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Performance Assessment and Design for Univariate
Alarm Systems Based on FAR, MAR, and AAD
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Abstract—The performance of a univariate alarm system can be
assessed in many cases by three indices, namely, the false alarm
rate (FAR), missed alarm rate (MAR), and averaged alarm delay
(AAD). First, this paper studies the definition and computation of
the FAR, MAR, and AAD for the basic mechanism of alarm gener-
ation solely based on a trip point, and for the advanced mechanism
of alarm generation by exploiting alarm on/off delays. Second, a
systematic design of alarm systems is investigated based on the
three performance indices and the tradeoffs among them. The com-
putation of FAR, MAR, and AAD and the design of alarm systems
require the probability density functions (PDFs) of the univariate
process variable in the normal and abnormal conditions. Thus, a
new method based on mean change detection is proposed to es-
timate the two PDFs. Numerical examples and an industrial case
study are provided to validate the obtained theoretical results on
the FAR, MAR and AAD, and to illustrate the proposed perfor-
mance assessment and alarm system design procedures.

Note to Practitioners—Alarm systems are critically important
to the safety and efficient operation of modern industrial plants,
whose operations are monitored by continuous measurements of
various signals. However, industrial surveys have shown that oper-
ators of industrial plants receive far more alarms, many of which
belong to nuisance alarms, than they can handle. Relieving this
problem is based upon a satisfactory performance of the alarm
system for each univariate signal involved in the operation of in-
dustrial plants. This paper studies the performance assessment and
design of univariate alarm systems for basic mechanism of alarm
generation and for advanced one exploiting alarm on/off delays.
The obtained results are applicable to various industrial plants in-
cluding power, chemical, and petrochemical plants.

Index Terms— Averaged alarm delay (AAD), change detection,
false alarm rate (FAR), kernel PDFs, missed alarm rate (MAR),
performance assessment, univariate alarm systems.

1. INTRODUCTION

LARM systems are critically important to the safety and
efficient operation of modern industrial plants. The per-
formance of alarm systems has received increasing attention
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from both industrial and academic communities [1], [2], [4], [5],
[91-[14], [17], [19], [21]-[24].

The performance of alarm systems can be measured via basic
activation metrics such as the number of alarms per hour, peak
number of alarms per hour, number of high/low priority alarms
per hour, and alarm acknowledge ratio [4], [17]. For a univariate
alarm system, its performance can be assessed in many cases by
three indices, namely, the false alarm rate (FAR), missed alarm
rate (MAR), and averaged alarm delay (AAD). The FAR and
MAR measure the accuracy of an alarm system in detecting
the normal and abnormal conditions for the process variable
being monitored. A high value of FAR implies a large amount
of false alarms that would unnecessarily disturb operators. If
the MAR is excessive, then the designed functionality of alarm
systems would be severely degraded. The AAD measures the
alarm latency or promptness of the alarm system. If the AAD is
smaller, then the alarm becomes active more promptly after the
process variable being monitored runs into the abnormal condi-
tion, which leaves operators more time to respond to the alarm.

If the performance of alarm systems is not satisfactory, then a
new design of alarm systems is often required. The alarm limits
are suggested to change in a time-varying manner according
to recent mean and standard deviation values [8], [14], [19].
The alarm settings are determined based on the probability that
an alarm will occur for values preceding the alarm trip point,
and the probability that the process will continue on to a value
following activating alarms [10]. A geometric process control
method is proposed to deliver dynamically varying alarm limits
for multivariate alarm signals [5]. The guideline for setting the
deadband values is proposed in [11] to handle chattering alarms.
The alarm limits for correlated signals are selected to preserve
their correlation relationship for alarm data [23]. The design of
optimal linear and nonlinear filters for alarm systems are studied
in [7]. To the best of our knowledge, however, a systematic de-
sign procedure for univariate alarm systems to satisfy the per-
formance indices including FAR, MAR, and AAD may not be
available in the literature, except our earlier works in [12] and
[21].

In this paper, we will first investigate the definition and com-
putation of the FAR, MAR and AAD for the basic mechanism
of alarm generation solely based on a trip point, and for the
advanced mechanism of alarm generation by exploiting alarm
on/off delays. Second, we will propose a systematic design pro-
cedure to choose the trip point and/or the number of sample
delay for alarm systems based on the FAR, MAR and AAD, and
the tradeoffs among them. The computation of FAR, MAR and
AAD and the design of alarm systems require the probability
density functions (PDFs) of the univariate process variable in
the normal and abnormal conditions. Thus, the third contribu-
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Fig. 1. The measurement x(t) of the process variable x with a variation from
normal condition to abnormal one at the time instant ¢,.

tion of this paper is to propose a new method to estimate the
two PDFs under some mild assumptions. The new method ex-
ploits mean change detection techniques and statistical hypoth-
esis tests for separation of the normal and abnormal data, from
which the kernel-based method is used to estimate the PDFs.
Several numerical examples and an industrial case study are pro-
vided to validate the obtained theoretical results on the FAR,
MAR and AAD and to illustrate the proposed performance as-
sessment and alarm system design procedures. This paper is a
continuing study of our earlier works in [12] and [21], which
presented some preliminary results for the above first two con-
tributions.

The rest of this paper is organized as follows. Section Il is de-
voted to the definition and computation of the FAR, MAR and
AAD for the basic mechanism of alarm generation. Section III
studies the FAR, MAR, and AAD for alarm on/off delay. A sys-
tematic design procedure for alarm systems is investigated in
Section IV. Section V proposes the new method for estimating
the PDFs of the process variable being monitored in the normal
and abnormal conditions. Section VI provides an industrial case
study to illustrate the performance assessment and alarm system
design procedures in practice. Finally, some concluding remarks
are given in Section VIL.

