
This article was downloaded by: [University of Alberta]
On: 25 April 2015, At: 01:37
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

Click for updates

International Journal of Control
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/tcon20

Sampled-data consensus in switching networks of
integrators based on edge events
Feng Xiaoa, Xiangyu Mengb & Tongwen Chenb

a Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin 150080,
China
b Department of Electrical and Computer Engineering, University of Alberta, Edmonton,
Alberta T6G 2V4, Canada
Accepted author version posted online: 20 Aug 2014.Published online: 18 Sep 2014.

To cite this article: Feng Xiao, Xiangyu Meng & Tongwen Chen (2015) Sampled-data consensus in switching networks of
integrators based on edge events, International Journal of Control, 88:2, 391-402, DOI: 10.1080/00207179.2014.955530

To link to this article:  http://dx.doi.org/10.1080/00207179.2014.955530

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the
Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and
are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and
should be independently verified with primary sources of information. Taylor and Francis shall not be liable for
any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever
or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of
the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

http://crossmark.crossref.org/dialog/?doi=10.1080/00207179.2014.955530&domain=pdf&date_stamp=2014-08-20
http://www.tandfonline.com/loi/tcon20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207179.2014.955530
http://dx.doi.org/10.1080/00207179.2014.955530
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


International Journal of Control, 2015
Vol. 88, No. 2, 391–402, http://dx.doi.org/10.1080/00207179.2014.955530

Sampled-data consensus in switching networks of integrators based on edge events

Feng Xiaoa,∗, Xiangyu Mengb and Tongwen Chenb

aInstitute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin 150080, China; bDepartment of Electrical and
Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada

(Received 21 March 2014; accepted 13 August 2014)

This paper investigates the event-driven sampled-data consensus in switching networks of multiple integrators and studies
both the bidirectional interaction and leader-following passive reaction topologies in a unified framework. In these topologies,
each information link is modelled by an edge of the information graph and assigned a sequence of edge events, which activate
the mutual data sampling and controller updates of the two linked agents. Two kinds of edge-event-detecting rules are proposed
for the general asynchronous data-sampling case and the synchronous periodic event-detecting case. They are implemented
in a distributed fashion, and their effectiveness in reducing communication costs and solving consensus problems under a
jointly connected topology condition is shown by both theoretical analysis and simulation examples.

Keywords: sampled-data consensus; switching topologies; event-driven data sampling; asynchronous data sampling

1. Introduction

Sampled-data consensus originated as an interesting re-
search topic in the distributed control of large-scale net-
works of multiple agents, in which each individual agent
usually has limited data-collecting and communicating ca-
pacities. Its research focuses involve the design of con-
sensus protocols (distributed control laws) to drive the
concerned states of agents to an agreement based on lo-
cal sampled information of their neighbours. Indeed, in
networks with digital information channels and restricted
bandwidth, sampled-data techniques offer many benefits,
such as lower communication costs, satisfactory control
accuracy/performance, and robustness against time delays
and noise effect (Chen & Francis, 1995).

In most of the previous results, the implementation of
sampled-data consensus protocols is based on periodic sam-
pling and zero-order hold devices. One such example was
given in Xie, Liu, Wang, and Jia (2009a, 2009b), where a
synchronous protocol was given and sufficient conditions in
terms of the length of sampling periods were presented for
the state consensus of single-integrator networks with fixed
and switching topologies. By tools of non-negative ma-
trix theory and linear matrix inequalities (LMIs), the same
type of data-sampling mechanism was investigated in Cao
and Ren (2010), Gao and Wang (2010a), Qin, Zheng, and
Gao (2010), and Qin, Gao, and Zheng (2012), in consen-
sus control of double-integrator networks. The synchronous
periodic sampling assumption facilitates theoretical analy-
sis, but it is not realistic in a distributed network without
any central agent. Furthermore, synchronous data sampling

∗
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would burden information networks with package loss and
time delays. Therefore, asynchronous data sampling is of
particular interest in distributed consensus and has been at-
tracting the attention of many researchers. In Cao, Morse,
and Anderson (2008), they investigated an asynchronous
sampled-data version of the Vicsek model, where each
agent samples the heading of its neighbours at some dis-
crete times and changes its heading from one-way point to
the other in a monotonic and piecewise-continuous manner.
These sampling events are time-driven and evenly spaced.
Another version of asynchronous sampled-data consensus
protocol was presented in Xiao and Wang (2008), and it
requires that the data exchange and parameter adjustment
occur in a time-driven manner with bounded sampling pe-
riods. There are also several publications on asynchronous
sampled-data consensus analysis in double-integrator net-
works; interested readers may refer to Gao and Wang
(2010b, 2011).

On the other hand, designing event-based consensus
protocols is another effective solution to relieve the network
burden in communication costs. Furthermore, compared
with the time-driven data sampling, a better convergence
performance with lower average data-sampling frequency
is more likely to be obtained. Examples preferring event-
based techniques can be found in Åström and Bernhardsson
(2002). In Dimarogonas, Frazzoli, and Johansson (2012),
they designed several event-driven protocols for the first-
order consensus problem with a reduced number of actuator
updates. The actuator updates depend on the ratio of a cer-
tain measurement error with respect to the norm of a state

C© 2014 Taylor & Francis
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function. There are also event-based results, derived by a
self-triggered approach with the aim to remove continuous
monitoring of measurement errors and to reduce communi-
cations (Dimarogonas et al., 2012), and event-based results
on general linear subsystems (Zhang, Hao, Zhang, & Wang,
2014; Zhu, Jiang, & Feng, 2014).

