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An Overview of Industrial Alarm Systems:
Main Causes for Alarm Overloading,
Research Status, and Open Problems

Jiandong Wang, Fan Yang, Tongwen Chen, and Sirish L. Shah

Abstract—Alarm systems play critically important roles for
the safe and efficient operation of modern industrial plants.
However, most existing industrial alarm systems suffer from poor
performance, noticeably having too many alarms to be handled by
operators in control rooms. Such alarm overloading is extremely
detrimental to the important role played by alarm systems. This
paper provides an overview of industrial alarm systems. Four
main causes are identified as the culprits for alarm overloading,
namely, chattering alarms due to noise and disturbance, alarm
variables incorrectly configured, alarm design isolated from re-
lated variables, and abnormality propagation owing to physical
connections. Industrial examples from a large-scale thermal power
plant are provided as supportive evidences. The current research
status for industrial alarm systems is summarized by focusing on
existing studies related to these main causes. Eight fundamental
research problems to be solved are formulated for the complete
lifecycle of alarm variables including alarm configuration, alarm
design, and alarm removal.

Note to Practitioners—Alarm systems are critical assets for op-
erational safety and efficiency of plants in various industrial sec-
tors, such as power and utility, process and manufacturing, and
oil and gas. However, industrial alarm systems are generally suf-
fering from alarm overloading. This paper provides an overview
of industrial alarm systems, by proposing main causes for alarm
overloading, summarizing current research status and formulating
open problems. In presenting this overview, we hope to attract di-
rect attentions frommore researchers and engineers into the study
of industrial alarm systems.

Index Terms—Alarm configuration, alarm design, alarm re-
moval, industrial alarm systems, nuisance alarms.
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I. INTRODUCTION

A CCORDING to the industrial standard ANSI/ISA-18.2
[58, p. 16], “an alarm system is the collection of hardware

and software that detects an alarm state, communicates the indi-
cation of that state to operators, and records changes in the alarm
state.” Alarm systems have been the integrated parts of modern
computerized monitoring systems such as the distributed con-
trol systems (DCS) and supervisory control and data acquisi-
tion (SCADA) systems. The most common way in detecting an
alarm state is to compare the value of a process variable to
a constant high (low) alarm trippoint , i.e.,

(1)

As an example, is the drum level of a large-scale thermal
power plant at Shandong Province, China, referred to as Plant A
in the sequel, associated with the high alarm trippoint 100 and
the low alarm trippoint . Fig. 1(a) presents 1-hour samples
of with sampling period 1 s. Alarm states in alarm systems
can be mathematically represented by a discrete-valued alarm
variable . Fig. 1(b) shows the samples of two alarm vari-
ables associated with in Fig. 1(a). That is, the high (low)
alarm variable takes the value of 1 when is higher
(lower) than the value 100 , and the value of 0, other-
wise. The changes of alarm variables from 0 to 1 and from 1 to
0 are respectively referred to as the alarm occurrence and alarm
clearance. They appear as events in the alarm list with the cor-
responding time stamps and descriptions, as shown in Table I.
Note that the low alarm variable experienced two quick changes
between 23:47:38 and 23:47:42, which are visible by the en-
larged plot in Fig. 1(b).
Alarm systems are critically important for safe and efficient

operations of modern industrial plants such as oil refineries,
petrochemical facilities, and power plants [17], [89]. First,
alarm systems are the tools to detect the near misses that are
defined as departures from and subsequent returns to normal
operating ranges for process variables [88]. For instance, the
variations of two alarm variables in Fig. 1 indicate that the
drum level departs from and returns to the normal operating
range . The safety pyramid in Fig. 2 says that every
accident is associated with a number of near misses as precur-
sors. Alarm systems promptly indicate the occurrences of near
misses, so that operators can take corrective actions to drive
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Fig. 1. (a) Collected samples of a process variable (solid) with alarm trip-
points (dot-dash). (b) Alarm variables with high (solid) and low (dot-
dash) alarm trippoints.

TABLE I
EVENTS OF ALARM OCCURRENCES AND CLEARANCES FOR HIGH AND

LOW DRUM LEVEL ALARM VARIABLES IN FIG. 1

processes back to normal operating ranges. Therefore, alarm
systems are indeed the safeguards to prevent the deterioration
of near misses to accidents. Second, retrospective investigation
on a large number of accidents support the important role
played by alarm systems. For instance, the Buncefield accident
in 2005 was caused by a series of explosions and fire of oil
storages at the Buncefield oil depot, and is by far the most
severe industrial accident in Europe. The final report of the
Buncefield accident [54] provided 25 recommendations, among
which the 8th recommendation was to develop high–high level
alarms for overfill prevention, and the 23rd recommendation
was to collect accident data to find alarm system defects. Fi-
nally, alarm systems also play a prominent role in maintaining
efficiency of plant operation. It is a well-known fact that the
deviation of process variables from normal/optimal operating
zones usually imply negative effects such as off-specification
products as well as excessive consumption of raw materials and
energy. Alarm systems with satisfactory performance are able
to assist operators to reduce the probability and time duration of
deviations of key process variables from their normal/optimal
operating zones. Overall, as shown in Fig. 3, alarm systems
play significant roles in maintaining plant safety and keeping
the process within normal operating ranges [77], [94].
On one hand, alarm systems are critically important for

safety and efficiency of industrial plants; on the other hand,

Fig. 2. Safety pyramid with typical historical data [88].

Fig. 3. Layers of protection and their impact [94].

most existing industrial alarm systems suffer from poor perfor-
mance, most noticeably with alarm overloading (to be clarified
later in Section II). Driven by the big gap between these facts,
industrial standards and guidelines have been proposed for
alarm systems by industrial societies and professional organi-
zations. The Nuclear Regulatory Commission from the United
States published the document NUREG/CR-61056684 to give
guidance and technical basis for advanced alarm systems [87].
The Engineering Equipment and Materials Users’ Associ-
ation presented the guideline EEMUA-191 for the design,
management and procurement of alarm systems [41]. The
Standardization Association for Measurement and Control in
Chemical Industries issued the standard NAMUR-NA-102
for alarm management [83]. The USA-based Electric Power
Research Institute produced the document EPRI-1010076 as
the requirements and implementation guidance for advanced
alarm systems [42]. The Abnormal Situations Management
Consortium proposed a set of guidelines for effective alarm
management practice [10]. The International Society of Au-
tomation and the International Electrotechnical Commission,
respectively, issued the standards ANSI/ISA-18.2 [58] and
IEC-68682, for management of alarm systems in process
industries. The American Petroleum Institute published the
standard API-1167 for pipeline SCADA (supervisory control
and data acquisition) alarm management [7]. Note that all of
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these standards and guidelines impose specific requirements on
the performance of alarm systems, for example, “the average
number of alarms per day should be no more than 144 [41],”
but do not provide methodologies and/or technical details on
how to achieve these requirements.
The importance of studying alarm systems for performance

improvement has also received approval from completed/on-
going research projects. The European Commission’s Commu-
nity Research and Development Information Service supported
the Fifth Framework Programme titled “Advanced decision
support system for chemical/petrochemical manufacturing
processes (2001–2004),” where some toolboxes have been
developed for alarm management. The Australian Research
Council supported a project titled “Alarm management: si-
lence is golden (2003–2007).” The Western Australia Energy
Research Alliance supported a project titled “Adaptive op-
timization learning applied to real time alarm management
(2008–2012).” Japan Society for the Promotion of Science
formulated the 143rd Committee on Process System Engi-
neering that supported a project titled “Alarm management
(2009–2011).” The Natural Sciences and Engineering Research
Council of Canada supported a strategic grant titled “Develop-
ment of an advanced technology for alarm analysis and design
(2009–2012).” The National Natural Science Foundation of
China is supporting a project titled “Alarm design and removal
methods and applications for highly efficient and safe operation
of large-scale industrial systems (2015–2019).”
This paper provides an overview of industrial alarm systems

with the following contributions: (i) four main causes are iden-
tified as the culprits for alarm overloading in many industrial
alarm systems; industrial examples from Plant A are provided as
supportive evidences; (ii) the current research status for indus-
trial alarm systems is summarized, by focusing on the existing
studies related to these main causes; (iii) eight fundamental re-
search problems, which are still open, are formulated for the
complete lifecycle of alarm variables composed of three stages,
namely, alarm configuration, alarm design and alarm removal.
In presenting this overview, one of our objectives is to attract
direct attentions from more researchers and engineers into the
fascinating area of industrial alarm systems.
The remaining sections of this paper are organized as fol-

lows. Section II investigates the current status of industrial
alarm systems. Section III identifies four main causes of alarm
overloading. Section IV summarizes the research status of
industrial alarm systems. Section V formulates fundamental
research problems to be solved. Section VI gives some con-
cluding remarks.

