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a b s t r a c t

In this work, we consider state estimation based on the information from multiple sensors that provide
their measurement updates according to separate event-triggering conditions. An optimal sensor fusion
problem based on the hybrid measurement information (namely, point- and set-valued measurements)
is formulated and explored.We show that under a commonly-accepted Gaussian assumption, the optimal
estimator depends on the conditional mean and covariance of the measurement innovations, which
applies to general event-triggering schemes. For the case that each channel of the sensors has its own
event-triggering condition, closed-form representations are derived for the optimal estimate and the
corresponding error covariancematrix, and it is proved that the exploration of the set-valued information
provided by the event-triggering sets guarantees the improvement of estimation performance. The
effectiveness of the proposed event-based estimator is demonstrated by extensiveMonte Carlo simulation
experiments for different categories of systems and comparative simulation with the classical Kalman
filter.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Event-based estimation strategy provides the possibility to
maintain estimation performance under limited communication
resources (Åström & Bernhardsson, 2002) and has attracted con-
siderable attention in the control community for the past few
years. For scalar linear systems, Imer and Basar (2005) and Rabi,
Moustakides, and Baras (2006) studied the optimal event-based
finite-horizon sensor transmission scheduling problems in contin-
uous and discrete time, respectively. Li, Lemmon, andWang (2010)
extended the results to vector linear systems by relaxing the zero
mean initial conditions and considering measurement noises. In Li
and Lemmon (2011), the tradeoff between performance and av-
erage sampling period was analyzed, where a sub-optimal event-
triggering schemewith a guaranteed least average sampling period
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was proposed. Rabi, Moustakides, and Baras (2012) considered the
adaptive sampling for state estimation of linear continuous-time
systems. InWu, Jia, Johansson, and Shi (2013), theMinimumMean
Squared Error (MMSE) estimator was derived, and the tradeoff be-
tween communication rate and performance was analyzed. Shi,
Chen, and Shi (2014) studied the likelihood estimation problem for
a level-based event-triggering scheme, and the evaluation of upper
and lower bounds on communication rates was discussed. Sijs and
Lazar (2012) formulated a general description of event sampling,
and a state estimator with a hybrid update was proposed to reduce
the computational complexity.

The above results consider the scenario that only one event de-
tector is used to process the measured state information from the
sensor. There also exist many applications (e.g., in the context of
wireless sensor networks) where multiple sensors with multiple
event detectors are equipped to measure the state of the process.
These invariably lead to sensor scheduling/fusion issues, which
have been extensively studied for the case of periodic sampled
systems (Alriksson & Rantzer, 2005; Mo, Ambrosinob, & Sinopoli,
2011; Shi & Chen, 2013). However, the effect of multiple event de-
tectors on the MMSE estimates still remains unexplored, which
is the basic motivation of our research. In this work, we consider
the scenario that the process is measured by a network of sen-
sors and that each sensor chooses to provide its latest measure-
ment update according to its own event-triggering condition. In
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this case, the hybrid information is provided by the whole group of
sensors as well as the event-triggering sets. For the sensors whose
event-triggering conditions are satisfied, the exact values of the
sensor outputs are known, providing ‘‘point-valued measurement
information’’ to the estimator; for sensors that the event-triggering
conditions are not satisfied, some information contained in the
event-triggering sets is known to the estimator as well, to which
we refer as ‘‘set-valued measurement information’’ in this paper.
The basic goal is to find the MMSE estimate given the hybrid mea-
surement information. As will be addressed later, the main issues
arise from the computational aspect, due to the non-Gaussianity
of the a posteriori distributions. Therefore we focus on the deriva-
tion of an approximate (due to the Gaussian assumption) MMSE
estimate that possesses a simple structure but still inherits the
important properties of the exact optimal estimate. In Sijs and
Lazar (2012), a sum of Gaussians approach was utilized to solve
the MMSE problem under a uniform distribution assumption; for
the single-channel case, an alternative approach was proposed
by Nguyen and Suh (2007), where an adaptive scheduling algo-
rithm was developed to adjust the virtual moments of the mea-
surement noises to achieve the improved estimation performance.
The difference is that the aforementioned results would add an ad-
ditional covariance matrix to the measurement noise covariance,
while the present approach introduces a scalar weight when up-
dating the estimation error covariancematrix (see Theorem7). The
main contributions are summarized as follows:

(1) An approximate MMSE estimate induced by the hybrid
measurement information provided by a sequence of sensors has
been derived. We show that the estimate is determined by the
conditional mean and covariance of the innovations. The results
are valid for general event-triggering schemes and reduce to the
results obtained inWu et al. (2013) if only one sensor and the level-
based event-triggering conditions are considered.