In this paper, we develop an edge-event-based theory
for distributed sampled-data consensus. In the information
graph, each edge models an information link connecting a
pair of neighbouring agents and is assigned a sequence of
edge events. If these events occur, the data exchange over
the associated information link is executed and the con-
trollers of the two linked agents are updated. To decrease
unnecessary power consumption by inter-agent communi-
cation, edge events are defined as that the state displacement
of any of the two linked agents goes beyond an interval
decided by the prior sampled state difference. The simi-
lar event-based agent-to-agent data-sampling policies were
adopted in Zhong and Cassandras (2010) to solve an asyn-
chronous distributed optimisation problem on a complete
graph, and in Meng and Chen (2014) to solve the state
consensus of multiple agents with the same linear dynam-
ics on a time-invariant graph. The occurrence of this kind
of events would activate the communication devices of the
corresponding agents with all their neighbours. In the edge-
event-triggered scheme of our work, agent-to-agent com-
munications are treated independently for different pairs
of neighbouring agents and they are only triggered when
necessary. Thus, the communication cost is expected to
be reduced tremendously. This advantage was indicated in
our preliminary result in Xiao, Meng, and Chen (2012)
and will be also shown in our theoretical analysis. Further-
more, this paper unifies the non-reciprocal detailed balance
networks and leader-following networks in one framework
and presents convergence results under relaxed conditions
of switching topologies. These results significantly expand
our previous result on the average event-based sampled-
data consensus in undirected networks (Xiao et al., 2012)
and are also applicable in the traditional periodic systems of
sampled-data consensus. It should be noted that, in Meng
and Chen (2014), only the undirected time-invariant topol-
ogy was considered by LMIs and agent-to-agent commu-
nications were always required at every event-detecting
step.

We formulate the problem in Section 3, following the
presentation of some preliminary notions in Section 2.
Then, in Section 4, we propose a set of event-detecting
rules for the general asynchronous data sampling, which
introduce n switching variables to eliminate the Zeno be-
haviour of edge events. In Section 5, we restrict the event-
detecting actions on some periodic instants and present a
novel periodic-like event-triggered principle, which pro-
vides a method of decreasing the number of data sampling
in the periodic sampled-data control. Simulation examples
are given in Section 6. Finally, the paper is concluded in

Section 7. Some preliminary lemmas are attached in the
appendix.

2. Preliminaries

This section gives some basic notions in graph theory.
Given an undirected simple graph G with vertex V =
{v1, v2, . . . , vn} and edge set E , a path in G from vi1 to
vik is a sequence vi1 , vi2 , . . . , vik of finite vertices such that
(vij , vij+1 ) ∈ E for j = 1, 2, . . . , k − 1. Graph G is called
connected if for any two vertices, there always exists a path
connecting them. Let m denote the number of edges in graph
G. Label the m edges with 1 through m and assign each edge
an arbitrary orientation. Then, for the assigned orientations,
the n-by-m incidence matrix D = [dij] is defined by

dij =
⎧⎨
⎩

−1, if vi is the tail of the j th oriented edge,
1, if vi is the head of the j th oriented edge,
0, otherwise.

If we associate G with a symmetric non-negative ma-
trix A = [aij ] ∈ R

n×n such that (vi, vj ) ∈ E , if and only if
aij �= 0, then we get a weighted undirected graph G(A), and
aij is called the weight of edge (vi, vj). In what follows, we
will simply use ‘graph’ instead of ‘undirected graph’ or
‘weighted graph’ if it is clear from the context. The graph
Laplacian of G(A), denoted by L(A), is defined by L(A) =
DWDT, where W = [wij ] ∈ R

m×m is a diagonal matrix with
wii equal to the weight of the ith edge, i = 1, 2, . . . , m (Mes-
bahi & Egerstedt, 2010). In particular, the graph Laplacian
of G is defined by L = DDT, which can be seen as a special
case of L(A) if we treat 1 as the common weight of all edges
(Godsil & Royal, 2001).

For a group of graphs Gi , i ∈ I, with a common vertex
set, the union graph of them is the graph on their shared
vertex set with edge set given by the union of their edge
sets, where I is the index set of the group.

3. Problem formulation

The system studied in this paper consists of n single integra-
tors. Label these agents with 1 through n and let xi(t) ∈ R

denote the state of agent i, i = 1, 2, . . . , n. The dynamics of
each agent is given by the following equation:

ẋi(t) = ui(t), i = 1, 2, . . . , n, (1)

where ui(t) is a state feedback, called protocol, to be de-
signed based on the state information received by agent i
from its neighbours.

Suppose the interaction among agents is bidirectional
and we use a time-varying weighted undirected graph
G(A(t)) with vertex set V = {v1, v2, . . . , vn} and edge set
E(t) to model the topology of information links. A(t) =
[aij(t)] is an n-by-n piecewise constant non-negative
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symmetric matrix which belongs to a finite set and has
all diagonal entries equal to zero. Vertices v1, v2, . . . , vn

model the n integrators. An edge (vi, vj ) ∈ E(t) implies
the existence of an available information link between
agents i and j at time t, and aij(t) is the weighting factor
of the link (Ren & Beard, 2005). At any time t, define
all the agents that are connected with agent i by edges as
the neighbours of agent i, indexed by Ni(t). Mathemati-
cally, Ni(t) = {j : (vi, vj ) ∈ E(t)}.

For each possible information link (vi, vj), we will give
several event-detecting rules to generate a sequence of dis-
crete times t

ij
0 , t

ij
1 , t

ij
2 , . . . , with the property that t

ij
k = t

j i
k

and t
ij
k < t

ij
k+1, k = 0, 1, 2, . . .. At these times, agents i

and j detect the availability of information link (vi, vj), and
if it is available, agents i and j exchange the relative states
between them and update their controllers simultaneously.
We call the above events generating t

ij
0 , t

ij
1 , t

ij
2 , . . . the edge

events of (vi, vj). By a little abuse of notation, denote
kij (t) = max{k : t

ij
k ≤ t}, which indexes the most recent

event time of (vi, vj) up to t. Clearly, kij(t) = kji(t) for all t.
Then, the protocol is given as follows1:

ui(t) = ωi

∑
j∈Ni (t

ij

kij (t)
)

sij

(
t
ij

kij (t)

)
aij

(
t
ij

kij (t)

)

× (
xj

(
t
ij

kij (t)

) − xi

(
t
ij

kij (t)

))
, i = 1, 2, . . . , n. (2)

In the above protocol, ωi ≥ 0 is a factor, weighting the
tendency of agent i to state the change or inverse of some
kind of reluctance or inertia of agent i. These weighting
factors may be different for different agents and imply
the non-reciprocal interaction among agents. Obviously, if
ωi = 0, then agent i will never change its state, and thus
it will play the role of a leader. This paper assumes that
there exists at most one agent with ωi equal to 0. sij(·) ∈
{0, 1} is a switching variable with sij(t) = sji(t) for any
t, and it is used to eliminate the Zeno behaviour of edge
events.