II. PERFORMANCE INDICES FOR BASIC
ALARM GENERATION MECHANISM

This section studies the three performance indices, namely,
the FAR, MAR and AAD, for the basic alarm generation mech-
anism used in industry.

Consider the measurement of a process variable z, denoted
as a discrete-time signal 2:(¢) with sampling period h and its as-
sociated alarm trip point z;;, depicted in Fig. 1. For the basic
alarm generation mechanism, an alarm is raised if z(¢) exceeds
Ztp. Due to various reasons, including the randomness of z(¢)
and improper selection of z;,, two types of undesired alarms
may appear, namely, the false and missed alarms. A false alarm
is an alarm that is raised when the process variable z is be-
having normally; missed alarms occur when the process vari-
able x is behaving abnormally but no alarm is raised. The false
alarms may lead to losing the trusty of alarm systems due to
“cry wolf” effect, while the missed alarms would severely de-
grade the designed functionality of alarm systems. Hence, the
FAR and MAR are the two important indices to assess the per-
formance of alarm systems.

For the time being, let us assume that the PDFs of the process
variable z in the normal and abnormal conditions are known a
priori; the PDFs will be estimated from the measurements of x
later in Section V. Fig. 2 illustrates the PDFs, together with the
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Fig. 2. The PDFs of « under normal and abnormal conditions.

trip point z,. Denote the PDF for the normal condition as g(z)
(solid line in Fig. 2). The FAR as the probability of false alarms
is the area under the distribution curve ¢(z) for the values of z
greater than the trip point x,,, i.e.,

—+oo
FAR = / q(z)dz. (1)
In Fig. 2, the FAR is denoted by ¢;. Similarly, the MAR, the
probability of missed alarms is

MAR = / p(z)dz )
where p(z) is the PDF of z in the abnormal condition (dashed
line in Fig. 2). In Fig. 2, the MAR is denoted by po.

Besides the FAR and MAR, the AAD is another important
performance index for alarm systems. Suppose that the process
variable z in Fig. 1 is experiencing a variation from normal con-
dition to abnormal one at the time instant ¢y. Denote £, as the
time instant when the first sample point of z(t) is equal to or
larger than the trip point x¢, so that the alarm is raised. The
time difference between ¢( and ¢, is named as the alarm delay,
ie.,

Ty =ta —to.

Because of sampling, T is a discrete random variable with the
sample space {Oh, 1h,2h, ...}, where h is the sample period.
Note that £, > t( so that T} is always nonnegative since false
alarms ahead of ty should not be considered in order to have
a physically meaningful interpretation of the alarm delay. The
AAD is defined as the expected value of T}

Ty = E(T). 3)

The AAD measures the promptness of the alarm system: if T}; is
smaller, then the alarm is raised more promptly after x(¢) runs
into the abnormal condition, which leaves operators more time
to respond to the alarm.
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In general, the computation of T requires the knowledge of
multidimensional joint PDFs of z(tg), 2(tg + h), . . .. For sim-
plicity, z(t) is assumed here to be independent and identically
distributed (IID). For ¢ > tg (i.e., = is under the abnormal con-
dition), the PDF of z is p(x) (the dashed line in Fig. 2), and as
defined earlier in (2), p is the probability of  with the PDF p(z)
less than the trip point ;. For ease of notations, p; := 1 — p».
As x(t) is IID, the probability mass function of T;; = ih is

P(Ty =ih) = P(z(to) < @ip, ..., z(to + ih — h) < zyp,

z(to + ih) > x4p,) = pépl.

Thus, the time delay Tj; follows a geometric distribution; using
the mean expression of a geometric random variable (e.g., [20,
pp. 134-135]), the AAD is

oo

Ty=E(Ty) =Y ilwhpr = h22. @)
i=0 p1
Example 1: This example is to validate the FAR in (1), MAR
in (2), and AAD in (4) via simulation. The process variable x
is generated as a white Gaussian random process with a mean
change at ¢y, i.e.,

{x(t) ~ N(3,1), t<tp
~ 1

NG), >t )

The change time is tg = 1000h with the sampling period h =
1 s. The length of the data is 2000. The trip point z¢;, = 4.
Equations (1), (2), and (4) yield the theoretical values of the
FAR, MAR, and AAD

FAR = 0.1587, MAR = 0.1587, T, = 0.1886.

To verify these theoretical values, 500 independent realiza-
tions of the sequence {x(t)}729" are generated; for each real-
ization, a single estimate FAR (MAR) is provided as the ratio
between the observed number of alarms (no-alarms) to the data
length of (t) in the normal (abnormal) condition (equal to 1000
here). Based on the 500 independent realizations, the sample

mean and standard deviation of FAR (MAR) can be obtained

m(FAR) = 0.1589,
m(MAR) = 0.1589,

s(FAR) = 0.0115
s(MAR) = 0.0118

which are consistent with the theoretical values.

Since the actual change time ; is available, the alarm delay
for each realization is observed. The average of the alarm delays
in the 500 independent realizations is regarded as one sample of

the AAD, denoted as T;. To obtain a number of such samples,
600 sets of the above 500 independent realizations are gener-

ated, which provide 600 samples of 7,;. The sample mean and
standard deviation of these 600 samples are

m(Ty) = 0.1875, s(T4) = 0.0206
which support the theoretical value T; = 0.1886. O

III. PERFORMANCE INDICES FOR ALARM ON/OFF DELAY

This section studies the FAR, MAR, and AAD for the alarm
on/off delay [2], also known as alarm delay timer [4], which is

widely used in practice. With the alarm on/off delay, an alarm
will be raised/cleared if and only if more than n consecutive
samples of z(t) in Fig. 1 are larger/smaller than the trip point
Zyp. Thus, the basic alarm generation mechanism in Section II
can be regarded as a special case for the number of sample delay
n = 1. This section develops the corresponding FAR, MAR and
AAD when the on/off-delay is exploited.