II. CURRENT STATUS OF ALARM SYSTEMS:
ALARM OVERLOADING

In this section, we investigate the current status of alarm sys-
tems, based on industrial surveys in literature and the status of
Plant A.
Many existing industrial alarm systems are associated with

poor performance, where the most observable phenomenon is
that there are far too many alarms to be handled by industrial

TABLE II
CROSS-INDUSTRY STUDY [89]

plant operators, referred to as alarm overloading in the sequel.
This phenomenon is clearly revealed from Table II [89], which
lists statistics of several basic performance metrics of alarms
systems, based on a study of 39 industrial plants ranging from
oil and gas, petrochemical, power and other industries. The
corresponding benchmarks in the guideline EEMUA-191 [41]
are also provided in Table II for comparison. Obviously, the
statistics of performance metrics from various industries are
much greater than the EEMUA benchmarks. Another industrial
survey was provided by Bransby and Jenkinson [17] for 15
plants including oil refineries, chemical plants, pharmaceutical
plants, gas terminal, and power stations; the average alarm rate
per 10 min under normal operation ranged from 2 to 33, and
the peak alarm rate per 10 min in plant upsets varied from 72
to 625. Brown [20] provided similar results for BP Oil plants:
the average rate of alarms per 10 min was in the range of
[17], [60], while the maximum rate of alarms per 10 min in
upset conditions was in the range of [150, 560]. Noda et al.
[86] reported that 15 out of 29 Japanese chemical plants had
the monthly average alarm rates per operator larger than the
EEMUA benchmark, with the maximum value of 7.5 alarms
per operator for 10 min, where the number of operators was
taken into consideration. The number of operators was also
recorded for the industrial survey by Bransby and Jenkinson
[17]; for most of cases, however, the statistics of alarm systems
were not normalized by the number of operators. Kirschen and
Wollenberg [66] presented the estimates of peak numbers of
alarms triggered by some abnormal events at a regional control
centers of Hydro Quebec, Inc., Canada, which were up to 20
alarms per second during a thunderstorm. Liu et al. [75] and
Srinivasan et al. [93] stated that the daily alarm number in
abnormal operation was about 11000 (76 alarms per 10 min) at
a major Singapore refinery.
To have an example of industrial alarm systems with more

specifics, we investigated the alarm system of a 300 MW power
generation unit at Plant A. The distributed control system
(DCS) of the power generation unit measures real-time values
of 24079 process variables every 0.2 s. Among these process
variables, there are 8145 analog variables among which 158
variables are configured with alarms, and 15934 digital vari-
ables among which 1784 variables are configured with alarms.
An alarm occurs when an analog variable configured with
alarm is exceeding the corresponding high (high–high) or low
(low–low) alarm trippoint, or when a digital variable configured
with alarm changes the value from 0 to 1 (or from 1 to 0). It
is worthy to note that some digital variables configured with
alarms are essentially generated by comparing the measure-
ments of analog variables with alarm trippoints. Fig. 4 presents
the numbers of alarm occurrences during non-overlapping
consecutive 10-min periods for 31 days in March 2014. The
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Fig. 4. The number of alarms per 10 minutes of one process unit at Plant A for
31 days in March 2014.

maximum, average and minimum numbers of the alarm occur-
rence rate per 10 min are 342, 119 and 19, respectively. Clearly,
the alarm occurrence rates are much larger than the EEMUA
benchmarks in Table II.
The occurred alarms can be classified into two groups,

namely, nuisance alarms and correct alarms. A nuisance alarm
is one that does not require a specific action or response from
operators [41], [89]. An alternative definition of a nuisance
alarm is an alarm that annunciates excessively, unnecessarily,
or does not return to normal after the correct response is taken
[58, p. 18]. Hence, nuisance alarms in a process are defined
as the occurred alarms that do not affect the process, even if
these alarms are ignored by operators. The industrial standard
ANSI/ISA-18.2 [58, p. 14] defines an alarm as “an audible
and/or visible means of indicating to the operator an equip-
ment malfunction, process deviation, or abnormal condition
requiring a response.” Thus, the key point to distinguish such
an alarm from nuisance alarms is on the requirement of oper-
ator response. Rothenberg [89] gives a brief definition of an
alarm as “Alarm action.” Therefore, in
contrast to the nuisance alarms, a correct alarm is defined as the
one that requires operators to pay attention or to take action in a
prompt manner; otherwise, abnormal situations associated with
correct alarms would have negative effects on operation safety
and/or efficiency. Nuisance alarms are the major culprits for the
phenomenon of alarm overloading. On the other hand, there are
also the scenarios of having too many correct alarms, referred
to as alarm floods (to be clarified later in Section III-D).
The consequences of alarm overloading are extremely detri-

mental to the important role played by alarm systems. First, a
large number of alarms belong to the nuisance alarm group; they
provide no useful information and only serve as distractions to
plant operators. Due to “cry wolf” effect, nuisance alarms lead
to confidence crisis of alarm systems. As a result, a correct alarm
may be buried among such nuisance alarms and may conse-
quently be overlooked by operators. Second, even if all occurred
alarms are correct ones, e.g., those in alarm floods, the alarm rate
may be too high to be manageable by operators. When the alarm
rate is too high, operators have no choice but to ignore many of
the occurred alarms. In this case, the designed functionality of

alarm systems is completely discredited. As an example, two
operators received 275 different alarms during the 10.7 min be-
fore the explosion accident occurred at the Texaco Refinery in
Milford Haven [53].

III. CAUSES FOR ALARM OVERLOADING

In order to alleviate the phenomenon of alarm overloading,
the very first step is to find the main causes leading to such a
phenomenon. This section identifies four main causes and pro-
vides industrial examples as supportive evidences.

A. Cause #1. Chattering Alarms Frequently Occur due to
Noise/Disturbance
Chattering alarms are the mostly encountered nuisance

alarms and may account for 10%–60% of alarm occurrences
[89] (page 123). An analysis based on 75 alarm systems showed
that on average over 70% of the alarm occurrences came
from chattering alarms [52, p. 83]. The industrial standard
ANSI/ISA-18.2 defines a chattering alarm as one that repeat-
edly transitions between the alarm state and the normal state
in a short period of time [58, p.16]. As a result, there is no
time or necessity for operators to analyze such alarms and take
actions. Two closely related nuisance alarms are the fleeting
and repeating alarms. Fleeting alarms also have short-time
alarm duration, but do not immediately repeat [58, p. 74].
Repeating alarms are alarms rising and clearing repeatedly
over a period of time [41, p. 95]. Chattering alarms are also
named as cycling alarms [89, p. 444]. These types of alarms are
typically generated due to random noise and/or disturbances on
process variables configured with alarms, especially when the
process variables are operating close to their alarm trippoints
[41, p. 95]. In addition, chattering alarms can be induced by
repeated on–off actions of control loops or regular oscillatory
disturbances in process variables [105]; in this case, chat-
tering alarms repeatedly make transitions between alarm and
non-alarm states with regular (possibly large) time periods. To
have a unifying terminology, all of these alarms are referred to
as chattering alarms in this context, with a refined definition
as: a chattering alarm is one that transitions between the alarm
state and the normal state very quickly or with a constant time
period.
Bransby and Jenkinson [17, App. 10] discussed some indus-

trial examples of chattering alarms caused by the noise on a
process variable that was operating close to the alarm trippoint,
and by the oscillations from repeated on–off control actions
having a regular oscillation period of 43 min. Hollifield and
Habibi [52, p. 84] listed top 10 chattering alarms based on
150 days of data. Ahnlund et al. [5] showed chattering alarms
associated with periodic signals or outliers in signals. Wang and
Chen [105], [106] presented industrial examples of chattering
alarms due to noise and oscillations at petro-chemical and
thermal power plants. One example of chattering alarms from
Plant A is presented next for illustration.
Example 1: A process variable is the difference between

the maximum and minimum values of measurements from 54
temperature sensors installed at stator outlet pipes at Plant A.

