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Network-Based �∞ Output Tracking Control
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Abstract—This paper is concerned with the problem of �∞ out-
put tracking for network-based control systems. The physical plant
and the controller are, respectively, in continuous time and dis-
crete time. By using a sampled-data approach, a new model based
on the updating instants of the holder is formulated, and a linear
matrix inequality (LMI)-based procedure is proposed for design-
ing state-feedback controllers, which guarantee that the output of
the closed-loop networked control system tracks the output of a
given reference model well in the �∞ sense. Both network-induced
delays and data packet dropouts have been taken into consider-
ation in the controller design. The network-induced delays are
assumed to have both an upper bound and a lower bound, which
is more general than those used in the literature. The introduc-
tion of the lower bound is shown to be advantageous for reducing
conservatism. Moreover, the controller design method is further
extended to more general cases, where the system matrices of the
physical plant contain parameter uncertainties, represented in ei-
ther polytopic or norm-bounded frameworks. Finally, an illustra-
tive example is presented to show the usefulness and effectiveness
of the proposed �∞ output tracking design.

Index Terms—Model reference control, networked control sys-
tems, output tracking, sampled-data systems.

I. INTRODUCTION

OUTPUT tracking control (also called model reference
control) has wide applications in dynamic processes in

industry, economics, and biology. The main objective of track-
ing control is to make the output of the plant, via a controller,
track the output of a given reference model as close as pos-
sible. Output tracking is widely used in robot control [11],
[30], flight control [3], [23], motor control [19], [34], etc. It
has been well recognized that tracking control design is more
general and more difficult than stabilization, and in the last few
decades, many important results on output tracking have been
reported (see, [2], [8]–[10], [24], [31], [33], [38] and the refer-
ences therein).

The existing results on output tracking control mainly fo-
cus on designing continuous-time controllers for continuous-
time physical plants. However, in many practical systems, such
as computer-based control systems, the plant is controlled by
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a discrete-time controller with sample and hold devices. In
such cases, the system can be expressed as a sampled-data
model [6], [7]. Unfortunately, little progress has been made to-
ward solving the problem of output tracking control for sampled-
data systems. In addition, it is worth pointing out that the afore-
mentioned results are based on the implicit assumption that the
measurements and control commands transmitted between the
physical plant and the controller do NOT exhibit aftereffect phe-
nomena, that is, no signal transmission delays have been taken
into consideration in the design of output tracking controllers.

It is well known that in many practical systems, the orig-
inal plant, controller, sensor, and actuator are difficult to be
located at the same place, and thus, signals are required to be
transmitted from one place to another. In modern industrial
systems, these components are often connected over network
media, giving rise to the so-called networked control systems
(NCSs). Due to its great advantages (such as low cost, reduced
weight and power requirements, simple installation and main-
tenance, and high reliability), NCS receives more and more
attention in recent years. Therefore, modeling, analysis, and
control of network-based systems with limited communication
capability has emerged as a topic of significant interest to the
control community, which is highlighted by the recent special
issue edited by Antsaklis and Baillieul [1]. Among the reported
results on NCS, to mention a few, the stability issue is investi-
gated in [28], [35], and [47], stabilizing controllers are designed
in [42], [43], [45], [46], and [48], performance preserved control
is studied in [22], [25], [26], [32], and [44], and moving horizon
control is proposed in [17]. To the best of the authors’ knowl-
edge, however, the problem of output tracking for networked
control systems has not been investigated and still remains chal-
lenging, which motivates the present study.

In this paper, we investigate the problem of �∞ output track-
ing for network-based control systems. In our study, the con-
trolled plant is in continuous time while the controller is in dis-
crete time, which represents a typical computer-based control
scheme. The network-induced delays (from sensor to controller
and from controller to actuator) are assumed to have both an
upper bound and a lower bound, which is more general than
those used in the literature (where the lower bound is assumed
to be zero). By using a sampled-data approach, a new model
based on the updating instants of the zero-order hold (ZOH) is
formulated, and a linear matrix inequality (LMI)-based proce-
dure is proposed for designing state-feedback controllers, which
guarantee the output of the closed-loop networked control sys-
tem tracks the output of a given reference model well in the �∞
sense. Both network-induced delays and data packet dropouts
have been taken into consideration in the controller design. It
is shown, via a numerical example, that the introduction of the
lower delay bound is advantageous for reducing conservatism.
Moreover, the controller design method is further extended to
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more general cases, where the system matrices of the physi-
cal plant contain parameter uncertainties, represented in either
polytopic or norm-bounded frameworks. Finally, an illustrative
example is presented to show the usefulness and effectiveness
of the proposed �∞ output tracking design.

The remainder of this paper is organized as follows. The prob-
lem of network-based �∞ output tracking control is formulated
in Section II. Section III presents the main results on �∞ out-
put tracking performance analysis and controller design, based
on which the problem of robust �∞ output tracking control is
solved in Section IV. Section V gives an illustrative example
and we conclude the paper in Section VI.

Notation: The notation used throughout the paper is fairly
standard. The superscript “T ” stands for matrix transposition;
R

n denotes the n-dimensional Euclidean space and the notation
P > 0 (≥ 0) means that P is real symmetric and positive definite
(semidefinite). In symmetric block matrices or complex matrix
expressions, we use an asterisk (∗) to represent a term that is
induced by symmetry and diag{. . .} stands for a block-diagonal
matrix. Matrices, if their dimensions are not explicitly stated, are
assumed to be compatible for algebraic operations. The space
of square-integrable vector functions over [0,∞) is denoted by
L2 [0,∞), and for w = {w (t)} ∈ L2 [0,∞), its norm is given
by

‖w‖2 =

√∫ ∞

t=0
|w (t)|2 dt.

