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a b s t r a c t

In this work, an event-based optimal state estimation problem for linear-time varying systems with
unknown inputs is investigated. By treating the unknown input as a process with a non-informative
prior, the event-basedminimummean square error (MMSE) estimator is obtained in a recursive form. It is
shown that for the general time-varying case, the closed-loopmatrix of the optimal event-based estimator
is exponentially stable and the estimation error covariance matrix is asymptotically bounded for each
sample path of the event-triggering process. The results are also extended to themultiple sensor scenario,
where each sensor is allowed to have its own event-triggering condition. The efficiency of the proposed
results is illustrated by a numerical example and comparative simulation with the MMSE estimators
obtained based on time-triggered measurements. The results are potentially applicable to event-based
secure state estimation of cyber-physical systems.
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1. Introduction

The increasing demand on safe, secure and high performance
operation of civil and industrial engineering systems has given
birth to cyber-physical systems (CPSs). Different from the tradi-
tional control systems, CPSs are normally composed of networks of
interacting components (e.g., sensor/actuator networks). Despite
the encouraging features and newopportunities brought on by this
type of systems, CPSs have introduced several new challenges to
control system design.

One of these challenges is the limitation of communication and
power resources. In many CPS applications, a large number of
sensors and actuators linked through communication networks are
utilized to accomplish certain tasks (e.g., quality control, remote
monitoring). When all the components transmit their updates
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to each other or the computing center, the number of available
communication channels acts as a natural limitation; moreover, in
many occasions, some of these components are battery powered
(e.g., mobile sensor networks), making the amount of available
power a restriction on system performance as well. The event-
triggered data transmission policies (Åström & Bernhardsson,
2002;Meng&Chen, 2012; Yook, Tilbury, & Soparkar, 2002) provide
an efficient remedy to handle these limitations, and event-based
state estimation, which is the scope of this work, has received a lot
of attention in the control community during the past few years.

Earlier results on this topic focus on optimal event-triggering
policy design. The optimal event-based finite-horizon sensor
transmission scheduling problems were studied in Imer and Başar
(2005) and Rabi, Moustakides, and Baras (2006) for continuous-
time and discrete-time scalar linear systems, respectively; the
results were extended to vector linear systems in Li, Lemmon,
and Wang (2010). In Marck and Sijs (2010), a sampling protocol
was proposed based on the Kullback–Leibler divergence of
the probability distributions obtained when incorporating or
not incorporating a measurement. Adaptive sampling for state
estimation was considered in Rabi, Moustakides, and Baras (2012)
for continuous-time linear systems. For further results on this
line of research, see also Shi, Johansson, and Qiu (2011), Li and
Lemmon (2011),Molin andHirche (2012),Wang and Fu (2014) and
references therein.
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Recent developments focus on the optimal estimator design
for certain pre-specified event-triggering conditions. A general de-
scription of event-based sampling was proposed in Sijs and Lazar
(2012), and a low-complexity event-based estimator with a hybrid
update was proposed based on the approximation of the uniform
distribution with the sum of a finite number of Gaussian distribu-
tions. Utilizing a Gaussian assumption on the distribution of the
state conditioned on all past available measurement information,
the event-based minimum mean square error (MMSE) estimator
was derived in Wu, Jia, Johansson, and Shi (2013), and the tradeoff
between communication rate and performance was explicitly an-
alyzed; the extension to more general event-triggering conditions
and the multiple sensor scenario was considered in Shi, Chen, and
Shi (2014a). TheGaussian assumptionwas shown to bemaintained
in Han, Mo, Wu, Sinopoli, and Shi (2013), based on a stochastic
event-triggering condition that introduced randomization in the
triggering sets. In Sijs, Noack, andHanebeck (2013), an event-based
state estimator was obtained by minimizing the maximum possi-
ble mean squared error and treating the event-triggering condi-
tions as non-stochastic uncertainty. In Shi, Chen, and Shi (2014b), a
constrained optimization approach was utilized to solve an event-
based estimation problem for a triggering scheme quantifying the
magnitude of the innovation. A variance-triggered state estima-
tion problem was considered in Trimpe and D’Andrea (2014), and
the asymptotic periodicity of the triggering pattern was proved
for an unstable scalar system. A nonlinear event-based state es-
timation problem was considered in Lee, Liu, and Hwang (2014),
where a Markov chain approximation algorithm was proposed.
The event-triggered estimation problem of systems with mixed
time delays was considered by Zou, Wang, Gao, and Liu (2015) us-
ing sampled-data information for the continuous-time case. The
problem of event-based state estimation for discrete-state hidden
Markov models was investigated in Shi, Elliott, and Chen (2016).

On the other hand, the complex structure and extensive uti-
lization of communication networks have made CPSs fragile and
prone to unknown and unpredictable cyber attacks, which can
cause disastrous consequences to infrastructure, national secu-
rity, and even human life. In this context, a number of inter-
esting attempts on secure detection and estimation have been
recently reported, through graph-theoretic methods (Pasqualetti,
Dorfler, & Bullo, 2013), by exploring the sparsity of the attack sig-
nals (Fawzi, Tabuada, & Diggavi, 2014), and using game-theoretic
approaches (Miao, Pajic, & Pappas, 2013; Mo & Sinopoli, 2014). An
alternative way to consider the secure estimation problems, how-
ever, is to treat the attack signals as unknown exogenous inputs
and solve a problem of estimating the states in the existence of
the unknown inputs. For the scenario of time-triggered measure-
ments, this type of problems has been extensively investigated us-
ing the unbiasedminimumvariance (UMV) estimation approach in
the literature, see, e.g., Kitanidis (1987), Darouach and Zasadzin-
ski (1997), Darouach, Zasadzinski, and Boutayeb (2003), Cheng,
Ye, Wang, and Zhou (2009), Fang, Shi, and Yi (2011) and refer-
ences therein for the related developments; however, for the case
of event-triggeredmeasurement information, the estimation prob-
lem for systems with unknown inputs has not been investigated.
Themain difficulty is that when themeasurements are assumed to
be available at each time instant, the UMV estimators are normally
obtained by directly minimizing the estimation error covariance
matrices and the effect of the measurement information on the
conditional distributions of the states (which is crucial in optimal
event-based estimator design) is not explored; and thus the UMV
estimation approach developed for the time-triggered measure-
ment case cannot be generalized to consider the event-triggered
scenario.

Meanwhile, it is interesting to note that by treating the
unknown input as a process with non-informative prior, the
Bayesian inference approach was successfully utilized to find
the optimal MMSE estimate for systems with partially observed
inputs (Li, 2013), and the results were shown to reduce to those
obtained by the UMV approach for the unknown input case.
For a system with an unknown exogenous input, it is normally
not possible to find an appropriate state estimate or prediction,
when no information about the current state is available from the
sensor.1 Although the Bayesian approach allows the exploitation
of the implicit information contained in the event-triggering
conditions (Han et al., 2013; Shi et al., 2014a; Wu et al., 2013), it
is not yet clear whether this implicit information is ‘‘informative’’
enough to ensure the existence of an appropriate state estimate
that is optimal in certain sense without exactly knowing the value
of the current sensor measurement, which is investigated in this
paper. To do this, an event-based optimal state estimation problem
for linear time-varying systems with unknown exogenous inputs
and stochastic event-triggering conditions is considered. The main
contributions are summarized as follows:

(1) Under some mild conditions, it is shown that the conditional
distribution of the state on the event-triggered measurement
information is Gaussian, and the event-based MMSE estimate
is developed in a recursive form. The obtained results
generalize the time-triggered state estimation results obtained
in Kitanidis (1987), Darouach and Zasadzinski (1997), Li (2013)
to the case of event-triggered measurements.

(2) For each sample path of the event-triggering process, we show
that the event-based MMSE estimator is exponentially stable
with bounded estimation error covariance for the linear time-
varying case. The results are equally applicable to the UMV
estimator for linear time-varying systems as well, as it has the
similar filter structure with the proposed event-based MMSE
estimator.

(3) For themultiple sensor scenariowith separate event-triggering
conditions on each sensor, we show that the event-based
MMSE estimator can also be developed under a rank condi-
tion on the lumped measurement matrices of all sensors. The
differences of the estimator equations from the classic time-
triggered Kalman filter as well as approximate event-based
MMSE estimator developed for deterministic event-triggering
conditions in the multiple sensor scenario are discussed.