is configured with a high alarm variable with an
alarm trippoint at 8.0. That is, takes the value 1 if is



WANG et al.: AN OVERVIEW OF INDUSTRIAL ALARM SYSTEMS 1049

500 1000 1500 2000 2500 3000 3500
7

7.5

8

8.5

9

9.5

Time (sec)

A
m

pl
itu

de
 (
ϒC

)

(a)

500 1000 1500 2000 2500 3000 3500

0

0.5

1

Time (sec)

A
m

pl
itu

de
 (
ϒC

)

(b)

1 2
0

50

100

Alarm duration

F
re

qu
en

cy

(c)

Fig. 5. An example of chattering alarms due to measurement noise at Plant A:
(a) process variable (solid) and alarm trippoint (dash); (b) alarm variable; and
(c) histogram of alarm durations.

greater than 8.0, and the value 0, otherwise. Due to the measure-
ment noise aggregation in 54 sensors, high-frequency noises
contaminate and lead to a large number of alarm occur-
rences, as shown in Fig. 5(a) and (b). Among the samples of

collected in 1 hour with sampling period 1 s, there were 105
alarm occurrences in Fig. 5(b). The alarm durations of these 105
alarms were all no larger than 2 samples, as shown in the his-
togram of alarm durations in Fig. 5(c). Here, the alarm duration
is calculated as the number of consecutive samples taking the
value 1 between each alarm occurrence and the corresponding
clearance. Therefore, these occurred alarms are clearly nuisance
alarms.

B. Cause #2. Alarm Variables Are Incorrectly Configured

Before the appearance of modern computerized monitoring
systems such as the DCS and SCADA, each alarm variable was
realized by hardware devices with high investment costs. As
a result, each variable to be configured with alarm was care-
fully selected and thoroughly justified, and the total number
of alarm variables was very limited, e.g., about 30 to 50 per
process unit. As a comparison, alarm variables in modern com-
puterized monitoring systems are very easily realized in a tech-
nical sense by clicking a mouse and entering alarm trippoint
values at a computer, so that alarm configuration is regarded
as “free” without any cost. In addition, configuring more alarm
variables is often believed to be beneficial in improving opera-
tion safety. Hence, the number of alarm variables increases dra-
matically. For instance, Nimmo [85] reported that the number
of alarm variables in one plant was increased from 150 for the
hardware-based alarm variables to 14000 for the computerized
alarm variables. Hollifield and Habibi [52, p. 13] indicated that
the configured alarms per operator had increased exponentially
from less than 100 alarm variables in 1960 to about 4000 alarm
variables in 2000. Many variables are configured with alarms
without a careful study on the necessity of configuring alarms
and on the alarm priorities. As a result, there are a large number
of variables that should not be configured with alarms or are
configured with alarms in an incorrect manner. For instance,
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Fig. 6. (a) The measurements of main steam temperature from three sensors.
(b) The samples of three high alarms variables. (c) The samples of three low
alarms variables.

Timms [102] stated that some industrial facilities were with
more than 15000 configured alarm variables, and over 50% of
the configured alarm variables had been removed after alarm
rationalization.
Example 2: The main steam temperature at Plant A is one

of critical process variables, and is monitored by three inde-
pendent sensors. The measurement of each sensor is config-
ured with high-alarm trippoint 546 and low-alarm trippoint 530.
Thus, there are three high (low) alarm variables associated with
the main steam temperature. Fig. 6 presents the measurements
of the three sensors and the corresponding six alarm variables
in 24 hours. The high (low) alarm variables were very close for
most of times; sometimes only one alarm variable ran into the
alarm status for a short period of time due to noise effects, which
certainly should not lead to operator’s action such as adjusting
the attemperator water flow in order to affect the main steam
temperature. Clearly, it is not necessary to configure an indi-
vidual high (low) alarm variable for each sensor; a more rea-
sonable way is to design two alarm variables (one for the high
alarm and another for the low alarm) by integrating the mea-
surements from three sensors.
Example 3: There are more than 100 control loops at Plant A,

playing critical roles in the plant operation. Each control loop is
associated with two digital variables, namely, the manual mode
variable and the switch-to-manual variable. Fig. 7 shows the his-
torical data samples of the two variables for the feed air control
loop at Plant A. The manual mode variable indicates whether
the control loop is in the manual mode. For each control loop,
the manual mode variable is configured with an alarm. Thus,
when a control loop is switched from auto mode to manual
mode, an alarm occurs. However, the switching from auto to
manual mode is often done by operators. When an alarm oc-
curs under such a circumstance, operators certainly take no ac-
tions to address the alarm. Therefore, there is no need to con-
figure such a mode change with an alarm variable. By contrast,
the switch-to-manual variable is the one forcing a control loop
switching from the auto mode to manual, when some condi-
tions are satisfied. It should be configured with an alarm under
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Fig. 7. The data samples of manual mode variable (dash) and the switch-to-
manual variable (solid) for feed air control loop.

the condition that the control loop is in the auto mode. That is,
when an alarm for the switch-to-manual variable occurs, oper-
ators need to check the corresponding conditions in order to re-
turn the control loop back to the auto mode.

C. Cause #3. Alarm Design Is Isolated From Related Variables

The main task in alarm design is to determine the mecha-
nisms to generate alarm variables, and choose proper parameters
of the mechanisms. For instance, the most common alarm vari-
ables are generated by comparing the continuous-valued mea-
surements of analog variables with the high or low alarm trip-
points; thus, the alarm trippoints are the design parameters to
be chosen. However, in contemporary alarm systems, alarm de-
sign is usually isolated from other related variables, e.g., alarm
trippoints are constant values and do not vary with other vari-
ables. It is a well-known fact that many process variables are
related to each other via mass and energy conservation laws.
Thus, a proper design of alarm generation mechanisms should
be dependent on the related variables; otherwise, some types of
nuisance alarms, including false alarms and missed alarms, may
occur. As an illustration, Fig. 8 presents a schematic diagram of
a normal operating zone of two correlated variables configured
with alarms. If their alarm trippoints are designed in an isolated
manner, then a rectangular area is formulated, being inconsis-
tent with the normal operating zone. As a result, false alarms
(missed alarms) are possibly present, shown as the star (circle)
points in Fig. 8.
Example 4: The inlet flow of a feedwater pump at Plant A

is configured with high-alarm trippoint 560 and low-alarm trip-
point 50. In one abnormal situation, the drum water level was
decreasing abruptly so that the operating demand for the feed-
water pump was increasing quickly, shown as the dashed line in
Fig. 9(a). As a result, the inlet flow [the solid line in Fig. 9(a))]
exceeded the high-alarm trippoint 560, raising a high alarm.
However, the increment of inlet flow was induced by operator's
demand. That is, the feedwater pump performed normally as re-
quested, instead of being at an abnormal condition as implied by
the occurred high alarm. The prepump current [the dash-dotted
line in Fig. 9(a)] was closely related to the inlet flow. As a matter

X

Y

Fig. 8. Schematic diagram of normal operating zone with isolated alarm trip-
points.
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Fig. 9. (a) The time trends of inlet flow (blue solid), prepump current (black
dotted), operator demand (green dashed) and high/low-alarm trippoints (red
dash-dotted). (b) The scatter plot (dotted) of inlet flow and prepump current
with high/low-alarm trippoints (red dash-dotted).