II. PROBLEM FORMULATION

Consider a typical networked control system shown in Fig. 1.
Suppose the physical plant is given by the following linear
system:

ẋ (t) = Ax (t) + Bu (t) + Ew (t)

y (t) = Cx (t) + Du (t) . (1)

Here, x (t) ∈ R
n is the state vector, u (t) ∈ R

p is the
control input, y (t) ∈ R

q is the output, and w (t) ∈ R
l is

the disturbance input that satisfies w = {w (t)} ∈ L2 [0,∞).
A,B,C,D, and E are system matrices with appropriate dimen-
sions.

Our purpose is to design a controller, such that the output y (t)
of the closed-loop networked control system tracks a reference
signal to meet the required tracking performance. Suppose the
reference signal yr (t) is generated by

yr (t) = Hxr (t)

ẋr (t) = Gxr (t) + r (t) (2)

where yr (t) has the same dimension as y (t); xr (t), r (t) ∈ R
r

are, respectively, the reference state and the energy bounded
reference input; and G and H are appropriately dimensioned
constant matrices with G Hurwitz. It is assumed that both x (t)
and xr (t) are online measurable, and the measurements of x (t)
and xr (t) are transmitted with a single packet. In addition, it
is assumed that the sensor is clock-driven, while the controller
and ZOH are event-driven. The sampling period is assumed

Fig. 1. Networked tracking control system.

to be h, where h is a positive real constant. Now denote the
updating instant of the ZOH as tk , and suppose that the updating
signal (successfully transmitted signal from the sampler to the
controller and to the ZOH) at the instant tk has experienced
signal transmission delays ηk (ηk = τk + dk , where τk is the
delay from the sampler to the controller and dk is the delay
from the controller to the ZOH). Therefore, the state-feedback
controller takes the following form

u (tk ) = K1x(tk − ηk ) + K2xr (tk − ηk ) (3)

where K1 and K2 are the state-feedback control gains. Thus,
considering the behavior of the ZHO, we have

u (t) = K1x(tk − ηk ) + K2xr (tk − ηk ), tk ≤ t < tk+1
(4)

with tk+1 being the next updating instant of the ZOH after tk .
A natural assumption on the network-induced delays ηk can

be made as follows:

ηm ≤ ηk ≤ ηM (5)

where ηm and ηM denote the lower and upper delay bounds,
respectively.

In addition, at the updating instant tk , the number of accumu-
lated data packet dropouts since the last updating instant tk−1
is denoted as δk . We assume that the maximum number of data
packet dropouts is δ̄, that is

δk ≤ δ̄. (6)

Then, it can be seen from (5) and (6) that

tk+1 − tk = (δk+1 + 1) h + ηk+1 − ηk . (7)

Therefore, from (1)–(4), we can obtain the following augmented
closed-loop system:

ζ̇ (t) = Āζ (t) + B̄ζ (tk − ηk ) + Ēv (t)

e (t) = C̄ζ (t) + D̄ζ (tk − ηk )

tk ≤ t < tk+1 (8)
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where

ζ (t) =
[

x (t)
xr (t)

]
, e (t) = y (t) − yr (t) , v (t) =

[
w (t)
r (t)

]
,

Ā =
[

A 0
0 G

]
, B̄ =

[
BK1 BK2

0 0

]
, Ē =

[
E 0
0 I

]
,

C̄ = [ C − H ] , D̄ = [ DK1 DK2 ] . (9)

Then, the tracking requirements are expressed as follows
1) The augmented closed-loop system in (8) with v (t) ≡ 0

is asymptotically stable;
2) The effect of w (t) and r (t) on the tracking error e (t) is

attenuated below a desired level in the �∞ sense. More
specifically, it is required that

‖e‖2 < γ ‖v‖2 (10)

for all nonzero v ∈ L2 [0,∞) under zero initial condition,
where γ > 0.

We say the �∞ output tracking performance γ is achieved if
the aforementioned two requirements are met.

The model of the networked control system formulated earlier
deserves some remarks.

Remark 1: It is important to note that in (4), tk refers to the
updating instant of the ZOH. While in [42], the controller is
expressed as

u (t) = F x̄(tk ), tk ≤ t < tk+1 (11)

with tk standing for the sampling instant. It should be noted that
when the controller and actuator are event-driven, we cannot
use the sampling instant to express the behavior of the ZOH.
The reason is that the signal transmission delays may not neces-
sarily be integer multiples of the sampling period, and thus, the
ZOH may be updated between sampling instants. By using the
updating instant in this paper, we do not need to synchronize the
ZOH and the sampler, and thus, the networked control model
formulated here is essentially different from that in [42], and is
more general, though they appear to be similar.

Remark 2: The assumption on the network-induced delays
ηk made in (5) is more general than those in [42]–[45]. The
main difference lies in the lower bound that we introduce. By
assuming ηm = 0, (5) is the same as those in [42]–[45]. In the
next section, we will present a new approach that deals with
the general assumption on ηk in (5). The introduction of the
lower-bound ηm will be shown, via a numerical example, to be
advantageous for reducing conservatism.

Remark 3: In the literature, there are some approaches that
consider stochastic models for the dropout and delay on the
packets transmitted over networks [41], [46]. These models
usually consider a discrete-time system controlled by a discrete-
time controller, while our approach treats the sampled-data prob-
lem directly, which constitutes the main difference between our
model and the existing stochastic models. In addition, these
stochastic models usually assume a probabilistic structure on
the delay or dropout, while our approach places bounds on the
delay or number of packet dropouts.

