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Abstract

This paper presents a new delay system approach to network-based control. This approach is based on a new time-delay model proposed
recently, which contains multiple successive delay components in the state. Firstly, new results on stability and H∞ performance are proposed
for systems with two successive delay components, by exploiting a new Lyapunov–Krasovskii functional and by making use of novel techniques
for time-delay systems. An illustrative example is provided to show the advantage of these results. The second part of this paper utilizes the
new model to investigate the problem of network-based control, which has emerged as a topic of significant interest in the control community.
A sampled-data networked control system with simultaneous consideration of network induced delays, data packet dropouts and measurement
quantization is modeled as a nonlinear time-delay system with two successive delay components in the state and, the problem of network-based
H∞ control is solved accordingly. Illustrative examples are provided to show the advantage and applicability of the developed results for
network-based controller design.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Time-delay systems, also called systems with after effect
or dead time, hereditary systems, equations with deviating ar-
gument or differential–difference equations, have been an ac-
tive research area for the last few decades. The main rea-
son is that many processes include after-effect phenomena in
their inner dynamics, and engineers require models to behave
more like real processes due to the ever-increasing expecta-
tions of dynamic performance. There have been a great number
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of research results concerning time-delay systems scattered in
the literature. To mention a few, stability analysis is carried out
in He, Wang, Lin, and Wu (2007), He, Wang, Xie, and Lin
(2007b), He, Wu, She, and Liu (2004), Lin, Wang, and Lee
(2006), Xia and Jia (2002); stabilizing and H∞ controllers are
designed in Hua, Guan, and Shi (2005), and Zhang, Wu, She,
and He (2005); robust filtering is addressed in Gao and Wang
(2004), Liu, Sun, He, and Sun (2004), Wang and Burnham
(2001), Wang, Huang, and Unbehauen (1999); and model re-
duction/simplification is investigated in Gao, Lam, Wang, and
Xu (2004) and Xu, Lam, Huang, and Yang (2001). The impor-
tance of the study on time-delay systems is further highlighted
by the recent survey paper (Richard, 2003) and monographs
(Gu, Kharitonov, & Chen, 2003; Niculescu, 2001).

Closely related to time-delay systems, network-based con-
trol has emerged as a topic of significant interest in the control
community. It is well known that in many practical systems,
the physical plant, controller, sensor and actuator are diffi-
cult to be located at the same place, and thus signals are
required to be transmitted from one place to another. In mod-
ern industrial systems, these components are often connected
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over network media (typically digital band-limited serial com-
munication channels), giving rise to the so-called networked
control systems (NCSs). Compared with traditional feedback
control systems, where these components are usually connected
via point-to-point cables, the introduction of communication
network media brings great advantages, such as low cost,
reduced weight and power requirements, simple installation
and maintenance, and high reliability (Ishii & Francis, 2002).
Therefore, NCSs receive more and more attention and become
more and more popular in many practical applications in recent
years. Modeling, analysis and synthesis of network-based feed-
back systems have been receiving increasing attention, which is
highlighted by the recent special issue edited by Antsaklis and
Baillieul (2004). Among the reported results on NCSs, to
mention a few, stability issue is investigated in Montestruque
and Antsaklis (2004), Walsh, Ye, and Bushnell (2002), and
Zhang, Branicky, and Phillips (2001), stabilizing controllers
are designed in Yang, Wang, Hung, and Gani (2006), Yu,
Wang, and Chu (2005a), Yu, Wang, Chu, and Hao (2005b),
Zhang, Shi, Chen, and Huang (2005), Zhivoglyadov and
Middleton (2003), performance preserved control is studied
in Lian, Moyne, and Tilbury (2003), Seiler and Sengupta
(2005), and Yue, Han, and Lam (2005), and moving hori-
zon control is proposed in Goodwin, Haimovich, Quevedo,
and Welsh (2004). In an NCS, the most significant feature
is the network induced delays, which are usually caused
by limited bits rate of the communication channels, by a
node waiting to send out a packet via a busy channel, or
by signal processing and propagation. The existence of sig-
nal transmission delays generally brings negative effects on
NCS stability and performance. This observation further
enhances the importance of the study on time-delay sys-
tems.

The most commonly and frequently used state-space model
to represent time-delay systems is

ẋ(t) = Ax(t) + Adx(t − d(t)), (1)

where d(t) is a time delay in the state x(t), which is often
assumed to be either constant, or time-varying satisfying certain
conditions, e.g.,

0�d(t)� d̄ < ∞, ḋ(t)�� < ∞. (2)

Almost all the reported results on time-delay systems are based
on this basic mathematical model.

In a recent paper (Lam, Gao, & Wang, 2007), the following
new model for time-delay systems is proposed:

ẋ(t) = Ax(t) + Adx

(
t −

s∑
i=1

di(t)

)
, (3)

0�di(t)� d̄i < ∞, ḋi (t)��i < ∞. (4)

This model contains multiple delay components in the state,
and a stability analysis result is reported in Lam et al. (2007)
for systems with two successive delay components. The

introduction of this new model is motivated by the observa-
tion that sometimes in practical situations, signals transmitted
from one point to another may experience a few network seg-
ments, which can possibly induce successive delays with differ-
ent properties due to variable network transmission conditions,
and has been clearly justified by a state-feedback remote con-
trol problem. A numerical example has shown the advantage
of the stability result.

The intention of Lam et al. (2007) is to expose the new
model and to give a preliminary result on its stability analy-
sis. It is worth noting that this stability condition leaves much
room for improvement. A significant source of conservative-
ness that could be further reduced lies in the calculation of the
time-derivative of the Lyapunov–Krasovskii functional. In ad-
dition, only stability is analyzed, while the H∞ performance
has not been investigated, and application of this new model to
the emerging network-based control would likely yield better
performance.

Following the work of Lam et al. (2007), it is our inten-
tion in this paper to present new stability and H∞ perfor-
mance conditions for systems with multiple successive delay
components, and apply this new model to network-based con-
trol. To make our idea more lucid, we still consider the case
where only two successive delay components appear in the
state, and the idea behind this paper can be easily extended to
systems with multiple successive delay components. New re-
sults on stability and H∞ performance are proposed by ex-
ploiting a new Lyapunov–Krasovskii functional and by mak-
ing use of novel techniques for time-delay systems. An il-
lustrative example is provided to show the significant advan-
tage of the developed results. These constitute the contents
of Section 2.

In Section 3, we apply the new time-delay model to the prob-
lem of network-based control. As can be seen later, a sampled-
data NCS with simultaneous consideration of network induced
delays, data packet dropouts and measurement quantization can
be modeled as a nonlinear time-delay system with two succes-
sive delay components in the state, which forms a solid back-
ground for the new model mentioned above. Then, the H∞
performance condition developed in Section 2 is exploited to
investigate the problem of network-based H∞ control. Illus-
trative examples are provided to show the advantage and appli-
cability of the developed results for network-based controller
design.