of fact, the same proportional relation between the prepump cur-
rent and the inlet flow was unchanged, even if the inlet flow
exceeded the high-alarm trippoint 560, as shown in Fig. 9(b).
Therefore, the occurred high alarm of the inlet flow was a false
alarm due to the usage of constant alarm trippoint, which was
isolated to the related variables such as the prepump current.
A remedy is to design dynamic alarm trippoints for the inlet
flow when the feedwater pump is running. The dynamic alarm
trippoints are expected to be proportional to the prepump cur-
rent, and form a normal operating band that could tolerate a cer-
tain level of uncertainties for such a proportional relation due to
process variations.
After the high-alarm occurrence, another low alarm occurred,

as shown in Fig. 9(a). This was owing to the shutdown of the
feedwater pump, since the operating demand in Fig. 9(a) took
the value of zero at the end. Such a low alarm did not say that
the feedwater pump was in an abnormal condition, and no op-
erator actions were needed. Therefore, the occurred low alarm
was also a false alarm, which could be removed by incorpo-
rating the states of related variables such as the on/off state of
the feedwater pump into the design of alarm variables, as de-
scribed by the state-based alarming in ANSI/ISA-18.2 [58] and
Hollifield and Habibi [52].
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Fig. 10. Time trends of alarm variables in the alarm flood at Plant A on January
24, 2014 (the lower level for each alarm variable represents the value 0, and the
higher level represents the value 1).

D. Cause #4. Abnormality Propagates Owing to Physical
Connections

A large-scale industrial process is usually composed of
upstream and downstream devices, which are physically con-
nected. One abnormal condition in one process unit is very
likely to be propagated to the downstream devices or the up-
stream devices owing to automatic control loops or recycling
connections. As a result, a large number of correct alarms
may arise in a short period of time for the process variables
associated with these devices configured with alarms; these
alarms appear to “flood” operators. Hence, this phenomenon is
referred to as an alarm flood. In other words, an alarm flood is
defined as the situation when the number of alarm activations
exceeds the operator's ability to process them [89, p. 440].
There is no unique quantitative definition for alarm floods. A
widely accepted definition is that an alarm flood begins when
ten or more alarms occur within a 10-min time period until
the alarm rate drops below five alarm occurrences in 10 min
[89], [52], [58]. Rothenberg [89, p. 120] also defines serious
alarm floods as the situations having no less than 100 alarms
within 10 min, or having 10 consecutive time periods, where
each time period has no less than 10 alarms within 10 min.
Generally, the alarm floods include a large amount of nuisance

TABLE III
ALARM VARIABLES DURING THE ALARM FLOOD AT

PLANT A ON JANUARY 24, 2014

alarms. However, the true reason that “loss incidents frequently
involved the operator being overloaded with alarm floods” [41,
p. 139] is that too many correct alarms arise in a short time
period. Taking the explosion accident at the Texaco refinery as
an example, there were 275 alarms in the 10.7 min before the
explosion [53]. Large numbers of correct alarms are usually due
to the abnormality propagation. That is, a primary abnormal
event results in consequential abnormal events; these events
raise the related alarms [102]. Let us look at a specific example
for a concrete view of alarm floods.
Example 5: One alarm flood occurred at Plant A on January

24, 2014. The alarm flood started with a high alarm of the main
steam pressure (alarm tag #1 in Table III) that was raised at
the time instant 23:36:07. However, the plant operators mistak-
enly adjusted the feed coal flow in a wrong direction, so that the
main steam pressure kept increasing. The boiler water level de-
creased to an even lower position , which almost reached
a low-low alarm trippoint . Then, the operator reduced the
feed coal flow after realizing such a mistake by shutting down
two coal grinding mills. The main steam pressure decreased
dramatically; as a result, the boiler drum level increased too
quickly to arrive at a high-high alarm trippoint at 300, which
automatically triggered an emergency shutdown (alarm tag #80
in Table III) of the entire power generation unit at the time in-
stant 23:49:13. During the 13 min from 23:36:07 to 23:49:13,
80 alarm variables ran into the alarm status, as shown in Fig. 10.
The descriptions of the 80 alarm variables are given in Table III.
A retrospective investigation revealed that this alarm flood

involved the propagation of several abnormalities. The time
trends of several major process variables are presented in



1052 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 13, NO. 2, APRIL 2016

0 500 1000 1500 2000 2500 3000
−400
−200

0
200
400

(a)

A
m

pl
itu

de
 (

m
m

)

 

 

CCSWAX004

0 500 1000 1500 2000 2500 3000
10

20

30
(b)

A
m

pl
itu

de
 (

M
P

a)

 

 
4U09PT06
THRPRS

0 500 1000 1500 2000 2500 3000
0

500

1000
(c)

A
m

pl
itu

de
 (

t/h
)

 

 

MSFLOW
CCSWAX005

Fig. 11. Time trends of main process variables during the alarm flood at
Plant A on January 24, 2014: (a) boiler drum level (tagname CCSWAX004)
as the process variable associated with the alarm variables with Tags
#16,19–21,24,64–67 and 77–79 in Table III; (b) steam pressure (tagname
THRPRS) as the process variable associated with the alarm variable Tag #1,
boiler drum pressure (tagname 4U09PT06); and (c) inlet water flow (tagname
CCSWAX005) as the process variable associated with the alarm variables with
Tags # 73 and 76, main steam flow (tagname MSFLOW).

Fig. 11. The abnormalities of the steam pressure (tagname
THRPRS in Fig. 11) and the boiler drum level (tagname
CCSWAX004 in Fig. 11) were the two most critical ones.
Because the physical connection of the steam pipeline and the
boiler drum, the boiler drum pressure (tagname 4U09PT06
in Fig. 11) was directly affected so that another abnormality
appeared in the boiler drum due to the unbalanced inlet water
flow (tagname CCSWAX005 in Fig. 11) and the main steam
flow (tagname MSFLOW in Fig. 11); such an abnormality
caused a large variation of the boiler drum level, leading to the
emergency shutdown of the power plant. As some less critical
abnormalities, the control loops of two steam-driven feedwater
pumps were switched automatically into the manual mode
due to the abnormal boiler drum level; in order to reduce the
main steam pressure via manual operations, operators switched
several control loops into the manual mode such as the feed air
flow control loop, and adjusted the feed coal flow by switching
off two coal grinding mills. The 80 alarms associated with all
abnormalities were raised in 13 min, resulting in an alarm flood.
Apparently, the operators failed in diagnosing and handling the
abnormalities, so that the abnormalities led to the incident of
process unit emergency shut down. It is worthy to point out
that the alarm occurred first in time does not always indicate
the origin of abnormalities, because the order of occurrences
depends on several factors such as the configuration of alarm
trippoints and the variation speeds of process variables.
Remark #1: The above-mentioned four causes could be

mixed or present simultaneously in practice. For instance, the
alarm floods in Examples 5 also involved the main cause #2,
because Tags # 25–27 (superheater temperature high alarm
variables) are similar to those in Example 2, and should be
integrated to configure one alarm variable, instead of the three
individual alarm variables.

IV. CURRENT RESEARCH STATUS
This section summarizes the current research status for in-

dustrial alarm systems. The summary focuses on the state of the
art of methodologies related to the four main causes given in
Section III that lead to the phenomenon of alarm overloading.
Hence, the cited references are not going to represent a com-
plete list of publications on industrial alarm systems; see, e.g.,
Kirschen andWollenberg [66] and Kim [65] for a review of ear-
lier methodologies for alarm systems and diagnostic systems in
the power industry.