Remarks:

(1) If we view ωiaij(t) as the link weighting factor from
vj to vi, the topology of information links becomes
a directed graph, and if ωi �= 0 for all i, then the
directed graph satisfies the detailed balance condi-
tion (Haken, 1978). Such topologies were studied
in the context of non-reciprocal swarming in Chu,
Wang, Chen, and Mu (2006).

(2) If t
ij
k = t

i ′j ′
k and t

ij
k+1 = t

ij
k + h, k = 0, 1, 2, . . . ,

hold for some h > 0 and all possible edges
(vi, vj ), (vi ′ , vj ′ ), the system under protocol (2) be-
comes the typical periodic sampled-data consensus
model studied in Xie et al. (2009a, 2009b).

Define variable2

κ(t) =
⎧⎨
⎩

∑n
i=1

xi (t)
ωi∑n

i=1
1
ωi

, if ωi �= 0 for all i,

xi(t), if ωi = 0 for some i,

where the first equation is a weighted average of agents’
states. Under protocol (2), if there exists one agent i with
ωi = 0, then dκ(t)

dt
= ui(t) = 0; otherwise, by the same ar-

guments as in proving Equation (3) in Xiao et al. (2012),
we have that

dκ(t)

dt
= 1∑n

i=1
1
ωi

n∑
i=1

∑
j∈Ni (t

ij

kij (t)
)

sij

(
t
ij

kij (t)

)
aij

(
t
ij

kij (t)

)

× (
xj

(
t
ij

kij (t)) − xi

(
t
ij

kij (t)

))
= 1

2
∑n

i=1
1
ωi

n∑
i=1

∑
j∈Ni (t

ij

kij (t)
)

(
sij

(
t
ij

kij (t)

)
aij

(
t
ij

kij (t)

)

× (
xj

(
t
ij

kij (t)

) − xi

(
t
ij

kij (t)

))
+ sji

(
t
j i

kji (t)

)
aji

(
t
j i

kji (t)

)(
xi

(
t
j i

kji (t)

) − xj

(
t
j i

kji (t)

)))
=0. (3)

In what follows, notation κ instead of κ(t) will be used.
Therefore, if the states of agents converge to a common
value as time goes on, then the common value should be κ

defined above. Denote

xi(t) = κ + δi(t), i = 1, 2, . . . , n.

In consensus control, variables δi(t), i = 1, 2, . . . , n, mea-
sure the differences between agent states and their common
final state, and these variables were referred to as the group
disagreements in Olfati-Saber and Murray (2004). It fol-
lows from Equation (3) that

δ̇i(t) = ui(t).

Specially, in the leader-following case, if ωi = 0, then
ui(t) ≡ 0 and δi(t) = δ̇i(t) ≡ 0.

Consider the following Lyapunov function:

V (t) = 1

2

n∑
i=1

1

ωi

δi(t)
2,

where we set 1
0 0 = 0 to unify the bidirectional non-

reciprocal case and leader-following case in one equation.
Obviously, limt → ∞V(t) = 0, if and only if the states of
agents converge to κ as time increases; in other words,
limt → ∞V(t) = 0 implies that system (1) solves a consen-
sus problem.
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394 F. Xiao et al.

4. Asynchronous sampled-data consensus driven by
edge events

Differentiating V(t) with respect to t gives

dV (t)

dt
=

n∑
i=1

1

ωi

δi(t)ui(t)

=
n∑

i=1

∑
j∈Ni (t

ij

kij (t)
)

δi(t)sij

(
t
ij

kij (t)

)
aij

(
t
ij

kij (t)

)

× (
xj

(
t
ij

kij (t)

) − xi

(
t
ij

kij (t)

))
=1

2

n∑
i=1

∑
j∈Ni (t

ij

kij (t)
)

(
δi(t)sij

(
t
ij

kij (t)

)
aij

(
t
ij

kij (t)

)

× (
xj

(
t
ij

kij (t)

) − xi

(
t
ij

kij (t)

))
+ δj (t)sji

(
t
j i

kji (t)

)
aji

(
t
j i

kji (t)

)(
xi

(
t
j i

kji (t)

) − xj

(
t
j i

kji (t)

)))

= − 1

2

n∑
i=1

∑
j∈Ni (t

ij

kij (t)
)

sij

(
t
ij

kij (t)

)
aij

(
t
ij

kij (t)

)

× (
δi(t) − δj (t)

)(
xi

(
t
ij

kij (t)

) − xj

(
t
ij

kij (t)

))
= − 1

2

n∑
i=1

∑
j∈Ni (t

ij

kij (t)
)

sij

(
t
ij

kij (t)

)
aij

(
t
ij

kij (t)

)

× (
xi(t) − xj (t)

)(
xi

(
t
ij

kij (t)

) − xj

(
t
ij

kij (t)

))
. (4)

It can be observed from Equation (4) that if we can en-
sure that for any two neighbouring agents i and j, xi(t) −
xj(t) and xi(t

ij

kij (t)) − xj (t ij
kij (t)) share the same sign, then V(t)

will be non-increasing, which will be useful to guarantee
consensus. Motivated by this observation, we propose the
following event-detecting rules for agent i to determine the
edge events of (vi, vj) with its neighbouring agent j:

(A1) Agents i and j initialise an edge event of (vi, vj)
when information link (vi, vj) is first available, set
t
ij
0 to be that time, and set sij (t ij0 ) = 1; sij(t) will

remain constant until a new value is given;

for agent i and event time t
ij
k , k = 0, 1, 2, . . . (agents i and

j follow the same rule and collaborate in determining the
edge events of (vi, vj)),