(2) Insights on the optimal estimate when each sensor has only
one channel are provided. In this case, closed-form recursive state
estimate update equations are obtained. Utilizing the recent re-
sults on the partial order of uncertainty and information (Chen,
2011), we show that the exploration of the set-valued informa-
tion guarantees the improved estimation performance in terms of
smaller estimation error covariance. The results are equally ap-
plicable to multiple-channel sensors with uncorrelated/correlated
measurement noises but separate event-triggering conditions on
each channel.

(3) Extensive Monte Carlo experiments are performed to test
the effectiveness of the proposed estimator. Compared with the
Kalman filter that only exploits the received point-valued mea-
surements, the proposed estimator provides almost-guaranteed
improved performance, which is not sensitive to the sensor se-
quence used.

The rest of the paper is organized as follows: Section 2 presents
the system description and problem setup. Section 3 presents
the main results. Experimental verification using Monte Carlo
simulation is provided in Section 4, followed by the concluding
remarks in Section 5.

2. System description and problem setup

Consider a linear time-invariant process that evolves in discrete
time driven by white noise:

xk+1 = Axk + wk, (1)

where xk ∈ Rn is the state, andwk ∈ Rn is the process noise, which
is zero-mean Gaussian with covariance Q ≥ 0. The initial value x0
of the state is Gaussian with E(x0) = µ0, and covariance P0. The
state information is measured by a number of battery-powered
sensors, which communicate with the state estimator through a
wireless channel, and the output equations are

yik = C ixk + vi
k, (2)

where vi
k ∈ Rm is zero-mean Gaussian with covariance Ri > 0. In

addition, x0, wk and vi
k are uncorrelated with each other. We as-

sume that the number of sensors equalsM . Considering limitation
in sensor battery capacity and the communication costs, an event-
based data scheduler is equipped with each sensor i. At each time
instant k, sensor i produces a measurement yik, and the scheduler
of sensor i tests the event-triggering condition

γ i
k =


0, if yik ∈ Ξ i

k
1, otherwise (3)

where Ξ i
k denotes the event-triggering set of sensor i at time k and

decides whether to allow a data transmission. If γ i
k = 1, sensor i

sends yik to the estimator through the wireless channel. Notice that
the event-triggering scheme in (3) is fairly general and coversmost
schemes considered in the literature and industrial applications,
e.g., the ‘‘send on delta’’ strategy and the level-based triggering
conditions (not necessarily being symmetric). Formany previously
considered event-triggering schemes (e.g., the level-based event-
triggering conditions in Shi et al. (2014) andWuet al. (2013)), feed-
back communication from the estimator to the sensor is needed at
certain time instants as the event is related to the innovation; how-
ever, since the event-triggering sets Ξ i

k can be designed offline,
the remote estimator will have full knowledge of them without
communication. In this way, the proposed results are applicable to
battery-powered wireless sensor networks, where it is normally
too costly to use feedback communication.

Since the main task is to study event-based estimation and
sensor fusion, we assume that the capacity of the channel is greater
than M so that it is possible for the sensors to communicate with
the estimator at the same time.

Let x̂ik denote the optimal estimate of xk after updating the
measurement of the ith sensor and denote P i

k as the corresponding
covariance matrix.2 Denote Sn

+
as the set of symmetric positive

semidefinite matrices. Define the functions h(·): Sn
+

→ Sn
+

and
g̃i(·, ·): Sn

+
× R → Sn

+
as follows:

h(X) := AXA⊤
+ Q ,

g̃i(X, ϑ) := X − ϑX(C i)⊤[C iX(C i)⊤ + Ri
]
−1C iX .

(4)

For brevity, we denote g̃i(X, 1) as g̃i(X). Denote Yk :=

{Y1
k , Y2

k , . . . , YM
k } as the collection of measurement information

received by the estimator. Notice that if γ i
k = 1, Yi

k = {yik};
otherwise, Yi

k = {yik|y
i
k ∈ Ξ i

k}. In the latter case, although yik is
unknown, it is still jointly Gaussian with xk. Further define

Ii
k :=


Y1, Y2, . . . , Yk−1, {Y

1
k , Y2

k , . . . , Yi
k}


(5)

for i ∈ N1:M , and in this way, we are able to summarize all the
information we have in Ii

k before considering the additional in-
formation Yi+1

k from sensor i + 1 at time k. The objective of our
work is to explore theMMSE estimate of the process state (namely,
E(xk|IM

k )) by taking into account all given information, namely, the
set- and point-valued measurements provided by the sensor net-
work as well as the event-triggering schemes.