Notation: The notation used throughout the paper is fairly
standard. The superscripts “T” and “−1” stand for matrix
transposition and matrix inverse, respectively; Rn denotes
the n-dimensional Euclidean space and the notation P > 0
(�0) means that P is real symmetric and positive definite
(semi-definite). In symmetric block matrices, we use an as-
terisk (∗) to represent a term that is induced by symmetry
and diag{. . .} stands for a block-diagonal matrix. Matrices,
if their dimensions are not explicitly stated, are assumed
to be compatible for algebraic operations. The space of
square-integrable vector functions over [0, ∞) is denoted by
L2[0, ∞), and for w ={w(t)} ∈ L2[0, ∞), its norm is denoted
by ‖w‖2.
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2. Main results on the new delay model

2.1. Stability analysis

Consider the following system with two successive delay
components in the state:

� : ẋ(t) = Ax(t) + Adx(t − d1(t) − d2(t)),

x(t) = �(t), t ∈ [−d̄, 0]. (5)

Here x(t) ∈ Rn is the state vector; d1(t) and d2(t) represent the
two delay components in the state and we denote d(t)=d1(t)+
d2(t); A, Ad are system matrices with appropriate dimensions.
It is assumed that

0�d1(t)� d̄1 < ∞, ḋ1(t)��1 < ∞,

0�d2(t)� d̄2 < ∞, ḋ2(t)��2 < ∞, (6)

and d̄ = d̄1 + d̄2, � = �1 + �2. �(t) is the initial condition on
the segment [−d̄, 0].

The purpose of this subsection is to derive a new stability
condition under which system � in (5) is asymptotically sta-
ble for all delays d1(t) and d2(t) satisfying (6). One possible
approach to check the stability of this system is to simply com-
bine d1(t) and d2(t) into one delay h(t) with

0�h(t)� d̄1 + d̄2 < ∞, ḣ(t)��1 + �2 < ∞. (7)

Then, system � in (5) becomes

�1 : ẋ(t) = Ax(t) + Adx(t − h(t)),

x(t) = �(t), t ∈ [−d̄, 0]. (8)

The stability of system �1 in (8) can be readily checked by
using some existing stability conditions. As discussed in Lam
et al. (2007), however, since this approach does not make full
use of the information on d1(t) and d2(t), it would be inevitably
conservative for some situations. In the following, we present
a new stability criterion.

Theorem 1. System � in (5) with delays d1(t) and d2(t) satis-
fying (6) is asymptotically stable if there exist matrices P > 0,
Q1 �Q2 �0, R�0, Z1 �Z2 > 0, M > 0, and S, T, U, V satis-
fying[
�1 + �2 + �T

2 + �3 �4
∗ �5

]
< 0, (9)

where

�2 = [S + V T − S U − T − U − V ],

�1 =
⎡
⎢⎣

�11 0 PAd 0
∗ �12 0 0
∗ ∗ −(1 − �)Q2 0
∗ ∗ ∗ −R

⎤
⎥⎦ ,

�11 = PA + ATP + Q1 + R, �12 = −(1 − �1)(Q1 − Q2),

�3 = �T
31[d̄1Z1 + d̄2Z2 + d̄M]�31,

�31 = [A 0 Ad 0], �4 = [S T U V ],
�5 = diag{−d̄−1

1 Z1, −d̄−1
2 Z2, −d̄−1Z2, −d̄−1M}. (10)

Proof. Define a Lyapunov–Krasovskii functional as

V (t) = V1(t) + V2(t) + V3(t) + V4(t),

V1(t) = xT(t)P x(t),

V2(t) =
∫ t

t−d1(t)

xT(s)Q1x(s) ds +
∫ t−d1(t)

t−d(t)

xT(s)Q2x(s) ds,

V3(t) =
∫ t

t−d̄

xT(s)Rx(s) ds,

V4(t) =
∫ 0

−d̄1

∫ 0

�
ẋT(t + �)Z1ẋ(t + �) d� d�

+
∫ −d̄1

−d̄

∫ 0

�
ẋT(t + �)Z2ẋ(t + �) d� d�

+
∫ 0

−d̄

∫ 0

�
ẋT(t + �)Mẋ(t + �) d� d�, (11)

where P > 0, Q1 �Q2 �0, R�0, Z1 �Z2 > 0 and M > 0 are
matrices to be determined. Then, along the solution of system
� in (5), the time derivative of V (t) is given by

V̇1(t) = 2xT(t)P [Ax(t) + Adx(t − d(t))], (12)

V̇2(t)�xT(t)Q1x(t) − (1 − �)xT(t − d(t))Q2x(t − d(t))

− (1 − �1)x
T(t − d1(t))(Q1 − Q2)x(t − d1(t)), (13)

V̇3(t) = xT(t)Rx(t) − xT(t − d̄)Rx(t − d̄), (14)

V̇4(t) = ẋT(t)[d̄1Z1 + d̄2Z2+d̄M]ẋ(t)−
∫ t

t−d̄1

ẋT(�)Z1ẋ(�) d�

−
∫ t−d̄1

t−d̄

ẋT(�)Z2ẋ(�) d� −
∫ t

t−d̄

ẋT(�)Mẋ(�) d�

� ẋT(t)[d̄1Z1+d̄2Z2 + d̄M]ẋ(t)−
∫ t

t−d̄

ẋT(�)Mẋ(�) d�

−
∫ t

t−d1(t)

ẋT(�)Z1ẋ(�) d�−
∫ t−d1(t)

t−d(t)

ẋT(�)Z2ẋ(�) d�

−
∫ t−d(t)

t−d̄

ẋT(�)Z2ẋ(�) d�. (15)

Note that in the above derivation, we have used the relationships
Q1 �Q2 �0 and Z1 �Z2 > 0. By the Newton–Leibniz formula,
for any appropriately dimensioned matrices S, T, U, V, we have
Υi = 0 (i = 1, . . . , 4) with

Υ1��T(t)S

(
x(t) − x(t − d1(t)) −

∫ t

t−d1(t)

ẋ(�) d�

)
,

Υ2��T(t)T

(
x(t − d1(t)) − x(t − d(t)) −

∫ t−d1(t)

t−d(t)

ẋ(�) d�

)
,
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Υ3��T(t)U

(
x(t − d(t)) − x(t − d̄) −

∫ t−d(t)

t−d̄

ẋ(�) d�

)
,

Υ4��T(t)V

(
x(t) − x(t − d̄) −

∫ t

t−d̄

ẋ(�) d�

)
, (16)

where �(t) = [xT(t) xT(t − d1(t)) xT(t − d(t)) xT(t − d̄)]T.
Then, from (11)–(16) we have

V̇ (t)�2xT(t)P [Ax(t) + Adx(t − d(t))] + xT(t)Q1x(t)

− (1 − �1)x
T(t − d1(t))(Q1 − Q2)x(t − d1(t))

− (1 − �)xT(t − d(t))Q2x(t − d(t))

+ xT(t)Rx(t) − xT(t − d̄)Rx(t − d̄)

+ ẋT(t)[d̄1Z1 + d̄2Z2 + d̄M]ẋ(t)

−
∫ t

t−d1(t)