(A2) If (vi, vj ) �∈ E(t ijk ) (which means that aij (t ijk ) = 0;
i.e., the data sampling is temporarily unavailable),
then the controller update of agent i (as well as
agent j) is still required; the next edge-event time
t
ij
k+1 is scheduled to be the earliest time when in-

formation link (vi, vj) is available in the time in-
terval [max{t ijk , t

ij
k−1 + Ts},∞) in the case with

sij (t ijk ) = 1 or in the time interval [t ijk + Ts,∞) in

the case with sij (t ijk ) = 0; and set sij (t ijk+1) = 1 in
the latter case, where Ts is a given positive real
number; otherwise, execute rules (A3) and (A4):

(A3) If sij (t ijk ) = 0 or xi(t
ij
k ) − xj (t ijk ) = 0, then the next

edge event is scheduled to be at t ijk+1 = t
ij
k + Ts and

set sij (t ijk+1) = 1;

(A4) If sij (t ijk ) = 1 and xi(t
ij
k ) − xj (t ijk ) �= 0, then the

next edge event will be determined by agent i at
time t, t > t

ij
k and set t

ij
k+1 = t , if no edge event

of (vi, vj) happens over (t ijk , t) and any one of the
following inequalities in (A4-1,A4-2) under their
associated conditions is violated:
(A4-1) If xi(t

ij
k ) − xj (t ijk ) > 0,

− 1 − α

2

(
xi(t

ij
k ) − xj (t ijk )

)
< xi(t) − xi(t

ij
k )

<
σ − 1

2

(
xi(t

ij
k ) − xj (t ijk )

)
;

(A4-2) If xi(t
ij
k ) − xj (t ijk ) < 0,

σ − 1

2

(
xi(t

ij
k ) − xj (t ijk )

)
< xi(t) − xi(t

ij
k )

< −1 − α

2

(
xi(t

ij
k ) − xj (t ijk )

)
,

where 0 ≤ α < 1, σ > 2 − α;
(A5) In (A4), if the event at t

ij
k+1 is determined by

xi(t
ij
k+1) − xi(t

ij
k ) = − 1−α

2 (xi(t
ij
k ) − xj (t ijk )) and

t
ij
k+1 − t

ij
k < Ts , then set sij (t ijk+1) = 0.

Remarks:

(1) The edge event of (vi, vj) at t
ij
k+1 can be determined

by either one of the agents i and j, which follow
rules (A1–A5). All parameters sij (t ijk+1) = sji(t

ij
k+1)

are shared by both of them.
(2) If agent j is a leader, then the edge events of (vi,

vj) can be only taken care of by agent i and no data
sampling is needed for agent j.

(3) For any successful data updating at t
ij
k and any t ∈

[t ijk , t
ij
k+1), if sij (t ijk ) = 1, aij (t ijk ) �= 0 and xi(t

ij
k ) −

xj (t ijk ) �= 0, then rules (A4) can ensure that equa-
tions of (A4-1) and (A4-2) and the revised equa-
tions of (A4-1) and (A4-2) by interchanging indexes
i and j hold; and these equations further ensure that
xi(t) − xj(t) is located between α(xi(t

ij
k ) − xj (t ijk ))

and σ (xi(t
ij
k ) − xj (t ijk )). Therefore, dV (t)

dt
≤ 0, and

xi(t) and ui(t), i = 1, 2, . . . , n, are bounded for all t.
(4) Obviously, the smaller the σ is, or the larger the

α is, the more frequently the edge events occur. In
simulations, one example will show that frequent
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International Journal of Control 395

events may not necessarily lead to fast state
convergence.

(5) Ts can be any positive number and is given to sepa-
rate some consecutive edge events in rules (A3) and
(A5). Without it, if α > 0 and the states of agents
differ a lot from each other, it is easy to construct
examples to show the existence of Zeno behaviour.
Ts can be chosen according to the processing ca-
pacities of agents’ hardware in applications. But Ts

is not exactly the minimum inter-event time.
(6) Since the edge events are asynchronous with re-

spect to information links, any minimum interval
between events of each agent cannot be guaran-
teed. One solution to such a problem is to choose
only one effective information link for each agent at
each time. This scheme raises another issue of how
to ensure the connectivity condition of interaction
graph, which is not easy to be solved cooperatively
by agents in a distributed way.

Theorem 1: Under protocol (2) with edge events defined
by (A1–A5), there exists no finite accumulation point (Zeno
behaviour) in the event time sequence, and if there exists
a positive real number T such that the union of interaction
graph G(A(·)) over [t, t + T] is connected for any t, then
the states of agents converge to κ asymptotically as time
goes to ∞.

Proof: By Lemma A.2, we have that the union of graph
G([sij (t ij

kij (·))aij (t ij
kij (·))]) over [t, t + T + Ts] is connected

for any t. In what follows, we use T instead of T + Ts and use
the condition that the union of graph G([sij (t ij

kij (·))aij (t ij
kij (·))])

over [t, t + T] is connected for any t.
If there exists a finite accumulation point in the event

times, then we have an infinite sequence of consecutive
edge-event times t

ij
k of some edge (vi, vj), converging to

this point, and the time distance between any two consec-
utive events in the sequence converges to 0. By noticing
that rules (A2, A3, A5) will separate edge-event times
by Ts, we have that for large k, the edge event at t

ij
k+1 is

only determined by xi(t) − xi(t
ij
k ) = σ−1

2 (xi(t
ij
k ) − xj (t ijk ))

or xj (t) − xj (t j i
k ) = σ−1

2 (xj (t j i
k ) − xi(t

j i
k )), which implies

that |xi(t
ij
k+1) − xj (t ijk+1)| ≥ σ+α

2 |xi(t
ij
k ) − xj (t ijk )|. By the

assumption that σ > 2 − α, |xi(t
ij
k ) − xj (t ijk )| becomes

infinitely large as k goes to ∞. This leads to a contradiction
due to the boundedness of agent states.

To prove the effectiveness of the proposed protocol
in solving the consensus problem, we first show that
limt → ∞ui(t) = 0 for all i by contradiction. Assume that
for some i, it is not true that limt → ∞ui(t) = 0. Then, there
exist a positive number ε > 0 and an infinite sequence of
time instants τ 1, τ 2, τ 3, . . . , such that limk → ∞τ k = ∞ and

for any k, |ui(τ k)| ≥ ε; equivalently, ωi �= 0 and

∣∣∣∣∣
∑

j∈Ni (t
ij

kij (τk )
)

sij

(
t
ij

kij (τk)

)
aij

(
t
ij

kij (τk)

)(
xj

(
t
ij

kij (τk)

) − xi

(
t
ij

kij (τk)

))∣∣∣∣∣
≥ ε

ωi

.