For the multiple-sensor scenario, the problems of distributed
event-based state estimation have been extensively investigated
in Trimpe and D’Andrea (2011), Weimer, Araujo, and Johansson
(2012) and Trimpe (2014). The main differences of the results de-
veloped for the multiple-sensor scenario in this work from Trimpe
and D’Andrea (2011); Weimer et al. (2012) and Trimpe (2014) in-
clude: (1) the communication among sensors is not considered and
the problem of event-based state estimation is considered in a cen-
tralized fashion; and (2) the effect of an unknown exogenous input
term in the process equation is considered in event-based estima-
tor design.

On the other hand, the problem of the unknown input observer
design for continuous-time deterministic systems was presented
in Darouach, Zasadzinski, and Xu (1994), where the necessary
and sufficient conditions were provided; these conditions were
related to the relative degree of the transfer function between
the unknown input and the measured output. In Cristofaro
and Johansen (2014), the authors utilized the unknown input
observers for detection, isolation and control reconfiguration in
overactuated systems. Recently, Johansen, Cristofaro, Sorensen,
Hansen, and Fossen (2015) used the unknown input observer

1 The intuition is that without the sensor measurement update, no clue of the
current unknown input can be inferred.
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for the estimation of wind velocity, angle-of-attack and sideslip
angle for small UAVs; the approach proposed was based on
Kalman Bucy filtering. In addition, Floquet, Edwards, and Spurgeon
(2007) considered the unknown input observer design for linear
continuous-time systems by combining the sliding mode observer
with sliding mode exact differentiations to weaken the relative
degree condition necessary for the unknown input observer
design. All these results considered the problems for continuous-
time systems; the results in this work, however, focus on discrete-
time linear time-varying systems disturbed by stochastic noises.
Moreover, in the current work, we consider the effect of event-
triggers in estimator design; to investigate the event-triggered
unknown input observer design problems for continuous-time
systems, potentially different approaches are necessary to handle
the issues caused by the event-triggers (see e.g., Heemels, Donkers,
& Teel, 2013; Meng & Chen, 2014; Zhang & Han, 2015).

The rest of the paper is organized as follows: Section 2 provides
the system description and problem formulation. The solution
to the optimal event-based estimation problem is presented in
Section 3. In Section 4, the asymptotic properties of the event-
based MMSE estimator are investigated. The extension of the
results to the multiple sensor scenario is provided in Section 5.
Section 6 presents a numerical example to illustrate the efficiency
of the proposed results, followed by some concluding remarks in
Section 7.

Notations. R denotes the set of real numbers. N denotes the
set of nonnegative integers. Let m, n ∈ N; Rm×n denotes the
set of m by n real-valued matrices. For brevity, denote Rm

:=

Rm×1. If m > n, ym:n and ym,n denote the sets {ym, . . . , yn} and
{ym, . . . , yn}, respectively, and Nm,n denotes the integer subset
{m,m+ 1, . . . , n}. The symbol In denotes an n× n identity matrix,
and 0 denotes a zeromatrixwith a context-dependent size. Finally,
A ⊗ B denotes the Kronecker product between matrices A and B.

2. Problem description

Consider the remote estimation scheme in Fig. 1. The process is
linear time-varying and evolves in discrete time driven by white
noise:

xk+1 = Akxk + Gkdk + wk, (1)

where xk ∈ Rn is the state, wk ∈ Rn is the noise input, which is
zero-mean Gaussian with covariance Qk > 0 and dk ∈ Rp is the
unknown input. The initial state x0 is Gaussian with E(x0) = x̂−

0
and covariance P−

0 > 0. As we assume that dk is unknown, no in-
formation of dk is available. Following the conventions employed in
the joint state and unknown input estimation literature (Darouach
& Zasadzinski, 1997; Kitanidis, 1987), we assume rank Gk = p. This
assumption implies p < n, whichmeans that there aremore states
than disturbances, and is intuitive in that if the number of distur-
bance channels is equal to or larger than that of the states, it would
be unlikely to obtain a good state estimate based on the measure-
ment information provided.

The problem of estimating xk under the unknown input d1:k and
the time-driven measurement information has been extensively
investigated in the literature. In this work, the estimation problem
is explored under intermittent, event-triggered measurement
information. In particular, we consider the scenario that the state
information is measured by a smart sensor composed of a sensor
measurement module and an event-based data scheduler (see
Fig. 1). The measurement equation of the sensor measurement
module is assumed to take the form

yk = Ckxk + vk, (2)
Fig. 1. Block diagram of the overall system.

where vk ∈ Rm is zero-mean Gaussian with covariance Rk > 0.
In addition, we assume x0, wk, vk and dk are independent of each
other. The smart sensor measures the state information at each
time instant through the sensor measurement module, and com-
municates with the remote estimator through a reliable commu-
nication channel. Considering the limitations on communication
and energy resources, the measurement information yk is not sent
to the remote estimator at every time instant; alternatively, an
event-based data scheduler with an event-triggering process γk is
equipped in the smart sensor and decides whether to connect the
sensor to the communication channel or not. Themeasurement in-
formation yk is sent to the remote estimator only if γk = 1. Let

Ik := {(γ0, γ0y0), (γ1, γ1y1), . . . , (γk, γkyk)}

denote the available measurement information to the remote esti-
mator up to time instant k.

In this work, we consider the case that the value of γk is deter-
mined through a stochastic event-triggering condition (Han et al.,
2013). Unlike the deterministic event-triggering conditions (Shi
et al., 2014b; Shi, Chen, & Shi, 2015), the stochastic event-triggering
condition assigns each point y in the measurement space Rm a
transmission probability φk(y) such that

P(γk = 0|yk = y, Ik−1) = φk(y), (3)

where φk(·) is a known function given Ik−1. In this way, γk is a
random process that depends only on φk(yk). Note that when γk =

1, the remote estimator knows the exact value of yk; when γk = 0,
although the exact value of yk is not known, the remote estimator
can still infer some information of yk through the transmission
probability function defined in (3); specifically, this information is
given in the form of P(γk|yk = y, Ik−1), which can be exploited to
improve the performance of the estimator for the hidden state xk.

In this work, we consider a transmission probability function of
the exponential form

φk(y) = exp

−

1
2
(y − ξk)

⊤Yk(y − ξk)


, (4)

where Yk is a positive definite weighting matrix, and the require-
ment on ξk is that either ξk is a deterministic parameter or the
value of ξk can be inferred based on the available measurement
information Ik−1 to the remote estimator up to time instant k− 1,
so that the value of ξk is known to the estimator at each time
instant without utilizing additional communication resources.
Generally, Yk is designed to compromise the tradeoff between
sensor-to-estimator communication rates and estimation perfor-
mance, and a smaller Yk implies a relatively lower average commu-
nication rate. The transmission probability distribution in (3) can
be implemented by realizing a random variable ζk uniformly dis-
tributed on [0, 1] at each time instant; if ζk < φk(yk), then γk = 0
and otherwise γk = 1. Note that if ξk = 0, this condition reduces
to the open-loop stochastic event-triggering condition introduced
in Han et al. (2013); if ξk = yτk , with τk being defined by

τk = max
t<k,γt=1

t,

and yτk denoting the previously transmitted sensor measure-
ment which is known by both the sensor and the estimator,
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this condition becomes a stochastic version of the well known
‘‘send-on-delta’’ condition (Miskowicz, 2006). Another choice of ζk
is to choose ζk = CkAk−1x̂k−1 which corresponds to a stochastic
version of the triggers considered in Trimpe and D’Andrea (2011)
and Sijs, Kester, and Noack (2014); here x̂k−1 denotes the estimate
of xk−1 based on the available measurement information Ik−1, and
a copy of the event-based state estimator needs to be embedded
on the sensor side.

The consideration of stochastic event-triggering conditions in-
troduces randomization in the event-triggering process. Although
the full control of the triggering decision procedure is lost in the
sense that a favored measurement value may not be transmitted
to the remote estimator by some nonzero probability, stochastic
event-triggering schemes in the form of Eq. (4) help maintain the
Gaussianity of the posterior distributions of the states on the event-
triggered measurement information, even under the existence of
the unknown input term dk, as will be shown later. On the other
hand, similar to the normal deterministic event-triggering con-
ditions (e.g., the conditions considered in Trimpe and D’Andrea
(2011); Wu et al. (2013)), the stochastic event-triggering condi-
tions still reflect the designer’s preference on the measurement
data: the preferred data is transmitted by a larger probability,
while the unimportant data is transmitted by a smaller one.