When the state information is contained in combined point-
and set-valued measurements, following a standard Bayesian

2 Here we denote the 0th sensor as the case that no sensor information has been
fused, namely, the prediction case.
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argument, the exactMMSE estimate is themean of the distribution
of xk conditioned on IM

k ,

E(xk|IM
k ) =


Rn

xfxk(x|I
M
k )dx. (6)

The major problem of this estimate arises from the computational
aspect, due to the fact that the conditional distribution of xk in (6) is
no longer Gaussian when set-valued measurements are provided.
This conditional distribution can be updated recursively by fusing
the information sequentially

fxk(x|I
i
k) =

fxk(x|I
i−1
k )


Ξ i
k
fyik(y|I

i−1
k , xk = x)dy

Rn fxk(x|I
i−1
k )


Ξ i
k
fyik(y|I

i−1
k , xk = x)dydx

, (7)

and the final result does not depend on the sensor sequence uti-
lized during the fusion procedure (since the distribution is unique).
However, analytical solutions to the integrations in (7) rarely ex-
ist and the only method to implement this estimate is numerical
integration, which is inevitably expensive in computation.

On the other hand, one notices that

fxk(x|I
i
k) =


Yi
k
fxk(x|y

i
k = y, Ii−1

k )fyik(y|I
i−1
k )dy

Yi
k
fyik(y|I

i−1
k )dy

(8)

=


Rm

fxk(x|y
i
k = y, Ii−1

k )fyik(y|y ∈ Yi
k, Ii−1

k )dy, (9)

where fyik(y|y ∈ Yi
k, Ii−1

k ) satisfies fyik(y|y ∈ Yi
k, Ii−1

k ) = 0, y ∉ Yi
k

and


Rm fyik(y|y ∈ Yi
k, Ii−1

k )dy = 1, and behaves similarly as
the Dirac function δ(y), which equals to 0 except for y = 0 and
satisfies


Rm δ(y)dy = 1. If point-valuedmeasurements are always

available, Eq. (9) becomes


Rm fxk(x|y
i
k = y, Ii−1

k )δ(yik − y)dy =

fxk(x|y
i
k = y, Ii−1

k ), which maintains Gaussianity. Motivated by
these observations, we introduce the following assumption:

Assumption 1. The conditional distribution of xk given Ii
k can be

approximated by a Gaussian distribution with the same mean and
covariance.

This assumption is also a commonly used technique in designing
nonlinear Gaussian filters (Anderson & Moore, 1979; Arasaratnam
& Haykin, 2009; Ito & Xiong, 2000; Julier, Uhlmann, & Durrant-
Whyte, 2000). To further illustrate the above assumption in the
context of event-based estimation, we present the following
numerical example.

Example 1. Consider a linear systemmeasured by one sensor and
assume xk−1 is Gaussian with

A =


1.5 0.7
0.8 1.6


, Q =


0.5 0.1
0.1 0.6


,

Cov(xk−1) =


0.9 0.1
0.1 0.8


,

C = [1.2 0.3], R = 0.3, and E(xk−1) = [0.5 0.5]⊤ respectively.
We study the distribution of xk conditioned on set-valued mea-
surement information. We perform Monte Carlo simulation and
collect the realizations of xk’s such that yk ∈ Yk := [CAE(xk−1) −

δ, CAE(xk−1)+δ], and estimate the resulting distribution. Different
values of δ are considered, and 10 million realizations of xk satis-
fying yk ∈ Yk are used to estimate the conditional pdf fxk(x|yk ∈

Yk) for each δ. The pdf of Gaussian distributions f̂xk(x|yk ∈ Yk)
with equal first two moments are also included for comparison
in the plots (see also the KL-divergences DKL(f ∥f̂ ) and DKL(f̂ ∥f ) of
the distributions). From Fig. 1, it is reasonable to approximate the
conditional distributions as Gaussian distributionswith acceptable
approximation errors. �

Now we are in a position to state the main problem considered
in this paper:

Problem 2. At time k, given a sequence of measurement informa-
tion {Yi

k|i ∈ N1:M} of xk and under Assumption 1, is it possible to
find a simple approximate MMSE estimator in the recursive form?
Does the exploration of the set-valued information lead to the im-
proved estimation performance in terms of estimation error co-
variance?

