = 1, · · · , R) and broadcasts this information
to all other users. Then each user updates−→α according to
(47). This cycle repeats until convergence. The distributed
implementation of the NBS-based power power allocation for
multi-relay networks can be summarized as in Algorithm 2.

Algorithm 2 Distributed Relay Power Allocation for Multi-
relay Networks

1: Initialize αr and γr, e.g., αr = 1
P (r) and γr =

βmin

NP (r)2(|g
(r)
max|2P (r)+1)

, for r = 1, · · · , R.

2: Each user calculatesPir(
−→α ) (for r = 1, · · · , R) that

maximizesFi(Pi) in (45) and broadcasts this information
to all other users.

3: Each user updates−→α according to (47). Go to Step 2 until
convergence.

VIII. C ONCLUSION

In this paper, we consider a multi-user single-relay wireless
network, and conduct the game-theoretic analysis of relay
power allocation among the users. We propose an asymmetric
NBS-based power allocation solution, where each user is as-
signed a bargaining power indicating its transmission priority.
We first proposed a centralized algorithm to implement the
NBS-based power allocation at the relay. Then, consideringthe
scalability of the network, we propose a distributed algorithm
for the NBS-based power allocation and its convergence
conditions are provided. We show that bargaining powers
can be adjusted to accommodate different requirements in
different applications. After that, we generalize our NBS-based
power allocation solution and its distributed implementation to
multi-user multi-relay networks. Simulations are conducted to
compare the proposed NBS-based power allocation with the
sum-rate-optimal power allocation, the even power allocation,
and the rate-fair power allocation. We find that the proposed
NBS-based scheme has better sum-rate than even and rate-
fair power allocation and is fairer than the sum-rate-optimal
solution. Via simulation, we also demonstrate the impact of
the bargaining powers on the proposed relay power allocation
solution. We show that the proposed scheme can bridge the
sum-rate-optimal power allocation, which has the best global
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DM (~α) , max
{Pir}

L({Pir}, ~α)

= max
{Pir}

{
N∑

i=1

βi log

(
R∑

r=1

ρirPir
ξirPir + 1

)

−
R∑

r=1

αr

(
N∑

i=1

Pir − P (r)

)}

=
N∑

i=1







max
Pi

[

βi log

(
R∑

r=1

ρirPir
ξirPir + 1

)

−
R∑

r=1

αrPir

]

︸ ︷︷ ︸

△
=Fi(Pi)

+
R∑

r=1

αrP
(r)







. (45)

performance and the even power allocation, which has the best
fairness, by proper selection of bargaining powers.

APPENDIX

To prove Theorem 1, we first prove the following lemma:
Lemma 5: Functions Θi(Pi) = βi log

ρiPi

ξiPi+1 , i =
1, · · · , N are increasing, strictly concave and twice contin-
uously differentiable. The curvatures ofΘi(Pi) are bounded
away from zero on feasible setS.

Proof: Lemma 5 is straightforward due to the following
facts.

Θ′
i(Pi) =

βi
Pi(ξiPi + 1)

> 0,

Θ′′
i (Pi) =

−βi(2ξiPi + 1)

P 2
i (ξiPi + 1)2

< 0, and continuous.

Since ξiPi

ξiPi+1 > 0, we have

−Θ′′
i (Pi)=

βi(2ξiPi + 1)

P 2
i (ξiPi + 1)2

=
βi(1 +

ξiPi

ξiPi+1 )

P 2
i (ξiPi + 1)

≥ βi
P 2
i (ξiPi + 1)

.

From Lemma 5, we get that the dual objective function is
convex, lower bounded, and continuously differentiable. To
optimizeΘi(Pi), the equationΘ′

i(Pi) = α must be satisfied.
Thus Pi = max{0,Θ′

i
−1(α)}, where Θ′

i
−1 is the inverse

function of Θ′
i. Then we get∂Pi(α)

∂α
= max

{

0, 1
Θ′′

i
(Pi(α))

}

.

From (23), we get∂D(α)
∂α

= P −∑N
i=1 Pi(α), and hence

∂2D(α)

∂2α
= −

N∑

i=1

1

Θ′′
i (Pi(α))

.

By using Taylor theorem, there exists at ∈ [0, 1], such that

∂D(α)

∂α
− ∂D(β)

∂β
=
∂2D(µ)

∂2µ
(α− β),

whereµ = tα+ (1 − t)β. Thus,
∣
∣
∣
∣

∂D(α)

∂α
− ∂D(β)

∂β

∣
∣
∣
∣
≤
∣
∣
∣
∣

∂2D(µ)

∂2µ

∣
∣
∣
∣
|(α− β)| .

Now, from Lemma 5,
∣
∣
∣
∣

∂2D(µ)

∂2µ

∣
∣
∣
∣
=

N∑

i=1

1

|Θ′′
i (Pi(α))|

≤
N∑

i=1

P 2
i (ξiPi + 1)

βi
.

As Qi|fi|2 + 1 > 1, ξi < |gi|2. We have
N∑

i=1

P 2
i (ξiPi + 1)

βi
≤ NP 2(|gmax|2P + 1)

βmin
.

From the analysis above, we conclude that∂D(α)
∂α

is Lips-
chitz [28] and the Lipschitz constant isκ = NP 2(|gmax|2P +
1)/βmin. Let γ be the step-size. Ifγ ∈ (0, 2

κ
), then any

accumulation pointα∗ generated by sequenceα(t) is dual
optimal. We can then follow the same proof statements in
[32] to show thatPi(α(t)) will converge to the unique primal
optimal pointP ∗

i .
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