A. State of the Art in Dealing With Chattering Alarms
The first step in dealing with chattering alarms is to detect

the presence of chattering alarms. Yuki [125] and Noda et al.
[86] detected chattering or unnecessary alarms by focusing on
the balance between alarm occurrences and operator actions.
Kondaveeti et al. [68] quantified the degree of chattering alarms
based on the alarm run lengths. Naghoosi et al. [82] estimated
the chattering index based on statistical properties of process
variables. Wang and Chen [105] revised the chattering index by
taking the number of data samples into consideration. Instead of
using chattering indices, Wang and Chen [106] formulated two
hard rules to detect chattering alarms.
The second step in handling chattering alarms is to design

alarm systems to reduce the number of chattering alarms in the
future. Burnell and Dicken [22] introduced an auto-shelving
mechnasium to deal with repeating alarms. Bransby and Jenk-
inson [17, App. 10] and the guideline EEMUA-191 [41, App.
9] recommended filters, deadbands, delay timers, and shelving
mechanisms to handle repeating alarms. Ahnlund et al. [5]
separated process variables into 14 classes and selected proper
filters accordindg to the classes to deal with chattering alarms.
Henningsen and Kemmerer [50] and Srinivasan et al. [93]
temporarily changed alarm trippoints or put alarm variables
in a shelving condition based on statistical process control
techniques. Hwang et al. [56] applied control charts to design
a pre-alarm system to reduce the alarm frequency. Hugo [55]
designed adaptive alarm deadbands to reduce the number of
chattering alarms. Naghoosi et al. [82] designed optimal alarm
limits and deadbands by minimizing the chattering index. Wang
and Chen [105], [106] proposed online methods to remove
chattering and repeating alarms by adjusting alarm trippoints
or using delay timers.

B. State of the Art in Handling Incorrectly Configured Alarm
Variables
In terms of configuring process variables with alarms, there

are mainly two types of alarm configuration methods. The first
type is to establish relations between process variables and
abnormal situations based on process knowledge in order to
configure alarm variables accordingly. Yan et al. [115] drew
up an abnormality propagation diagram and selected suitable
alarm variables for malfunctions. Yan et al.[116] allocated
sensors for alarm variables to optimize fault detection relia-
bility based on process topology represented by signed directed
graphs. Takeda et al. [95], [96] selected process variables to
be configured with alarms based on cause-effect models from
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process topology. Dalapatu et al. [34] assigned alarm variables
to a group of process variables based on process knowledge to
identify abnormal events.
Another type of alarm configuration methods is to analyze

correlated or consequential alarm variables based on historical
data, to remove redundant alarm variables or redesigning alarm
variables. Geng et al. [46] and Zhu and Geng [127] grouped
alarm variables into different clusters and ranked the priorities
of alarm variables in each cluster via a fuzzy clustering-ranking
algorithm. Kordic et al. [70] found correlated sets of alarm vari-
ables by using time intervals between alarm occurrence and dis-
appearance time instants. Kondaveeti et al. [69] built an alarm
similarity map based on the Jaccard similarity index for bi-
nary-valued alarm variables. Yang et al. [118] clustered corre-
lated alarm variables based on correlation coefficients of pseudo
continuous time series generated from binary alarm data sam-
ples. Yang et al. [120] exploited the Sorgenfrei similarity coef-
ficient for binary-valued alarm variables and the distribution of
correlation delays to detect correlated alarm variables. Wang et
al. [108] found consequential alarms based on correlation de-
lays and Granger causality measures.
In terms of assigning different priorities to alarm variables,

qualitative approaches are the common practice. For instance,
Timms [101] discussed alarm prioritization based on classi-
fying the consequences on personnel safety, financial loss and
environmental consequences into several categories. Very few
quantitative approaches appeared recently. Chang et al. [25]
proposed a quantitative risk-based approach to prioritize alarm
variables by integrating the process safety time together with
the probability and impact of potential hazards. Arifin and
Choudhury [8] quantified the system failure probability to sort
the importance of alarm variables.

C. State of the Art in Alarm Design by Considering Related
Variables

As stated in Section III-C, the design of the generation
mechanisms for alarm variables often needs to take correlated
variables into consideration. Since multiple process and alarm
variables are involved, the alarm generation mechanisms are
diverse, developed without a unifying framework. Yamanaka
and Nishiya [114], Charbonnier et al. [26], and Charbonnier
and Poret [27] extracted the trends of several related process
variables to formulate different episodes for generating alarm
variables. Bristol [18] suggested automatic adaptation of alarm
trippoints to varying process situations. Brooks et al. [19]
proposed a geometric process control method to obtain dy-
namic alarm trippoints from multivariate best operating zones.
Nihlwing and Kaarstad [84] developed a state-based alarm
system that dynamically presented alarms based on 19 different
process states for a nuclear power plant simulator. Jang et al.
[61] developed different rules to filter or suppress alarms for a
nuclear power plant reactor. Izadi et al. [60] and Kondaveeti et
al. [67] applied multivariate statistics to generate alarms more
efficiently. Yang et al. [117] performed correlation analysis for
alarm signals to optimize alarm trippoints. ANSI/ISA-18.2 [58],
Hollifield and Habibi [52], Arjomandi and Salahshoor [9], and
Jerhotova et al. [62] described state-based alarming to avoid

long-standing alarms by changing alarm settings according
to process states. Gupta et al. [49] exploited wavelet analysis
and principal component analysis to alleviate noise effects and
detect faults in pharmaceutical manufacturing processes. Zhu
et al. [128] obtained dynamic alarm trippoints depending upon
multiple steady states and transitions between these states.
Zang and Li [126] optimized alarm trippoints by minimizing
FAR and MAR based on joint probability density of multiple
process variables. Alrowaie et al. [6] proposed a model-based
alarm design method based on particle filtering for multivariate
nonlinear stochastic systems. Xu et al. [113] predicted the
impending alarms based on hybrid models utilizing both first
principles and data, so that operators could have more time to
handle alarms.

D. State of the Art in Processing Alarms Owing to Abnormality
Propagation
Abnormality propagation is a major reason for multiple

alarms and even alarm floods. Some techniques have been
developed to deal with this case in alarm floods. Laberge et
al. [71] addressed alarm floods through a new alarm summary
display design by showing alarms in a time series represented
by icons together with short alarm descriptions. Varga et al.
[104] detected the development of unsafe situations and sug-
gested the operators with necessary safety actions based on the
prediction of physical models. Basu et al. [12] ordered alarms
on the power grid according to different severity measures.
Tchamova and Dezert [97] estimated the degree of danger for
alarms based on Dezert-Smarandache theory to fuse conflicting
evidences. Blaauwgeers et al. [16] and Zhu et al. [129] used
the BowTie diagram and Bayesian network respectively, to
perform real-time risk analysis for operators to prioritize alarm
handling.
To reduce the number of alarms due to abnormality prop-

agation, suppression of consequential alarms or redesign of
alarm variables are recommended, in particular, during alarm
floods. The guideline in EEMUA 191 [41] suggested reviewing
consequential alarms and using alarm grouping to reduce the
number of alarm activations during alarm floods. Hollender
and Beuthel [51] suggested hiding consequential alarms based
on causal relations between process variables. Beebe, Ferrer
and Logerot [15] suggested state-based alarm rationalization to
control alarm floods whose occurrences are typically due to a
change of process states.
Obviously, the essential solution to consequential alarms

owing to abnormality propagation is to find one or more ab-
normalities as the root cause(s) of a set of occurred alarms.
The first type of methods to find the root causes is based on
the process knowledge and/or learning algorithms. Young et al.
[123], McDonald et al. [80] et al. [109], and Wen et al. [110],
respectively, used a Tabu-search method and a refined genetic
algorithm to find the abnormal events to explain a given set
of reported alarms from knowledge-based tables describing
the relations between abnormal events and alarm variables
for power systems. Cauvin et al. [23] used causal graphs and
models to interpret the root causes of alarms. Dashlstrand [35],
Souza et al. [92], Larsson et al. [73], and Tolga et al. [103]
introduced multilevel flow models or fuzzy neural networks
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to analyze root causes of alarms. Kezunovic and Guan [64]
used fuzzy reasoning Petri-nets techniques to diagnose the root
cause of alarms. Liu et al. [76] introduced an operator model as
a virtual subject to evaluate the performance in diagnosing root
causes of alarms. Simeu-Abazi et al. [91] exploited dynamic
fault trees to locate faults from alarms with application to
avionic systems. Guo et al. [48] and Wei et al. [111] determined
fault/disturbance causes based on rule networks or temporal
constraint networks between cause hypothesis and alarms for
digital power substations. Abele et al. [1] and Wang et al.
[107] exploited Bayesian networks to analyze the root cause of
alarms in an online manner. Dubois et al. [37] and Lee et al.
[74] adopted logic diagrams to perform real-time cause-effect
analysis for alarms. The above methods need rather complete
and accurate knowledge about the process, which is sometimes
difficult to obtain in practice, especially when the process is
large and complex.
Alternatively, historical alarm series can be used to extract