Remark 4: In this paper, we adopt the standard �∞ norm to
measure the tracking performance, which assumes zero initial

conditions. Generally speaking, the system response is com-
posed of two parts: zero-state response (due to input only) and
zero-input response (due to initial conditions only). By using
the standard �∞-norm characterization, the problem we for-
mulated earlier only considers the tracking performance due to
zero-state response, and zero-input response is not considered.
However, it is not difficult to further adapt the results developed
in this paper to the case where both the zero-state response and
zero-input response are considered. In addition, from another
point of view, the response due to nonzero initial conditions
could also be seen as a past-time input response. As can be seen
in Example 2 in Section V, the tracking controller designed in
this paper can also guarantee a good tracking performance for
nonzero initial conditions.

Remark 5: In a recent Ph.D. thesis [21], Lian presented a com-
prehensive study on the analysis, design, modeling, and control
of networked control systems. This thesis covers a broad range
of problems related to NCSs. However, it is worth commenting
that the problem of network-based output tracking control con-
sidered in this paper is not covered in [21] as well as any other
existing reference. In addition, the method used in this paper
is quite different from those in [21], in that the sampled-data
behavior is dealt with via a delay system approach that allows
an effective treatment of model uncertainties, and all the condi-
tions are characterized using LMIs that can be efficiently solved
via standard numerical software.

III. �∞ OUTPUT TRACKING CONTROL DESIGN

A. Main Idea

It is noted that the augmented closed-loop system in (8) is in
the form of a sampled-data system. As the time sequence {tk}
depends on both the network-induced delays and data packet
dropouts, the period tk+1 − tk for the sampled-data system in
(8) is variable and uncertain.

Now, let us represent tk − ηk in (8) as

tk − ηk = t − t + tk − ηm + ηm − ηk = t − ηm − η(t)
(12)

where

η(t) = t − tk + (ηk − ηm ). (13)

Then, from (7), we have

0 ≤ η(t) ≤ κ (14)

where

κ = ηM − ηm +
(
δ̄ + 1

)
h. (15)

By substituting (12) into (8), we obtain

ζ̇ (t) = Āζ (t) + B̄ζ(t − ηm − η(t)) + Ēv (t)

e (t) = C̄ζ (t) + D̄ζ(t − ηm − η(t)). (16)

Remark 6: It is worth noting that in the aforesaid transformed
system, ηm is a constant delay, and η(t) is a nondifferentiable
time-varying delay with bound κ. Our main idea in the earlier
transformation is to represent the sampled-data system in (8) as a
continuous-time system with two successive delay components
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in the state. The �∞ output tracking problem will be solved
based on this new model.

Remark 7: In the literature, most of the assumptions on the
network-induced delays are given as: 0 ≤ ηk ≤ ηM . Based on
this assumption, the closed-loop system takes the following
form:

ζ̇ (t) = Āζ (t) + B̄ζ(t − η̄(t)) + Ēv (t)

e (t) = C̄ζ (t) + D̄ζ(t − η̄(t)) (17)

with 0 ≤ η̄(t) ≤ κ̄, where

κ̄ = ηM +
(
δ̄ + 1

)
h. (18)

In some situations, however, we may know the lower bound of
the network-induced delays, that is, ηm ≤ ηk ≤ ηM . If we still
use (17) for this case, the lower bound ηm cannot be taken into
consideration. In addition, by comparing (17) and (16), we can
see that the upper bound of the nondifferentiable time-varying
delay η(t) in (16) is smaller by ηm than that of η̄(t) in (17),
that is, κ̄ − κ = ηm . In other words, when using (17) for the
case ηm ≤ ηk ≤ ηM , ηm + η(t) will be treated as an integrated
nondifferentiable time-varying delay η̄(t), and the value of ηm

cannot be taken into consideration in the controller design. In
this paper, we will derive results based on (16) by considering
ηm and η(t) as two successive delay components, which will
be shown to be less conservative via a numerical example in
the next subsection. However, the existing results on NCS, such
as [42]–[45], do not offer including the lower bound ηm in
design.

B. �∞ Output Tracking Performance Analysis

Section III-B is concerned with the problem of �∞ output
tracking performance analysis. More specifically, assuming that
the matrices A,B,C,D,E,G,H and the controller gains K1
and K2 are known, we shall study the conditions under which
the augmented closed-loop system in (8) achieves the �∞ output
tracking performance γ. The following theorem shows that the
�∞ tracking performance can be guaranteed if there exist some
matrices satisfying certain LMIs. This theorem will play an
instrumental role in the controller design problem.

Theorem 1: Consider the networked control system in Fig. 1.
Given the matrices A,B,C,D,E,G,H and the controller gains
K1 and K2 , the augmented closed-loop system in (8) achieves
the �∞ output tracking performance γ if there exist matrices
P > 0, Q > 0, Mi > 0, Ui , Vi , i = 1, 2, satisfying (19), shown

at the bottom of the page, where

Ψ11 = PĀ + ĀT P + Q + UT
1 + U1 + ĀT ΨĀ + C̄T C̄

Ψ22 = −Q − V T
1 − V1 + UT

2 + U2

Ψ33 = B̄T ΨB̄ − V T
2 − V2 + D̄T D̄

Ψ = ηm M1 + κM2 . (20)

Proof: We first establish the asymptotic stability of the aug-
mented closed-loop system in (8) with v (t) ≡ 0. Choose the
following Lyapunov–Krasovskii functional:

V (t) = V1 (t) + V2 (t) + V3 (t)

V1 (t) = ζT (t)Pζ (t)