The n-sample alarm on/off delay involves n no-alarm states
and n alarm states, and its working mechanism can be described
by Markov chains. The transition among these states for the
process variable x in the normal condition is represented by the
Markov chain in Fig. 3. For x in the normal condition, the PDF
of z is g(x) (the solid line in Fig. 2); as defined earlier in (1), ¢;
is the probability of x with the PDF ¢(z) greater than the trip
point z¢p,, and for ease of notations, g» := 1 — ¢;. If the alarm
on/off delay for a certain sample z(¢) is at the ith no-alarm
state NA; fori = 1,2,...,n, and the next sample z(¢; + h) (h
is the sampling period) exceeds w1y, then the current state NA;
goes to the (¢ + 1)th no-alarm state NA;y; for i < n, or to the
alarm state A, for ¢ = n. If (¢, + h) is less than z,, then the
current state NA; directly goes back to the first no-alarm state
NA;. Similarly, if the alarm on/off delay for a certain sample
x(t2) is at the ith alarm state A; for i = 1,2,...,n, and the
next sample x(t2 + h) is less than zy,, then the state A; goes to
the (¢ + 1)th alarm state A;; for ¢ < n, or to the no-alarm state
NA; fori = n.If z(t2 + h) is larger than x4, then the state A;
goes back to the first alarm state A;.

Proposition 1: For the n-sample alarm on/off delay, the FAR
is

gt (L+a+---+a")
@ (Lt -+ 7)) +a5 (Lha+--+ai ™)
(0)

Proof of Proposition 1: To simplify the notation, the states
NAq, NA,,...,NA,, Ay,..., A, are defined as the states
1,2,...,n—1,n,...,2n, respectively. Let T} ;, be the number

of steps taken for the transmission from state ¢ to another state
k, and Pi(lk? as the probability of T; j, = [, i.e.,

FAR=

l
Pil = P(Ti = 1).

When ! = 1, Pi(_}c) denotes the one step transition probability.
For the Markov chain in Fig. 3, the matrix Q € R?"*2" of one
step transition probability is

'q2 ql 0 e 0 0 0 oo 0'
@ 0 ¢ --- 0 0 0 --- 0
@ 0 -+ 0 ¢ 0 0 --- 0
Q=10 0 --- 0 ¢ ¢ 0 --- 0
0 0 0 -~ qg 0 ¢qg --- 0
0 0 0 -~ ¢ 0 0 - @
L 0 O -~ ¢¢ O O --- 01U

Here, the element locating at sth row and the jth column of
the matrix @ is the one step transition probability of the state
from 7 to j. Based on the theory of the stationary distribution
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Fig. 3. Markov chain for the n-sample alarm on/off delay of x(t) in the normal
condition.

[15, pp. 727-729], for an irreducible ergodic Markov chain, the
limiting probabilities

m, = lim P >0

exist, being independent of the initial state, and satisfy the
equality

Sim=1. )
k

Because the Markov chain has only a finite number of states,
these limiting probabilities satisfy the equality

II=1Q (8)
where
7T2n].

H:[7rl7r2

Rewrite (8) as

(G2(T1+ -+ Tp) + 2Ton = T
q1m1 = T2
q172 = 3
qQiTp—1 = Tn - )
q1(7rn+"'+7r2n) = Tn41
2Tn4+1 = Tn42
\ 2T2p—1 = T2n

From (9), we have

T2 = 171
(10)
Tn=¢q) ™1
and
Tp42 = 42741
: (11)

n—1
T2n = {4y Tn+1

Using (10) and (11), (7) and the first equality in (9) can be,
respectively, written as

{71'1 (I+a+ 4@ ) +mp(l+ e+ +¢ )=1
eri(l+qa+ - +q ")+ @mg =m

Fig. 4. Markov diagram with n-sample delay of z(¢) in the abnormal
condition.

from which 7,1 is obtained as
qr
Gl+e+ -+ ) +@ (I+a+-+a4)
(12)

Tn41=

From the Markov chain in Fig. 3, the FAR is the sum of proba-
bilities of all the alarm states

:7rn+l+"'+7r2n
= Tn41 (1+Q2+-~-+q;l_1)

where the last equality is from (11). This result, together with
(12), proves (6). O

The state transition for z(¢) in the abnormal condition is pre-
sented by the Markov chain in Fig. 4, where ps is the probability
of z with the PDF p(z) (the dashed line in Fig. 2) less than the
trip point zy,, and p; := 1 — po. Thus, the MAR is the sum of
probabilities of all the no alarm states, i.e.,

MAR = P(NA;) + P(NAy) + -+ - + P(NA,,).

The MAR is associated with py, p2, and n as given in the next
proposition.

Proposition 2: For the n-sample alarm on/off delay, the MAR
is
Py (1+pi+--+pi7")

Py (Ltprt--+pp ) 0} (Lbpe - 4p5~")
(13)

MAR =

Proof of Proposition 2: For the Markov chain in Fig. 4, the
matrix P € R?"%2" of one step transition probability is

'p2 pl 0 ce 0 0 0 ce 0'
pp 0 pi -~ 0 0 O -~ 0
pp 0 -+ 0 pr O O --- 0O
P=|0 0 -+ 0 pi po 0 - 0
0 0 0 e P1 0 P2 0
0 0 0 - pr 0 0 - po
Lpo O O -+ pp O O --- 0J

Then, (13) can be proved by taking a procedure similar to that
in the proof of Proposition 1. O
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Fig. 5. Markov diagram of the n-sample on/off delay for the computation of
AAD.