time patterns of alarms. For this purpose, sequential pattern
matching has been introduced for examining alarm series.
Folmer et al. [43], Folmer and Vogel-Heuser [44] and Folmer
et al. [45] used this idea to cluster frequent occurring subse-
quences in alarm logs and identify alarms with causal relations
to redesign alarm systems for reducing the number of alarm
variables. Similar historical alarm floods can be exploited to
extract representative information. Ahmed et al. [4] located
similar alarm floods based on the consecutive alarm frequencies
and used dynamic time warping to obtain optimal matching be-
tween two alarm floods. Cheng et al. [30] proposed a modified
Smith–Waterman algorithm for local alignment of two alarm
flood sequences so that common alarm sequence segments
could be extracted. Charbonnier et al. [28] extracted the fault
sequence template from alignments of alarm sequences from
the same fault, and compared a new alarm sequence to the tem-
plate for fault isolation. This type of methods rely on sufficient
historical alarm data, including all possible patterns. However,
we may not encounter all the abnormalities in the past, leading
to its failure for new patterns in online practice.
Another type of methods is to capture the plant topology in

advance to describe the intrinsic structure of the process. When
the process enters an abnormality, a backtrack or hypothesis
test can be employed based on the current symptom to find
the root causes. There are plenty of process data and various
methods that can be used for capturing this causal topology.
Bauer et al. [14] used time-delayed cross correlation to identify
the propagation paths and then build a causal map. Similarly, a
series of causality identification methods have been proposed,
such as Granger causality [124], partial directed coherence
[47], transfer entropy [13], direct transfer entropy [38], and
transfer zero-entropy [40]. Nonlinearity can also be used as
an indicator in causality analysis, e.g., Thornhill [100] used a
nonlinearity index to find the root cause because nonlinearity
is strongest at its source. Cecilio et al. [24] used the nearest
neighbors method to identify abnormality in each series and
showed the abnormality propagation order as a color plot.
By the total contribution plot, one can observe how a fault is
spreading across the process [11]. For a survey refer to [121]
and [39]. The limitations of these data-based methods are

assumptions of model linearity or data stationarity, and the high
computational burden. In addition, these methods are usually
used for obtaining a short list of possible root causes that cannot
be confirmed without resorting to process knowledge. There-
fore, in addition to process data, another important resource
for building plant topology is plant connectivity information
that describes physical, mass or information linkage between
process units. Adjacency matrices [63], signed directed graphs
[78], XML description [122] and semantic description [121] are
efficient representations of plant connectivity, which provide a
physical foundation of plant topology with extra and redundant
information. These connectivity-based methods should be in-
tegrated with data-based methods for validation. Thambirajah
et al. [98] combined the cause-and-effect matrix derived from
measurements and qualitative information about the process
layout. Landman et al. [72] used a dedicated search algorithm
to validate the quantitative results of the data-driven causality
using the qualitative information on plant connectivity. Yang
et al. [119] validated the data- and connectivity-based results
mutually. Alarm data can also be used, e.g., Schleburg et al.
[90] combined plant connectivity and alarm logs.
The combination of different resources and methods is a

proper choice in real applications according to availability of
resources and application objectives. Chiang and Braatz [32]
integrated the statistical analysis with the causal map. Thornhill
et al. [99] enhanced data-based analysis process understanding.
Maurya [79] combined signed directed graphs with qualitative
trend analysis. Di Geronimo Gil et al. [36] merged first-prin-
ciples structural models with plant topology derived from a
process drawing.

V. RESEARCH PROBLEMS TO BE SOLVED

In this section, we first formulate the lifecycle of alarm vari-
ables into three stages, namely, alarm configuration, alarm de-
sign, and alarm removal, and connect the stages with the four
main causes in Section III. Next, for each stage, we propose
some fundamental research problems to be solved, on the basis
of research status summarized in Section IV.

A. Lifecycle of an Alarm Variable

The industrial standard ANSI/ISA-18.2 [58] and the guide-
line in EEMUA-191 [41] defined desired performance bench-
marks for industrial alarm systems, e.g., the second column in
Table II. In order to achieve the benchmarks, the industrial stan-
dard ANSI/ISA-18.2 presented ten stages for an alarm manage-
ment lifecycle, namely, alarm philosophy, identification, ratio-
nalization, detailed design, implementation, operation, mainte-
nance, monitoring and assessment, management of change, and
audit [58, p. 22]. Hollifield and Habibi [52] listed seven steps to
achieve a highly effective alarm system:
Step 1) Develop, adopt and maintain alarm philosophy.
Step 2) Benchmark alarm system.
Step 3) Find bad actor alarms.
Step 4) Perform alarm documentation and rationalization.
Step 5) Implement alarm audit and enforcement technology.
Step 6) Implement real-time alarm management.
Step 7) Control and maintain improved alarm system.
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Fig. 12. The lifecycle of alarm variables.

These stages and steps have been proven to be effective path-
ways to follow in some practical applications, but more tech-
niques need to be developed to support these stages and steps.
The techniques, as the expected outcomes of the fundamental
research problems to be proposed in the next subsections, are
better to be presented in a different way with respect to the alarm
variables.
The lifecycle of alarm variables may be formulated as three

stages, namely, alarm configuration, alarm design, and alarm
removal, as shown in Fig. 12. That is, some process variables
in the set are selected in the stage of alarm configuration to
formulate the set as the process variables to be configured
with alarms, is the set of alarm variables based on the alarm
design for , and operator action needs to be decided in the
stage of alarm removal once is in the alarm state. In par-
ticular, each stage has its own alarm performance monitoring
techniques in order to have a systematic solution to the problems
therein and to maintain a satisfactory performance of each stage
in a long run. The three stages are closely related to the four
main causes discussed in Section III. The second cause “alarm
variables are incorrectly configured” is about alarm configura-
tion; the first and third causes are for nuisance alarms, which are
the main concerns in the alarm design; the fourth cause “abnor-
mality propagates owing to physical connections” is related to
the alarm removal, since one of key steps in alarm removal is to
find the root causes of alarms, especially during an alarm flood.
The three stages in Fig. 12 are also connected with the ten stages
in [58] and the seven steps in [52], e.g., the alarm configuration
are in line with steps 1 and 4, the alarm design are related to
steps 2, 3, 5 and 7, and the alarm removal encloses step 6.

B. Research Problems in Alarm Configuration
Alarm configuration mainly involves the selection of process

variables to be configured with alarms, and the determination of
alarm priorities. There are three fundamental research problems
to be solved:

Problem 1: Should an alarm variable be configured for a
given process variable?
Problem 2: Which priority should an alarm variable be
assigned?
Problem 3: Are there any incorrectly configured alarm
variables in an existing alarm system?