V2 (t) =
∫ t

t−ηm

ζT (α) Qζ (α) dα

V3 (t) =
∫ 0

−ηm

∫ t

t+β

ζ̇T (α)M1 ζ̇(α)dαdβ

+
∫ −ηm

−ηm −κ

∫ t

t+β

ζ̇T (α)M2 ζ̇(α)dαdβ (21)

where P > 0, Q > 0, Mi > 0 are matrices to be determined.
Then, along the solution of system (16) with v(t) ≡ 0, the time
derivative of V (t) is given by

V̇1 (t) = 2ζT (t)P
[
Āζ (t) + B̄ζ(t − ηm − η(t))

]
(22)

V̇2 (t) = ζT (t) Qζ (t) − ζT (t − ηm ) Qζ (t − ηm ) (23)

V̇3 (t) = ηm ζ̇T (t)M1 ζ̇(t) −
∫ t

t−ηm

ζ̇T (α)M1 ζ̇(α)dα

+ κζ̇T (t) M2 ζ̇ (t) −
∫ t−ηm

t−ηm −κ

ζ̇T (α) M2 ζ̇ (α) dα

≤ ζ̇T (t)Ψζ̇(t) −
∫ t

t−ηm

ζ̇T (α)M1 ζ̇(α)dα

−
∫ t−ηm

t−ηm −η (t)
ζ̇T (α) M2 ζ̇ (α) dα (24)

where Ψ is given in (20).
By the Newton–Leibniz formula, we have∫ t

t−ηm

ζ̇ (α) dα = ζ (t) − ζ (t − ηm ) (25)

∫ t−ηm

t−ηm −η (t)
ζ̇(α)dα = ζ (t − ηm ) − ζ (t − ηm − η (t)) . (26)




Ψ11 −U1 + V T
1 PB̄ + ĀT ΨB̄ + C̄T D̄

∗ Ψ22 −U2 + V T
2

∗ ∗ Ψ33

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

U1 0 PĒ + ĀT ΨĒ

V1 U2 0

0 V2 B̄T ΨĒ

−η−1
m M1 0 0

∗ −κ−1M2 0

∗ ∗ −γ2I + ĒT ΨĒ




< 0 (19)
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Then, for any matrices Ui , Vi , i = 1, 2, we have

Λ1 = 2
[

ζ (t)
ζ (t − ηm )

]T [
U1
V1

]

×
[
ζ (t) − ζ (t − ηm ) −

∫ t

t−ηm

ζ̇ (α) dα

]
= 0 (27)

Λ2 = 2
[

ζ (t − ηm )
ζ (t − ηm − η (t))

]T [
U2
V2

]

×
{

ζ (t − ηm ) − ζ (t − ηm − η (t))

−
∫ t−ηm

t−ηm −η (t)
ζ̇(α)dα

}
= 0. (28)

In addition, for any matrices

[
Xi Yi

Y T
i Zi

]
≥ 0, i = 1, 2, we have

Ψ1 = ηm Ψ3 −
∫ t

t−ηm

Ψ3dα = 0 (29)

Ψ2 = κΨ4 −
∫ t−ηm

t−ηm −η (t)
Ψ4dα ≥ 0 (30)

where

Ψ3 =
[

ζ (t)
ζ (t − ηm )

]T [
X1 Y1
Y T

1 Z1

] [
ζ (t)

ζ (t − ηm )

]

Ψ4 =
[

ζ (t − ηm )
ζ (t − ηm − η (t))

]T [
X2 Y2
Y T

2 Z2

]

×
[

ζ (t − ηm )
ζ (t − ηm − η (t))

]
.

Then, from (21)–(30), we obtain

V̇ (t) ≤ V̇1(t) + V̇2(t) + V̇3(t) +
2∑

i=1

(Λi + Ψi)

= φT (t)Π̄φ(t) +
∫ t

t−ηm

φT
1 (t, α)Π1φ1(t, α)dα

+
∫ t−ηm

t−ηm −η (t)
φT

2 (t, α)Π2φ2(t, α)dα (31)

where

φ (t) =


 ζ (t)

ζ (t − ηm )
ζ (t − ηm − η (t))




φ1 (t, α) =


 ζ (t)

ζ (t − ηm )
ζ̇(α)




φ2(t, α) =


 ζ (t − ηm )

ζ (t − ηm − η (t))
ζ̇(α)




Πi =



−Xi −Yi −Ui

∗ −Zi −Vi

∗ ∗ −Mi




Π̄ =




Ψ̄11 Ψ̄12 PB̄ + ĀT ΨB̄

∗ Ψ̄22 −U2 + V T
2 + κY2

∗ ∗ Ψ̄33




Ψ̄11 = PĀ + ĀT P + Q + ĀT ΨĀ + UT
1 + U1 + ηm X1

Ψ̄12 = −U1 + V T
1 + ηm Y1

Ψ̄22 = −Q − V T
1 − V1 + UT

2 + U2 + ηm Z1 + κX2

Ψ̄33 = B̄T ΨB̄ − V T
2 − V2 + κZ2 . (32)

From (31), we know that if

Π̄ < 0, (33)

Πi ≤ 0, i = 1, 2 (34)

then, we have V̇ (t) < −ε |ζ(t)|2 for a sufficiently small posi-
tive constant ε, which means that system (16) is asymptotically
stable.