The objectives of this work include

(1) to find the optimal estimate x̂k of xk governed by an unknown
input term dk, given the event-triggered measurement infor-
mation Ik;

(2) to analyze the stability properties of the obtained event-based
estimator.

3. Results on recursive state estimation

In this work, we investigate the event-based estimation
problemutilizing a Bayesian inference approach. As no information
is available for the unknown input dk, we model it with a non-
informative prior distribution, i.e.,

f (dk|Ik) ∝ 1, (5)

and as before, assume that x0, wk, vk and dk are independent of
each other. The intuition of using this non-informative prior is that
all possible values of the unknown input dk are equally likely to
occur,which is consistentwith the assumption that no information
of dk is available. In the literature of statistical inference, this type
of prior is termed as an improper prior (which describes the case
that the sum or integral of the prior probability distribution is not
finite), and has been extensively adopted in Bayesian inference
and statistical signal processing (Burghaus & Dette, 2014; Dalton
& Dougherty, 2011; Figueiredo & Nowak, 2001; Jeffreys, 1946; Li,
2013; Sivaganesan & Lingham, 2000; Svensson & Lundberg, 2005).

Remark 1. To further explain the rationale of using this type of
improper prior, let A1,A2, . . . ,AN be a sequence of mutually
exclusive and exhaustive events and let B be an arbitrary event.
From the Bayesian law, we have

P(Ai|B) =
P(B|Ai)P(Ai)

N
j=1

P(B|Aj)P(Aj)

.

The reason of using an improper prior is that if the termN
j=1 P(B|Aj)P(Aj) converges, the posterior probabilities P(Ai|B)

still sum to 1 even if the prior probabilities P(Ai) do not; in this
sense, the prior probabilities only need to be given in the correct
proportion.
Let G⊥

k denote a matrix such that [Gk G⊥

k ] ∈ Rn×n, rank [Gk G⊥

k ]

= n andG⊤

k G
⊥

k = 0. Since x0 is Gaussian by assumption and dk does
not affect the measurement equation, it is easy to verify that x0|I0
is Gaussian; for simplicity we denote its mean and covariance by
x̂0 and P0, respectively, which can be calculated in a way similar to
Eqs. (11)–(13) in Han et al. (2013) on the basis of x̂−

0 and P−

0 . Let

Tk := [Gk G⊥

k ]
−1 (6)

and

Lk := [0 In−p] Tk. (7)

The following result provides the optimal estimate x̂k conditioned
on the availablemeasurement informationIk on the estimator side
for k ≥ 1.

Theorem 2. For the remote state estimation scheme in Fig. 1 with
exogenous unknown input and the stochastic event-triggering
condition in (3)–(4) and k ≥ 1, the conditional distribution of xk on
Ik is Gaussian with mean x̂k and covariance Pk provided

rank

C⊤

k L⊤

k−1

⊤
= n. (8)

If the condition in (8) is satisfied, x̂k and Pk evolve according to the
following recursive form:

Pk|k−1 = Ak−1Pk−1A⊤

k−1 + Qk−1; (9)

if γk = 0,

x̂k = Ak−1x̂k−1 + PkC⊤

k (Rk + Y−1
k )−1ξk

− PkC⊤

k (Rk + Y−1
k )−1CkAk−1x̂k−1, (10)

Pk = [C⊤

k (Rk + Y−1
k )−1Ck

+ L⊤

k−1(Lk−1Pk|k−1L⊤

k−1)
−1Lk−1]

−1
; (11)

if γk = 1,

x̂k = Ak−1x̂k−1 + PkC⊤

k R−1
k yk − PkC⊤

k R−1
k CkAk−1x̂k−1, (12)

Pk = [C⊤

k R−1
k Ck + L⊤

k−1(Lk−1Pk|k−1L⊤

k−1)
−1Lk−1]

−1. (13)

In addition, the event-based MMSE estimate satisfies (9)–(13).

Proof. The proof of this result takes several steps. According to
the standard results on optimal estimation (Anderson & Moore,
1979; Levy, 2008), the MMSE estimate is given by the mean of the
conditional distribution of the state on the available measurement
information. In this way, what we need to do in optimal estimator
design is to find the recursion of the conditional distribution of
the state on the event-triggered measurement information. First
we define an augment variable zk through a nonsingular linear
transformation zk := Tk−1xk, and Eq. (1) becomes

zk = Fk−1xk−1 + Dk−1dk−1 + w̃k−1 (14)

where Fk−1 = Tk−1Ak−1, Dk−1 = Tk−1Gk−1 = [Ip 0]⊤, and w̃k−1 =

Tk−1wk−1. Note that w̃k is a Gaussian white noise with zero mean
and covariance Q̃k = TkQkT⊤

k > 0, and is independent of x0, dk and
vk.

Now we derive the distribution of xk|Ik inductively. Since
x0|I0 is Gaussian, we assume at time instant k − 1, the
conditional distribution of xk−1|Ik−1 is Gaussian with mean x̂k−1
and covariance Pk−1. The conditional distributions of xk|Ik are
derived for γk = 0 and γk = 1, respectively, as has been done
in Han et al. (2013) (but following a different line of argument due
to the existence of dk). For γk = 0, following the Bayesian law, we
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have

f (zk|Ik) = f (zk|Ik−1, γk = 0)
∝ P(γk = 0|zk, Ik−1)f (zk|Ik−1)

= f (zk|Ik−1)

·


Rm
P(γk = 0|yk, zk, Ik−1)f (yk|zk, Ik−1)dyk

= f (zk|Ik−1)


Rm

P(γk = 0|yk, Ik−1)f (yk|zk, Ik−1)dyk

= f (zk|Ik−1)


Rm

P(γk = 0|yk, Ik−1)f (yk|xk, Ik−1)dyk, (15)

where the last equation follows from the fact that zk = Tk−1xk
and Tk−1 is nonsingular, so that the conditional distribution of yk
on {zk, Ik−1} is same as that of yk on {xk, Ik−1}, and the second last
equation is due to the fact that the event-trigger is fully determined
by yk and Ik−1.

Since x0, vk and w̃k are independent, and from (3)–(4) and the
second item of Lemma 15 in Appendix A, we have

Rm
P(γk = 0|yk, Ik−1)f (yk|xk, Ik−1)dyk

∝


Rm

exp

−

1
2
(yk − ξk)

⊤Yk(yk − ξk)


· exp


−

1
2
(yk − Ckxk)⊤R−1

k (yk − Ckxk)

dyk (16)

=


Rm

exp

−

1
2


(yk − Ckxk)⊤R−1

k (yk − Ckxk)

+ [(yk − Ckxk)− (ξk − Ckxk)]⊤

· Yk[(yk − Ckxk)− (ξk − Ckxk)]


dyk (17)

∝ exp

−

1
2
(Ckxk − ξk)

⊤(Rk + Y−1
k )−1(Ckxk − ξk)


,

where Eq. (16) is due to the assumption that either ξk is a
deterministic parameter or the value of ξk can be inferred based
on Ik−1. For f (zk|Ik−1), we have

f (zk|Ik−1) =


Rp

f (zk|Ik−1, dk−1)f (dk−1|Ik−1)ddk−1.

From Eqs. (5) and (14) and the properties of the marginal
distribution of a multivariate Gaussian random variable, the above
equation further implies

f (zk|Ik−1) ∝


Rp

exp


−
1
2


zk −


Fk−1x̂k−1 + Dk−1dk−1

⊤
(Pz

k|k−1)
−1 zk −


Fk−1x̂k−1 + Dk−1dk−1


ddk−1

∝ exp

−

1
2
(zk − Fk−1x̂k−1)

⊤

D̄⊤

k−1(D̄k−1Pz
k|k−1D̄

⊤

k−1)
−1D̄k−1(zk − Fk−1x̂k−1)


, (18)

where D̄k−1 := [0 In−p] and

Pz
k|k−1 = Fk−1Pk−1F⊤

k−1 + Q̃k−1;

the detailed explanation of (18) is provided in Appendix C.
Combining (15)–(18) and letting Hk := CkT−1

k−1, we have

f (zk|Ik) ∝ exp

−

1
2
(Hkzk − ξk)

⊤(Rk + Y−1
k )−1(Hkzk − ξk)



· exp

−

1
2
(zk − Fk−1x̂k−1)

⊤

D̄⊤

k−1(D̄k−1Pz
k|k−1D̄

⊤

k−1)
−1D̄k−1(zk − Fk−1x̂k−1)


. (19)

Since Tk−1 is nonsingular and
Hk

D̄k−1


Tk−1 =


Ck
Lk−1


,

Eq. (8) implies rank

H⊤

k D̄⊤

k−1

⊤
= n, and therefore

rank


H⊤

k D̄⊤

k−1



(Rk + Y−1

k )−1 0
0 (D̄k−1Pz

k|k−1D̄
⊤

k−1)
−1

 
Hk

D̄k−1


= n.

