Robust Adaptive Beamforming: Evolution of Approaches, Analysis and Comparison

Sergiy A. Vorobyov

Department of Electrical and Computer Engineering
University of Alberta

156th Meeting of the Acoustic Society of America, 2008
Outline

1. Introduction
2. Worst-Case Performance Optimization Approach
3. Probabilistically-Constrained Optimization Approach
4. Analysis of Approaches and a New One
5. Robust Adaptive Beamforming Using SQP
6. Comparison
Introduction

- Adaptive Beamforming finds applications in many areas such as **radar, sonar, wireless communications**, etc.

- Conventional beamforming techniques assume
 - *the steering vector of the desired signal is known precisely*
 - *large number of snapshots (training sample size)*
 - *stationary training data set*

- In many practical situations there is mismatch between the presumed steering vector and the actual one!
Signal Model

The output of a narrowband beamformer

\[y(k) = w^H x(k) \]

where

\[x(k) = \underbrace{s(k)p}_{\text{signal}} + \underbrace{i(k)}_{\text{interference}} + \underbrace{n(k)}_{\text{noise}} \]
Signal Model

The output of a narrowband beamformer

\[y(k) = w^H x(k) \]

where

\[x(k) = s(k)p + i(k) + n(k) \]

Actual steering vector

\[a = p + e \]

Sergiy A. Vorobyov

Robust Adaptive Beamforming: Evolution of Approaches
Maximum SINR criterion

\[
\max_w \text{SINR}, \quad \text{SINR} = \frac{\sigma_s^2 |w^H(p + e)|^2}{w^H R_{i+n} w}
\]

Interference-plus-noise covariance matrix

\[
R_{i+n} = E \left\{ (i(k) + n(k))(i(k) + n(k))^H \right\}
\]

Note

- In practice, \(R_{i+n} \) is unavailable
- Sample estimate \(\hat{R} \triangleq \frac{1}{N} \sum_{k=1}^{N} x(k)x^H(k) \) is used
Maximum SINR criterion

$$\max_w \text{SINR}, \quad \text{SINR} = \frac{\sigma_s^2 |w^H(p + e)|^2}{w^HR_{i+n}w}$$

Interference-plus-noise covariance matrix

$$R_{i+n} = E \left\{ (i(k) + n(k))(i(k) + n(k))^H \right\}$$

Note

- In practice, R_{i+n} is unavailable
- Sample estimate $\hat{R} \triangleq \frac{1}{N} \sum_{k=1}^{N} x(k)x^H(k)$ is used
The essence of this approach is to:

- **Maintain a distortionless response** towards a continuum of steering vectors that belong to a certain uncertainty set.

- Guarantee that the distortionless response is maintained in the worst case.

- **Model the uncertainty** about the mismatch vector using:
 - spherical uncertainty set [Vorobyov, Gershman, Luo ’03]
 - elliptical uncertainty set [Lorenz and Boyd ’05]
Problem Formulation and Main Result

- The spherical uncertainty set is (for some known $\varepsilon > 0$)
 \[
 \|e\| \leq \varepsilon
 \]

 The robust MVDR beamforming problem is formulated as
 \[
 \min_w w^H \hat{R} w \quad \text{s. t.} \quad |w^H (p + e)| \geq 1, \quad \forall \|e\| \leq \varepsilon
 \]

 Result 1 [Vorobyov, Gershman, Luo '03]: Infinite number of non-convex constraints
 \[
 |w^H (p + e)| \geq 1, \quad \forall \|e\| \leq \varepsilon
 \]

 is equivalent to a single convex constraint
 \[
 \varepsilon \|w\| \leq w^H p - 1
 \]
Problem Formulation and Main Result

- The spherical uncertainty set is (for some known $\varepsilon > 0$)
 \[\|e\| \leq \varepsilon \]

 The robust MVDR beamforming problem is formulated as
 \[
 \min_w w^H \hat{R} w \quad \text{s.t.} \quad |w^H (p + e)| \geq 1, \quad \forall \quad \|e\| \leq \varepsilon
 \]

- **Result 1** [Vorobyov, Gershman, Luo ’03]: Infinite number of non-convex constraints
 \[|w^H (p + e)| \geq 1, \quad \forall \quad \|e\| \leq \varepsilon \]

 is equivalent to a single convex constraint
 \[\varepsilon \|w\| \leq w^H p - 1 \]
The robust MVDR beamforming problem is equivalent to:

$$\min_w w^H \hat{R} w \quad \text{s. t.} \quad \varepsilon \| w \| \leq w^H p - 1$$

This is so-called convex second order cone (SOC) programming problem! It can be easily solved!
Problem Formulation and Main Results

- The probabilistically-constrained beamformer guarantees that the distortionless response is maintained with a certain “sufficient” probability

\[
\min_w w^H \hat{R} w \quad \text{s. t.} \quad \Pr\{|w^H (p + e)| \geq 1\} \geq p_0
\]