Meanwhile, since the exact MMSE estimate is the same for all
fusion sequences under the Bayesian decision framework (by the
uniqueness of the conditional distribution), when an approximate
solution of a simple form is obtained, an additional question to
ask is whether the estimation performance is sensitive to the
fusion sequence (due to the Gaussian assumption); we will further
address this issue in the experimental verification section, where
we test the performance of the proposed results extensively by
Monte Carlo simulations.

3. Optimal fusion of sequential event-triggered measurement
information

In this section, Problem 2 is studied in detail. Define z ik = yik −

C ix̂0k . Since x̂0k is known at time k by the estimator, this relationship
maps the set Ξ i

k to a unique set Ω i
k := {z ik : z ik = yik − C ix̂0k, y

i
k ∈

Ξ i
k}. Define Li+1

k := P i
k(C

i+1)⊤[C i+1P i
k(C

i+1)⊤ + Ri+1
]
−1, and eik :=

xk − x̂ik. We have the following result:

Theorem 3. (1) The optimal prediction x̂0k of the state xk and the
corresponding covariance P0

k are given by

x̂0k = Ax̂Mk−1,

P0
k = h(PM

k−1).

(2) For i ∈ N0:M−1, the fusion of information from the (i+1)th sensor
leads to the following recursive state estimation equations:
(a) If γ i+1

k = 1,

x̂i+1
k = x̂ik + Li+1

k (z i+1
k − z̄ i+1|i

k ), (10)

P i+1
k = g̃i+1(P i

k); (11)
(b) If γ i+1

k = 0,

x̂i+1
k = x̂ik + Li+1

k (z̄ i+1|i+1
k − z̄ i+1|i

k ), (12)

P i+1
k = g̃i+1(P i

k) + Li+1
k Cov(z i+1

k |Ii+1
k )(Li+1

k )⊤, (13)
where z̄ i+1|i

k := C i+1(x̂ik − x̂0k), and z̄ i+1|i+1
k := E(z i+1

k |Ii+1
k ).

Proof. See Appendix. �

From the above result, the first and second moments of
the truncated Gaussian distributions, namely, E(z i+1

k |Ii+1
k ) and

Cov(z i+1
k |Ii+1

k ) need to be calculated to implement the event-
based estimator. Fortunately, the moment evaluation problems of
truncated Gaussian distributions have been extensively studied in
the literature of statistical analysis; explicit formulae and efficient
implementation methods have been proposed for a variety of
truncation sets. See Manjunath and Wilhelm (2012), Tallis (1961,
1963) and the references therein. Also, the estimate in (10) and (12)
can be written in terms of the sum of series of random variables
with Gaussian and non-Gaussian distributions. According to the
asymptotic distribution theory for state estimate from a Kalman
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Fig. 1. Plot of the conditional distributions.
filter in the absence of Gaussian assumptions (Aliev &Ozbek, 1999;
Spall & Wall, 1984), the central limit theorem for the estimates is
still valid, which helps explain the rationality of Assumption 1.

The above result provides an acceptable answer to the first part
of Problem 2. The second part of the problem, however, is diffi-
cult to answer for general event-triggering schemes. In the follow-
ing, we consider m = 1, namely, when each sensor has only one
channel. Notice that this scenario is equivalent to that the sensors
have multiple channels, but each channel has uncorrelated mea-
surement noise and separate event-triggering conditions, which is
easy to implement inmost prevailing embedded systems. Further-
more, the results can be equally applied to the case of multiple-
channel sensors with correlated measurement noise but separate
event-triggering conditions. To do this, it suffices to first transform
each sensor measurement yik to ŷik = U iyik (where U i is an or-
thogonal matrix satisfying Ri

= (U i)⊤ΛiU i, Λi being a diagonal
matrix containing the eigenvalues ofRi), and thendesign the event-
triggering conditions for each channel of ŷik.

When m = 1, without loss of generality, the event-triggering
sets can be parameterized as Ω i

k = {z ik|a
i
k ≤ z ik ≤ bik}, for
i ∈ N1:M . For this type of sets, we have the following well-known
result (Johnson, Kotz, & Balakrishnan, 1994).