From (19) and the first item of Lemma 15 in Appendix A, we
conclude that for γk = 0, zk|Ik is a Gaussian distributionwithmean
ẑk and covariance Pz

k defined by

ẑk = Pz
k [H

⊤

k (Rk + Y−1
k )−1ξk

+ D̄⊤

k−1(D̄k−1Pz
k|k−1D̄

⊤

k−1)
−1D̄k−1Fk−1x̂k−1]

= Fk−1x̂k−1 + Pz
k [H

⊤

k (Rk + Y−1
k )−1ξk

− H⊤

k (Rk + Y−1
k )−1HkFk−1x̂k−1], (20)

Pz
k = [H⊤

k (Rk + Y−1
k )−1Hk

+ D̄⊤

k−1(D̄k−1Pz
k|k−1D̄

⊤

k−1)
−1D̄k−1]

−1. (21)

For γk = 1, by the Bayesian law, we similarly have

f (zk|Ik) = f (zk|Ik−1, yk)
∝ f (yk|Ik−1, zk)f (zk|Ik−1). (22)

Noticing that f (zk|Ik−1) satisfies the relationship in (18) and
f (yk|Ik−1, zk) satisfies

f (yk|Ik−1, zk) ∝ exp

−

1
2
(yk − Hkzk)⊤R−1

k (yk − Hkzk)

,

and from item 1 of Lemma 15 in Appendix A, we obtain that
for γk = 1, zk|Ik is a Gaussian distribution with mean ẑk and
covariance Pz

k defined by

ẑk = Fk−1x̂k−1 + Pz
k [H

⊤

k R−1
k yk − H⊤

k R−1
k HkFk−1x̂k−1], (23)

Pz
k = [H⊤

k R−1
k Hk + D̄⊤

k−1(D̄k−1Pz
k|k−1D̄

⊤

k−1)
−1D̄k−1]

−1, (24)

which completes the derivation of the conditional distribution
zk|Ik.

Finally, we obtain the results for xk|Ik based on the results for
zk|Ik. Since xk = T−1

k−1zk, Fk−1 = Tk−1Ak−1, Ck = HkTk−1 and
Lk−1 = D̄k−1Tk−1, xk|Ik is Gaussian with mean x̂k and covariance
Pk defined by

Pk = T−1
k−1[H

⊤

k (Rk + (1 − γk)Y−1
k )−1Hk

+ D̄⊤

k−1(D̄k−1Pz
k|k−1D̄

⊤

k−1)
−1D̄k−1]

−1(T−1
k−1)

⊤,

= [C⊤

k (Rk + (1 − γk)Y−1
k )−1Ck

+ T⊤

k−1D̄
⊤

k−1(D̄k−1Pz
k|k−1D̄

⊤

k−1)
−1D̄k−1Tk−1]

−1

= [C⊤

k (Rk + (1 − γk)Y−1
k )−1Ck

+ L⊤

k−1(Lk−1T−1
k−1P

z
k|k−1(T

−1
k−1)

⊤L⊤

k−1)
−1Lk−1]

−1

= [C⊤

k (Rk + (1 − γk)Y−1
k )−1Ck

+ L⊤

k−1(Lk−1Pk|k−1L⊤

k−1)
−1Lk−1]

−1, (25)

Pk|k−1 = T−1
k−1P

z
k|k−1(T

−1
k−1)

⊤

= Ak−1Pk−1A⊤

k−1 + Qk−1, (26)
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x̂k = T−1
k−1Fk−1x̂k−1 + T−1

k−1P
z
k

· [γkH⊤

k R−1
k yk + (1 − γk)H⊤

k (Rk + Y−1
k )−1ξk

−H⊤

k (Rk + (1 − γk)Y−1
k )−1HkFk−1x̂k−1]

= Ak−1x̂k−1 + T−1
k−1Tk−1PkT⊤

k−1

· [γkH⊤

k R−1
k yk + (1 − γk)H⊤

k (Rk + Y−1
k )−1ξk

−H⊤

k (Rk + (1 − γk)Y−1
k )−1HkFk−1x̂k−1]

= Ak−1x̂k−1 + Pk
· [γkC⊤

k R−1
k yk + (1 − γk)C⊤

k (Rk + Y−1
k )−1ξk

− C⊤

k (Rk + (1 − γk)Y−1
k )−1CkAk−1x̂k−1]. (27)

Finally, since x̂k is the mean of xk|Ik, it is the MMSE estimate (An-
derson&Moore, 1979; Levy, 2008),which completes the proof. �

Remark 3. In Theorem 2, a sufficient rank condition is employed
to guarantee the existence of a non-degenerate Gaussian distri-
bution for xk|Ik. This is due to the existence of the unknown in-
put term, rather than the event-triggering condition. Noticing that
[C⊤

k L⊤

k−1]
⊤

∈ R[m+(n−p)]×n, the condition in (8) implies m ≥

p, indicating that the number of independent sensor measure-
ment channels should be at least as many as the number of lin-
early independent channels of unknown inputs. In addition, it is
easy to verify that the condition is consistent with the conditions
needed for the time-triggered measurement case with partially
unknown inputs (Li, 2013) and the time-triggered unbiased mini-
mum variance estimator (Darouach & Zasadzinski, 1997), which is
rank (CkGk−1) = p; the current form indicates that when Ck has
full column rank, the condition holds automatically, which can be
easily satisfied for the multiple sensor scenario (see Section 5). Al-
though matrices Ck and Lk vary with time for generic time-varying
systems, it is possible to test the condition in (8), since the expres-
sions of Ck and Lk are known and the rank condition can be checked
based on these expressions; in particular, there are several classes
of special cases that the verification of this rank condition is nu-
merically favorable, e.g., the class of switched systems that switch
among a finite number of LTI systems, in which case it suffices to
test a finite number of rank conditions, and the class of periodic
time-varying systems, forwhich the values of Ck and Lk repeat peri-
odically and thus the number of rank conditions need to be checked
is equal to the period of the system.

Remark 4. The above derivation also reveals the effect of the
unknown input on state estimation. For the standard Kalman filter,
it is well known that the filter update equations are composed
of two steps—state prediction and measurement update; for the
event-based estimator provided here, a state prediction might be
chosen as

x̂k|k−1 = Ak−1x̂k−1;

but Eq. (9) no longer represents the corresponding prediction er-
ror covariance. Due to the assumption on dk, the prior covariance
has directions that are infinite, which makes the prediction error
covariance incomputable in its current form. One potential way to
overcome this issue, however, is to use the information filtering
approach (Mutambara, 1998) to design the event-based estima-
tors, in which the inverse of the covariance matrix is recursively
updated. However, when some information of the unknown input
dk−1 is available, an estimate x̂k can be generated; as is revealed by
the obtained result, this information does not have to be the exact
point-valued measurement information yk—the implicit informa-
tion provided by the event-triggering conditions can be sufficiently
‘‘informative’’ to guarantee the existence/uniqueness of a closed-
form estimator as well.
4. Stability analysis

In this section, the stability properties of the proposed event-
based estimator are investigated, the goal ofwhich is to analyze the
asymptotic behavior of the estimation error covariance matrix as
k → ∞. Due to the existence of the event-triggering process {γk}
that depends on both the past measurements and the stochastic
event-triggering conditions, the estimation error covariance Pk
becomes a random process as well, which is different from that of
an estimator evolving according to an a priori determined sensor
transmission schedule. In this way, the stability analysis needs to
be performed from two aspects:

(1) How would Pk behave along an arbitrary sample path of {γk}?
This problem is of primary concern because it is the particular
sequence of {Pk} corresponding to the actual sample path {γk}
that determines the existence and performance of the event-
based estimator in a specific application. In particular, if Pk
blows up for some sample path of {γk}, we will face the risk of
not being able to compute the estimate x̂k (which is calculated
based on the value of Pk) when k becomes sufficiently large.