Therefore, there exists some j ∈ Ni(t
ij

kij (τk)), such that

sij

(
t
ij

kij (τk)

)
aij

(
t
ij

kij (τk)

)∣∣∣xi

(
t
ij

kij (τk)

) − xj

(
t
ij

kij (τk)

)∣∣∣
≥ ε

(n − 1)ωi

. (5)

Then, the next event at t
ij

kij (τk)+1 is only determined by (A4),
and thus,

t
ij

kij (τk )+1
− t

ij

kij (τk )
≥ min

{
1 − α

2
,
σ − 1

2

}
ε

amaxumax(n − 1)ωi

,

(6)

where amax = max{ai ′j ′ (t) �= 0 : i ′, j ′, t} and umax is the
upper bound of |ui ′ (t)|, i′ = 1, 2, . . . , n, t ≥ 0. Here, we allow
the occurrence of t

ij

kij (τk)+1 = ∞. Furthermore, by Remark

3 right after rule (A), for any t ∈ [t ij
kij (τk), t

ij

kij (τk)+1),

(
xi(t) − xj (t)

)(
xi

(
t
ij

kij (t)

) − xj

(
t
ij

kij (t)

))
≥ α

(
xi

(
t
ij

kij (t)

) − xj

(
t
ij

kij (t)

))2

and by inequality (5),

sij

(
t
ij

kij (t)

)
aij

(
t
ij

kij (t)

)(
xi(t) − xj (t)

)(
xi

(
t
ij

kij (t)

) − xj

(
t
ij

kij (t)

))
≥ αε2

amax(n − 1)2ωi
2
.

Thus, by Equation (4),

dV (t)

dt
≤ − αε2

amax(n − 1)2ωi
2
,

which leads to

V
(
t
ij

kij (τk)+1

) ≤ V
(
t
ij

kij (τk)

) − (
t
ij

kij (τk)+1 − t
ij

kij (τk)

)
× αε2

amax(n − 1)2ωi
2
.

Since the above inequality holds for any k and there is a
non-zero upper bound of all non-zero ωi, by Equation (6),
we get limt → ∞V(t) = −∞, a contradiction. Therefore, we
have the conclusion that limt → ∞ui(t) = 0 for all i.

Next, we will give a proof of limt → ∞V(t) = 0 by con-
tradiction. For simplicity, let x(t) = [x1(t), x2(t),. . ., xn(t)]T,
δ(t) = [δ1(t), δ2(t), . . . , δn(t)]T, and let L(t) be

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
A

lb
er

ta
] 

at
 0

1:
37

 2
5 

A
pr

il 
20

15
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the Laplacian matrix of unweighted union graph of
G([sij (t ij

kij (·))aij (t ij
kij (·))]) over [t, t + T]. Note that by def-

inition of vector δ(t), the following properties hold for any
t:

(P1) If ωi �= 0 for all i, then vector δ(t) is perpendicular
to vector [ 1

ω1
, 1

ω2
, . . . , 1

ωn
]T .

(P2) If ωi = 0 for some i, then the ith entry of vector δ(t)
is 0.

If V (t) �= 0, then

x(t)T L(t)x(t)

V (t)
≥ ωmin

2δ(t)T L(t)δ(t)

δ(t)T δ(t)
,

where ωmin = minωi �=0 ωi . By Lemma A.1 and the finite
possibilities of L(t),

λ̂ = min
{
ξT L(t)ξ : t ≥ 0, ξT ξ = 1, ξ has the same

property as δ(t) described in (P1)

or some entries of ξ are zero
}

exists and λ̂ > 0. Therefore, for all t,

x(t)T L(t)x(t) ≥ 2λ̂ωminV (t).

Assume that limt → ∞V(t) = ε > 0. Then, by Lemma A.1
(4), the above equation yields that for any given time t, there
exist t′, t′ ∈ [t, t + T], and two neighbouring agents i, j at
time t

ij

kij (t ′), such that

⎧⎪⎪⎨
⎪⎪⎩

sij (t ij
kij (t ′))aij (t ij

kij (t ′)) �= 0,

xi(t) − xj (t) ≥ 2

√
λ̂ωminε

n(n − 1)
.

(7)

Since ui(t) → 0 for all i, we assume that the considered time
t is large enough so that for any t′′ ≥ t − T,

|ui(t
′′)| ≤ min{1 − α, σ − 1}

3T (2 + min{1 − α, σ − 1})

√
λ̂ωminε

n(n − 1)
.

And, without loss of generality, we assume that T > Ts.
In fact, if this assumption does not hold, we can redefine
T by any real number larger than max {T, Ts}. Then, by
Equation (7), for any t′′ ∈ [t − T, t + 2T],

|xi(t
′′) − xj (t ′′)| >

4

2 + min{1 − α, σ − 1}

√
λ̂ωminε

n(n − 1)
,

(8)

and if t
ij

kij (t ′) ∈ [t − T , t + T ],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣xi

(
t
ij

kij (t ′)

)
− xj

(
t
ij

kij (t ′)

)∣∣∣ >
4

2 + min{1 − α, σ − 1}

√
λ̂ωminε

n(n − 1)

∣∣∣xi(t ′′) − xi

(
t
ij

kij (t ′)

)∣∣∣ ≤ 2 min{1 − α, σ − 1}
2 + min{1 − α, σ − 1}

√
λ̂ωminε

n(n − 1)

∣∣∣xj (t ′′) − xj

(
t
ij

kij (t ′)

)∣∣∣ ≤ 2 min{1 − α, σ − 1}
2 + min{1 − α, σ − 1}

√
λ̂ωminε

n(n − 1)
,

which, by rule (A4), implies that for any t′′ ∈ [t + T,
t + 2T],

kij (t ′′) = kij (t ′).

On the other hand, if t
ij

kij (t ′) < t − T , then for any t′′ ∈
[t − T, t]⊂[t − T, t′],

kij (t ′′) = kij (t ′).