With respect to the AAD, the definition is the same as (3)
in Section II, except that ¢, refers to the time instant when the
first alarm is raised by using the n-sample alarm on/off delay. It
is reasonable to assume that the alarm is inactive at the time
instant (¢p — h) and do not consider the process of clearing
the alarm once the alarm is raised. Hence, denote the state at
the time instant (t9 — h) as the first no-alarm state NA; and
the process is carried forward to the alarm state A; with the
same procedure in Fig. 4. Because here we are only concerned
with the first alarm (when the state reaches to the alarm state A
for the first time), only the top half of the Markov chain given
in Fig. 4 is considered. In particular, when the state reaches to
the alarm state Ay, it will stay in the state A; with probability
1 for the computation of AAD. This operating mechanism is
illustrated by the Markov chain in Fig. 5.

Remark: The state at the time instant (¢o — h) does not have
to be NA 1, and could be any one of the no-alarm states, NA; for
i =1,...,n;however, only the state NA is considered for two
reasons. i) It is ready to obtain from the proof of Proposition 1
that the probability of being in the state NA; is

¢ '
+g5 )+ (14

P(NA;) =

N [ +a )
where ¢; is the probability of x in the normal condition with
the PDF ¢(z) taking values greater than z,. Thus, the proba-
bility of starting with NA; is much larger than the probability
of the rest states combined, since ¢; is usually quite small. ii)
In practice, the normal and abnormal PDFs of x are usually not
available and have to be estimated. If the state at the time in-
stant (top — h) is NA; for ¢ > 1, i.e., all the samples z(to —
ih),...,z(to — h) are greater than z,, and z(to — ih — h)
is smaller than z,, then the proposed method for estimation of
normal and abnormal PDFs in Section V would very likely clas-
sify z(tg — ih),...,z(to — h) into the abnormal data section.
Thus, the sample right before the detected change point from the
normal to abnormal is less than z,, and the corresponding state
is NA;. Owing to these two reasons, we ignore the case that the
time instant (¢o — h) is associated with the other no-alarm state
NA,; for: > 1.

Proposition 3: 1f the state at the time instant (¢ — h) is NA;,
for the n-sample alarm on/off delay, the AAD is

T h(l—P?—Pzp?).

d= — (14)

D2py
Proof of Proposition 3: Define the states NAj,
NA,,...,A; as the states 1,2,...,mn + 1, respectively.

According to the definition in (3), the AAD for the n-sample
alarm on/off delay is

Ty = E(Ty) = E(hT1 nt1) — b (15)
where T ,, 41 is the number of transmission steps taken from
state 1 to the alarm state n + 1. The subtraction of A in (15)
is owing to the fact that the state 1 occurs at the time instant
(t() - h)

The computation of E (T} ,+1) can be obtained as follows.
First, the moment generating function of the discrete random
variable T; ,, 41, fori € {1,2,...,n+ 1} is

I; n+1( ) sz(rZ-i—lZl (16)
1=0

where PL(72+1 := P(T; n4+1 = 1) and z := ¢’ [15]. Differenti-

ating T; .1 (2) with respect to z yields

j in+1(z Zl 1n+1Z

which implies that the mean transmission step from state ¢ to
state n 4 1 is

ZIP, D=

Thus, E(T4 ,+1) in (15) can be calculated as

1 n+1

d

E(Th 1) = Erl,n+1(z) (17)

z=1

Second, using the Chapman—Kolmogorov Equation ([15, pp.
705]), namely

ZP(l)P(l 1)

JEI

and the definitions in Markov chain theory

= l
Lint1(z) = ZPL(TEHZI
1=0
0 = 1 -1
= PL(n)+120 + ZZP( )Pj(n—l—% !
=1 jel
_ M) [+ -1 -
Jer =1

=> 2P Tin(2)

jeI

(18)
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where I is the whole state-space {1,2,...,n + 1}. Since the
state » + 1 is a recurrent state, (16) for ¢ = n + 1 reduces to

I
Crtingi(z) = ZPrs,-i)-l,n+lzl =1
1=0

which is obtained based on two definitions in Markov chain
theory for a recurrent state k

l

{ Plg,l)c —
P 1
Ig,l)c

From (18) and the Markov chain in Fig. 5, we have

0, forl >0
1, forl=0

Pint1(2) = z2poling1(2) + 2 20 41(2)
Lont1(2) = 2poll1nt1(2) + 2p, 3 n41(2)
Pont1(2) = 2pol'1n41(2) + 20 Dot g1 (2)
(19)
AsTp41n+1(2) = 1, solving (19) for T'y ,,41(2) gives
Zn n
1—‘1,n+1(2) = 1 D) 2 Mgy o— 1"
— ZP2 — Z°p2p1 — - — Z7P2Py
Therefore, (17) becomes
d (1-p1)
E(Tins1) = —Tipia(z)] =01
(Trn41) = - Trnaa )2:1 o
and the AAD in (15) is
Ty = hE(Tiny1) — h = hw.
i P2P1
O

Example 2: This example is to validate FAR in (6), MAR in
(13), and 1} in (14) via simulation. The simulation configura-
tion is the same as that in Example 1, except that the alarm is
generated via an alarm on/off delay with the number of sample
delay n = 3. Equations (6), (13), and (14) give the theoretical
values of the FAR, MAR, and AAD, respectively

FAR = 0.0142, MAR = 0.0142, T, = 3.2804.