(2) What is the performance of Pk on the average? This problem is
important as well, as Pk is a random process for an event-based
estimator and in particular, the sample path of {γk} can never
be knownapriori. For some applications, if an estimator results
in a bounded expectation of the estimation error covariance
matrix (namely, E(Pk) < ∞) with some small probability that
Pk goes to infinity as k → ∞, it might be tolerable as well in
the sense that the estimator behaves well on the average.

In the following, we answer the above two questions for the
proposed estimator. First, we look into the stability of the
proposed event-based estimator for an arbitrary sample path of
{γk}. Specifically, we recall that the estimation error covariance
equation has the form

Pk = [C⊤

k R̃−1
k Ck + L⊤

k−1(Lk−1Pk|k−1L⊤

k−1)
−1Lk−1]

−1, (28)

with

Pk|k−1 = Ak−1Pk−1A⊤

k−1 + Qk−1, (29)

R̃k = Rk + (1 − γk)Y−1
k . (30)

The goal here is to find the conditions under which Pk is
asymptotically bounded and analyze the relationship of the
conditions found with the event-triggering process. From Eq. (28),
one possible way to achieve this goal is to analyze the asymptotic
behavior of Pk for a generic R̃k and investigate the effect of R̃k on
the conditions that guarantee the boundedness of Pk.

To do this, consider a linearGaussian systemof the form (1)–(2):

xk+1 = Akxk + Gkdk + wk, (31)
ỹk = Ckxk + ṽk, (32)

with the same assumptions on x0, wk and dk as those of Section 2,
but with a different measurement noise process ṽk with zeromean
and covariance R̃k > 0. Note that R̃k here is generic and does not
have to satisfy (30).

In the literature of UMV state estimation for linear time-
varying systems with unknown exogenous inputs based on time-
triggered measurements (i.e., the measurements are sent to the
estimator at each time instant through a reliable communication
channel without packet dropout or transmission delays), it is
known that the UMV estimator for the system in (31) and (32)
satisfies (Darouach & Zasadzinski, 1997; Kitanidis, 1987; Li, 2013)

x̂k = Ak−1x̂k−1 + Γk(ỹk − CkAk−1x̂k−1), (33)
Γk = Pk|k−1C⊤

k Π
−1
k + (Gk−1 − Pk|k−1C⊤

k Π
−1
k CkGk−1)

· (G⊤

k−1C
⊤

k Π
−1
k CkGk−1)

−1G⊤

k−1C
⊤

k Π
−1
k (34)
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Πk = CkPk|k−1C⊤

k + R̃k, (35)
Pk|k−1 = Ak−1Pk−1A⊤

k−1 + Qk−1,

Pk = Pk|k−1 − Pk|k−1C⊤

k Π
−1
k CkPk|k−1

+ (Gk−1 − Pk|k−1C⊤

k Π
−1
k CkGk−1)

· (G⊤

k−1C
⊤

k Π
−1
k CkGk−1)

−1

· (Gk−1 − Pk|k−1C⊤

k Π
−1
k CkGk−1)

⊤. (36)

On the other hand, noticing Lk = [0 In−p][Gk G⊥

k ]
−1 and

rank [C⊤

k L⊤

k−1]
⊤

= n, it is easy to verify that a direct application of
Lemma 16 in Appendix B to Eq. (28) leads to Eq. (36). Therefore it
suffices to analyze the asymptotic boundedness of Eq. (36). For the
UMV estimator given in (33)–(36), the stability and convergence
properties have been analyzed in Darouach and Zasadzinski (1997)
and Fang and de Callafon (2012) for the LTI case; the idea of the
latter work was also utilized in Su, Li, and Chen (2015) to analyze
the time-triggeredMMSE estimator with partially observed inputs
for LTI systems. For the evolution equation of Pk in (36), however,
since Ak, Gk, Ck, Qk and in particular, R̃k are assumed to be time-
varying, the results in Fang and de Callafon (2012) and Su et al.
(2015) cannot be applied to obtain the asymptotic properties. To
address this issue, the asymptotic properties of the UMV estimator
for the time-varying case are investigated here, which serve as a
nontrivial extension of the results in Fang and de Callafon (2012).

We now recall a few properties of the UMV estimator obtained
in Kerwin and Prince (2000), Gillijns and DeMoor (2007) and Fang
and de Callafon (2012).2 Let

Ãk(M, K) := (In − KCk)(In − Gk−1MCk)Ak−1,

F̃k(M, K) := −(In − KCk)(In − Gk−1MCk),

G̃k(M, K) := (In − KCk)Gk−1M + K .

In Kerwin and Prince (2000) and Gillijns and De Moor (2007), it
is proved that the UMV estimator in Eqs. (33)–(36) is the global
optimal estimator of the form

x̃k = Ak(Mk, Kk)x̃k−1 + G̃k(Mk, Kk)ỹk (37)

with Mk satisfying MkCkGk−1 = Ip in the sense of minimum
estimation error covariance (see also Lemma 1 in Fang and de
Callafon (2012)). Note that the form in (37) arises from the idea of
designing separate linear gain matrices to estimate the unknown
input dk−1 and state xk:

d̃k−1 = Mk(yk − CkAk−1x̃k−1),

x̃k = Ak−1x̃k−1 + Gk−1d̃k−1

+ Kk(yk − CkAk−1x̃k−1 − CkGk−1d̃k−1).

Let M∗

k and K ∗

k denote the gain matrices of the UMV estimator
in Eqs. (33)–(36). From Eqs. (33)–(36), these matrices can be
expressed as

K ∗

k = Pk|k−1C⊤

k Π
−1
k , (38)

M∗

k = (G⊤

k−1C
⊤

k Π
−1
k CkGk−1)

−1G⊤

k−1C
⊤

k Π
−1
k . (39)

For an estimator of the form in (37), the estimation error ẽk :=

xk − x̃k evolves according to

ẽk = Ãk(Mk, Kk)ẽk−1 −

F̃k(Mk, Kk) G̃k(Mk, Kk)

 wk−1
ṽk


. (40)

2 Some of these properties were derived for the LTI case in Fang and de Callafon
(2012); however, it is straightforward to verify that they equally apply to the time-
varying case as well.
The reason that the unknown input term dk does not appear in
(40) is due to the requirement MkCkGk−1 = Ip on Mk, which
guarantees the unbiasedness of the estimate d̃k of the unknown
input dk (Gillijns & DeMoor, 2007). Following the notations in Fang
and de Callafon (2012), we represent the covariancematrix update
equation as

P̃k = φk(Mk, Kk, P̃k−1)

= Ãk(Mk, Kk)P̃k−1Ã⊤

k (Mk, Kk)+

F̃k(Mk, Kk) G̃k(Mk, Kk)


·


Qk 0
0 R̃k

 
F̃⊤

k (Mk, Kk)

G̃⊤

k (Mk, Kk)


. (41)

In this way, the estimation error covariance of the UMV estimator
evolves according to

Pk = φk(M∗

k , K
∗

k , Pk−1). (42)

Before continuing, we introduce the following notion of uniform
detectability.

Definition 5. The triplet (Ak,Gk, Ck) is uniformly detectable if
there exist bounded matrix sequences {(Mk, Kk)} such that

(1) MkCkGk−1 = Ip;
(2) (In − KkCk)(In − Gk−1MkCk)Ak−1 is exponentially stable.

The above definition of uniform detectability is motivated from
the ideas of defining uniform detectability for a pair (Ak, Ck) in-
troduced in Anderson and Moore (1981), in which two equivalent
definitions were proposed—the first one was based on the idea
that the unstable modes of a system should be observable while
the second one was to require the existence of an observer gain
such that the closed-loop state observation system is exponentially
stable. As will be shown later, the detectability notion introduced
above does not guarantee that the estimation error xk − x̂k goes
to 0 asymptotically (due to the effect of noises and disturbances);
insteadwhat can be guaranteed is that the estimation error covari-
ancematrix in (36) remains bounded as k → ∞. One possible way
to test this uniform detectability condition is to first determine a
sequence ofMk such thatMkCkGk−1 = Ip, and then test the uniform
detectability of the pair (Ak−1, Ck(In − Gk−1MkCk)Ak−1), for which
spectral test exists (Peters & Iglesias, 1999). Note that a necessary
condition for a triplet (Ak,Gk, Ck) to be uniformly detectable is that
rank CkGk−1 = p. Now we are in a position to provide the first re-
sult on the asymptotic properties.

