Lab 3 - Results: Intro to AC Circuits

ECE209: Fundamentals of Electrical Engineering

Name	Student ID	CCID	Lab Section

Pre-lab Sign-off: _	Re	esults Sign-off:	

AC Resistors -100Ω

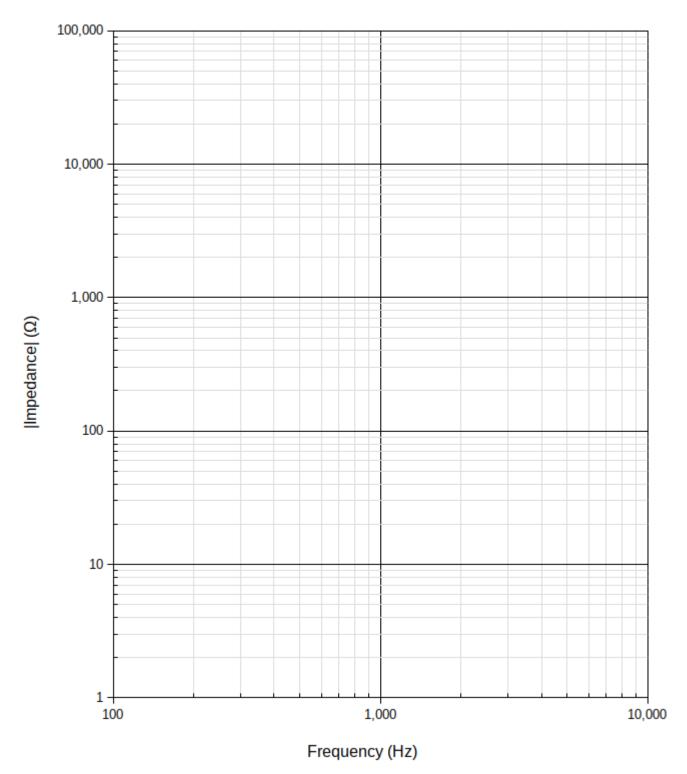
		DMM	$\mathbf{R}_{1}\left(\Omega\right) =$				
Freq	100 Hz	1 kHz		10 kHz			
	Oscilloscope – Method 1 – Counting Divisions						
Horizontal - # of divs							
SEC/DIV							
T_s – Period (s)							
Vertical - # of divs							
VOLTS/DIV							
$\mathbf{V_R}^{\mathbf{Pk-Pk}}$ – peak-to-peak (V)							
	Oscilloscope – M	ethod 2 - Curs	ors				
T_s – Period (s)							
F _S – Frequency (<i>Hz</i>)							
$\mathbf{V_R}^{\mathbf{Pk-Pk}}$ – peak-to-peak (V)							
	Oscilloscope – Method 3	– Automatic Me	easurements				
f _s – 'Freq' (<i>Hz</i>)							
T _s – 'Period' (s)							
$\mathbf{V_R}^{\mathbf{Pk-Pk}}$ - 'Pk-Pk' (V)							
V_R^{RMS} – 'Cyc RMS' (V)							
DMM – Milliammeter – RMS current							
$I_R^{RMS} - (mA)$							
Calculate Resistance – $(R = V_{RMS}/I_{RMS})$							
$\mathbf{R}\left(\Omega\right)$							

2019-10-21 14:26:53 Page 1 of 5

AC Capacitors – 68 nF

		DMM	$\mathbf{C}_{1}\left(nF\right) =% \mathbf{C}_{1}\left(nF\right) =\mathbf{C}_{1}\left(nF\right) =$		$\mathbf{R}_{\mathrm{C1}}\left(\Omega\right) =$	
Freq	X _C	$\mathbf{F}_{\mathbf{S}}$	${f V_C}^{ m RMS}$	$\mathbf{I_C}^{ ext{RMS}}$	\mathbf{X}_{C}	С
(Hz)	(Ω)	(Hz)	(V)	(mA)	(Ω)	(nF)
100 Hz						
1 kHz						
10 kHz						