- Result 2 [Vorobyov, Chen, Gershman ’08]: For Gaussian mismatch

\[e \sim \mathcal{N}_C(0, C_e)\]

the probabilistic constraint is tightly approximated by the deterministic constraint

\[\sqrt{-\ln(1 - p_0)} \| C_e^{1/2} w \| \leq w^H p - 1\]
The probabilistically-constrained beamformer guarantees that the distortionless response is maintained \textit{with a certain “sufficient” probability}

$$\min_w w^H \hat{R} w \quad \text{s. t.} \quad \Pr\{|w^H(p + e)| \geq 1\} \geq p_0$$

\textbf{Result 2} [Vorobyov, Chen, Gershman ’08]: For Gaussian mismatch

$$e \sim \mathcal{N}_c(0, C_e)$$

the probabilistic constraint is tightly approximated by the deterministic constraint

$$\sqrt{-\ln(1 - p_0)} \|C_e^{1/2}w\| \leq w^Hp - 1$$
Result 3 [Vorobyov, Chen, Gershman ’08]: For mismatch with the worst-case distribution the probabilistic constraint is tightly approximated by the deterministic constraint

\[
\frac{1}{\sqrt{1 - p_0}} \left\| C_e^{1/2} w \right\| \leq w^H p - 1
\]

Moreover, the worst-case distribution is discrete.

The problem is equivalent to that of the worst-case based robust adaptive beamforming if \(C_e = (\sigma_e^2 / M) I \).

For the worst-case mismatch distribution: \(\varepsilon = \sigma_e \sqrt{\frac{1}{M(1 - p_0)}} \)

For Gaussian mismatch: \(\varepsilon = \sigma_e \sqrt{-\ln(1 - p_0) / M} \)
Result 3 [Vorobyov, Chen, Gershman ’08]: For mismatch with the worst-case distribution the probabilistic constraint is tightly approximated by the deterministic constraint

\[
\frac{1}{\sqrt{1 - p_0}} \| C_e^{1/2} w \| \leq w^H p - 1
\]

Moreover, the worst-case distribution is discrete.

- **The problem is equivalent to that of the worst-case based robust adaptive beamforming** if \(C_e = (\sigma_e^2 / M) I \).

For the worst-case mismatch distribution: \(\varepsilon = \sigma_e \sqrt{\frac{1}{M(1-p_0)}} \)

For Gaussian mismatch: \(\varepsilon = \sigma_e \sqrt{\frac{-\ln(1-p_0)}{M}} \)
Problems with previous approaches

- If mismatch is Gaussian, its norm is Chi-square distributed (not norm bounded)
- Over/under estimation of the parameters, e.g. ε, may lead to degradation in performance

Essence of a new approach

Estimate the mismatch vector and form the beam using the corrected steering vector [Hassanien, Vorobyov, Wong ’08]
Analysis and a New Idea

Problems with previous approaches

- If mismatch is Gaussian, its norm is Chi-square distributed (not norm bounded)
- Over/under estimation of the parameters, e.g. ε, may lead to degradation in performance

Essence of a new approach

Estimate the mismatch vector and form the beam using the corrected steering vector [Hassanien, Vorobyov, Wong ’08]
Problem Formulation

- First maximize the beamformer output SINR by solving the optimization problem

$$\min_w w^H \hat{R} w \quad \text{subject to} \quad w^H (p + e) = 1$$

- Solution

$$w(e) = \frac{\hat{R}^{-1}(p + e)}{(p + e)^H \hat{R}^{-1}(p + e)}$$

- The beamformer output power

$$P(e) = \frac{1}{(p + e)^H \hat{R}^{-1}(p + e)}$$
Problem Formulation

First maximize the beamformer output SINR by solving the optimization problem

$$\min_w \ w^H \hat{R} \ w \quad \text{subject to} \quad w^H (p + e) = 1$$

Solution

$$w(e) = \frac{\hat{R}^{-1}(p + e)}{(p + e)^H \hat{R}^{-1}(p + e)}$$

The beamformer output power

$$P(e) = \frac{1}{(p + e)^H \hat{R}^{-1}(p + e)}$$
Problem Formulation

- First maximize the beamformer output SINR by solving the optimization problem

\[
\min_w \ w^H \hat{R} \ w \quad \text{subject to} \quad w^H (p + e) = 1
\]

- Solution

\[
w(e) = \frac{\hat{R}^{-1}(p + e)}{(p + e)^H \hat{R}^{-1}(p + e)}
\]

- The beamformer output power

\[
P(e) = \frac{1}{(p + e)^H \hat{R}^{-1}(p + e)}
\]
Problem Formulation and Difficulties

Estimate the unknown mismatch vector \mathbf{e} by maximizing the beamformer output power

$$\min_{\mathbf{e}} (\mathbf{p} + \mathbf{e})^H \hat{\mathbf{R}}^{-1} (\mathbf{p} + \mathbf{e}) \quad \text{s. t.} \quad \| \mathbf{p} + \mathbf{e} \| = \sqrt{M}$$