ẋT(�)Z1ẋ(�) d� −
∫ t−d1(t)

t−d(t)

ẋT(�)Z2ẋ(�) d�

−
∫ t−d(t)

t−d̄

ẋT(�)Z2ẋ(�) d� −
∫ t

t−d̄

ẋT(�)Mẋ(�) d�

+ Υ1 + Υ2 + Υ3 + Υ4

��T(t)[�1 + �2 + �T
2 + �3 + �6]�(t) +

10∑
i=7

�i , (17)

where

�6 = d̄1SZ−1
1 ST + d̄2T Z−1

2 T T + d̄UZ−1
2 UT + d̄V M−1V T,

�7 = −
∫ t

t−d1(t)

�T
71Z

−1
1 �71 d�, �71 = ST�(t) + Z1ẋ(�),

�8 = −
∫ t−d1(t)

t−d(t)

�81Z
−1
2 �81 d�, �81 = T T�(t) + Z2ẋ(�),

�9 = −
∫ t−d(t)

t−d̄

�91Z
−1
2 �91 d�, �91 = UT�(t) + Z2ẋ(�),

�10 = −
∫ t

t−d̄

�T
101M

−1�101 d�, �101 = V T�(t) + Mẋ(�).

(18)

Note that Zi > 0, i =1, 2, M > 0, thus �i , i =7, . . . , 10, are all
non-positive. By the Schur complement, (9) guarantees �1 +
�2 +�T

2 +�3 +�6 < 0. Therefore, from (18) we have V̇ (t) <−
	‖x(t)‖2 for a sufficiently small 	 > 0 and x(t) �= 0, and the
asymptotic stability is established (Hale & Lunel, 1993). �

Remark 1. Theorem 1 presents a new stability criterion
for system � with two successive time-varying delay com-
ponents. This criterion is derived by defining the new
Lyapunov–Krasovskii functional in (11), which makes full
use of the information about d1(t) and d2(t). It is also worth
mentioning that some novel techniques have been exploited in
the calculation of the time derivative of V (t). On one hand, no
system transformation has been performed to the original sys-
tem and thus there is no need to seek upper bounds of the inner
product between two vectors, which has the potential to yield
less conservative results; on the other hand, when deriving
V̇4(t) in (15), we keep the last term

∫ t−d(t)

t−d̄
ẋT(�)Z2ẋ(�) d�,

which was often ignored in the derivation of stability condition
for time-delay systems.

In the following, we further extend the above idea to an im-
portant case. More specifically, we assume the two successive
delay components d1(t) and d2(t) have very different proper-
ties in that d1(t) and d2(t) are assumed to be constant and non-
differentiable, respectively. Thus the assumption in (6) reads

d1(t) ≡ d̄1 < ∞, 0�d2(t)� d̄2 < ∞. (19)

As can be seen in the next section, this case is much related
to the model we use for network-based control. Then, we have
the following corollary.

Corollary 1. System � in (5) with delays d1(t) and d2(t) satis-
fying (19) is asymptotically stable if there exist matrices P > 0,
Q�0, R�0, Zi > 0, i = 1, 2, M > 0, and S, T , U, V satisfying[
�̄1 + �2 + �T

2 + �3 �4
∗ �5

]
< 0, (20)

where �i , i = 2, . . . , 5, are given in (10) and

�̄1 =
⎡
⎢⎣

PA + ATP + Q + R 0 PAd 0
∗ −Q 0 0
∗ ∗ 0 0
∗ ∗ ∗ −R

⎤
⎥⎦ . (21)

Proof. Define the Lyapunov–Krasovskii functional

V (t) = V1(t) + V2(t) + V3(t) + V4(t),

where V1(t), V3(t) and V4(t) are given in (11) and

V2(t) =
∫ t

t−d̄1

xT(s)Qx(s) ds,

with P > 0, Q�0, R�0, Zi > 0, i = 1, 2, M > 0 being matri-
ces to be determined. Then, the corollary can be proved along
similar lines as in the proof of Theorem 1. �

2.2. H∞ performance analysis

In this subsection, we investigate the problem of H∞ per-
formance analysis for systems with two successive delay com-
ponents in the state. Consider the following system:

�̄ : ẋ(t) = Ax(t) + Adx(t − d1(t) − d2(t)) + Ew(t),

y(t) = Cx(t) + Cdx(t − d1(t) − d2(t)) + Fw(t),

x(t) = �(t), t ∈ [−d̄, 0]. (22)

Here x(t), �(t), d1(t) and d2(t) are the same as those in the
above subsection; w(t) ∈ Rl is the disturbance input which
belongs to L2[0, ∞); A, Ad , E, C, Cd , F are system matrices
with appropriate dimensions. Our objective is to investigate
under what condition system �̄ in (22) is asymptotically stable
with an H∞ disturbance attention level 
, that is, ‖y‖2 < 
‖w‖2
for all nonzero w ∈ L2[0, ∞) under zero initial condition. We
first consider the assumption in (6).
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Theorem 2. System �̄ in (22) with delays d1(t) and d2(t) sat-
isfying (6) is asymptotically stable with an H∞ disturbance
attention level 
 if there exist matrices P > 0, Q1 �Q2 �0,
R�0, Z1 �Z2 > 0, M > 0, and S, T, U, V satisfying[
�1 + �2 + �T

2 + �3 + �4 + �5 �4
∗ �5

]
< 0, (23)

where �4 and �5 are given in (10), and

�1 =

⎡
⎢⎢⎢⎣

�11 0 PAd 0 PE

∗ �12 0 0 0
∗ ∗ −(1 − �)Q2 0 0
∗ ∗ ∗ −R 0
∗ ∗ ∗ ∗ 0

⎤
⎥⎥⎥⎦ ,

�2 = [S + V T − S U − T − U − V 0],
�3 = �T

31[d̄1Z1 + d̄2Z2 + d̄M]�31,

�31 = [A 0 Ad 0 E], �41 = [C 0 Cd 0 F ],
�4 = �T

41�41, �5 = diag{0, 0, 0, 0, −
2I }, (24)

and �11, �12 are given in (10).