Lemma 4. For a univariate Gaussian random variable z i+1
k |Ii

k ∼

N (z̄ i+1|i
k ,Qzi+1

k
), its truncated mean and variance over Ω i+1

k =

{z i+1
k |ai+1

k ≤ z i+1
k ≤ bi+1

k } satisfy

E(z i+1
k |Ii+1

k ) = z̄ i+1|i
k + ẑ i+1

k , (14)

Cov[z i+1
k |Ii+1

k ] = (1 − ϑ i+1
k )Qzi+1

k
, (15)

where φ(z) :=
1

√
2π

exp(− 1
2 z

2),

ẑ i+1
k =

φ

 ai+1
k −z̄i+1|i

k

Q 1/2

zi+1
k

 − φ

 bi+1
k −z̄i+1|i

k

Q 1/2

zi+1
k


Q

 ai+1
k −z̄i+1|i

k

Q 1/2

zi+1
k

 − Q

 bi+1
k −z̄i+1|i

k

Q 1/2

zi+1
k

Q 1/2
zi+1
k

, (16)
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ϑ i+1
k =


φ

 ai+1
k −z̄i+1|i

k

Q 1/2

zi+1
k

 − φ

 bi+1
k −z̄i+1|i

k

Q 1/2

zi+1
k


Q

 ai+1
k −z̄i+1|i

k

Q 1/2

zi+1
k

 − Q

 bi+1
k −z̄i+1|i

k

Q 1/2

zi+1
k





2

−

ai+1
k −z̄i+1|i

k

Q 1/2

zi+1
k

φ

 ai+1
k −z̄i+1|i

k

Q 1/2

zi+1
k

 −
bi+1
k −z̄i+1|i

k

Q 1/2

zi+1
k

φ

 bi+1
k −z̄i+1|i

k

Q 1/2

zi+1
k


Q

 ai+1
k −z̄i+1|i

k

Q 1/2

zi+1
k

 − Q

 bi+1
k −z̄i+1|i

k

Q 1/2

zi+1
k

 , (17)

Q(·) denotes the standard Q function.

Based on this result, we will show that the optimal estimate
subject to a given sequence of measurement information reduces
to a simple closed form and that the exploration of set-valued
information could lead to guaranteed enhanced performance. To
do this, we introduce the following lemmas.

Lemma 5 (Theorem 2 (Chen, 2011)). Let z be an absolutely continu-
ous random variable with cumulative distribution function F(z). The
conditional varianceCov(z|a ≤ z ≤ b) is increasing in b if and only if

a≤z1≤z2≤b
{F(z1) − F(a)} dz1dz2 (18)

is log-concave in b, and it is decreasing in a if and only if
a≤z1≤z2≤b

{F(b) − F(z1)} dz1dz2 (19)

is log-concave in a.When both conditions in (18) and (19) are satisfied
for all a, b ∈ C for some convex set C, then Cov(z|z ∈ A) is partially
monotonic in an interval A such that A ⊂ C.

Lemma 6 (Lemma 1 (Chen, 2011)). If a function f (z) is log-concave
for z ∈ (a, b), then the antiderivative F(x) =

 z
a f (t)dt is also log-

concave for z ∈ (a, b) whenever it is well defined.

Now we are ready to present the following result.

Theorem 7. (1) The optimal prediction x̂0k of the state xk and the
corresponding covariance P0

k are given by

x̂0k = Ax̂Mk−1,

P0
k = h(PM

k−1).
(20)

(2) For i ∈ N0:M−1, the fusion of information from the (i+1)th sensor
leads to the following recursive state estimation equations:
(a) If γ i+1

k = 1,

x̂i+1
k = x̂ik + Li+1

k (z i+1
k − z̄ i+1|i

k ), (21)

P i+1
k = g̃si+1(P

i
k). (22)

(b) If γ i+1
k = 0,

x̂i+1
k = x̂ik + Li+1

k ẑ i+1
k , (23)

P i+1
k = g̃si+1(P

i
k, ϑ

i+1
k ), (24)

where ẑ i+1
k is given in (16), and ϑ i+1

k is given in (17) and in
particular, satisfies ϑ i+1

k ∈ (0, 1).

Proof. It suffices to prove Eqs. (23) and (24). Eq. (23) follows from
(14) and (12). From (13),

P i+1
k = g̃si+1(P

i
k) + Li+1

k Cov(z i+1
k |Ii+1

k )(Li+1
k )⊤

= g̃si+1(P
i
k) + (1 − ϑ i+1

k )Li+1
k

[C i+1P i
k(C

i+1)⊤ + Ri+1
](Li+1

k )⊤

= g̃si+1(P
i
k, ϑ

i+1
k ).

Finally we show ϑ i+1
k ∈ (0, 1). Since Cov[z i+1

k |Ii+1
k ] > 0, we have

ϑ i+1
k < 1. We consider the case z̄ i+1|i

k ∈ [ai+1
k , bi+1

k ]. In this case,
(ai+1

k − z̄ i+1|i
k )/Q 1/2

zi+1
k

≤ 0 and (bi+1
k − z̄ i+1|i

k )/Q 1/2
zi+1
k

≥ 0 hold. From

(17), we have ϑ i+1
k > 0. This implies that a pair (ai+1

k , bi+1
k ) such

that ai+1
k ≤ z̄ i+1|i

k ≤ bi+1
k will lead to Cov[z i+1

k |Ii+1
k ] < Qzi+1

k
.