AC Capacitors – 1 μF


		DMM	$\mathbf{C}_{2}\left(nF\right) =% \mathbf{C}_{2}\left(nF\right) =\mathbf{C}_{3}\left(nF\right) =\mathbf{C}_{3}\left(nF\right) =\mathbf{C}_{4}\left(nF\right) =\mathbf{C}_{4}\left(nF\right) =\mathbf{C}_{5}\left(nF\right) =$		$\mathbf{R}_{\mathrm{C2}}\left(\Omega\right) =$	
Freq	X _C	$\mathbf{F}_{\mathbf{S}}$	$\mathbf{V_C}^{ ext{RMS}}$	$\mathbf{I_C}^{\mathbf{RMS}}$	$\mathbf{X}_{\mathbf{C}}$	С
(Hz)	(Ω)	(Hz)	(V)	(mA)	(Ω)	(nF)
100 Hz						
1 kHz						
10 kHz						

AC Inductors - 2.5mH

					DMM	$\mathbf{R}_{\mathbf{L}1(}\Omega)=$	
Freq	X_{L}	$\mathbf{F}_{\mathbf{S}}$	$\mathbf{V_L}^{ ext{RMS}}$	$\mathbf{I_L}^{ ext{RMS}}$	\mathbf{Z}_{L}	X_{L}	L
(Hz)	(Ω)	(Hz)	(V)	(mA)	(Ω)	(Ω)	(mH)
100 Hz							
1 kHz							
10 kHz							

2019-10-21 14:26:53 Page 2 of 5

Impedance-Frequency of R, L and C

2019-10-21 14:26:53 Page 3 of 5

Series RC Circuit

Freq	(Hz)	100 Hz	1 kHz	10 kHz	f_S where $V_C = V_R$
f s - Freq	(Hz)				
T _s - Period	(s)				
$\mathbf{V_{S}}^{\mathbf{RMS}}$	(V)				
$\mathbf{V_{C}}^{\mathbf{RMS}}$	(V)				
$\mathbf{t}_{\text{C-s}}$ - phase diff	(s)				
V _C (leads/lags) V _S	(leads/lags)				
		DMM – Milliamm	eter – RMS current	_	
$\mathbf{I_{S}}^{\mathbf{RMS}}$	(mA)				
		Oscillosco	pe – Setup 2		
$\mathbf{V_R}^{ ext{RMS}}$	(V)				
t_{R-S} - phase diff	(s)				
V_R (leads/lags) V_S	(leads/lags)				
		Calcu	lations		
$oldsymbol{ heta}_{ ext{C-S}}$	(°)				
$ heta_{ ext{R-S}}$	(°)				
$\theta_{\text{C-R}} = (\theta_{\text{C-S}} + \theta_{\text{R-S}})$	(°)				
R – (ohms law)	(Ω)				
\mathbf{X}_{C} – (ohms law)	(Ω)				
$\mathbf{Z} = (R + X_C)$	(Ω)				
\mathbf{Z}_{Calc}	(Ω)				
Z – (ohms law)	(Ω)				
С	(nF)				
R - (phase)	(Ω)				
X _C - (phase)	(Ω)				

2019-10-21 14:26:53 Page 4 of 5

Series RL Circuit

Freq	(Hz)	100 Hz	1 kHz	10 kHz	f_S where $V_L = V_R$	
Oscilloscope – Setup 1						
f s - Freq	(Hz)					
T _s - Period	(s)					
${f V_S}^{ m RMS}$	(V)					
$ m V_L^{RMS}$	(V)					
$\mathbf{t}_{ ext{L-S}}$ - phase diff	(s)					
V _L (leads/lags) V _S	(leads/lags)					
		DMM – Milliamm	eter – RMS current			
\mathbf{I}_{S}	(mA)					
		Oscillosco	pe – Setup 2			
$ m V_R^{RMS}$	(V)					
$\mathbf{t}_{ ext{R-S}}$ - phase diff	(s)					
V _R (leads/lags) V _S	(leads/lags)					
		Calcu	lations			
$ heta_{ ext{L-S}}$	(°)					
$ heta_{ ext{R-S}}$	(°)					
$\theta_{L-R} = \theta_{L-S} + \theta_{R-S}$	(°)					
R – (ohms law)	(Ω)					
\mathbf{Z}_{L} – (ohms law)	(Ω)					
$\mathbf{X}_{L} = (\mathbf{Z}_{L} - \mathbf{R}_{L})$	(Ω)					
\mathbf{Z}_{Calc}	(Ω)					
Z – (ohms law)	(Ω)					
L	(mH)					

2019-10-21 14:26:53 Page 5 of 5