In particular, ¢; = 0.1587 (as computed in Example 1) is quite
small so that (14) is expected to be accurate enough. To verify
these theoretical values, the same types of Monte Carlo simula-
tions as those in Example 1 are implemented to provide

m (FAR) = 0.0144, s(FAR) = 0.0082
m (MAR) = 0.0143, s(MAR) = 0.0085
m (T,) = 3.2805, s(Tq) = 0.0945,

which are in line with the above theoretical values. O

IV. DESIGN OF ALARM SYSTEMS BASED ON
THREE PERFORMANCE INDICES

With the above results for the FAR, MAR, and AAD, we are
ready to design alarm systems in a systematic manner based on

0.06

o
o
=

o
©
N
Average Alarm Delay (sec)

Probability of False/Missed Alarm

|

|
3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
Trip Point

Fig. 6. The relation between FAR/MAR/AAD and the trip point.

the three performance indices. The design problem is formu-
lated as

Given the PDFs of x(¢) in the normal and abnormal condi-
tions, how to choose the trip point and/or other design param-
eters of an alarm system to satisfy certain requirements on the
FAR, MAR, and AAD?

Here, the alarm system could be the basic one in Section II, or
the alarm on/off delay in Section III. For the later, the number
of sample delay n is another design parameter along with the
trip point z,. Because the basic alarm generating mechanism
in Section II is the special case with n = 1 for alarm on/off
delay, the design procedure is presented here for the alarm on/off
delay. Three cases will be investigated.

* Case I: Design x4, for a fixed value of n.

* Case II: Design n for a fixed value of .

* Case III: Design both 7 and 2y,

A. Case I: Design x, for a Fixed Value of n

For a fixed value of n, the design of z, is based on two trade-
offs between the FAR and MAR/AAD. Example 3 illustrates the
design principle.

Example 3: The process variable x is generated in the same
way as that in Example 1. The objective is to design xy; for
the alarm on/off delay with n = 4 to meet the requirements:
FAR < 4%, MAR < 4%, AAD < 8h forh =1s.

Based on the PDFs in (5), ¢1 = 0.1587, g2 = 1 — q1,
p2 = 0.1587, p1 = 1 — py. Then, from (6), (13) and (14),
the relations between FAR/MAR/AAD and z¢, are obtained for
the alarm on/off delay with n = 4, and are shown as the three
plots in Fig. 6. Clearly, there are two tradeoffs between the FAR
and MAR/AAD in Fig. 6. That is, when =z}, gets larger, FAR is
decreasing but MAR and AAD are increasing, and vice versa.
Hence, the requirements of FAR, MAR, and AAD will impose
their own valid ranges of z;;, based on these tradeoffs. The in-
tersection of these ranges will be the final choice of z;, to meet
all the requirements of FAR, MAR and AAD; if the intersec-
tion is empty, then there is no way to meet all the requirements
by solely changing x;,. For this example, based on the three
plots in Fig. 6, satisfying the requirements on the FAR, MAR,
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Fig. 7. The relation between FAR/MAR/AAD and the number of sample
delay n.

and AAD demands the different ranges of z;, as x, > 3.59,
Tep < 4.41, and zyp, < 4.35, respectively. Their intersection
provides the valid range z¢,, € [3.59, 4.35]. O

B. Case II: Design n for a Fixed Value of

For the alarm on/off delay, the number of sample delay 7 is
an extra design parameter. For a fixed value of z;,, the design of
n is based on two tradeoffs between the FAR/MAR and AAD.
Example 4 illustrates the design principle.

Example 4: The process variable x is generated in the same
way as that in Example 1. The objective is to choose n for the
alarm on/off delay with a fixed value of z, = 4.0 to meet
the requirements: FAR < 1%, MAR < 1%, AAD < 8h for
h=1s.

Similar as in Example 3, the relations between FAR/
MAR/AAD and n can be obtained from (6), (13), and (14) with
the fixed value of z;, = 4.0. The relations are shown as the
three plots in Fig. 7, where exists two tradeoffs between the
FAR/MAR and AAD. For a fixed value of z,,, a larger value of
n leads to decrements of FAR and MAR, but to an increment
of AAD. These tradeoffs will confine the possible ranges of 7,
whose intersection is the final valid range of n. Based on the
three plots in Fig. 7, it is straightforward to see that n = 4 or
n = 5 is the choice to satisfy all the requirements. O

C. Case Ill: Design Both n and x4,

If both » and z¢;, are free for design, the design procedure is
more complex than those in Sections IV-A and I'V-B. The basic
principle is to determine the valid values of n first and design
xp, for each valid value of n. The design procedure is illustrated
via the following example.

Example 5: The process variable x is generated in the same
way as that in Example 1. The objective is to design xt, and n
for the alarm on/off delay to meet the requirements: FAR < 1%,
MAR < 1%, AAD < 10h for h = 1s.

The design procedure goes as follows: First, based on (6) and
(13), the plots of MAR versus FAR by varying x,, for different
values of n can be obtained in Fig. 8. The curves within the
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Fig. 8. The relation between FAR and MAR for alarm on/off delay.

Average Alarm Delay (sec)

Trip Point

Fig. 9. The relation between AAD and trip point for alarm on/off delay.

small rectangle area in Fig. 8, e.g., the curve AB therein, can
meet the requirements on FAR and MAR. These curves confine
the valid range of n to be n > 4. Second, via (14), the relation
between AAD and zy, for difference values of n is plotted in
Fig. 9, which says that the valid range of n is n € [1,9] in order
to meet the requirement of AAD. Thus, the valid range of n is
[4, 9]. For each value of n € [4,9], the valid ranges of zy, for
satisfying the requirements of FAR and MAR are obtained from
the corresponding curves shown in Fig. 8, and are listed in the
second column of Table I; in order to satisfy the requirements
of AAD, the valid ranges of z, are obtained from Fig. 9, and
are the ones listed in the third column of Table I. Finally, we can
select the intersection of the valid ranges in the second and third
columns of Table I as the proper range of x,;, for each value of
n. O
Table I provides the valid ranges of n and . However, only
one pair of values of n and z;, can be implemented in the alarm
system. Thus, it is necessary to choose the optimal values of
n and z¢, in some manner. Depending on the preference on
FAR, MAR, and AAD for each specific situation in practice,
different optimization criteria can be formulated to obtain the
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TABLE 1
THE VALID RANGES OF &, FOR EACH VALUE OF n € [4, 9]

n T1p(FARMAR)| 2:p(AAD) | @sp

7 [3.834.17] [3,4.50] [3.834.17]
5 [3.67,4.33] [3,421] [3.67,4.21]
6 [3.56,4.44] [3,3.96] [3.56,3.96]
7 [3.47,4.53] 3,3.72] [3.47,3.72]
8 [3.41,4.59] [3,3.49] [3.41,3.49]
9 [3.36,4.64] 3,3.22] 0