Now consider the case that z̄ i+1|i
k ∉ [ai+1

k , bi+1
k ]. There always exists

a pair (ai+1
k , b̄i+1

k ) such that [ai+1
k , bi+1

k ] ⊂ [ai+1
k , b̄i+1

k ] and z̄ i+1|i
k ∈

[ai+1
k , b̄i+1

k ]. Since φ(z) is a logarithmically concave function, from
Lemmas 5 and 6, we have Cov[z i+1

k |Ii+1
k ] ≤ Cov


z i+1
k |Ii

k, z
i+1
k ∈

[ai+1
k , b̄i+1

k ]


< Qzi+1
k

. Thus we have ϑ i+1
k > 0, which completes the

proof. �

Since ϑ i
k ∈ (0, 1) is guaranteed when γ i

k = 0, smaller estima-
tion error covariance can be obtained by exploiting the set-valued
measurement information,which implies the improved estimation
performance. Also, we know that for a given sensor information se-
quence s, the resultant optimal estimate evolves according to (21)
and (23). The calculation of ϑ i

k mainly requires the calculation of
the standard Q -functions, which is easy to implement. Therefore,
theoretically, the derived event-based estimator enjoys both po-
tentially improved performance and a simple closed formwith low
computational complexity. The actual effectiveness of the estima-
tor will be further verified in the following section.

4. Experimental verification of the proposed results based on
Monte Carlo simulations

In this section, we test the efficiency of the proposed results
by Monte Carlo simulation. Specifically, we consider the practi-
cal ‘‘send on delta’’ communication strategy (Miskowicz, 2006),
namely, at time k, sensor i decides whether to send new measure-
ment updates to the remote estimator according to the following
condition:

γ i
k =


1 if |yik − yi

τ i
k
| ≥ δi,

0 otherwise,
(25)

where τ i
k denotes the last instance when the measurement of sen-

sor i is transmitted. To study the applicability of the results, we
consider three categories of systems:

(1) Category 1: trace{Q }/n ≫ trace{Ri
}/m.

(2) Category 2: trace{Q }/n ∼ trace{Ri
}/m.

(3) Category 3: trace{Q }/n ≪ trace{Ri
}/m.

For each category, we randomly generate 1000 third-order stable
discrete-time systems,3 the eigenvalues of which lie uniformly in
[−0.95, 0.95], and measure each system by 5 sensors with m = 1
and randomly generated parameters.4 For each system, we per-
form the simulation for 1000 time instants and evaluate the perfor-
mance of the proposed event-based estimator from two aspects:

(1) To study the possible performance improvement induced
by exploring the set-valued information, comparison is made with

3 We do not consider unstable eigenvalues here to avoid errors introduced by the
unbounded state trajectories.
4 The Q and Ri matrices are obtained by first enumerating a set of positive

real numbers satisfying the same uniform distributions, and then decreasing
(increasing) those corresponding to Ri ’s by one magnitude for Category 1 (Category
3); the δi ’s are also randomly generated positive real numbers to allow for different
communication rates.
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(a) Estimation performance of Category 1. (b) Communication rate of Category 1.

(c) Estimation performance of Category 2. (d) Communication rate of Category 2.

(e) Estimation performance of Category 3. (f) Communication rate of Category 3.

Fig. 2. Performance validation of the proposed event-based estimator.
theKalman filterwith intermittent observations exploring only the
received point-valued measurement information. To quantify the
performance difference, the estimation errors are normalized by
the averaged norm of the original state:

∆E :=
eK − eE

1000
t=1

∥xt∥2/1000

, (26)

where eK denotes the root average squared estimation error of
the Kalman filter with intermittent observations, eE denotes the
root average squared estimation error of the proposed event-based
estimator, and xt denotes the random generated state trajectory of
the system. The distributions of∆E ’s for different categories aswell
as the corresponding average communication rates5 are plotted in
Fig. 2. From this figure, it is observed that the proposed event-based
estimator obtained almost guaranteed improved performance
compared with the Kalman filter with intermittent observations,
indicating the efficient exploitation of the set-valued information.
The only few cases that the event-based estimator slightly
deteriorates the estimation performance belong to Category 1
(see Fig. 2(a)), and from Fig. 2(b). It is observed that these cases
have very low communication rates, which correspond to large
δi’s; intuitively, the Gaussian assumptions sometimes may not be
accurate enough to provide effective description of the a priori
distributions for this case, thus resulting in less effective estimates.