In terms of Problem 1, the main concern is the determination
of relations between abnormal events and process variables so
that proper process variables are selected to identify abnormal
events. Mathematically, the relation can be described as

(2)

where stands for the set of abnormal events, is the set of
candidate process variables, and is the set of selected process

variables to be configured with alarms. If the relation between
abnormal events and process variables is established, then the
process variables, whose variations reveal the presence of ab-
normalities, are selected to be configured with alarms. However,
the existing approaches [115], [116], [95], [96], [34] summa-
rized in Section IV-B to establish such a relation are based on
process knowledge or obtained from historical operating data.
Either way has its own limitations, e.g., the process knowledge
is often incomplete and qualitative, while the data-based ap-
proaches are confined by the occurred phenomena in the histor-
ical data sets and contaminated by noise/disturbances. Hence,
the main challenge is to exploit process knowledge and histor-
ical data simultaneously in establishing relations and selecting
proper process variables to be configured with alarms.
In terms of Problem 2, the current approaches in industrial

practice are mostly qualitative, based on the understanding of
severity in missing alarms and a rough estimation of safety time
in handling alarms. Quantitative approaches are the ones to be
developed as alternatives or complements to the qualitative ap-
proaches. For instance, a more accurate estimation of the safety
time could be obtained from historical data sets. Here, the safety
time is the time period allowed to handle an alarm so that the as-
sociated negative consequences do not occur. The risk-based ap-
proaches in [8] and [25] are promising quantitative approaches
to assign priorities for alarm variables. Alarm priorities may not
be static; instead, dynamic alarm priorities are perhapsmore rea-
sonable for different process states and operational scenarios, as
shown by [12], [16], [97], [129].
In terms of Problem 3, the incorrectly configured alarm vari-

ables may present themselves in different forms. The redundant
(duplicated) alarm variables are the ones that always run into
the alarm status simultaneously or in a constant time delay. The
redundant alarm variables yield no extra useful information and
should not be configured with alarms. The correlated and con-
sequential alarm variables may also be resulted from incorrect
alarm configurations, e.g., the highly correlated alarm variables
from three sensors for themain steam temperature in Example 2.
The correlated alarm analysis methods [69], [108], [118], [120]
listed in Section IV-B are able to effectively detect the redun-
dant, correlated and consequential alarm variables. If operator
actions cannot be clearly defined for the occurred alarms, then
the corresponding alarm variables may be incorrectly config-
ured, as shown by the alarms from the switch-to-manual vari-
able in Example 3. Yuki [125] and Noda et al. [86] associated
operator actions with occurred alarms; if no operator actions
could be found, then the occurred alarms were nuisance. How-
ever, the challenges for doing so is that many operator actions or
responses are not recorded in the historical database, and even
for the recorded ones, they are difficult to be associated with oc-
curred alarms in an automatic manner.

C. Research Problems in Alarm Design

The first objective in the stage of alarm design is to design
an alarm generation mechanism that transforms process vari-
ables to be configured with alarms into alarm variables
as shown in Fig. 12, i.e.,
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Here, stands for the set of process variables related to ,
and is the vector of design parameters in the alarm gener-
ation mechanism . The alarm generation mechanism

includes the simplest one in (1), alarm deadband (hys-
teresis), delay timers and filters, which have been commonly
adopted in practice, as well as more complex ones such as
logic/model/knowledge-based alarming methods [41], [52],
[58], [89]. Thus, the corresponding fundamental research
problem to be solved is:

Problem 4:How to design an alarm generation mechanism
with good performance?

One main objective in the design of is to reduce the
number of nuisance alarms caused by noise and/or disturbance
(main cause #1 in Section III); another main objective is to
take the related variables into the generation of alarm variables
(main cause #3). In particular, if related variables have to be
considered, the alarm generation mechanisms have many dif-
ferent forms, as shown by the references cited in Section IV-C.
However, there are two main challenges, which have not been
well addressed in the existing studies, in order to solve Problem
4 in a systematic manner.
First, the normal and/or abnormal operating zones for

process variables to be configured with alarms are difficult to
obtain. The normal and/or abnormal operating zones are the
prerequisites for the design of . Some physical principles
and laws may be exploited to build up mathematical models for
process variables in the normal or abnormal conditions. How-
ever, the uncertainties of model parameters have to be estimated
from historical normal/abnormal data sets to formulate the
operating zones, instead of trajectories, to tolerate the variations
of normal operations and the effects from noise/disturbances.
The operating zones could also be established directly from the
normal and abnormal historical data sets. However, these data
sets are often not available at hand, and have to be separated
from historical data samples. One argument is to do the clas-
sification manually via visualization and consultation to plant
operators, which is possible only for small sized data sets. Few
existing studies have addressed this research challenge. Xu et
al. [112] proposed a new method to detect the data sets with dif-
ferent sample means and to compare the sample means to alarm
trippoints via hypothesis tests, in order to isolate normal and
abnormal data sets of one single process variable. If multiple
process variables are involved, the static alarm trippoints cannot
truly reflect the normal operating zone, as shown in Fig. 8. As
implied by the industrial example shown in Fig. 9 and several
[26], [27], [114] cited in Section IV-C, abnormalities may be
detected by monitoring the consistency of changing directions
of and . By incorporating this process knowledge, change
detection methods and data clustering techniques need to be
developed in the context of industrial alarm systems.
Second, the relation between and a performance index

vector is difficult to establish. The false alarm rate (FAR) and
missed alarm rate (MAR) are the most commonly-adopted per-
formance indices. It is a well-known fact that there is a tradeoff
between the FAR and MAR. Thus, a loss function can be
formulated to balance the conflicting indices, e.g.,

where the real number is a weighting factor. An
optimal design of is obtained by minimizing , i.e.,

One critical knowledge required in the optimization is the quan-
titative relation between and . For certain univariate
alarm variables where the one-dimensional process variable
is independent and identically distributed (IID), this relation has
been established for alarm deadband, delay timers and filters [2],
[3], [29], [112]. However, the relation is rather difficult to estab-
lish under more practical assumptions, e.g., is not IID. As
an attempt, Alrowaie et al. [6] adopted particle filtering to es-
timate FAR and MAR for non-IID process variables from non-
linear stochastic systems. If are multivariate and are in-
volved, the relation is much harder to be obtained. As a result,
many existing studies in Section IV-Cwere limited to the propo-
sition of without theoretical analysis on the performance,
but only with some examples showing the empirical effective-
ness.
The second objective in the stage of alarm design is to de-

tect the presence of nuisance alarms for industrial alarm sys-
tems being in service, in order to initiate a redesign of
as described in Problem 4 to reduce the number of nuisance
alarms in the future. Thus, the corresponding fundamental re-
search problem is:

Problem 5: Are there too many nuisance alarms, so that
alarm generation mechanisms need to be redesigned?

Clearly, a solution of isolating historical normal and abnormal
data sets partially solves Problem 5, because the availability of
normal data segments directly classifies the occurred alarms in
the normal data segments as false alarms. However, such a so-
lution may be difficult or costly to be obtained, it would be de-
sirable to attack Problem 5 via different approaches.
One approach to solve Problem 5 is based on some special

characteristics of nuisance alarms. As an example, the rationale
of the methods in [105] and [106] to detect chattering and re-
peating alarms is to look at the statistical regularity of alarm du-
rations or intervals in historical alarm data samples. The main
challenge in doing so is from the diverse types of nuisance
alarms. Each type of nuisance alarms has its own characteris-
tics to be exploited for detection. Some characteristics are easier
to be captured. For instance, chattering and stale alarms are the
alarms whose time durations are very short (e.g., less than 20
s) [106] or exceptionally long (e.g., more than 24 hours) [41],
[58]. By contrast, the characteristics of some nuisance alarms
are hard to be described, e.g., those due to the third main cause
in Section III.
Another approach is to associate operator actions with oc-

curred alarms [86], [125]. According to the definition of cor-
rect alarms in Section II, if an operator action is associated with
the occurrence of an alarm, then the occurred alarm is correct;
otherwise, it belong to a nuisance alarm. However, such an ap-
proach may not be feasible in practice, as commented earlier for
Problem 3.
Amore feasible approach to solve Problem 5 is to connect the

occurred alarms with their consequences. If no harmful conse-
quences have been detected, then the occurred alarms are cer-
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tainly nuisance. The relation between alarm variables and their
consequences is the one to be established in the stage of alarm
configuration. Owing to the presence of noises or disturbances,
the detection of consequences may rely upon some hypothesis
tests to make a statistical classification.
After the detection of nuisance alarms, the severity of nui-

sance alarms needs to be evaluated to determine whether a re-
design of alarm systems is necessary or which alarm variables
need to be addressed with high priorities. For instance, the chat-
tering indices in [68], [82], and [105] are used for this purpose.
The third objective in the stage of alarm design is to generate

a predictive alarm to indicate upcoming critical abnormalities,
so that operators could have more time to analyze the upcoming
alarms and take proactive actions. Thus, the research problem
is:

Problem 6: How to design mechanisms to generate predic-
tive alarms in order to forecast upcoming critical abnormal
events?