Proof. First, (23) implies (9), thus �̄ in (22) with delays d1(t)

and d2(t) satisfying (6) is asymptotically stable. Now, define the
Lyapunov–Krasovskii functional as in (11). Then, by following
similar lines as in the proof of Theorem 1, along the solution
of system �̄ in (22), the time derivative of V (t) is given by

V̇ (t)� �̄
T
(t)[�1 + �2 + �T

2 + �3 + �6]�̄(t) +
10∑
i=7

�i ,

where �i , i = 1, 2, 3, are given in (24), �i , i = 6, . . . , 10, are
given in (18) and �̄(t) = [�T(t) wT(t)]T. Thus, we have

yT(t)y(t) − 
2wT(t)w(t) + V̇ (t)

� �̄
T
(t)[�1 + �2 + �T

2 + �3 + �6 + �4 + �5]�̄(t)

+
10∑
i=7

�i . (25)

Note that Zi > 0, i = 1, 2, M > 0, thus �i , i = 7, . . . , 10, are
all non-positive. Since (23) guarantees �1 + �2 + �T

2 + �3 +
�6 + �4 + �5 < 0, we have

yT(t)y(t) − 
2wT(t)w(t) + V̇ (t) < 0 (26)

Table 1
Calculated delay bounds for different cases

Delay bound d̄2 for given d̄1 Delay bound d̄1 for given d̄2

d̄1 = 1 d̄1 = 1.2 d̄1 = 1.5 d̄2 = 0.1 d̄2 = 0.2 d̄2 = 0.3

Theorem 1 0.512 0.406 0.283 2.300 1.779 1.453
Lam et al. (2007) 0.415 0.376 0.248 2.263 1.696 1.324
Wu et al. (2004), Jing et al. (2004), Fridman and Shaked (2003) 0.180 0.080 Infeasible 1.080 0.980 0.880
Lee et al. (2001) Infeasible Infeasible Infeasible 0.098 Infeasible Infeasible
Kim (2001) Infeasible Infeasible Infeasible 0.074 Infeasible Infeasible

for all nonzero w ∈ L2[0, ∞). Under zero initial condition, we
have V (0) = 0 and V (∞)�0. Integrating both sides of (26)
yields ‖y‖2 < 
‖w‖2 for all nonzero w ∈ L2[0, ∞), and the
proof is completed. �

For the assumption in (19), we have the following corollary
(the proof follows similar lines as in the proofs of Theorem 2
and Corollary 1 and is thus omitted).

Corollary 2. System �̄ in (22) with delays d1(t) and d2(t) sat-
isfying (19) is asymptotically stable with an H∞ disturbance
attention level 
 if there exist matrices P > 0, Q�0, R�0,
Zi > 0, i = 1, 2, M > 0, and S, T, U, V satisfying[
�̄1 + �2 + �T

2 + �3 + �4 + �5 �4
∗ �5

]
< 0,

where �4 and �5 are given in (10), �i , i = 2, . . . , 5, are given
in (24), and

�̄1 =

⎡
⎢⎢⎢⎣

PA + ATP + Q + R 0 PAd 0 PE

∗ −Q 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ −R 0
∗ ∗ ∗ ∗ 0

⎤
⎥⎥⎥⎦ .

2.3. Illustrative example

In this subsection, we use a numerical example to illustrate
the advantage of the proposed new model and the developed
stability condition.

Example 1. Consider system � in (5) with the following pa-
rameters, borrowed from Fridman and Shaked (2003), and Jing,
Tan, and Wang (2004):

A =
[−2 0

0 −0.9

]
, Ad =

[−1 0
−1 −1

]
.

Suppose we know that

ḋ1(t)�0.1, ḋ2(t)�0.8.

Our purpose is to find the upper bound d̄1 of delay d1(t), or d̄2
of d2(t), when the other is known, below which the system is
asymptotically stable. By combining the two delay components
together, some existing stability results can be applied to this
system. The calculation results obtained by Theorem 1 in this
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paper, Theorem 1 in Lam et al. (2007), Theorem 2 in Wu,
He, She, and Liu (2004), Theorem 1 in Jing et al. (2004),
Theorem 3.2 in Lee, Moon, Kwon, and Lee (2001), Corollary
1 in Kim (2001) and Theorem 1 in Fridman and Shaked (2003)
for different cases are listed in Table 1. It can be seen from the
table that Theorem 1 in this paper yields the least conservative
stability test than other approaches, showing the advantage of
the stability result in this paper.

3. Application to network-based control

3.1. Problem formulation

In this section, we apply the results obtained above to the
problem of H∞ control for NCSs. Consider a typical NCS
shown in Fig. 1. Suppose the physical plant is given by the
following linear system:

ẋ(t) = Ax(t) + Bu(t) + Ew(t),

y(t) = Cx(t) + Du(t) + Fw(t). (27)

Here x(t) ∈ Rn is the state vector; u (t) ∈ Rp is the control
input; w(t) ∈ Rl is the disturbance input which belongs to
L2 [0, ∞); y(t) ∈ Rq is the output; and A, B, C, D, E, F are
system matrices with appropriate dimensions.

In Fig. 1, it is assumed that the sampler is clock-driven,
while the quantizer, controller and zero-order hold (ZOH) are
event-driven. The sampling period is assumed to be h where h
is a positive real constant and we denote the sampling instant
of the sampler as sk , k = 1, . . . ,∞. In addition, it is assumed
that the state variable x(t) is measurable, and the measure-
ments of x(t) are firstly quantized via a quantizer, and then
transmitted with a single packet. The quantizer is denoted as
f (·) = [f1(·) f2(·) · · · fn(·)]T, which is assumed to be sym-
metric, that is, fj (−v)=−fj (v), j =1, . . . , n. In this paper, we
are interested in the logarithmic static and time-invariant quan-
tizer. For each fj (·), the set of quantized levels is described by

Uj = {±u
(j)
i , i = 0, ±1, ±2, . . .} ∪ {0}. (28)

Network Medium

u

Controller

Network
Induced Delay

Network
Induced Delay

ZOH

Sampler

y

x

w

Quantizer

x

Physical Plant

Fig. 1. A typical networked control system.

According to Elia and Mitter (2001), and Fu and Xie (2005), a
quantizer is called logarithmic if the set of quantized levels is
characterized by

Uj = {±u
(j)
i , u

(j)
i = �i

j u
(j)
0 , i = ±1, ±2, . . .},

∪{±u
(j)
0 } ∪ {0}, 0 < �j < 1, u

(j)
0 > 0. (29)

Each of the quantization level u
(j)
i corresponds to a segment

such that the quantizer maps the whole segment to this quanti-
zation level. In addition, these segments form a partition of R,
that is, they are disjoint and their union equals to R. For the
logarithmic quantizer, the associated quantizer fj (·) is defined
as

fj (v) =

⎧⎪⎨
⎪⎩

u
(j)
i if

1

1 + j

u
(j)
i < v� 1

1 − j

u
(j)
i , v > 0,

0 if v = 0,

−fj (−v) if v < 0,

where

j = 1 − �j

1 + �j

. (30)

Then, at the sampling instant sk , we have

x̄(sk) = f (x(sk)) = [f1(x1(sk)) f2(x2(sk)) · · · fn(xn(sk))]T.