On the other hand, if there exist matrices P > 0, Q > 0,
Mi > 0, Ui , Vi , i = 1, 2, satisfying (19), which by the Schur
complement [5] is equivalent to

Π + ηm




U1M
−1
1 UT

1 U1M
−1
1 V T

1 0 0

∗ V1M
−1
1 V T

1 0 0

∗ ∗ 0 0

∗ ∗ ∗ 0




+ κ




0 0 0 0

∗ U2M
−1
2 UT

2 U2M
−1
2 V T

2 0

∗ ∗ V2M
−1
2 V T

2 0

∗ ∗ ∗ 0


 < 0,

where

Π =




Ψ11 −U1 + V T
1 P B̄ + ĀT ΨB̄ + C̄T D̄ P Ē + ĀT ΨĒ

∗ Ψ22 −U2 + V T
2 0

∗ ∗ Ψ33 B̄T ΨĒ

∗ ∗ ∗ −γ2I + ĒT ΨĒ


,

(35)
then, there must exist matrices P > 0, Q > 0, Mi > 0, Ui , Vi

and matrices

[
Xi Yi

∗ Zi

]
≥ 0, i = 1, 2, satisfying

Π + ηm




X1 Y1 0 0
∗ Z1 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0


 + κ




0 0 0 0
∗ X2 Y2 0
∗ ∗ Z2 0
∗ ∗ ∗ 0


 < 0

(36)
and[

UiM
−1
i UT

i UiM
−1
i V T

i

∗ ViM
−1
i V T

i

]
≤

[
Xi Yi

∗ Zi

]
, i = 1, 2. (37)

It is noted that (36) implies (33), and (37) is equivalent to (34)
via a Schur complement operation. Therefore, system (16) is
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asymptotically stable, and thus, the augmented closed-loop sys-
tem in (8) is asymptotically stable.

Next, we will establish the �∞ tracking performance for the
augmented closed-loop system in (8). To this end, assume zero-
initial conditions, and consider the Lyapunov–Krasovskii func-
tional defined in (21). Then, along the solution of the augmented
closed-loop system in (16), we have

V̇1 (t) = 2xT (t)P
[
Āζ (t) + B̄ζ(t − ηm − η(t)) + Ēv (t)

]
(38)

and V̇2 (t) , V̇3 (t) are given in (23) and (24). In addition, by fol-
lowing similar lines as earlier, we can obtain (27)–(30). There-
fore, with (21), (23), (24), (27)–(30) and (38), we have

V̇ (t) ≤ φ̄T (t)Π̃1 φ̄(t) +
∫ t

t−ηm

φT
1 (t, α)Π1φ1(t, α)dα

+
∫ t−ηm

t−ηm −η (t)
φT

2 (t, α)Π2φ2(t, α)dα (39)

where φi(t, α) and Πi are defined in (32)

φ̄(t) = [ ζT (t) ζT (t − ηm ) ζT (t − ηm − η (t)) vT (t) ]T

Π̃1 =




Ψ̄11 Ψ̄12 PB̄ + ĀT ΨB̄ P Ē + ĀT ΨĒ

∗ Ψ̄22 −U2 + V T
2 + κY2 0

∗ ∗ Ψ̄33 B̄T ΨĒ

∗ ∗ ∗ ĒT ΨĒ




with Ψii and Ψ defined in (20), and Ψ̄ii defined in (32).
Now consider the following index:

� =
∫ ∞

0

[
eT (θ)e(θ) − γ2vT (θ)v(θ)

]
dθ. (40)

Under zero-initial conditions, we have V (0) = 0 and V (∞) ≥
0, which leads to

� =
∫ ∞

0

[
eT (t)e(t) − γ2vT (t)v(t) + V̇ (t)

]
dt − V (∞)

≤
∫ ∞

0

[
eT (t)e(t) − γ2vT (t)v(t) + V̇ (t)

]
dt. (41)

By substituting (39) into (41) and by considering the second
equation in (16), we have

eT (t)e(t) − γ2vT (t)v(t) + V̇ (t)

≤ φ̄T (t)Π̃2 φ̄(t) +
∫ t

t−ηm

φT
1 (t, α)Π1φ1(t, α)dα

+
∫ t−ηm

t−ηm −η (t)
φT

2 (t, α)Π2φ2(t, α)dα (42)

where

Π̃2 = Π̃1 +




C̄T C̄ 0 C̄T D̄ 0
∗ 0 0 0
∗ ∗ D̄T D̄ 0
∗ ∗ ∗ −γ2I




and Πi is defined in (32). By using similar arguments as earlier,
(19) guarantees Π̃2 < 0 and Πi ≤ 0, and thus, for all nonzero

v ∈ L2 [0,∞), we have

zT (t)z(t) − γ2vT (t)v(t) + V̇ (t) < 0

which means � < 0. Therefore, we can conclude from (40) that,
for all nonzero v ∈ L2 [0,∞), we have ‖e‖2 < γ ‖v‖2 , and the
proof is completed. �

Remark 8: The conditions in Theorem 1 are LMIs over the
matrix variables P > 0, Q > 0, Mi > 0, Ui , Vi , i = 1, 2. These
matrix variables can be computed with the help of standard
numerical software (such as the Matlab LMI toolbox [13]).

Remark 9: In deriving the �∞ output tracking performance
conditions in Theorem 1, we have utilized some state-of-the-art
techniques for sampled-data and time-delay systems. The sam-
pled behavior is dealt with by an input-delay approach, and the
transformed delay system is analyzed by a new Lyapunov func-
tional plus free weighting matrix techniques. The most signifi-
cant feature is that no model transformation has been performed
to the delay system in (17), which is essentially different from
the results obtained in [42] based on a descriptor model trans-
formation. This helps us avoid using bounding techniques for
seeking upper bounds of the inner product between two vectors.
Similar ideas appear in [18] and [20], which have been shown
to be potentially less conservative than those using the model
transformation method.