A standard approach is to generate predictive alarms based on
time series modeling and prediction techniques, e.g.,

where with is the prediction of a process vari-
able configured with alarms, from a predictor based
on the current and past data sample . Such
an approach may not work well due to complexity of process
variables in practice.
A special attention has to be paid to alarmfloods,which should

be avoided asmuch as possible as due to the equalities “
” [15]. Hence, it is important to predict the up-

coming of alarm floods and take preventive actions to avoid the
occurrence of alarm floods. One approach for the prediction of
alarm floods is based on the physical or hybrid models, which
predict the evolution of process variables [104], [113]. However,
developing physicalmodels are technically challenging and time
consuming. Hence, such an approach is only feasible and worth-
while for a limited number of critical devices or equipments, not
applicable to general alarmvariables. Since alarmfloods are usu-
ally composed by alarm variables having physical connections,
as shown in Section III-D, historical alarm floods may have cer-
tain regularities to be exploited. For instance, the switching-off
events of coal grinding mills in Example 5 in Section III-D al-
ways lead to the occurrences of the fire-off alarms and the mill
sear/primary air pressure low alarms. Thus, another approach to
handle alarm floods is to detect similar historical alarm floods,
extract regular patterns of these similar alarm floods, and predict
an upcoming alarm flood by comparing the currently occurred
alarms to the regular patterns. The related methods in [4], [28],
and [30] cited in Section IV-D detected similar alarm floods and
their regular patterns solely based on historical data, whose val-
idation is rather difficult. A more convincing conclusion may
be obtained by complementing these methods with the physical
connections of alarm variables. Hence, the main challenge is to
obtain the process knowledge related to similar alarmfloods, and
transform it into a form that could be incorporated together with
the statistical regularity from historical data. Another challenge
is about the computational speed of algorithms in the predica-
tion of alarm floods. The modified Smith–Waterman algorithm

in [30] is perhaps the state of the art for alignment of similar
alarm floods; however, the algorithm is only suitable for offline
usage, due to the slow computation speed, especially for alarm
floods with long sequences. Hence, the computation has to be
improved greatly, in order to be fast enough for matching an oc-
curring alarm flood to its similar ones in the historical database
in an online manner.

D. Research Problems in Alarm Removal
Alarm removal is mainly concerned with analyzing root

causes leading to the occurrence of alarms, and advising op-
erators to take some proper actions to avoid the deterioration
of negative consequences associated with alarms, and drive
the process variables back to their normal operating zones so
that the occurred alarms are eventually removed. There are two
fundamental research problems to be solved in this stage:

Problem 7: What are the root causes of the occurring
alarms?
Problem 8:What actions should operators take to address
the occurring alarms?

The very first step in solving Problem 7 is to tell whether
the occurring alarms have meaningful root causes, or in other
words, they belong to nuisance alarms or correct ones. Nuisance
alarms require no operator action or response, and their removal
is one of the main objectives for the stages of alarm design. If
an alarm variable always produces nuisance alarms, then the re-
moval of these nuisance alarms is done by removing the config-
uration of the alarm variable. A hard online classification of nui-
sance and correct alarms is rather difficult, but a classification
using statistical inference is feasible. For instance, a hypothesis
test can be formulated with the following null and alternative
hypotheses

Such a hypothesis test can be based on the statistical characters
of alarm and/or process variables revealed in historical data sets,
e.g., the probability mass functions of time durations of alarm
variables.
For correct alarms, the objective of Problem 7 is to find out

the occurring abnormalities as the root causes of alarms. As
pointed out in Example 5, the alarm occurred first in time does
not always indicate the origin of abnormalities, which certainly
complicates the root cause analysis. If the relation between the
abnormalities and alarm variables can be established in some
manner, then the root causes could be found backwards. That
is, the root causes of occurring alarms are located based on the
inverse model of the relation in (2), i.e.,

Here, is the estimate of root causes for the alarms in . There
are a large variety of representations of and the approaches
to yield ; see the references cited in Section IV-D. In this sense,
Problems 1 and 7 share a common objective to establish the rela-
tion between process variables and abnormalities. There-
fore, as commented for Problem 1, the limitations of process
knowledge and historical operating data are the main challenges
in solving Problem 7, too.
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Due to the large scale and complexity of industrial processes,
the above mapping in (2) is more related to plant topology
than statistical models. It is more fundamental to locate the
root causes for an event or an alarm flood. As discussed in
Section IV-D, nonlinearity, as a local metric, can be used to
find the most possible root causes. To obtain the abnormality
propagation, causality capturing methods are necessary based
on process measurements as well as alarm series. All the non-
linearity- and causality-based methods need sufficient historical
data. However, for a new process without historical data, or
a process that do not have so much trouble in the past, it is
impractical to obtain sufficient statistical data in all abnormal
situations. As a result, plant connectivity should be taken into
account to describe the interior relationship between process
units and process variables. In practice, the information in the
historical data and the plant connectivity should be integrated
to improve their efficiency and accuracy.
The objective of Problem 8 is to provide operators quanti-

tative or qualitative advices in taking proper actions to even-
tually remove the occurring alarms. Brooks et al. [19] claimed
that corrective changes of manipulated variables could be ad-
vised from the geometric process control method based on best
operating zones in a multivariate framework, and these advices
would be valuable to help operators to take proper actions; how-
ever, no technical details on the parallel coordinate techniques
and the projective geometry theory were revealed in [19]. These
advices are indispensable, especially when many process and
alarm variables are involved. The multiple occurring alarms
have to be ordered on the basis of their severities of conse-
quences, in order not to deviate further from the normal op-
erating zones and lead to aggravation or even incidents [12],
[16], [104], [129]. This is closely related to Problem 2, where
the main challenge is to develop quantitative approaches along
with the ones solely based on the process knowledge. In terms
of alarm floods, the best way perhaps is to take preventative ac-
tions in order to avoid the occurrence of alarm floods, on the
basis of the alarm flood prediction that has been discussed for
Problem 6.

VI. CONCLUSION
Industrial alarm systems are receiving increasing attention

from both industrial and academic communities. This is essen-
tially owing to a gap between two facts that alarm systems are
critically important for plant safety and efficiency on one hand,
but on the other hand, alarm systems are suffering from poor
performance of having too many alarms to be handled by op-
erators. A necessary step to resolve such a gap is to find out
the main causes for the phenomenon of alarm overloading. This
paper attempted to do so by identifying the four main causes,
namely, chattering alarms due to noise and disturbance, alarm
variables incorrectly configured, alarm design isolated from re-
lated variables, and abnormality propagation owing to physical
connections. The literature survey in Section IV showed the dif-
ferent maturity levels of existing methodologies in addressing
the four main causes. For instance, some recent studies cited
in Section IV-A have made promising progress in the detection
of chattering alarms and the systematic design of alarm gen-
eration mechanisms to reduce the number of chattering alarm

occurrences, while the study on alarm floods is still in its in-
fancy with very few published results. Eight fundamental re-
search problems to be solved were presented for the lifecycle of
alarm variables composed of three stages, namely, alarm con-
figuration, alarm design and alarm removal. As these problems
originate from industrial practices, it would be crucial to inves-
tigate them by analyzing industrial data samples of process and
alarm variables, together with process knowledge, and to vali-
date the solutions in real-time industrial applications.
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