In this case, assumption T > Ts guarantees that xi (t ij
kij (t ′ ))−

xj (t ij
kij (t ′ ))�=0 by (A3).
In both of the above two cases, by Equations (4)

and (8),

V (t + 2T ) − V (t − T ) < −aminT

×
(

4

2 + min{1 − α, σ − 1}
)2

λ̂ωminε

σn(n − 1)
,

where amin = min{aij (t ′′) �= 0 : i, j, t ′′}. Since the above
inequality holds for any sufficiently large t, we have V(t)
converges to −∞ as time goes on, which is a contradiction.
Therefore,

lim
t→∞ V (t) = 0.

5. Period-like sampled-data consensus driven
by edge events

In this section, we restrict the event-detecting/event instants
to the discrete-time set {tk: tk + 1 = tk + h, k = 0, 1,
2, . . .}, where h is the event-detecting period. In such a
case, t ijk ∈ {tk : k = 0, 1, 2, . . . } and h is also the minimum
length of data-sampling periods. Redefine

kij (t) = max
{
k : tk ∈ {t ijk′ : t

ij
k′ ≤ t}}.

Then, a simplified version of protocol (2) for this case is
given as follows:

ui(t) = ωi

∑
j∈Ni (tkij (t))

aij (tkij (t))
(
xj (tkij (t)) − xi(tkij (t))

)
,

i = 1, 2, . . . , n. (9)
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To get a compact form of system (1) under protocol
(9), we introduce an incident matrix D of the complete
simple graph over the n agents with edge (vi, vj) arbitrar-
ily oriented, and let W(t) be the diagonal matrix such that
for any i, j, i �= j , if (vi, vj) is indexed by q in D, then
the qth diagonal entry of W(t) equals aij (tkij (t)). Denote
y(t) = [y1(t), y2(t), . . . , y n(n−1)

2
(t)]T = DT x(t) and define

ŷ(t) = [ŷ1(t), ŷ2(t), . . . , ŷ n(n−1)
2

(t)]T in the way that for any

q, 1 ≤ q ≤ n(n−1)
2 , ŷq(t) = xi(tkij (t)) − xj (tkij (t)), if (vi, vj)

is indexed by q in D and yq(t) = xi(t) − xj(t). Then, under
protocol (9), the system can be represented by

ẋ(t) = −diag(ω)DW (t)ŷ(t),

where diag(ω) is the diagonal matrix with ωi as the ith
diagonal entry. Thus, for any t ∈ [tk, tk + 1),

dV (t)

dt
= − δ(t)T DW (tk)ŷ(tk) = −x(t)T DW (tk)ŷ(tk)

= − ŷ(tk)T W (tk)y(t)

= − ŷ(tk)T W (tk)

× (y(tk) − (t − tk)DT diag(ω)DW (tk)ŷ(tk))

= − ŷ(tk)T W (tk)y(tk)

+ (t − tk)ŷ(tk)T W (tk)DT diag(ω)DW (tk)ŷ(tk).

Therefore,

V (tk+1) − V (tk) = −hŷ(tk)T W (tk)y(tk)

+ h2

2
ŷ(tk)T W (tk)DT diag(ω)DW (tk)ŷ(tk). (10)

Let W (tk)
1
2 be a diagonal square root of W(tk) where

each entry along the diagonal is a square root of the cor-
responding entry of W(tk), and let λn be the maximum
eigenvalue of matrix W (tk)

1
2 DT diag(ω)DW (tk)

1
2 , k = 0, 1,

2, . . .. Then, we have the following lemma.

Lemma 1: If there exists some non-negative integer T
such that, for any k, the union of interaction topologies
G([aij (tkij (t))]) at tk, tk + 1, . . . , tk + T is connected and there
exist positive numbers α, β with 0 < α, β ≤ 1, such that

{
αŷ(tk)T W (tk)ŷ(tk) ≤ ŷ(tk)T W (tk)y(tk)
β2y(tk)T W (tk)y(tk) ≤ ŷ(tk)T W (tk)ŷ(tk),

(11)

then there exists a maximum event-detecting period hmax =
2α
λn

, such that all states of agents under protocol (9) with
0 < h < hmax converge to κ asymptotically.

Proof: Combining Equations (10) and (11), we have for
any k,

V (tk+1) − V (tk) ≤ −αhŷ(tk)T W (tk)ŷ(tk)

+ h2λn

2
ŷ(tk)T W (tk)ŷ(tk)

≤ −β2h

(
α − hλn

2

)
y(tk)T W (tk)y(tk)

≤ 0. (12)

Next, we prove that limk → ∞ui(tk) = 0 for all i. Assume
that for some i, it is not true that ui(tk) → 0. Then, there exist
a positive number ε and an infinite sequence of integers
τ 0, τ 1, τ 2, . . . , such that limk → ∞τ k = ∞ and for any
k, |ui(tτk

)| ≥ ε, which implies that there exists some j ∈
Ni(tkij (tτk )), such that

∣∣xj (tkij (tτk )) − xi(tkij (tτk ))
∣∣ ≥ ε

amax(n − 1)ωi

,

where ωi �= 0. By the second inequality in Equation (12),

V (tτk+1) − V (tτk
) ≤ −β2h

(
α − hλn

2

)
aminε

2

amax
2(n − 1)2ωi

2
,

which means limk → ∞V(tk) = −∞, a contradiction. There-
fore, limk → ∞ui(tk) = 0 for all i.

Now we can employ the same argument as in proving
Equation (7) and get that if limk → ∞V(tk) = ε > 0, then for
any k, there exits k′, k ≤ k′ ≤ k + T, such that

⎧⎪⎨
⎪⎩

aij (tkij (tk′ )) > 0,

|xi(tk) − xj (tk)| ≥ 2

√
λ̂ωminε

n(n − 1)
.

Since limk → ∞ui(tk) = 0 for all i, we assume that k is large
enough so that for any i′ and any k′′, k′′ ≥ k,

|ui ′(tk′′)| ≤ 1

2T

√
λ̂ωminε

n(n − 1)
,

which yields that

|xi(tk′) − xj (tk′)| ≥
√

λ̂ωminε

n(n − 1)
.