Now denote the updating instants of the ZOH as tk, k =
1, . . . , ∞, and suppose that the updating signal (successfully
transmitted signal from the sampler to the controller and to the
ZOH) at the instant tk has experienced signal transmission de-
lays �k (�k = �k + dk where �k is the delay from the quantizer
to the controller and dk is the delay from the controller to the
ZOH. It is assumed that there is no delay between the sensor
and quantizer). Therefore, the state-feedback controller takes
the following form:

u(tk) = Kf (x(tk − �k)), (31)

where K is the state-feedback control gain. Thus, considering
the behavior of the ZOH, we have

u(t) = Kf (x(tk − �k)), tk � t < tk+1, (32)

with tk+1 being the next updating instant of the ZOH after tk .
A natural assumption on the network induced delays �k can

be made as

�m ��k ��M, (33)

where �m and �M denote the minimum and the maximum de-
lays, respectively. In addition, at the updating instant tk+1 the
number of accumulated data packet dropouts since the last up-
dating instant tk is denoted as �k+1. We assume that the maxi-
mum number of data packet dropouts is �̄, that is,

�k+1 � �̄. (34)

Then, it can be seen from (33) and (34) that

tk+1 − tk = (�k+1 + 1)h + �k+1 − �k . (35)
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Remark 2. It is worth noting that the assumption on the net-
work induced delays �k made in (33) is more general than those
in Yu et al. (2005a, 2005b), and Yue et al. (2005). The main
difference lies in the lower bound we introduced. By assuming
�m = 0, (33) is the same as those in Yu et al. (2005a, 2005b),
and Yue et al. (2005). The introduction of the lower bound �m
will be shown later, via a numerical example, to be advanta-
geous for reducing conservativeness by utilizing the idea of
successive delay components developed in the above section.

Therefore, from (27)–(32) we obtain the following closed-
loop system:

ẋ(t) = Ax(t) + BKf (x(tk − �k)) + Ew(t),

y(t) = Cx(t) + DKf (x(tk − �k)) + Fw(t),

tk � t < tk+1. (36)

Remark 3. It is important to note that in (32), tk refers to the
updating instant of the ZOH. While in Yu et al. (2005a), the
controller is expressed as

u(t) = Kx̄(tk), tk � t < tk+1, (37)

with tk standing for the sampling instant. It should be noted
that when the controller and actuator are event-driven, we can-
not use the sampling instant to model the behavior of the ZOH.
The reason is that the signal transmission delays may not nec-
essarily be integer multiples of the sampling period, and thus
the ZOH may be updated between sampling instants. By using
the updating instant in this paper, we do not need to synchro-
nize the ZOH and the sampler, and thus the networked control
model formulated here is essentially different from that in Yu
et al. (2005a) and is more general, though they appear to be
similar.

3.2. Key idea

It is noted that the closed-loop system in (36) is in the form
of a sampled-data system. As the time sequence {tk} depends on
both the network induced delays and data packet dropouts, the
period tk+1 − tk for the sampled-data system in (36) is variable
and uncertain. Now, let us represent tk − �k in (36) as

tk − �k = t − �m − t + tk + �m − �k = t − �m − �(t), (38)

where

�(t) = t − tk + �k − �m. (39)

Then, from (35) we have

0��(t)��, (40)

where

� = �M − �m + (�̄ + 1)h. (41)

By substituting (38) into (36) we obtain

ẋ(t) = Ax(t) + BKf (x(t − �m − �(t))) + Ew(t),

y(t) = Cx(t) + DKf (x(t − �m − �(t))) + Fw(t). (42)

Remark 4. It is worth noting that in the above transformed
system, �m is a constant delay, and �(t) is a non-differentiable
time-varying delay with bound �. Our main idea in the above
transformation is to represent the sampled-data system in (36)
as a continuous time system with two successive delay compo-
nents in the state, which takes a very similar form as system �
in (5) with the assumption in (19). The H∞ control problem
will be solved based on this new model.

Remark 5. If the lower bound of the network induced delays
is assumed to be zero, that is, �m = 0, (42) takes the following
form:

ẋ(t) = Ax(t) + BKf (x(t − �(t))) + Ew(t),

z(t) = Cx(t) + DKf (x(t − �(t))) + Fw(t), (43)

with

0��(t)� �̄, (44)

where �̄=�M+
(
�̄ + 1

)
h. Compared with (40), the upper bound

of �(t) in (44) is increased by �m. In other words, without tak-
ing the lower bound of the transmission delays into considera-
tion, �m will be treated as a non-differentiable time-varying de-
lay instead of a constant one when it is nonzero. Therefore, the
introduction of the lower bound �m will naturally reduce con-
servativeness, which will be shown, via a numerical example
later. However, existing results on networked control systems,
such as Yu et al. (2005a, 2005b), Yue et al. (2005), and Yue,
Han, and Peng (2004),did not offer to take the lower bound �m
into consideration.

3.3. H∞ performance analysis

This subsection is concerned with the problem of H∞ per-
formance analysis. More specifically, assuming that the matri-
ces A, B, C, D, E, F in (27) and the controller gain matrix K in
(31) are known, we shall study the conditions under which the
closed-loop NCS in (36) is asymptotically stable with an H∞
disturbance attention level 
. The following theorem shows that
the closed-loop H∞ performance can be guaranteed if there
exist some matrices satisfying certain LMIs. This theorem will
play an instrumental role in the problem of H∞ network-based
control.

Before proceeding further, we give the following lemma
which will be used later.

Lemma 1. Given appropriately dimensioned matrices �1, �2,
�3, with �T

1 = �1. Then,

�1 + �3�2 + �T
2 �T

3 < 0 (45)

holds if for some matrix W > 0

�1 + �3W
−1�T

3 + �T
2 W�2 < 0. (46)

Theorem 3. Consider the NCS in Fig. 1. Given the controller
gain matrix K and a positive constant 
, the closed-loop system
in (36) is asymptotically stable with an H∞ disturbance atten-
tion level 
 if there exist matrices P > 0, Q�0, R�0, Zi > 0,
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i = 1, 2, M > 0, S, T, U, V, and a diagonal matrix W > 0 sat-
isfying⎡
⎢⎢⎢⎣

�1 + �2 + �T
2 + �5 + �2 �4 �3 �5 �6

∗ �8 0 0 0
∗ ∗ �4 0 �7
∗ ∗ ∗ −I DK

∗ ∗ ∗ ∗ −W

⎤
⎥⎥⎥⎦< 0,

(47)

where �2 and �5 are given in (24), �4 is given in (10), and

�1 =

⎡
⎢⎢⎢⎣

PA + ATP + Q + R 0 PBK 0 PE

∗ −Q 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ −R 0
∗ ∗ ∗ ∗ 0

⎤
⎥⎥⎥⎦ ,

�2 = diag{0, 0, �2W, 0, 0}, �3 = �T
31�32,

�31 = [A 0 BK 0 E], �32 = [Z1 Z2 M],
�4 = diag{−�−1

m Z1, −�−1Z2, −�−1M}, �7 = �T
32BK ,

�5 = [C 0 KD 0 F ]T, �6 = [KTBTP 0 0 0 0]T,

�8 = diag{−�−1
m Z1, −�−1Z2, −�−1Z2, −�−1M},

� = diag{1, . . . , n}, � = �m + �. (48)

Proof. First, considering the quantization behavior shown in
(28)–(30) and according to Elia and Mitter (2001), and Fu and
Xie (2005), (42) can be expressed as

ẋ(t) = Ax(t) + BK(I + �(t))(x(t − �m − �(t))) + Ew(t),

y(t) = Cx(t) + DK(I + �(t))(x(t − �m − �(t))) + Fw(t),

(49)

where

�(t) = diag{�1(t), �2(t), . . . ,�n(t)}, (50)

with

�j (t) ∈ [−j , j ], j = 1, . . . , n. (51)

By comparing system (49) and system (22) with the assumption
in (19), according to Corollary 2, we know that system (49) is
asymptotically stable with an H∞ disturbance attention level

 if there exist matrices P > 0, Q�0, R�0, Zi > 0, i = 1, 2,
M > 0, and S, T, U, V satisfying[
�1 + �2 + �T

2 + �5 + �4�T
4 + �2 �4

∗ �8

]
< 0, (52)

where �2, �5 are given in (24), �4 is given in (10) and

�1 =

⎡
⎢⎢⎢⎣

PA + ATP + Q + R 0 PBK(I + �(t)) 0 PE

∗ −Q 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ −R 0
∗ ∗ ∗ ∗ 0

⎤
⎥⎥⎥⎦ ,

�2 = �3[�mZ1 + �Z2 + �M]�T
3 ,

�3 = [A 0 BK(I + �(t)) 0 E]T,

�4 = [C 0 DK(I + �(t)) 0 F ]T.