TABLE II

THE OPTIMAL VALUE OF %, AND THE MINIMAL LOSss FUNCTION
J(Z¢p, ) FOR EACH VALID VALUE OF n

n | x¢p | minimal value of J(z¢p,n)
41 397 1.7063
5 | 3.88 1.5762
6 | 3.76 1.7764
7 | 3.65 2.0171
8 | 349 2.3708

optimal values of n and x;,. One possible choice is to minimize
AAD subject to some upper bounds of FAR and MAR. Despite
the variation of optimization criterion, the optimal values of n
and z¢;, have to be obtained by following the same principle.
Hence, we may choose a weighted-sum loss function as

_ L FAR | MAR |, AAD
T “IRFAR " “?RMAR " “*RAAD

J(Tep,m) (20)
to illustrate the principle. Here, RFAR, RMAR, and RAAD are
the requirements of FAR, MAR, and AAD, respectively, and
w1, we, and w3 are the weights of FAR, MAR, and AAD, re-
spectively. Then, the optimal values of x;, and n are the ones
minimizing the loss function in (20), i.e.,

(Ztp, ) = argmin J(x¢p,, n).

Since the FAR, MAR, and AAD, respectively, given in (6), (13),
and (14) are nonlinear functions of n and x+,,, a two-dimensional
grid search is implemented to find the optimal values of z;, and
n.

Example 6: Let us continue the design procedure in Example
5, where RFAR = 1%, RMAR = 0.01, and RAAD = 10hA.
Suppose that these three performance indices are equally impor-
tant so that w; = 1, wp = 1, and w3 = 1. The two-dimensional
grid search method is exploited to search for the optimal values
of z;, and n, within their valid ranges given in Table I from Ex-
ample 5. For each valid values of n, the corresponding optimal
value of z, and the minimal loss function J(z,, n) are listed in
Table II, which gives the optimal values n = 5 and xy;, = 3.88.
Here, the step size in the grid search of x, is chosen to be 0.01.
O

V. ESTIMATION OF PDFs

This section proposes a new method to estimate the PDFs of
the process variable = in the normal and abnormal conditions,

which are required for the calculation of the FAR, MAR, and
AAD. To be specific, the PDFs estimation problem is described
as:

Given the collected data {x(¢)}~_, of the process variable z,
how to estimate the PDFs of z(¢) in the normal and abnormal
conditions?

The critical step to solve this problem is to separate the
normal and abnormal sections of {z(¢)}L_;. Doing so is pos-
sible under the following assumptions.

A1) The two PDFs of z in the normal and abnormal condi-

tions have different mean values;

A2) The process knowledge that the mean values belong
to either the normal condition or the abnormal one is
known a priori.

Assumption Al says that the process variable z experiences
some mean changes; hence, we exploit the mean change detec-
tion techniques to locate the mean change points in {z(#)}7_,.
For Assumption A2, the current value of x¢, usually is a good
threshold for the mean values to be compared with. For instance,
if z¢;, stands for a high-value alarm trip point, then a data section
having the mean value statistically larger than z;, will belong
to the abnormal condition.

There are a wide range of change detection techniques in
literature, e.g., Shewhart chart, moving average charts, cumula-
tive sum procedures, generalized likelihood ratio test, Bayesian
and information criterion approaches [3], [6]. Most of these
techniques are parametric in assuming the initial distribution
or the signal model structure to be known a priori, e.g., = is
a Gaussian random process or takes the autoregressive model
structure. However, usually it is very difficult to know this
kind of information in practice. In addition, the collected data
{x(t)}I_, may contain multiple mean changes instead of a
single one.

The proposed method of estimating the PDFs is based on the
nonparametric approach for one mean-change point detection
proposed by Pettitt [16]. This non-parametric approach does
not suffer from the above-mentioned problems for parametric
change detection techniques, and is very effective in detecting
change of mean values. However, it cannot be used directly to
find multiple change points. Here we revise it by adopting the
idea of bisection method. The proposed method is an offline
method to estimate the normal and abnormal PDFs for histor-
ical data {z()}L_; it consists of the following steps:

Step 1: For {z(t)}Z_,, find one mean change point as follows
[16]:

» Calculate the test statistic Uy = Vigr and Uyr =

U1+ Virfort =2,3,...,T, where

Vir = 3 sen(a(t) = o).

* Find the time instant ¢y, maximizing |Uy | and compute
the corresponding P-value as

_ 2
6 max Uy

P =2exp 7_’2+T3
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* Choose the probability of type I error «, e.g., « = 0.01,
and define the null hypothesis, namely, z(¢mnax) is not a
mean change point. If P < «, reject the null hypothesis so
that (tmayx ) is the change point of {z(t)}1_,. If P > «,
the null hypothesis cannot be rejected and no change point
can be found.

Step 2: Divide {x(#)}~_, into two subsections: {z;(¢)}imy*
and {z2(t)}{L, 41 according to tmax. Go to Step 1 for each
subsection to find their own one change point. Repeat Steps 1
and 2 until no further change points can be found.