Two difficulties

- The corrected vector $\mathbf{p} + \hat{\mathbf{e}}$ might converge to a vector associated with interference
- Non-convex constraint!
Estimate the unknown mismatch vector \mathbf{e} by maximizing the beamformer output power

$$\min_{\mathbf{e}} (\mathbf{p} + \mathbf{e})^H \hat{\mathbf{R}}^{-1} (\mathbf{p} + \mathbf{e}) \quad \text{s. t.} \quad \| \mathbf{p} + \mathbf{e} \| = \sqrt{M}$$

Two difficulties

- The corrected vector $\mathbf{p} + \hat{\mathbf{e}}$ might converge to a vector associated with interference
- Non-convex constraint!
To avoid first difficulty, enforce $p + e$ to belong to a subspace that is spanned by the actual steering vector

$$P_p \perp (p + e) = 0$$

$P_p \perp \triangleq I - UU^H$ is a projection onto a subspace that is orthogonal to the actual steering vector.

$U \triangleq [u_1, u_2, \ldots, u_K]$, $\{u_k\}_{k=1}^K$ are K principal eigenvectors of

$$C \triangleq \int_{\Theta} p(\theta)p^H(\theta) \, d\theta$$
To avoid first difficulty, enforce \(p + e \) to belong to a subspace that is spanned by the actual steering vector

\[
P_p \perp (p + e) = 0
\]

\(P_p \perp \triangleq I - UU^H \) is a projection onto a subspace that is orthogonal to the actual steering vector

\[U \triangleq [u_1, u_2, \ldots, u_K], \{u_k\}_{k=1}^{K} \text{ are } K \text{ principal eigenvectors of} \]

\[
C \triangleq \int_{\Theta} p(\theta)p^H(\theta) \, d\theta
\]
Result 4 [Hassanien, Vorobyov, Wong ’08]: The initial optimization problem is equivalent to the problem

\[
\min_e (p + e)^H \hat{R}^{-1} (p + e)
\]

subject to

\[
P_p^\perp (p + e) = 0
\]

\[
\|p + e\| = \sqrt{M}
\]

How to get rid of non-convexity?
Result 4 [Hassanien, Vorobyov, Wong '08]: The initial optimization problem is equivalent to the problem

\[
\min_{\mathbf{e}} \quad (\mathbf{p} + \mathbf{e})^H \mathbf{R}^{-1} (\mathbf{p} + \mathbf{e})
\]

subject to

\[
\mathbf{P}_{\mathbf{p}}^\perp (\mathbf{p} + \mathbf{e}) = \mathbf{0}
\]

\[
\|\mathbf{p} + \mathbf{e}\| = \sqrt{M}
\]

How to get rid of non-convexity?
Iterative Solution

\[\min_{e_{\perp}} (p + e_{\perp}) H \hat{R} - 1 (p + e_{\perp}) \]
subject to
\[P_{\perp} p (p + e_{\perp}) = 0 \]
\[\| p + e_{\perp} \| \leq \sqrt{M} \]

\[\| a \| = \| p \| = \sqrt{M} \]
Iterative Solution

\[
\min_{e_{\perp}} \quad (p + e_{\perp})^H \hat{R}^{-1} (p + e_{\perp}) \\
\text{subject to} \quad P_p (p + e) = 0 \\
\|p + e_{\perp}\| \leq \sqrt{M} + \delta \\
p^H e_{\perp} = 0
\]
Iterative Algorithm

Algorithm:

1. Estimate \mathbf{e}_\perp by solving the problem in previous slide
2. If $\|\mathbf{e}_\perp\| = \text{“small”}$, go to Step 5.
3. Update the presumed steering vector $\mathbf{p} = \mathbf{p} + \mathbf{e}_\perp$.
4. Project the updated steering vector back to the sphere $\mathbf{p} = \left(\frac{\sqrt{M}}{\|\mathbf{p}\|}\right)\mathbf{p}$, then go to Step 1.
5. Calculate the robust adaptive beamformer weights

$$ \mathbf{w}_{\text{SQP}} = \frac{\hat{\mathbf{R}}^{-1}\mathbf{p}}{\mathbf{p}^H\hat{\mathbf{R}}^{-1}\mathbf{p}}, $$
Simulation Setup

- $M = 10$ sensors spaced half wavelength apart. $N = 100$ data snapshots.
- Desired signal is assumed to impinge on the array from direction $\theta_p = 5^\circ$
- Two interfering sources with DOAs -50° and -20°; INR $= 30$ dB.
- Look direction mismatch: actual DOA is uniformly drawn from $[1^\circ, 9^\circ]$
- Array perturbation:
 Sensors are assumed to be displaced from its original location and the displacement is drawn uniformly from the set $[-0.05, 0.05]$ measured in wavelength.
Simulation Results

![Graph showing performance comparison of different beamformers. The x-axis represents input SNR (dB), and the y-axis represents output SINR (dB). The graph compares SMI Beamformer, LSMI Beamformer, Worst-case Beamformer ($\epsilon=0.3M$), Probability-Constrained Beamformer, Proposed SQP Beamformer, and Optimal SINR. The x-axis ranges from -20 to 20 dB, and the y-axis ranges from -20 to 30 dB.](Image)
References

References (Cont’d)