By the Schur complement, (52) is equivalent to⎡
⎢⎣

�1 + �2 + �T
2 + �5 �4 �5 �4

∗ �8 0 0
∗ ∗ �4 0
∗ ∗ ∗ −I

⎤
⎥⎦< 0, (53)

where

�5 = [A 0 BK(I + �(t)) 0 E]T[Z1 Z2 M].
Rewrite (53) in the form of (45) with

�1 =
⎡
⎢⎣

�1 + �2 + �T
2 + �5 �4 �3 �5

∗ �8 0 0
∗ ∗ �4 0
∗ ∗ ∗ −I

⎤
⎥⎦ ,

�2 = [�6 0 0 0], �6 = [0 0 �(t) 0 0],
�3 = [�T

6 0 �T
7 KTDT]T.

Then, according to Lemma 1, (53) holds if for some matrix
W > 0⎡
⎢⎣

�1 + �2 + �T
2 + �5 �4 �3 �5

∗ �5 0 0
∗ ∗ �4 0
∗ ∗ ∗ −I

⎤
⎥⎦

+
⎡
⎢⎣

�6
0
�7
DK

⎤
⎥⎦W−1

⎡
⎢⎣

�6
0
�7
DK

⎤
⎥⎦

T

+ [�6 0 0 0]TW [�6 0 0 0] < 0. (54)

Note that W is required to be diagonal and positive definite.
Then, by using a Schur complement operation and by consider-
ing (51), (47) guarantees (54), and the proof is completed. �

If there is no quantizer in the NCS shown in Fig. 1, the
closed-loop system in (36) reads

ẋ(t) = Ax(t) + BKx(tk − �k) + Ew(t),

y(t) = Cx(t) + DKx(tk − �k) + Fw(t), tk � t < tk+1. (55)

Then, we have the following corollary, which can be proved by
following similar lines as in the proof of Theorem 3.

Corollary 3. Consider the NCS in Fig. 1, but without the quan-
tizer. Given the controller gain matrix K and a positive con-
stant 
, the closed-loop system in (55) is asymptotically stable
with an H∞ disturbance attention level 
 if there exist matri-
ces P > 0, Q�0, R�0, Zi > 0, i = 1, 2, M > 0, and S, T, U,
V satisfying⎡
⎢⎣

�1 + �2 + �T
2 + �5 �4 �3 �5

∗ �8 0 0
∗ ∗ �4 0
∗ ∗ ∗ −I

⎤
⎥⎦< 0,

where �2 and �5 are given in (24), �4 is given in (10), and
�i , i = 1, 3, 4, 5, 8, are given in (48).



Author's personal copy

H. Gao et al. / Automatica 44 (2008) 39–52 47

3.4. H∞ controller design

This subsection is devoted to solving the problem of H∞
controller design for NCSs.

Proposition 1. Consider the NCS in Fig. 1. Given a positive
constant 
, there exists a state-feedback controller in the form of
(31) such that the closed-loop system in (36) is asymptotically
stable with an H∞ disturbance attention level 
 if there exist
matrices P̄ > 0, Q̄�0, R̄�0, Z̄i > 0, i = 1, 2, M̄ > 0,K̄ , S̄, T̄ ,
Ū , V̄ , and a diagonal matrix W̄ > 0 satisfying

⎡
⎢⎢⎢⎢⎢⎣

�1 + �2 + �T
2 + �5 �3 �5H �7 �8 �10

∗ �4 0 0 0 0
∗ ∗ �6 0 �9 0
∗ ∗ ∗ −I DK̄ 0
∗ ∗ ∗ ∗ −P̄ W̄−1P̄ 0
∗ ∗ ∗ ∗ ∗ −�−2W̄

⎤
⎥⎥⎥⎥⎥⎦< 0,

(56)

where �5 is given in (24) and

�1 =

⎡
⎢⎢⎢⎣

AP̄ + P̄AT + Q̄ + R̄ 0 BK̄ 0 E

∗ −Q̄ 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ −R̄ 0
∗ ∗ ∗ ∗ 0

⎤
⎥⎥⎥⎦ ,

�2 = [S̄ + V̄ T̄ − S̄ Ū − T̄ − Ū − V̄ 0],
�3 = [S̄ T̄ Ū V̄ ], H = [I I I ],
�4 = diag{−�−1

m P̄ Z̄−1
1 P̄ , −�−1P̄ Z̄−1

2 P̄ ,

− �−1P̄ Z̄−1
2 P̄ , −�−1P̄ M̄−1P̄ },

�5 = [AP̄ 0 BK̄ 0 E]T, �7 = [CP̄ 0 DK̄ 0 F ]T,

�8 = [K̄TBT 0 0 0 0]T, �10 = [0 0 P̄ 0 0]T,

�6 = diag{−�−1
m Z̄1, −�−1Z̄2, −�−1M̄}, �9 = HTBK̄ .

(57)

Moreover, if the above condition is feasible, a desired controller
gain matrix in the form of (31) is given by

K = K̄P̄ −1. (58)

Proof. From Theorem 3, we know that there exists a state-
feedback controller in the form of (31) such that the closed-loop
NCS in (36) is asymptotically stable with an H∞ disturbance
attention level 
 if there exist matrices P > 0, Q�0, R�0,
Zi > 0, i = 1, 2, M > 0, K, S, T, U, V, and a diagonal matrix
W > 0 satisfying (47). Define

J = diag{J1, J2, J3, I, P
−1},

J1 = diag{P −1, P −1, P −1, P −1, I },
J2 = diag{P −1, P −1, P −1, P −1}, J3 = diag{Z−1

1 , Z−1
2 , M−1}.