Theorem 6. If the triplet (Ak,Gk, Ck) is uniformly detectable, then the
covariance matrix Pk satisfying (42) is asymptotically bounded and
the closed-loopmatrix Ãk(M∗

k , K
∗

k ) of the UMV estimate for the system
in (31)–(32) is exponentially stable. Consequently, for the event-based
MMSE estimator in (9)–(13), the estimation error covariance matrix
Pk satisfying (9), (11) and (13) is asymptotically bounded and the
closed-loop matrix of the estimator is exponentially stable for each
sample path of {γk}.

Proof. Since (Ak,Gk, Ck) is uniformly detectable, there exists a
filter of the form in (37) parameterized by a bounded pair {Mk, Kk}

satisfying MkCkGk−1 = Ip such that Ãk(Mk, Kk) is exponentially
stable. Since Mk and Kk are bounded, F̃k(Mk, Kk) and G̃k(Mk, Kk)
are bounded. From Lemma 4.2 in Anderson and Moore (1981), the
solution P̃k to the Lyapunov equation

P̃k = φk(Mk, Kk, P̃k−1)

is bounded as k → ∞. On the other hand, by the optimality
of M∗

k and K ∗

k , we have Pk ≤ P̃k, which indicates that Pk is
bounded as k → ∞. Since matrices Pk, Qk and R̃k are bounded, the
matrices Ãk(M∗

k , K
∗

k ) and [F̃k(M∗

k , K
∗

k ) G̃k(M∗

k , K
∗

k )] are bounded as
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well. Furthermore, for any matrix A with its eigenvalues lying in
the unit circle, we have

Ãk(M∗

k , K
∗

k )+


F̃k(M∗

k , K
∗

k )Q
1/2
k G̃k(M∗

k , K
∗

k )R
1/2
k


×


Q−1/2
k (−A + Ak−1)

R−1/2CkA


= A,

which implies that the pair
Ãk(M∗

k , K
∗

k ),

F̃k(M∗

k , K
∗

k )Q
1/2
k G̃k(M∗

k , K
∗

k )R
1/2
k


is uniformly stabilizable. The exponential stability of Ãk(M∗

k , K
∗

k )
follows from the asymptotical boundedness of Pk and Theorem 4.3
of Anderson and Moore (1981).

From the above derivations, we observe that the condition
required to guarantee the asymptotic boundedness of Pk of the
form in (28) depends only on the detectability notion defined
on the triplet (Ak, Gk, Ck) and does not depend on R̃k. Since
the effect of the event-triggering process γk is only reflected
on R̃k in the estimation error covariance update equations in
(28)–(30) for the event-based MMSE estimator, we conclude that
the estimation error covariance matrix Pk satisfying (9), (11) and
(13) is asymptotically bounded and the closed-loop matrix of the
estimator is exponentially stable along each sample path of {γk},
which completes the proof. �

Remark 7. For the standard Kalman filter, the key require-
ment for stability of the closed-loop matrix and the bounded-
ness/convergence of the solution to the Riccati equation is the
uniform detectability of (Ak, Ck) and the uniform stabilizability of
(Ak,Qk). AsQk is assumed to be positive definite in thiswork,which
is necessary to guarantee the existence of the event-based esti-
mator, the requirement on stabilizability is automatically fulfilled.
Due to the existence of the unknown input dk, an alternative notion
of uniform detectability is necessary to guarantee the asymptotic
properties. Note that the introduction of the R̃k matrix in the form
of (30) does not affect the asymptotic properties, which is consis-
tentwith the results for the Kalman filter and the time-varying Ric-
cati equation theory (De Nicolao, 1992).

Apart from the boundedness and stability properties, one more
question to ask is the effect of the initial condition P0 on the
asymptotic performance. Let ψk(P) denote the solution to Eq. (42)
at time k with initial condition P0 = P . We have the following
result.

Proposition 8. Let P1 and P2 be two n × n positive semidefinite
matrices. If the triplet (Ak,Gk, Ck) is uniformly detectable,

lim
k→∞

[ψk(P1)− ψk(P2)] = 0.

Proof. This result can be proved following a similar argument
of the convergence proof for Theorem 1 in Fang and de Callafon
(2012) and thus is omitted. �

Remark 9. This result implies that for the time-varying case, the
estimation error covariance of the UMV estimator (and thus the
proposed event-based estimator for each sample path of {γk})
approaches the unique ‘‘moving equilibrium’’ as k → ∞, which
does not depend on the initial condition P0.

Before continuing, we emphasize that since the detectability
notion is defined based on Ak, Gk and Ck (rather than R̃k), the
event trigger does not affect the asymptotic boundedness of the
estimation error covariance matrix along a single sample path
of {γk}, which is another benefit of the event-triggering scheme
considered together with the estimator proposed. The above
results investigate the asymptotic properties of the event-based
estimator for an arbitrary sample path of {γk}, and answer the first
question listed at the beginning of this section. The next result
summarizes the properties of E(Pk), which provides an answer to
the second question.

Theorem 10. For the event-based MMSE estimator together with its
estimation error covariance matrix Pk defined in (9), (11) and (13),
E(Pk) is bounded for all choices of event-triggering conditions that
satisfy Yk > 0. In particular,

E(Pk) ≤ P̄k

holds, where

P̄k = [C⊤

k (Rk + Y−1
k )−1Ck

+ L⊤

k−1(Lk−1P̄k|k−1L⊤

k−1)
−1Lk−1]

−1, (43)

P̄k|k−1 = Ak−1P̄k−1A⊤

k−1 + Qk−1 (44)

and P̄0 = P0.

Proof. As the estimation error covariance Pk is bounded for each
sample path and {γk} has a countable number of sample paths,
it follows that the expectation of the estimation error covariance
E(Pk) is bounded aswell. In addition, since Yk > 0 andRk+γkY−1

k ≤

Rk + Y−1
k , we have

Pk ≤ P̄k

for each sample path of {γk}, which completes the proof of the
theorem. �

The above theorem presents a discussion on the performance
of the event-based estimator in terms of average estimation
error covariance. Due to the existence of the unknown term
dk with a non-informative prior, however, the behavior of the
system in (1)–(2) at steady state, even for the LTI case, becomes
unpredictable. As a result, the communication rate analysis is not
feasible in general, making it difficult to obtain tight lower bounds
for E(γk). In this regard, unlike the results obtained for a Gaussian
system without the unknown input term dk (e.g., Han et al., 2013),
it is not likely to obtain tighter upper and lower bounds for E(Pk)
based on communication rate analysis.

5. Extension to the multiple sensor scenario

In this section, we extend the results obtained in the previous
sections to the multiple sensor scenario, in which case each sensor
determines whether to send the measurement information to
the remote estimator according to their own event-triggering
conditions (see Fig. 2).

To do this, consider the process in (1) measured by M sensors3
with the ith sensor described by

yik = C i
kxk + vik, (45)

where vik ∈ Rm is zero-mean Gaussian with covariance Ri
k > 0. In

addition, x0,wk and vik are independent from each other. Again we
consider the case that the communication between a sensor and
the estimator is reliable in the sense that the effect of time delays
and packet dropouts is ignored. To reduce the communication

3 For notational brevity, we assume all sensors have m channels, although the
results obtained apply equally to the case of sensorswith different or a time-varying
number of channels as well.
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Fig. 2. Block diagram of the overall system for the multiple sensor scenario,
where Si and Ei denote the ith sensor and the ith event-triggered data scheduler,
respectively.

burden, each sensor is equipped with its own event-triggering
condition:

Pr(γ i
k|y

i
k = y) = φi

k(y) (46)

with γ i
k depending only on yik and

φi
k(y) = exp


−

1
2
(y − ξ ik)

⊤Y i
k(y − ξ ik)


, (47)

ξ ik being a known parameter at time instant k and Y i
k being a

positive definite weighting matrix. Let

Ck := [(C1
k )

⊤, (C2
k )

⊤, . . . , (CM
k )

⊤
]
⊤, (48)

Rk := diag{R1
k, R

2
k, . . . , R

M
k }, (49)

and

Ȳk := diag{(1 − γ 1
k ) · (Y 1

k )
−1, . . . , (1 − γM

k ) · (YM
k )

−1
}.

For this scenario, we have the following result on the MMSE
estimator.