Remark 10: If the lower bound of the network-induced delays
is assumed to be zero, that is, ηm = 0, we can see from the
aforesaid proof that the Lyapunov–Krasovskii functional in (21)
reduces to

V (t) = V1 (t) + V2 (t)

V1 (t) = ζT (t) Pζ (t)

V2 (t) =
∫ 0

−κ

∫ t

t+β

ζ̇T (α)Mζ̇(α)dαdβ.

Then, by following similar lines as in the aforesaid proof, we
can obtain an �∞ output tracking performance condition for the
case 0 ≤ ηk ≤ ηM , given in the following corollary.

Corollary 1: Consider the networked control system in Fig. 1,
and suppose the network-induced delays satisfy 0 ≤ ηk ≤ ηM .
Given the matrices A,B,C,D,E,G,H and the controller gains
K1 and K2 , the augmented closed-loop system in (8) achieves
the �∞ output tracking performance γ if there exist matrices
P > 0, M > 0, , satisfying


Ω11 Ω12 U PĒ + κ̄ĀT MĒ

∗ Ω22 V κ̄B̄T MĒ

∗ ∗ −κ̄−1M 0
∗ ∗ ∗ −γ2I + κ̄ĒT MĒ


 < 0

where κ̄ is given in (18) and

Ω11 = PĀ + ĀT P + κ̄ĀT MĀ + U + UT + C̄T C̄

Ω12 = PB̄ + κ̄ĀT MB̄ − U + V T + C̄T D̄

Ω22 = κ̄B̄T MB̄ − V − V T + D̄T D̄. (43)

Now we use a numerical example to show the advantage by
introducing the lower bound of transmission delays.
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TABLE I
COMPARISON FOR DIFFERENT VALUES OF ηm

Example 1: Suppose the matrices A,B,C,D,E,G,H and
the controller gains K1 and K2 in (9) are given by

A =
[

0 1
−1 −2

]
, B =

[
0
1

]
, E =

[
0.2
0.1

]

C = [ 1 0 ] , D = 0.5, G = −1, H = 0.5

K1 = [−1 1 ] , K2 = 1.

It is assumed that the network-induced delays ηk satisfy ηm ≤
ηk ≤ 0.4 s, the maximum number of data packet dropouts is 2,
and the sampling period is 10 ms. Our purpose is to determine
the minimum guaranteed �∞ output tracking performances for
different values of ηm .

When we do not consider the lower bound of the network-
induced delays, that is, ηm = 0, by using Corollary 1 and
Theorem 1 (assume ηm to be sufficiently small), the mini-
mum guaranteed �∞ output tracking performance obtained is
γmin = 3.9018. However, if we assume ηm = 0.1 s, the mini-
mum guaranteed �∞ output tracking performance obtained is
γmin = 2.5700, showing that considering the lower bound of
the signal transmission delay gives rise to less conservative re-
sults. A more detailed comparison for different values of ηm is
provided in Table I.

C. �∞ Output Tracking Controller Design

In this section, we solve the problem of �∞ output tracking
controller design based on Theorem 1.

Proposition 1: Consider the networked control system in
Fig. 1. There exists a state-feedback controller in the form of

(3) such that the augmented closed-loop system in (8) achieves
the �∞ output tracking performance γ if there exist matrices
P̄ > 0, Q̄ > 0, M̄i > 0, Ūi , V̄i , i = 1, 2, and K̄ satisfying (44),
shown at the bottom of the page, where

B̃ = [ BT 0 ]T

Θ11 = ĀP̄ + P̄ ĀT + Q̄ + ŪT
1 + Ū1

Θ22 = −Q̄ − V̄ T
1 − V̄1 + ŪT

2 + Ū2 . (45)

Moreover, if the earlier condition is feasible, the gain matrix of
a desired controller in the form of (3) is given by

[ K1 K2 ] = K̄P̄−1 . (46)

Proof: From Theorem 1, we know that there exists a state-
feedback controller in the form of (3) such that the augmented
closed-loop system in (8) achieves the �∞ output tracking per-
formance γ if there exist matrices P > 0, Q > 0, Mi > 0, Ui ,
Vi , i = 1, 2, satisfying (19). First by the Schur complement, (19)
is equivalent to (47) shown at the bottom of the page.
where

Θ̄11 = PĀ + ĀT P + Q + UT
1 + U1

Θ̄22 = −Q − V T
1 − V1 + UT

2 + U2 .

Performing a congruence transformation to (47) by
diag

{
P−1 , P−1 , P−1 , P−1 , P−1 , I, I, I, I

}
, together with the

change of matrix variables defined by

P̄
�
= P−1 , M̄i

�
=M−1

i K̄
�
= [ K1 K2 ] P−1 ,

Q̄
�
= P−1QP−1 , Ūi

�
= P−1UiP

−1 , V̄i
�
= P−1ViP

−1

we obtain (44), and the proposition is proved. �
The condition in Proposition 1 still cannot be implemented

by using standard numerical software due to the existence




Θ11 −Ū1 + V̄ T
1 B̃K̄ Ū1

∗ Θ22 −Ū2 + V̄ T
2 V̄1

∗ ∗ −V̄ T
2 − V̄2 0

∗ ∗ ∗ −η−1
m P̄M̄−1

1 P̄
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

0 Ē P̄ C̄T P̄ ĀT P̄ ĀT

Ū2 0 0 0 0
V̄2 0 K̄T DT K̄T B̃T K̄T B̃T

0 0 0 0 0
−κ−1 P̄ M̄−1

2 P̄ 0 0 0 0
∗ −γ2I 0 ĒT ĒT

∗ ∗ −I 0 0
∗ ∗ ∗ −η−1

m M̄1 0
∗ ∗ ∗ ∗ −κ−1M̄2




<0 (44)