By the second inequality in Equation (12), for any k,

V (tk+T +1) − V (tk) ≤ −β2h

(
α − hλn

2

)
amin

λ̂ωminε

n(n − 1)
,

which leads to that limk → ∞V(tk) = −∞, a contradiction.
Therefore, limk → ∞V(tk) = 0, i.e, the system solves a con-
sensus problem. �
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Note that 2
λn

was given as a necessary and sufficient
condition in the context of periodic sampling in the fixed
topology case in Xie et al. (2009a). Thus, the above conver-
gence result provides a non-conservative maximum event-
detecting period hmax = 2α

λn
.

In the next part, we aim to construct distributed event-
detecting rules that ensure inequality (11) holds. The first
set of distributed event-detecting rules for edge events of
(vi, vj) are given as follows:

(B1) Agents i and j collaborate in determining their edge
events of (vi, vj) and initialise t

ij
0 at some time tk

when (vi, vj) is first available;

for time tk, k = kij (t ij0 ) + 1, kij (t ij0 ) + 2, . . . ,

(B2) If information link (vi, vj) is lost (unavailable) or
recovers from loss at time tk, or if any one of the fol-
lowing inequalities in (B2-1) and (B2-2) under their
associated conditions is violated, an edge event of
(vi, vj) occurs at time tk:
(B2-1) If xi(tkij (tk−1)) − xj (tkij (tk−1)) ≥ 0,

α(xi(tkij (tk−1))−xj (tkij (tk−1)))

≤ xi(tk)−xj (tk) ≤ σ (xi(tkij (tk−1)) − xj (tkij (tk−1)));

(B2-2) If xi(tkij (tk−1)) − xj (tkij (tk−1)) < 0,

σ (xi(tkij (tk−1))−xj (tkij (tk−1)))

≤ xi(tk)−xj (tk) ≤ α(xi(tkij (tk−1)) − xj (tkij (tk−1))),

where parameters α and σ are known to all agents
with the property that 0 < α ≤ 1 and σ ≥ 1.

Clearly, if (vi, vj) is indexed by q and oriented with
vi as the head in the definition of D, then the above rules
can guarantee that yq(tk) is always located between values
αŷq(tk) and σ ŷq(tk), and thus inequality (11) holds with
β = 1

σ
.

Note that the enforcement of rule (B) requires data sam-
pling between neighbouring agents at event-detecting time
tk. This requirement can be relaxed if each agent can re-
member its control input after its recent edge events with
respect to its incident edges. Rule (C) is an example of such
event-detecting rules, which is proposed for agents i and j to
determine the edge events of (vi, vj), and does not require
the mutual data sampling of agents i and j between their
event times:

(C1) Agent i initialises t
ij
0 with agent j at some time tk

when (vi, vj) is first available;

for agent i and event time t
ij
k , k = 0, 1, 2, . . . (agents i and

j follow the same rule and collaborate in determining the
edge events of (vi, vj)),

(C2) If (vi, vj ) �∈ E(t ijk ), agent i still updates its con-

troller at t ijk (agent j also updates its controller), and

the next edge event will occur at time tk′ , tk′ > t
ij
k ,

when information link (vi, vj) turns available; oth-
erwise

(C3) Agent i will determine the next edge event of (vi, vj)
at the earliest time tk′ , tk′ > t

ij
k , such that no edge

event of (vi, vj) happens over (t ijk , tk′ ) and any one
of the following inequalities in (C3-1) and (C3-2)
under their associated conditions is violated:
(C3-1) If xi(t

ij
k ) − xj (t ijk ) ≥ 0,

−1 − α

2

(
xi(t

ij
k )−xj

(
t
ij
k

)) ≤ h

k′−1∑
l=kij(t ijk )

ui(tl)

≤ σ − 1

2

(
xi

(
t
ij
k

)−xj

(
t
ij
k

))
;

(C3-2) If xi(t
ij
k ) − xj (t ijk ) < 0,

σ − 1

2

(
xi

(
t
ij
k

)−xj

(
t
ij
k

)) ≤ h

k′−1∑
l=kij(t ijk )

ui(tl)

≤ −1 − α

2

(
xi

(
t
ij
k

)−xj

(
t
ij
k

))
,

where 0 < α ≤ 1 and σ ≥ 1.

As a consequence of Lemma 5.1, we have the following
theorem.

Theorem 2: If event-detecting period h satisfies 0 < h <
2α
λn

and there exists some non-negative integer T such that,
for any k, the union of graph G(A(·)) at tk, tk + 1, . . . , tk + T is
connected, then under protocol (9) with event-detecting rule
(B) or (C), the states of agents converge to κ asymptotically.

Proof: Denote the equations of (C3-1) and (C3-2) with the
interchange of indexes i and j by (C3-1)’ and (C3-2)’, re-
spectively. The edge events of (vi, vj) are both determined
by agents i and j, and thus they will be triggered by the vi-
olation of any one of (C3-1), (C3-2), (C3-1)’, and (C3-2)’.
Note that these four equations or equations in (B2-1) and
(B2-2) ensure that Equation (5.3) holds. Moreover, that the
union of graph G(A(·)) at tk, tk + 1, . . . , tk + T is connected
implies that the union of G([aij (tkij (t))]) at tk, tk + 1, . . . ,
tk + T is connected. Therefore, we can get Theorem 5.2 by
Lemma 5.1. �
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Figure 1. Communication topology.

6. Illustrative example

Consider the multi-agent system consisting of N = 9 single-
integrator agents, random initial conditions generated from
the uniform distribution on the interval [0, 10], and the
variable topology. The edge set of the network topology
is randomly chosen from the edge set of Figure 1 with
25% probability for each edge. After the dwell time 0.25,
the network switches to another graph which is generated
by the same manner, but the generation has to guarantee
that the switching topology is uniformly jointly connected
with time horizon T = 1. Such randomly switching process
continues until the end of simulation.