Theorem 11. For themultiple-sensor remote state estimation scheme
in Fig. 2 with exogenous unknown input and the stochastic event-
triggering condition in (47), the conditional distribution of xk on Ik
is Gaussian with mean x̂k and covariance Pk provided

rank

C⊤

k L⊤

k−1

⊤
= n. (50)

If the condition in (50) is satisfied, x̂k and Pk evolve according to the
following recursive form:

x̂k = Ak−1x̂k−1 +

M
i=1

Pk(C i
k)

⊤
[Ri

k + (1 − γ i
k) · (Y i

k)
−1

]
−1

·

γ i
ky

i
k + (1 − γ i

k)ξ
i
k − C i

kAk−1x̂k−1

, (51)

Pk = [C⊤

k (Rk + Ȳk)
−1Ck

+ L⊤

k−1(Lk−1Pk|k−1L⊤

k−1)
−1Lk−1]

−1, (52)

Pk|k−1 = Ak−1Pk−1A⊤

k−1 + Qk−1, (53)

which is also the event-based MMSE estimator for the multiple sensor
scenario.

Proof. The proof of this result follows a similar procedure as that
for Theorem 2 and thus only the key differences are stated. First we
note that Tk is not affected by the sensor measurement equations,
and for sensor i, the measurement equation can be written as

yik = H i
kzk + vik, (54)
with H i
k := C i

kT
−1
k−1. Define Ik as

Ik := {i ∈ N1:M |γ i
k = 0},

and let Īk := N1:M \ Ik. By Bayesian law, we have

f (zk|Ik) = f

zk|Ik−1, {γ

i
ky

i
k|i ∈ N1:M}


∝ P


{∩i∈Ik γ

i
k = 0} ∩ {∩i∈Īk y

i
k = yi}|zk, Ik−1


· f (zk|Ik−1)

= f (zk|Ik−1) ·


Rm

P

{∩i∈Ik γ

i
k = 0} ∩ {∩i∈N1:M\Ik y

i
k = yi}y1:Mk , zk, Ik−1


f (y1:Mk |zk, Ik−1)dyk

= f (zk|Ik−1)

·

M
i=1


Rm


P(γ i

k = 0|yik, Ik−1)
1−γ i

k f (yik|zk, Ik−1)dyik

∝ f (zk|Ik−1)

·

M
i=1


Rm


exp


−

1
2
(yik − ξ ik)

⊤Y i
k(y

i
k − ξ ik)

1−γ i
k

· exp

−

1
2
(yik − H i

kzk)
⊤(Ri

k)
−1(yik − H i

kzk)

dyik

∝ exp

−
1
2


i∈Ik

(H i
kzk − ξ ik)

⊤
[Ri

k + (Y i
k)

−1
]
−1

· (H i
kzk − ξ ik)+


j∈Īk

(yjk − H j
kzk)

⊤(Rj
k)

−1(yjk − H j
kzk)

 (55)

where (55) follows from the fact that γ i
k depends on yik and that

yik are mutually independent given zk. The rest of the proof can be
completed following a similar argument as that of Theorem 2. �

Remark 12. The above result indicates that to guarantee the
existence of the event-based estimator for the multiple sensor
scenario, the rank condition does not have to be satisfied for
each sensor; instead, a weaker requirement is necessary, which
imposed the rank condition on the lumped Ck matrix, see Eq.
(50). Due to the rank condition, the covariance matrix can only
be updated in a lumped fashion in (52), unlike the case of the
standard Kalman filter, which can be calculated by sequentially
updating each (C i

k, R
i
k) pair as well. In addition, from (52), it is

also observed that the change of sensor fusion sequences does not
affect the fusion results, and that introducing additional sensor
measurements always improves the estimation performance in
terms of estimation error covariance.

Remark 13. Write

γ
k
:= diag{γ 1

k , γ
2
k , . . . , γ

M
k } ⊗ Im,

yk := [(y1k)
⊤, (y2k)

⊤, . . . , (yMk )
⊤
]
⊤,

ξk := [(ξ 1k )
⊤, (ξ 2k )

⊤, . . . , (ξMk )
⊤
]
⊤.

It is easy to show that Eq. (51) can be rewritten as

x̂k = Ak−1x̂k−1 + PkC⊤

k [Rk + Ȳk]
−1

·


γ

k
yk + (IMm − γ

k
)ξk − CkAk−1x̂k−1


, (56)

which indicates that despite the introduction of the event-
triggering conditions, the estimator can be updated in a lumped
fashion as well, treating ξ ik as a virtual sensor measurement when
yik is not available; this is different from the multiple sensor
scenariowith deterministic event-triggers, forwhich the estimates
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have to be updated by sequentially fusing the information from
different sensors (Shi et al., 2014a). The estimator in the form of
(51), however, indicates that based on the value of Pk, it is possible
to implement the estimator in a distributed fashion on the side of
the remote estimator.

As the estimation error covariance equation has a similar form as
(11), the asymptotic properties of the multiple sensor case can be
proved following a similar argument as that in Theorem 11, which
is summarized in the next result but the proof is omitted.

Theorem 14. If the triplet (Ak,Gk, Ck) is uniformly detectable, then
for each sample path of {γ 1:M

k },

(1) the estimation error covariance matrix Pk satisfying (52)–(53) is
asymptotically bounded and approaches the unique moving
equilibrium as k → ∞; and

(2) the closed-loopmatrix of the event-based estimator in (51) for the
multiple sensor scenario is exponentially stable.

Finally, following the same argument as that in the proof of
Theorem 10, E(Pk) ≤ P̄k holds for the multiple sensor scenario as
well, with P̄k defined by

P̄k = [C⊤

k (Rk + Y−1
k )−1Ck + L⊤

k−1(Lk−1P̄k|k−1L⊤

k−1)
−1Lk−1]

−1,

P̄k|k−1 = Ak−1P̄k−1A⊤

k−1 + Qk−1,

where Ck and Rk are defined in (48)–(49), and Yk := diag{Y 1
k , . . . ,

YM
k }.

6. Numerical example

In this section, we illustrate the proposed event-based estima-
tor for systems with exogenous unknown inputs by a numerical
example. Consider a stable linear time-varying system of the form
in (1) with the following matrix parameters

Ak =

a11,k a12,k a13,k
a21,k a22,k a23,k
a31,k a32,k a33,k


,

with

a11,k = exp[−h + sin(kh)− sin(kh − h)],
a12,k = 0, a13,k = 0,
a21,k = 2 sinh(h/2) exp[−3h/2 + sin(kh)− sin(kh − h)],
a22,k = exp[−2h + sin(kh)− sin(kh − h)], a23,k = 0,
a31,k = 0, a32,k = 0,
a33,k = exp[−2h + sin(kh)− sin(kh − h)],

h = 0.2 and

Qk =

0.6050 0.6000 0.1700
0.6000 1.0000 0.5200
0.1700 0.5200 0.9240


.

For the purpose of illustrating the proposed results, a stable system
obtained by construction is utilized here to ensure the trajectory
of the states are bounded, so that the system will not blow up in
finite time. In accordance with the proposed results, two different
scenarios of sensor measurement and unknown input settings are
considered.

(1) Multiple sensor scenario. In this case, the system is
measured by three sensors with matrix parameters

C1
k =


1 cos(kh) sin(kh)


,

C2
k =


sin(kh) 2 cos(kh)


,

C3
k =


cos(kh) sin(kh) 1.5

1 sin(2kh) cos(2kh)


,

R1
k = 0.2, R2

k = 0.3,

R3
k =


0.3 0.1
0.1 0.25


.

For this case, the unknown signal dk utilized is taken to have the
form shown in Fig. 3 with

Gk =


0.1 0 0.3
0.2 0.3 0

⊤

.

For this case, the condition in (50) is satisfied for all k, as it can
be verified that Ck has full column rank. Each sensor determines
whether or not to send their currentmeasurement to the estimator
according to their own event-triggering conditions, which is taken
to have the stochastic ‘‘send-on-delta’’ form by taking

ξ ik = yi
τ ik
,

with yi
τ ik
being the previously transmittedmeasurement of sensor i.

To investigate the estimation performance under different sensor-
to-estimator communication rates, two sets of Y i

k’s are considered:

(1) Parameter setting I: Y 1
k = 1.8, Y 2

k = 0.9, and

Y 3
k =


1.4 0.4
0.4 1.6


;

(2) Parameter setting II: Y 1
k = 90, Y 2

k = 45, and

Y 3
k =


35 10
10 40


.