Θ̄11 −U1 + V T
1 PB̄ U1 0

∗ Θ̄22 −U2 + V T
2 V1 U2

∗ ∗ −V T
2 − V2 0 V2

∗ ∗ ∗ −η−1
m M1 0

∗ ∗ ∗ ∗ −κ−1M2
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

PĒ C̄T ĀT ĀT

0 0 0 0
0 D̄T B̄T B̄T

0 0 0 0
0 0 0 0

−γ2I 0 ĒT ĒT

∗ −I 0 0
∗ ∗ −η−1

m M−1
1 0

∗ ∗ ∗ −κ−1M−1
2




< 0 (47)
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of the terms P̄ M̄−1
i P̄ . By noticing M̄i > 0, we have (M̄i −

P̄ )M̄−1
i (M̄i − P̄ ) ≥ 0, which is equivalent to

−P̄ M̄−1
i P̄ ≤ M̄i − 2P̄ , i = 1, 2. (48)

By combining (44) and (48), we readily obtain the following
theorem.

Theorem 2: Consider the networked control system in Fig. 1.
There exists a state-feedback controller in the form of (3) such
that the augmented closed-loop system in (8) achieves the �∞
output tracking performance γ if there exist matrices P̄ > 0,
Q̄ > 0, M̄i > 0, Ūi , V̄i , i = 1, 2, and K̄ satisfying (49), shown
at the bottom of the page, where Θii is given in (45) and

Υi = M̄i − 2P̄ , i = 1, 2. (50)

Moreover, if the aforesaid condition is feasible, the gain matrix
of a desired controller in the form of (3) is given by (46).

Theorem 2 presents an LMI condition for the existence of
desired state-feedback controllers based on the inequalities in
(48). In the following, we present another approach to solve the
condition in Proposition 1.

Now introduce additional matrix variables Ni > 0, and re-
place (44) with (51), shown at the bottom of the page.

Ni − P̄ M̄−1
i P̄ ≤ 0, i = 1, 2. (52)

By Schur complement, (52) is equivalent to[
−N−1

i P̄−1

∗ −M̄−1
i

]
≤ 0, i = 1, 2. (53)

Then, we readily obtain the following theorem.
Theorem 3: Consider the networked control system in Fig. 1.

There exists a state-feedback controller in the form of (3) such
that the augmented closed-loop system in (8) achieves the �∞
output tracking performance γ if there exist matrices P̄ > 0,

S > 0, Q̄ > 0, M̄i > 0, Ri > 0, Ni > 0, Ti > 0, Ūi , V̄i , i =
1, 2, and K̄ satisfying (51) and[

−Ti S
∗ − Ri

]
≤ 0, i = 1, 2 (54)

P̄S = I, M̄iRi = I, NiTi = I, i = 1, 2. (55)

Moreover, if the aforesaid condition is feasible, the gain matrix
of a desired controller in the form of (3) is given by (46).

The condition presented in Theorem 3 is equivalent to that
in Proposition 1. It is noted that this condition is not a con-
vex set due to the matrix equality constraints in (55). Several
approaches have been proposed to solve such nonconvex fea-
sibility problems, among which the cone complementarity lin-
earization (CCL) method [12] is the most commonly used one
(for instance, the CCL algorithm has been used for solving the
controller design problems as well as model reduction prob-
lems [14], [15]). The basic idea in CCL algorithm is that if

the LMI

[
P I
I L

]
≥ 0 is feasible in the n × n matrix variables

L > 0 and P > 0, then tr(PL) ≥ n, and tr(PL) = n if and
only if PL = I .

Now using a cone complementarity method [12], we suggest
the following nonlinear minimization problem involving LMI
conditions instead of the original nonconvex feasibility problem
formulated in Theorem 3.

Problem TCD (Tracking Controller Design):

min tr

(
P̄S +

2∑
i=1

(
M̄iRi + NiTi

))

subject to (51), (54) and[
P̄ I
I S

]
≥ 0,

[
M̄i I
I Ri

]
≥ 0,

[
Ni I
I Ti

]
≥ 0, i = 1, 2.




Θ11 −Ū1 + V̄ T
1 B̃K̄ U1 0

∗ Θ22 −Ū2 + V̄ T
2 V1 U2

∗ ∗ −V̄ T
2 − V̄2 0 V2

∗ ∗ ∗ η−1
m Υ1 0

∗ ∗ ∗ ∗ κ−1Υ2
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

Ē P̄ C̄T P̄ ĀT P̄ ĀT

0 0 0 0
0 K̄T DT K̄T B̃T K̄T B̃T

0 0 0 0
0 0 0 0

−γ2I 0 ĒT ĒT

∗ −I 0 0
∗ ∗ −η−1

m M̄1 0
∗ ∗ ∗ −κ−1M̄2




< 0 (49)




Θ11 −Ū1 + V̄ T
1 B̃K̄ Ū1 0

∗ Θ22 −Ū2 + V̄ T
2 V̄1 Ū2

∗ ∗ −V̄ T
2 − V̄2 0 V̄2

∗ ∗ ∗ −η−1
m N1 0

∗ ∗ ∗ ∗ −κ−1N2
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

Ē P̄ C̄T P̄ ĀT P̄ ĀT

0 0 0 0
0 K̄T DT K̄T B̃T K̄T B̃T

0 0 0 0
0 0 0 0

−γ2I 0 ĒT ĒT

∗ −I 0 0
∗ ∗ −η−1

m M̄1 0
∗ ∗ ∗ −κ−1M̄2




< 0 (51)
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According to [12], if the solution of the aforesaid minimiza-
tion problem is 5 (n + r), that is

min tr

(
P̄S +

2∑
i=1

(
M̄iRi + NiTi

))
= 5 (n + r)

then the conditions in Theorem 3 are solvable. Although it is
still not possible to always find the global optimal solution, the
proposed nonlinear minimization problem is easier to solve than
the original nonconvex feasibility problem. Algorithm 1 in [12]
can be easily adapted to solve Problem TCD.