The parameters ωi in the control input in Equation (2)
are randomly selected from the uniform distribution on the
interval [0, 1]. The associated matrix A for the network in
Figure 1 is given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0.8 0.8 0 0 0 0 0
0 0 0.8 0 0 0.8 0 0 0

0.8 0.8 0 0 0 0.5 0 0 0
0.8 0 0 0 0.8 0 0.5 0 0
0 0 0 0.8 0 0 0.8 0 0
0 0.8 0.5 0 0 0 0 0.8 0
0 0 0 0.5 0.8 0 0 0 0.8
0 0 0 0 0 0.8 0 0 0
0 0 0 0 0 0 0.8 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The parameters for rule (A) are set to α = 0.5, σ = 2, and
Ts = 0.05; the parameters for rules (B) and (C) are set to α =
0.5, σ = 2, and h = α

λn
. The evolution of x(t) by using rules

(A), (B), and (C), and the time-triggered rule with period
h are shown in Figures 2–5, respectively. The evolution of
V(t) for different rules is shown in Figure 6, where letters A,
B, and C indicate rules (A), (B), and (C), respectively, and
letter P indicates the periodic sampling case. It can be seen
from the figures that the convergence rates of the Lyapunov
function by using rules (B) and (C) are almost the same.
Notice that the agent group eventually achieved rendezvous
under the proposed control laws. Figures 7–9 show the
number of events generated at every 10 second interval by
using different rules. The number of edge events by event-
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Figure 2. Evolution of each agent using event-detecting rule (A).
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Figure 3. Evolution of each agent using event-detecting rule (B).
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Figure 4. Evolution of each agent using event-detecting rule (C).
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Figure 5. Evolution of each agent using periodic sampling.
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Figure 6. Evolution of the Lyapunov function.
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Figure 7. Number of events using event-detecting rule (A).
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Figure 8. Number of events using event-detecting rule (B).
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Figure 9. Number of events using event-detecting rule (C).

detecting rule B is fewer than that by event-detecting rule
C, which is consistent with that event-detecting rule (C) is
a sufficient condition for event-detecting rule (B).

Finally, let us investigate the relationship between the
parameters α, β and the number of events by using the
event-detecting rule (C). In this case, consider the fixed
topology shown in Figure 1 and the sampling period
h = 0.0001. Figure 10 shows the relationship between the
parameter α and the number of events with β = 0.5, where
the left y-axis denotes the time when the Lyapunov func-
tion V(t) decreases to 0.95V(0) and the right y-axis denotes
the total number of events until that time. Figure 11 has
the same interpretation with Figure 10 when the parameter
α = 0.5. It is interesting to note that the convergence rate
decreases as the number of events increases, which shows
that frequent updating may not necessarily lead to a fast
convergence rate. Comparing Figures 10 and 11, it can be
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Figure 10. The relationship between the parameter α and the
number of events.
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Figure 11. The relationship between the parameter β and the
number of events.

concluded that the number of events is more sensitive to the
parameter α than β.

7. Conclusion

In this paper, we presented two kinds of event-based con-
sensus protocols for networks of multiple integrators with
asynchronous and periodic-like data sampling. We defined
edge events with respect to information links, and the occur-
rence of edge events will trigger the data sampling and con-
troller updates of the associated agent pairs. We showed that
the presented event-driven protocols can be implemented
in a distributed manner with reduced communication costs.
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Notes
1. If Ni(t

ij

kij (t)
) = ∅, then ui(t) = 0.

2. Note that this paper assumes that there exists at most one
agent with ωi equal to 0.
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Appendix 1. Preliminary lemmas

Lemma A1 (Godsil & Royal, 2001; Olfati-Saber & Murray,
2004):

(1) 0 is always an eigenvalue of L(A) with [1, 1, . . . , 1]T ∈
R

n as the associated eigenvector;
(2) If graph G(A) is connected, then the second smallest

eigenvalue, denoted by λ2, is larger than 0;

(3) λ2 = min{ ξT L(A)ξ
ξT ξ

: ξ �= 0,
∑n

i=1 ξi = 0}, where ξ = [ξ 1,

ξ 2, . . . ,ξn]T ∈ R
n;

(4) ξT L(A)ξ = 1
2

∑n
i,j=1 aij (ξi − ξj )2.

Lemma A2: Under protocol (2) with edge events defined by
rules (A1–A5), if the union of graph G(A(·)) over [t, t + T]
is connected for any t, then the union of interaction graph
G([sij (t ij

kij (·))aij (t ij

kij (·))]) over [t, t + T + Ts] is connected for
any t.

Proof: Suppose that (vi, vj) is an edge of G(A(t ′)) at some time
t′ with t′ ∈ [t + Ts, t + T + Ts]. If sij (t ij

kij (t)
)aij (t ij

kij (t)
) > 0, then

(vi, vj) is an edge of G([sij (t ij

kij (t)
)aij (t ij

kij (t)
)]); otherwise, we have

that sij (t ij

kij (t)
) = 0 or aij (t ij

kij (t)
) = 0.

(1) In the case with aij (t ij

kij (t)
) = 0, by rule (A2), an edge event

of (vi, vj) must occur at some time t′ ′ in (t, t′] with the
property that t ′′ = t

ij

kij (t ′′) and sij(t′ ′)aij(t′ ′) > 0.

(2) In the case with sij (t ij

kij (t)
) = 0 and aij (t ij

kij (t)
) �= 0, then by

rule (A3), an edge event of (vi, vj) must be scheduled to
be at time t ′′ = t

ij

kij (t)
+ Ts in (t, t + Ts], t ′′ = t

ij

kij (t ′′), and
sij(t′ ′) = 1. If aij(t′ ′) > 0, then (vi, vj) belongs to the edge
set of G([sij (t ij

kij (t ′′))aij (t ij

kij (t ′′))]); otherwise, by rule (A2),

an edge event of (vi, vj) must occur at some time t
′ ′ ′

in (t′ ′,
t′] with the property that t ′′′ = t

ij

kij (t ′′′) and sij(t
′ ′ ′

)aij(t
′ ′ ′

) >

0.

To conclude, (vi, vj) is an edge of the union of interaction graph
G([sij (t ij

kij (·))aij (t ij

kij (·))]) over [t, t + T + Ts]. Therefore, the union

of interaction graph G([sij (t ij

kij (·))aij (t ij

kij (·))]) over [t, t + T + Ts]
is connected for any t. �
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