(2) To test the sensitivity of the estimation performance
to sensor fusion sequences, comparison is made between the

5 The average communication rates are calculated as 1
5·1000

5
i=1

1000
k=1 γ i

k , which
are nonnegative by definition.
estimates that are obtained according to different sequences of
sensors. The first one is obtained by the sequences that minimize
the estimation error variances at each time instant, while the
second one is obtained by sequences thatmaximize the estimation
error variance at each time instant. To quantify the performance
difference, define the normalized performance difference as

∆F :=
eW − eB

eB
, (27)

where eB and eW denote the root average squared estimation errors
of the fusion sequences obtained by minimizing and maximizing
the error variance, respectively. The distribution of ∆F ’s and
the corresponding communication rates are shown in Fig. 3. It
is observed that the difference is always relatively small, and
becomes smaller as the system becomes more measurement-
noise dominant. Since the difference should be zero for the MMSE
estimate without the Gaussian assumption, the results indicate
that the proposed estimator represents the exact MMSE estimator
to a satisfactory extent.

5. Conclusion

In this work, the problem of optimal fusion of hybrid mea-
surement information for event-based estimation is studied. For
a fixed sensor sequence, we show that the optimal MMSE estimate
depends on the conditional mean and variance of the innova-
tions. When each sensor has only one channel, a closed-form
representation for the MMSE estimate is developed, and it is
proved that exploring the set-valued information always im-
proves estimation performance. The results are equally applica-
ble to multiple-channel sensors with separate event-triggering
conditions. Extensive simulation results show that the proposed
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(a) Performance comparison of Category 1. (b) Communication rate of Category 1.

(c) Performance comparison of Category 2. (d) Communication rate of Category 2.

(e) Performance comparison of Category 3. (f) Communication rate of Category 3.

Fig. 3. Performance comparison between different fusion sequences.
estimator provides improved performance for most cases and
is not sensitive to the fusion sequence. Future work includes
the exploration of Cramér–Rao lower bound of the event-based es-
timation problem as well as the exploration of other nonlinear fil-
tering techniques to remove the Gaussian assumptions.
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Appendix. Proof of Theorem 3

The first part of the result follows fromAssumption 1. The proof
of the second part is given in two steps.

(1) Proof of a few instrumental equalities:

E[eik(z
i+1
k − z̄ i+1|i

k )⊤|Ii+1
k ]

= Li+1
k E[(z i+1

k − z̄ i+1|i
k )(z i+1

k − z̄ i+1|i
k )⊤|Ii+1

k ],

E[(eik − Li+1
k (z i+1

k − z̄ i+1|i
k ))(z i+1

k − z̄ i+1|i
k )⊤|Ii+1

k ] = 0,

E[(eik − Li+1
k (z i+1

k − z̄ i+1|i
k ))

× (eik − Li+1
k (z i+1

k − z̄ i+1|i
k ))⊤|Ii

k, z
i+1
k = z] = g̃i+1(P i

k),

E[(eik − Li+1
k (z i+1

k − z̄ i+1|i
k ))

× (eik − Li+1
k (z i+1

k − z̄ i+1|i
k ))⊤|Ii+1

k ] = g̃i+1(P i
k).

Since yi+1
k = C i+1xk + vi+1

k , we have

E(yi+1
k |Ii

k) = C i+1E(xk|Ii
k) = C i+1x̂ik. (A.1)
Cov[yi+1
k |Ii

k] = E[(yi+1
k − E(yi+1

k |Ii
k))(y

i+1
k − E(yi+1

k |Ii
k))

⊤
|Ii

k],

= E[(C i+1eik + vi+1
k )(C i+1eik + vi+1

k )⊤|Ii
k]

= C i+1P i
k(C

i+1)⊤ + Ri+1, (A.2)

where P i
k = Cov[xk|Ii

k]. Since z i+1
k = yi+1

k − C i+1x̂0k ,

E(z i+1
k |Ii

k) = C i+1x̂ik − C i+1x̂0k . (A.3)

Cov[z i+1
k |Ii

k] = E[(z i+1
k − E(z i+1

k |Ii
k))(z

i+1
k − E(z i+1

k |Ii
k))

⊤
|Ii

k],

= E[(C i+1eik + vi+1
k )(C i+1eik + vi+1

k )⊤|Ii
k]