The event-based MMSE estimator in (51) is implemented to es-
timate the state trajectories, and the performance is shown in
Figs. 4 and 5, respectively, where the average communication rates3

i=1 γ
i
k/3 at each time instant are included to provide the ac-

cess rates of different sensors. The average communication rates160
k=1 γ

i
k for the three sensors obtained using parameter setting I

are 0.57, 0.70 and 0.86, respectively, while the average communi-
cation rates for the three sensors obtained using parameter setting
II are 0.16, 0.26 and 0.36, respectively. To illustrate the effect of the
unknown inputs, the undisturbed states obtained according to

xk+1 = Akxk + wk

and using the same realization ofwk are also included in Figs. 4 and
5. For comparison, the time-triggered MMSE estimate obtained by
using all past measurement information is also plotted. Compared
with the event-based MMSE estimate, more information is ex-
ploited to generate this estimate, and therefore theoretically it has
improved performance in terms of estimation covariance; indeed,
the actual average estimation errors for the event-based MMSE
estimate and the time-triggered MMSE estimate are 0.5811 and
0.5073 for parameter setting I and 3.4924 and 0.5190 for parame-
ter setting II, respectively. The observation here is that despite the
obviously decreased communication cost between the sensors and
the remote estimator, the event-based MMSE estimates still track
the states of the system under the existence of the unknown input
term. One potential antetype of this example is the secure estima-
tion of cyber-physical systems (CPS) with a network of sensors, in
which case the communication and energy resources can be lim-
ited and external hazardous attack inputs do sometimes exist to
deviate the process from its normal operating points. The results
shown here, however, indicate that despite the fact that no infor-
mation is available for the attack inputs and the limited access to
the communication channels, the states of the processes under at-
tack can still be safely estimated and monitored with satisfactory
performance.
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Fig. 3. The unknown input signals.
Fig. 4. Performance of the event-based MMSE estimator for parameter setting I.
(2) Single sensor scenario. This case is employed to investigate the
tradeoff between the estimation performance (in terms of average
estimation error) and average communication rate for the event-
based MMSE estimator, which can be achieved by varying the
Yk parameter in the event-triggering condition in (4). To do this,
consider a sensor with parameter matrices

Ck =

1 cos(kh) sin(kh)


and Rk = 0.2. For this case, a scalar-valued unknown input signal
dk is randomly generated according to the uniform distribution
between 0 and 10, and Gk is given by

Gk =

0.1 0.3 0.2

⊤
.

Since Ck and Gk are both rank 1 matrices, the condition in (8) holds
according to Remark 3. The stochastic ‘‘send-on-delta’’ condition is
still utilized with a constant Yk. To evaluate the tradeoff between
the communication rate and estimation performance, Monte-
Carlo simulation experiments are performed for different values
of Yk between 0.01 and 103. The obtained results are provided
in Fig. 6, where the relative estimation errors of the proposed
event-based MMSE estimate obtained by deducting the average
estimation error of the time-triggered MMSE estimator from
those of the event-based MMSE estimator under different average
communication rates are provided. From this figure, we observe
that the performance of the event-based MMSE estimator stays
close to that of the time-triggered MMSE estimator even when
the communication rate is cut down by more than 50%. Therefore,
with the help of the event-triggered data scheduler, it is possible
to decrease the average communication ratewhilemaintaining the
estimation performance at a satisfactory level.
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Fig. 5. Performance of the event-based MMSE estimator for parameter setting II.
Fig. 6. Tradeoff between the estimation performance and the average communication rate.
7. Conclusion

In this work, the event-based state estimation problem for
linear-time varying systems with unknown inputs has been inves-
tigated for both the single sensor case and themultiple sensor case.
By treating the unknown input as a processwith a non-informative
prior, the event-based MMSE estimates are obtained in a recursive
form. It is proved that the obtained optimal event-based estima-
tors are exponentially stable and the estimation error covariance
matrices are asymptotically bounded for each sample path of the
event-triggering process, which implies that the expectation of the
estimation error covariance is asymptotically bounded as well. In
the present event-based estimation framework, the unknown in-
put signal affects only the state equation of the system; an interest-
ing extension is to consider systems with unknown inputs in both
state equations and sensor measurement equations, which will be
investigated in our next step. On the other hand, the communica-
tion channel between a sensor and the estimator is assumed to be
reliable in the current work; for the case that the unknown input
term does not exist, it is known that the consideration of the effect
of packet dropouts and time delays induced by the communication
network is in general difficult in optimal event-based estimator
design. One possible way of handling this issue, however, is to con-
sider alternativemodeling frameworks (e.g., using finite-state hid-
denMarkovmodels (Elliott, Aggoun, &Moore, 1995)), which forms
another interesting direction for our future work.
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Appendix A. Lemma 15

Lemma 15. Let A ∈ Rp×n, X ∈ Rp×p, C ∈ Rq×n, Y ∈ Rq×q. Let x, b,
d be vectors with appropriate dimensions.

(1) If rank(A⊤XA + C⊤YC) = n, then

(Ax + b)⊤X(Ax + b)+ (Cx + d)⊤Y (Cx + d)

=

x + (A⊤XA + C⊤YC)−1(A⊤Xb + C⊤Yd)

⊤
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(A⊤XA + C⊤YC)
x + (A⊤XA + C⊤YC)−1(A⊤Xb + C⊤Yd)


+ ⋆,

where ⋆ denotes a term unrelated with x.
(2) If X and Y are nonsingular,

x⊤Xx + (x − b)⊤Y (x − b) =

x − (X + Y )−1Yb

⊤
(X + Y )

x − (X + Y )−1Yb

+ b⊤(X−1

+ Y−1)−1b.

Proof. The first expression can be verified by completing the
squares and noticing that A⊤XA+C⊤YC is nonsingular. The second
expression can be obtained by completing the squares and the
matrix inversion lemma. �

Appendix B. Lemma 16

Lemma 16 (Lemma 2 in Li (2013)). Let C and D bematrices such that
D⊤ and [C⊤ D⊤

]
⊤ have full column ranks. Let F be the orthogonal

complement of D⊤ such that DF = 0. For positive definite matrices P
and R with appropriate dimensions, the following equations hold:

[D⊤(DPD⊤)−1D + C⊤R−1C]
−1

= P − PC⊤H−1CP + (F − PC⊤H−1CF)

· (F⊤C⊤H−1CF)−1(F − PC⊤H−1CF)⊤, (B.1)

with H = CPC⊤
+ R.

Appendix C. Explanation of (18)

First we observe that

Dk−1dk−1 =


dk−1
0


with dk−1 ∈ Rp. Noticing that Dk−1 = [Ip 0]⊤ and D̄k−1 = [0 In−p],
we have
D⊤

k−1
D̄k−1


= In.

Let ẑk := zk − Fk−1x̂k−1 and write

ẑk :=


ẑk,1
ẑk,2


=


D⊤

k−1ẑk
D̄k−1ẑk


. (C.1)

For Pz
k|k−1, we have

Pz
k|k−1 =


D⊤

k−1
D̄k−1


Pz
k|k−1


Dk−1 D̄⊤

k−1


(C.2)

=


D⊤

k−1P
z
k|k−1Dk−1 D⊤

k−1P
z
k|k−1D̄

⊤

k−1
D̄k−1Pz

k|k−1Dk−1 D̄k−1Pz
k|k−1D̄

⊤

k−1


. (C.3)

To obtain (18), we observe that

f (zk|Ik−1) ∝


Rp

exp


−
1
2


zk −


Fk−1x̂k−1 + Dk−1dk−1

⊤
(Pz

k|k−1)
−1 zk −


Fk−1x̂k−1 + Dk−1dk−1


ddk−1

=


Rp

exp


−

1
2


dk−1 − ẑk,1

−ẑk,2

⊤


D⊤

k−1P
z
k|k−1Dk−1 D⊤

k−1P
z
k|k−1D̄

⊤

k−1
D̄k−1Pz

k|k−1Dk−1 D̄k−1Pz
k|k−1D̄

⊤

k−1

−1


dk−1 − ẑk,1

−ẑk,2


ddk−1 (C.4)
∝ exp

−

1
2
(zk − Fk−1x̂k−1)

⊤

D̄⊤

k−1(D̄k−1Pz
k|k−1D̄

⊤

k−1)
−1D̄k−1(zk − Fk−1x̂k−1)


, (C.5)

where (C.5) is due to the properties of the marginal distribution of
a multivariate Gaussian random variable.
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