Step 3: After finding all the change points, {z(¢)}Z_, has
been isolated into several data sections. For each data section,
the sample mean is calculated and compared with the trip point
Zp. Here, a standard T-test (see, e.g., [20, Section 10.7]) is used
for the comparison as follows. Let one of the data sections be
denoted as {z(t) };L,, . For this data section, the Student’s ¢-dis-
tributed statistic is computed

IE—LIZ'tp

s/vti—to

Here, T and s are the sample mean and standard deviation of z,
respectively, i.e.,

t=

ty
_ t=t, z(t)
r=——————
t1 —to+1
and
t _
o e -
- t1 — to '

If ¢ is larger (smaller) than the critical value g, 4,
(—t8,t,—t, ), then the sample mean T is statistically larger
(smaller) than ¢, and this data section is regarded as the one
in the abnormal (normal) condition; otherwise,  is statistically
equal to z;,, and this data section is discarded and not included
in the subsequent PDF estimation. Here, the probability of type
I error is denoted as [, e.g., B = 0.05. All the data sections
regarded in the abnormal (normal) conditions are put together
into one single group, referred to as the abnormal (normal) data.

Step 4: The PDFs of  in the normal and abnormal conditions
are now ready to be estimated based on the normal and abnormal
data obtained in Step 3. Here, the kernel-based method is used
to estimate the PDFs, using the Gaussian kernel function (see,

e.g., [18])

K(z) = exp(—z2/2).

1
V2T
Example 7: This example illustrates the proposed method for

the estimation of the PDFs. The collected data of z is generated
as

x(t) ~ N(0,0.5%), t < 500

z(t) ~T(3,0.7), 500 <t < 1300
z(t) ~ N(0,0.5%), 1300 <t < 1800 .
z(t) ~T(3,0.7), 1800 < t < 2600
z(t) ~ N(0,0.5%), 2600 <t < 3100

Thus, r experiences mean changes at the time instants 500,
1300, 1800, 2600, with Gaussian and Gamma PDFs as the

2000 2500 3000

t

0 500 1000 1500 3500

Fig. 10. U, r for the data section z(1 : 3100).

x 10°

1500 2000 2500 3000
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~4000 L L L L L L . . L
2600 2650 2700 2750 2800 2850 2900 2950 3000 3050 3100

t

Fig. 11. U, 7 for the data subsections (1 : 2599) (top) and x(2600 : 3100)
(bottom).

normal and abnormal distributions, respectively. The trip point
sz = 1.

First, for the whole collected data z(1 3100), the test
statistic Uy 7 is calculated, as shown in Fig. 10. The time
instant maximizing |U,r| is ¢ = 2600 with the P-value
P = 1.03 x 10755, Choose the probability of type I error to
be « = 0.01. As P < «, the time instant 2600 is correctly
detected as a mean change point.

Second, for the data sections z(1 : 2599) and z(2600 :
3100), the test statistics U, r are shown in Fig. 11. The maxi-
mums of |U; 7| are located at t = 502 with P = 1.25 x 107172
and t = 2954 with P = 0.9457, respectively. The former
P-value is less than «, while the later one is not. Thus, we reach
two correct conclusions: the time instant 502 is a mean change
point for the data section (1 : 2599), while the data section
2(2600 : 3100) has no mean change.

Similarly, the procedure is repeated until no further change
points can be found. Here, the procedure stops at the fourth itera-
tion. The detected change points and the corresponding P-values
are listed in Table III.
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TABLE III
THE DETECTED CHANGE POINTS AND THE CORRESPONDING P-VALUES
Change Points P-value
502 1.25 x 10~172
1300 1.47 x 10797
1800 9.31 x 10791
2600 1.03 x 10795
TABLE IV

CLASSIFICATION OF ISOLATED DATA SECTIONS INTO THE
NORMAL AND ABNORMAL DATA

Normal Data Abnormal Data
x(1:501) x(502:1299)
x(1300:1799) x(1800:2599)
x(2600:3100)
0.8 T T T T
0.7 | b
0.6 B
0.5} b
Normal

Abnormal

Original/Estimated PDFs of x
=] o
w S

=
N
T

011

Fig. 12. The estimated PDFs based on the normal and abnormal data (solid
line: original PDFs; dashed line: estimated PDFs).

Next, as described in Step 3, the normal and abnormal data
are obtained based on all the detected change points and x;, =
1. The classification of the isolated data sections are given in
Table IV, using the probability of type I error 5 = 0.01. Fi-
nally, the two PDFs for z in the normal and abnormal condi-
tions are estimated via the kernel-based method, as shown in
Fig. 12, where the true PDFs are given as well for the purpose
of comparison.

VI. INDUSTRIAL CASE STUDY

In this section, an industrial case study is presented to illus-
trate the procedure of assessing the performance of an alarm
system, and redesigning the corresponding parameters of the
alarm system to meet with the requirements of FAR, MAR, and
AAD.

The process variable x is the pressure of the main steam
driving the power turbine for a thermal power plant at Weifang,
Shandong Province, China. Owing to the time-varying oper-
ating conditions, the steam pressure experiences a large scale
of amplitude variations. The current alarm system for the steam
pressure is the basic one in Section II, with the trip point ¢, =
23.6. When the amplitude is less than 23.6, an alarm will be

245

24 i

Amplitude
N
w
[9,]

23 1

225

Fig. 13. The time trend of the industrial process variable.

TABLE V
THE DETECTED CHANGE POINTS AND THE CORRESPONDING P-VALUES

Change Point P-value

9395 1.10 x 10— 144
18354 0

25065 0

33886 6.80 x 1072
39063 0

46135 0

54410 0

63505 9.59 x 10—228

raised. From the DCS database, 6.8 x 10* data points, shown in
Fig. 13, are collected with the sampling period h = 1 s, standing
for the routine operation of the thermal power plant for 19 h on
July 3, 2010.