= C i+1P i
k(C

i+1)⊤ + Ri+1. (A.4)

Similarly, we have

Cov[yi+1
k x⊤

k |Ii
k] = C i+1P i

k. (A.5)

Thus

Cov[xk|Ii
k, y

i+1
k = y] = g̃i+1(P i

k), (A.6)

E[xk|Ii
k, y

i+1
k = y] = x̂ik + Li+1

k (yi+1
k − C i+1x̂ik). (A.7)

By Assumption 1, z i+1
k conditioned on IM

k−1 is zero-mean Gaussian;
however, based on the above calculation, z i+1

k conditioned on Ii
k is

Gaussianwithnonzeromean.Define pi+1
k := Pr[z i+1

k ∈ Ω i+1
k |Ii

k] =
z∈Ω

i+1
k

fzi+1
k

(z|Ii
k)dz. We have the conditional pdf

fzi+1
k

(z|Ii+1
k ) =


fzi+1

k
(z|Ii

k)/p
i+1
k , if z ∈ Ω i+1

k ;

0, otherwise.
(A.8)

The rest of the proof follows fromsimilar arguments as those below
Eq. 27 of Wu et al. (2013).
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(2) Proof of the theorem: the case of γ i+1
k = 1 follows from (A.6)

and (A.7). Nowwe focus on the case of γ i+1
k = 0. If the information

provided by sensor i + 1 is given as a set Yi+1
k , x̂i+1

k should evolve
according to

x̂i+1
k = E[xk|Ii+1

k ]

=


z∈Ω

i+1
k

E[xk|Ii
k, z

i+1
k = z]fzi+1

k
(z|Ii

k)dz/p
i+1
k

=
1

pi+1
k


z∈Ω

i+1
k

[x̂ik + Li+1
k z + Li+1

k C i+1(x̂0k − x̂ik)]

fzi+1
k

(z|Ii
k)dz

= x̂ik − Li+1
k z̄ i+1|i

k + Li+1
k z̄ i+1|i+1

k , (A.9)

where z̄ i+1|i+1
k :=

1
pi+1
k


z∈Ω

i+1
k

zfzi+1
k

(z|Ii
k)dz = E(z i+1

k |Ii+1
k ).

Finally we calculate the covariance of xk conditioned on Ii+1
k :

P i+1
k = E[(xk − x̂i+1

k )(xk − x̂i+1
k )⊤|Ii+1

k ]

= E[(eik − Li+1
k (z̄ i+1|i+1

k − z̄ i+1|i
k ))

(eik − Li+1
k (z̄ i+1|i+1

k − z̄ i+1|i
k ))⊤|Ii+1

k ]

= g̃i+1(P i
k)

+ Li+1
k E[(z i+1

k − z̄ i+1|i
k )(z i+1

k − z̄ i+1|i
k )⊤|Ii+1

k ](Li+1
k )⊤

− Li+1
k (z̄ i+1|i+1

k − z̄ i+1|i
k )(z̄ i+1|i+1

k − z̄ i+1|i
k )⊤(Li+1

k )⊤ (A.10)

= g̃i+1(P i
k) + Li+1

k Cov(z i+1
k |Ii+1

k )(Li+1
k )⊤, (A.11)

where Eq. (A.10) follows from the instrumental equalities as well
as the equation

E[eik|I
i+1
k ] = E[xk − x̂ik|I

i+1
k ]

=


z∈Ω

i+1
k

E[xk − x̂ik|I
i
k, z

i
k = z]fzi+1

k
(z|Ii

k)dz/p
i+1
k

=


z∈Ω

i+1
k

Li+1
k (z − z̄ i+1|i

k )fzi+1
k

(z|Ii
k)dz/p

i+1
k

= Li+1
k (z̄ i+1|i+1

k − z̄ i+1|i
k ), (A.12)

and Eq. (A.11) follows from the relation

E[(z i+1
k − z̄ i+1|i

k )(z i+1
k − z̄ i+1|i

k )⊤|Ii+1
k ]

= E[((z i+1
k − z̄ i+1|i+1

k ) − (z̄ i+1|i+1
k − z̄ i+1|i

k ))

((z i+1
k − z̄ i+1|i+1

k ) − (z̄ i+1|i+1
k − z̄ i+1|i

k ))⊤|Ii+1
k ]

= Cov[z i+1
k |Ii+1

k ]

+ (z̄ i+1|i+1
k − z̄ i+1|i

k )(z̄ i+1|i+1
k − z̄ i+1|i

k )⊤. �
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