Performing a congruence transformation to (47) by J, and a
Schur complement operation to the term �2P −1WP −1 in the

(3, 3) block, together with the change of matrix variables de-
fined by

P̄=P −1, M̄=M−1, W̄=W−1, Z̄1=Z−1
1 , Z̄2 = Z−1

2 ,

K̄ = KP −1, Q̄ = P −1QP −1, R̄ = P −1RP −1,

[S̄ T̄ Ū V̄ ] = J1[S T U V ]J2,

we obtain (56), and the proposition is proved. �

The condition in Proposition 1 cannot be implemented by
using standard numerical software due to the existence of the
terms P̄ Z̄−1

i P̄ , P̄ W̄−1P̄ and P̄ M̄−1P̄ . By noticing Z̄i > 0 and
M̄ > 0, we have (Z̄i − P̄ )Z̄−1

i (Z̄i − P̄ )�0, (M̄ − P̄ )M̄−1(M̄ −
P̄ )�0, (W̄ − P̄ )W̄−1(W̄ − P̄ )�0, which are equivalent to,
respectively,

− P̄ Z̄−1
i P̄ �Z̄i − 2P̄ , −P̄ M̄−1P̄ �M̄ − 2P̄ ,

− P̄ W̄−1P̄ �W̄ − 2P̄ . (59)

By combining (56) and (59), we readily obtain the following
theorem.

Theorem 4. Consider the NCS in Fig. 1. Given a positive con-
stant 
, there exists a state-feedback controller in the form of
(31) such that the closed-loop system in (36) is asymptotically
stable with an H∞ disturbance attention level 
 if there exist
matrices P̄ > 0, Q̄�0, R̄�0, Z̄i > 0, i = 1, 2, M̄ > 0, K̄ , S̄,
T̄ , Ū , V̄ , and a diagonal matrix W̄ > 0 satisfying

⎡
⎢⎢⎢⎢⎢⎢⎣

�1 + �2 + �T
2 + �5 �3 �5H �7 �8 �10

∗ �̄4 0 0 0 0
∗ ∗ �6 0 �9 0
∗ ∗ ∗ −I DK̄ 0
∗ ∗ ∗ ∗ W̄ − 2P̄ 0
∗ ∗ ∗ ∗ ∗ −�−2W̄

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0,

(60)

where �i , H are given in (57) and �̄4 =diag{�−1
m (Z̄1 −2P̄ ),

�−1(Z̄2 −2P̄ ), �−1(Z̄2 −2P̄ ), �−1(M̄ −2P̄ )}. Moreover, if the
above condition is feasible, a desired controller gain matrix in
the form of (31) is given by (58).

Remark 6. Note that (60) is an LMI not only over the matrix
variables, but also over the scalar 
. This implies that the scalar

 can be included as an optimization variable to obtain a reduc-
tion of the H∞ disturbance attention level bound. Then, the
minimum (in terms of the feasibility of (60)) H∞ disturbance
attention level bound with admissible controllers can be readily
found by solving the following convex optimization problem:

Minimize 
 subject to (60) over P̄ > 0, Q̄�0, R̄�0, Z̄i > 0,
i = 1, 2, M̄ > 0, K̄ , S̄, T̄ , Ū ,V̄ , and diagonal matrix W̄ > 0.

Theorem 4 presents an LMI condition for the existence of
desired state-feedback controllers based on the inequalities in
(59). In the following, we present another approach to check
the condition in Proposition 1.
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Now introduce additional matrix variables N̄i > 0, X̄ > 0,
and Ȳ > 0 and replace (56) with

⎡
⎢⎢⎢⎢⎢⎣

�1 + �2 + �T
2 + �5 �3 �5H �7 �8 �10

∗ �̃4 0 0 0 0
∗ ∗ �6 0 �9 0
∗ ∗ ∗ −I DK̄ 0
∗ ∗ ∗ ∗ −Ȳ 0
∗ ∗ ∗ ∗ ∗ −�−2W̄

⎤
⎥⎥⎥⎥⎥⎦

< 0, (61)

X̄ − P̄ M̄−1P̄ �0, Ȳ − P̄ W̄−1P̄ �0,

N̄i − P̄ Z̄−1
i P̄ �0, i = 1, 2, (62)

where

�̃4 = diag{−�−1
m N̄1, −�−1N̄2, −�−1N̄2, −�−1X̄}.

Then, we readily obtain the following theorem.

Theorem 5. Consider the NCS in Fig. 1. Given a positive con-
stant 
, there exists a state-feedback controller in the form of
(31) such that the closed-loop system in (36) is asymptotically
stable with an H∞ disturbance attention level 
 if there ex-
ist matrices P > 0, P̄ > 0, W > 0, Q̄�0, R̄�0, X > 0, X̄ > 0,
Y > 0, Ȳ > 0, Ni > 0, N̄i > 0, Zi > 0, Z̄i > 0, i = 1, 2, M̄ > 0,
K̄ , S̄, T̄ , Ū , V̄ , and a diagonal matrix W̄ > 0 satisfying (61)
and[−X P

∗ −M

]
�0,

[−Y P

∗ −W

]
�0,[−Ni P

∗ −Zi

]
�0, (63)

P̄ P = I, X̄X = I, Ȳ Y = I, W̄W = I ,

Z̄iZi = I, N̄iNi = I, i = 1, 2. (64)

Moreover, if the above condition is feasible, a desired controller
gain matrix in the form of (31) is given by (58).

The condition presented in Theorem 5 is equivalent to that
in Proposition 1. It is noted that this condition is not a con-
vex set due to the matrix equality constraints in (64). Several
approaches have been proposed to solve such nonconvex fea-
sibility problems, among which the cone complementarity lin-
earization (CCL) method (El Ghaoui, Oustry, & Rami, 1997) is
the most commonly used one (for instance, the CCL algorithm
has been used for solving the controller design problems as well
as model reduction problems (Gao & Wang, 2003; Gao et al.,
2004)). The basic idea in CCL algorithm is that if the LMI[

P
I

I
L

]
�0 is feasible in the n × n matrix variables L > 0 and

P > 0, then tr(PL)�n, and tr(PL) = n if and only ifPL = I .
Now using a cone complementarity approach (El Ghaoui

et al., 1997), we suggest the following nonlinear minimization
problem involving LMI conditions instead of the original non-
convex feasibility problem formulated in Theorem 5.

Problem NBCD (network-based controller design):

min tr(P̄ P + X̄X + Ȳ Y + W̄W +
2∑

i=1

(Z̄iZi + N̄iNi))

subject to (61), (63) and[
P̄ I

I P

]
�0,

[
X̄ I

I X

]
�0,

[
Ȳ I

I Y

]
�0,

[
W̄ I

I W

]
�0,[

Z̄i I

I Zi

]
�0,

[
N̄i I

I Ni

]
�0, i = 1, 2.

According to El Ghaoui et al. (1997), if the solution of the
above minimization problem is 8n, that is,

min tr(P̄ P + X̄X + Ȳ Y + W̄W +
2∑

i=1

(Z̄iZi + N̄iNi)) = 8n,

then the conditions in Theorem 5 are solvable. Algorithm 1 in
El Ghaoui et al. (1997) can be easily adapted to solve Problem
NBCD.

3.5. Illustrative examples

In this subsection, two examples are provided to illustrate
the results developed above. We first use a numerical exam-
ple to show the advantage by introducing the lower bound of
transmission delays. The second example is utilized to show
the applicability of the proposed controller design methods.