Our objective is to assess the current performance of the alarm
systems and to design the parameters of the alarm system if
necessary, in order to satisfy the requirements: FAR < 5%,
MAR < 5%, AAD < 5.

The very first step is to estimate the PDFs of x in the normal
and abnormal conditions via the proposed method in Section V.
The detected change points and the corresponding P-values are
listed in Table V; here the probability of type I error is chosen
to be o« = 0.05. By comparing with the trip point 2y, = 23.6,
using the hypothesis tests (the probability of type I error is § =
0.05) in Step 3 of Section V, the isolated data sections are clas-
sified into the groups of normal and abnormal data, as given
in Table VI. The estimated PDFs based on the normal and ab-
normal data are shown in Fig. 14.

Second, using the estimated PDFs in Fig. 14, the current per-
formance indices of the alarm system are respectively obtained
by (1), (2), and (4), FAR = 14.86%, MAR = 12.04%, and
AAD = 0.1369 s. The FAR and MAR are much larger than their
requirements, and the alarm system needs to be redesigned.

We consider designing x,, with the basic alarm generation
mechanism unchanged. This is a special case for the number of
sample delay n = 1 in Case I at Section IV-A. According to the
relation between FAR/MAR/AAD and z;,, the requirements of
FAR < 5% and MAR < 5% impose the valid ranges of z,
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Fig. 14. The estimated PDFs for normal and abnormal data.

TABLE VI
CLASSIFICATION OF ISOLATED DATA SECTIONS INTO THE
NORMAL AND ABNORMAL DATA

Normal Data

Abnormal Data

x(1:18353)

x(18354:25064)

x(25065:39062)

x(39063:46134)

x(46135:68873)

TABLE VII
PERFORMANCE INDICES AFTER DESIGNING n FOR THE
FIXED VALUE OF 2y, = 23.6

n FAR MAR AAD

2 0.0468 0.0305 1.4294

3 0.0116 0.0060 2.8988

4 0.0025 0.0010 4.5694
TABLE VIII

THE VALID RANGES OF THE TRIP POINT w, FOR
DIFFERENT VALUES OF n

n Ttp(FARMAR) | z+,(AAD) Ttp

2 [23.55,23.60] [23.15,24] [23.55,23.60]
3 [23.45,23.70] [23.40,24] [23.45,23.70]
4 [23.38,23.76] [23.58,24] [23.58,23.76]
5 [23.34,23.78] [23.77,24] [23.77,23.78]

to be ¢, € [23,23.37] and x4, € [23.79, 24], respectively. The
two ranges have no intersection; as a result, it is impossible to
satisfy all the three requirements by simply designing z,.

Next, we use the alarm on/off delay and design the number of
sample delay n for the current trip point z, = 23.6. Following
the design procedure in Section IV-B, the three requirements
FAR, MAR, and AAD confine the valid ranges of n tobe n > 1,
n > 1, and n < 5 respectively, based on the relation between
FAR/MAR/AAD and . Hence, the valid range of n to meet with
all the three requirements is 1 < n < 5, and the performance
indices after design are listed in Table VII.

We can follow the procedure in Section IV-C to design z¢,
and n, if both parameters are free to be changed. According
to the relation between FAR and MAR and the relation be-
tween AAD and xy, the valid ranges of x¢, and n are given

TABLE IX
MINIMAL VALUES OF THE LOSS FUNCTION FOR
DIFFERENT VALUES OF nn AND Zy,,

n Ttp minimal value of loss function
2 | 23.58 7.7036
3 | 23.58 22133
4 | 23.59 1.2548
5 | 23.77 3.8856

in Table VIIL. If necessary, we can also take the same path in
Example 6 to search for the optimal values of n and z,,. Here,
the weights in (20) are chosen as w1 = wy = ws = 1. The
two-dimensional grid search is implemented to find out the op-
timal values within the valid ranges given in Table VIII. The
minimal values of the loss function for different values of n and
2yp are listed in Table IX, which says that the optimal parame-
ters are n = 4 and z, = 23.59.

VII. CONCLUSION

This paper studied the performance assessment and system-
atic design for univariate alarm systems, based on three perfor-
mances indices, namely, FAR, MAR, and AAD. Equations (1),
(2), and (4) gave the FAR, MAR, and AAD for the basic mecha-
nism of alarm generation solely based on a trip point, while (6),
(13), and (14) presented the counterparts for alarm on/off delay.
The computation of FAR, MAR, and AAD was validated via
simulation in Examples 1 and 2. Three cases were investigated
for the systematic design of the trip point and/or the number of
sample delay, based on the three performance indices. A new
method was proposed to estimate the PDFs of the process vari-
able in the normal and abnormal conditions. Numerical exam-
ples and an industrial case study were provided to illustrate the
design procedure, the effectiveness of the proposed method in
estimating two PDFs, and the application of the performance as-
sessment and design of alarm systems in practice.

In this paper, the FAR, MAR, and AAD are developed under
the assumption that the process variable «x is IID, which is cer-
tainly not satisfied in some practical situations. For instance, the
change from the normal to abnormal condition may experience
some dynamic variation instead of an abrupt change. As a result,
the derived expressions, e.g., (6), (13), and (14), may yield bi-
ased estimates. Thus, one of the future studies is to devise ways
to compute FAR, MAR, and AAD for these more complicated
situations. In addition, there are some other alarm generation
mechanisms frequently adopted in industry, along with the basic
one and alarm on/off delay in this paper. Another future work
is to study the performance assessment and design problems for
these alarm systems.
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