Example 2. Suppose the system matrices A, B, C, D, E, F in
(27) and the controller gain K in (31) are given

A =
[

0 1
−1 −2

]
, B =

[
0
1

]
, E =

[
0.3
0.5

]
,

C = [1 0], D = 0.3, F = 0.5, K = [−1 1].
The parameters for the quantizer f (·) are given by �1 =0.9 and
�2 = 0.8, thus we have 1 = 0.0526 and 2 = 0.1111. It is as-
sumed that the network induced delays �k satisfy �m ��k ��M,
the maximum number of data packet dropouts is 2, and the
sampling period is 10 ms. Our purpose is to determine the min-
imum guaranteed closed-loop H∞ performances for different
values of lower delay bound �m.

Firstly, we assume �M = 0.4 s. When we do not consider the
lower bound of the network induced delays, that is, �m = 0, by
using Theorem 3 (assuming that �m is sufficiently small), the
minimum guaranteed closed-loop H∞ performance obtained is

min =3.1207. However, if we assume �m =0.1 s, the minimum
guaranteed closed-loop H∞ performance obtained is 
min =
2.8113. Secondly, we assume �M = 0.6 s. When �m = 0.3 s,
we get 
min =6.0780. However, when �m =0.05, the condition
in Theorem 3 is found infeasible. A more detailed comparison
for different cases is provided in Table 2, which shows that
considering the lower bound of the signal transmission delay
gives rise to less conservative results.



Author's personal copy

H. Gao et al. / Automatica 44 (2008) 39–52 49

Table 2
Minimum feasible 
 for different cases

�M (s) 0.4 0.6

�m (s) 0 0.2 0.05 0.2 0.3

min 3.1207 2.5233 Infeasible 11.2314 6.0780

Example 3. Suppose the physical plant in Fig. 1 is the satel-
lite system, considered in Biernacki, Hwang, and Battacharyya
(1987). The satellite system consists of two rigid bodies joined
by a flexible link. This link is modelled as a spring with torque
constant k and viscous damping f. Denoting the yaw angles for
the two bodies (the main body and the instrumentation mod-
ule) by �1 and �2, the control torque by u(t), the moments of
inertia of the two bodies by J1 and J2, the dynamic equations
are given by

J1�̈1(t) + f (�̇1(t) − �̇2(t)) + k((�1(t) − �2(t))) = u(t),

J2�̈2(t) + f (�̇1(t) − �̇2(t)) + k((�1(t) − �2(t))) = 0.1w(t),

where w(t) denotes the disturbance. Assume the output is the
angular positions �2(t). Thus, a state-space representation of
the above equation is given by⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 J1 0
0 0 0 J2

⎤
⎥⎦
⎡
⎢⎣

�̇1(t)

�̇2(t)

�̈1(t)

�̈2(t)

⎤
⎥⎦

=
⎡
⎢⎣

0 0 1 0
0 0 0 1

−k k −f f

k −k f −f

⎤
⎥⎦
⎡
⎢⎣

�1(t)

�2(t)

�̇1(t)

�̇2(t)

⎤
⎥⎦

+ [0 0 1 0]Tu(t) + [0 0 0 0.1]Tw(t),

y(t) = [0 1 0 0][�1(t) �2(t) �̇1(t) �̇2(t)]T.

Here we choose J1 =J2 = 1, k = 0.09 and f = 0.04 (the values
of k and f are chosen within their respective ranges). Then, the
corresponding matrices described in Section 2 are given by

A =
⎡
⎢⎣

0 0 1 0
0 0 0 1

−0.3 0.3 −0.004 0.004
0.3 −0.3 0.004 −0.004

⎤
⎥⎦ ,

B =
⎡
⎢⎣

0
0
1
0

⎤
⎥⎦ , E =

⎡
⎢⎣

0
0
0

0.1

⎤
⎥⎦ ,

C = [0 1 0 0], D = 0, F = 0.

It is assumed that: the sampling period h=10 ms; the network
induced delay bound in (33) are given by �m =10 ms and �M =
40 ms ms; the maximum number of data packet dropouts �̄=2.
Then, from (41) we have �=60 ms. In addition, the parameters
for the quantizer f (·) are assumed to be �1=�2 =�3=�4=0.9.

The eigenvalues of A are −0.04 + 0.4224j , −0.0400 −
0.4224j , 0, 0; thus the above system is not stable. Our purpose
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Fig. 2. State response.

is to design a state-feedback controller in the form of (31) such
that the closed-loop system is asymptotically stable with an
H∞ disturbance attention level 
. By using Theorem 4 (mini-
mizing 
 in (60)), we obtain the following matrices (for space
consideration we do not list all the obtained matrices here):

P̄ =
⎡
⎢⎣

6.2203 0.2400 −0.6033 −0.6113
0.2400 0.6331 0.3561 −0.2321

−0.6033 0.3561 2.6993 −0.3402
−0.6113 −0.2321 −0.3402 0.2044

⎤
⎥⎦ ,

K̄ = [−2.1220 0.0125 − 1.7269 0.0781].

Thus, according to (58), the gain matrix for the state-feedback
controller in (31) is given by

K = [−1.1789 − 1.3096 − 1.6629 − 7.3974],

and the obtained minimum guaranteed H∞ performance in
terms of the feasibility of (60) is 
∗ = 0.7864.

We first illustrate that the closed-loop system is asymptot-
ically stable under the above obtained controller. The initial
condition is assumed to be [−0.8 0.5 − 0.3 0.2]T. The state
responses are depicted in Fig. 2, from which we can see that
all four state components converge to zero. In the simulation,
the network induced delays and the data packet dropouts are
generated randomly (meanly distributed within their ranges)
according to the above assumption, and shown in Figs. 3 and
4. The computed control inputs arriving at the ZOH are shown
in Fig. 5, where we can see the discontinuous holding behavior
of the control inputs.

Next, we illustrate the H∞ performance of the closed-loop
system. To this end, let us assume zero initial conditions, and
select a set of input signals as follows:

w(t) =
{

sin 0.2t, 5� t �15 s,
0 otherwise.

(65)
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Fig. 3. Network induced delays.
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Fig. 4. Data packet dropouts.

Fig. 6 depicts the state responses. By calculation, ‖w‖2 =
2.5468, ‖y‖2 = 1.3537, which yields

‖y‖2

‖w‖2
= 0.5315 < 
∗ = 0.7864,

showing the effectiveness of the H∞ controller design.

4. Conclusions

This paper has presented new results on stability and H∞
performance for systems with two successive delay components
in the state by exploiting a new Lyapunov–Krasovskii func-
tional and by making use of novel techniques for time-delay
systems. An illustrative example is provided to show the signif-
icant advantage of these results. Moreover, the proposed new
results have been utilized to investigate networked control sys-
tems with simultaneous consideration of network induced de-
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Fig. 6. State response under (65).

lays, data packet dropouts and measurement quantization. Less
conservative and easily verifiable conditions for the existence
of admissible H∞ controllers have been obtained. Illustrative
examples have been presented to show the advantage and appli-
cability of the proposed network-based controller design meth-
ods.
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