IV. ROBUST �∞ TRACKING CONTROL DESIGN

The main task of this section is to investigate the problem of
robust �∞ tracking control for systems with uncertain matrix
data. Here, we shall consider two types of parameter uncertain-
ties: norm-bounded uncertainty and polytopic uncertainty.

A. Norm-Bounded Uncertain Case

A popular way of dealing with deterministic uncertainty is to
assume that the deviation of the system parameters from their
nominal values is norm-bounded, which has been widely used
in the robust control area [36], [37], [39]. Many practical sys-
tems possess parameter uncertainties that can be either exactly
modeled or overbounded. In our case, we make the following
assumption:

Assumption 1: Assume that the matrices A, B, C, D of the
system in (1) have the following form

A = A0+∆A, B = B0+∆B

C = C0 + ∆C D = D0 + ∆D (56)

where A0 , B0 , C0 , D0 are known constant matrices with ap-
propriate dimensions. ∆A, ∆B, ∆C, ∆D are real-valued time-
varying matrix functions representing norm-bounded parameter
uncertainties satisfying[

∆A ∆B
∆C ∆D

]
=

[
F1
F2

]
∆(t) [ J1 J2 ]

where ∆(t) is a real uncertain matrix function with Lebesgue
measurable elements satisfying ∆T (t)∆ (t) ≤ I , and F1 , F2 ,

J1 , J2 are known real constant matrices with appropriate di-
mensions. These matrices specify how the uncertain parameters
in ∆(t) enter the nominal matrices A0 , B0 , C0 , D0 .

Before proceeding further, we give the following lemma
which will be used later [40].

Lemma 1: Given appropriately dimensioned matrices Σ1 , Σ2 ,
Σ3 , with ΣT

1 = Σ1 , then

Σ1 + Σ3∆ (t)Σ2 + ΣT
2 ∆T (t) ΣT

3 < 0 (57)

holds for all ∆(t) satisfying ∆T (t) ∆ (t) ≤ I if and only if for
some ε > 0

Σ1 + εΣ3ΣT
3 + ε−1ΣT

2 Σ2 < 0.

Now we present the results on robust �∞ tracking control for
system (1) with norm-bounded uncertainty.

Corollary 2: Consider the networked control system in Fig. 1,
and suppose the system in (1) contains norm-bounded uncer-
tainty described in (56). There exists a state-feedback controller
in the form of (3) such that the augmented closed-loop system
in (8) achieves the �∞ output tracking performance γ if there
exist matrices P̄ > 0, Q̄ > 0, M̄i > 0, Ūi , V̄i , i = 1, 2, K̄, and
scalar ε > 0 satisfying (58), as shown at the bottom of the page,
where Θ22 is given in (45), Θ̄44 and Θ̄55 are given in (50), and

Υ = Ā0 P̄ + P̄ ĀT
0 + Q̄ + ŪT

1 + Ū1 + εF̄1 F̄
T
1

Ā0 =
[

A0 0
0 G

]
, B̃0 =

[
B0
0

]
, C̄0 = [ C0 − H ]

F̄1 =
[

F1
0

]
, J̄1 = [ J1 0 ] . (59)

Moreover, if the aforesaid condition is feasible, the gain matrix
of a desired controller in the form of (3) is given by (46)

Proof: First, substituting the norm-bounded uncertain matri-
ces A, B, C, D defined in (56) into (9) yields

Ā = Ā0 + F̄1∆ (t) J̄1 , B̃ = B̃0 + F̄1∆ (t) J2

C̄ = C̄0 + F2∆ (t) J̄1 , D = D0 + F2∆ (t) J2 (60)

where Ā0 , B̃0 , C̄0 , F̄1 , J̄1 are defined in (59). Then, by substi-
tuting the matrices in (60) into (49), we have (57) with (*), as
shown at the bottom of the next page.




Υ −Ū1 + V̄ T
1 B̃0K̄ Ū1 0 Ē P̄ C̄T

0 + εF̄1F
T
2 P̄ ĀT

0 + εF̄1 F̄
T
1 P̄ ĀT

0 + εF̄1 F̄
T
1 P̄ J̄T

1

∗ Θ22 −Ū2 + V̄ T
2 V̄1 Ū2 0 0 0 0 0

∗ ∗ −V̄ T
2 − V̄2 0 V̄2 0 K̄T DT

0 K̄T B̄T
0 K̄T B̄T

0 K̄T JT
2

∗ ∗ ∗ Θ̄44 0 0 0 0 0 0

∗ ∗ ∗ ∗ Θ̄55 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −γ2I 0 ĒT ĒT 0

∗ ∗ ∗ ∗ ∗ ∗ −I + εF2F
T
2 εF2 F̄

T
1 εF2 F̄

T
1 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −η−1
m M̄1 + εF̄1 F̄

T
1 εF̄1 F̄

T
1 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −κ−1M̄2 + εF̄1 F̄
T
1 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −εI




<0

(58)
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By invoking Lemma 1 together with a Schur complement
operation, (57) holds if and only if for some ε > 0 (58) holds,
and the proof is completed. �

B. Polytopic Uncertain Case

An alternative approach to characterize uncertain parameters
is using the polytopic uncertainty description, where the system
matrices are supposed to contain partially unknown parameters
and they reside in a given polytope. The polytopic uncertainty
has also been widely investigated in the literature [16], [29].

Assumption 2: The matrices A, B, C, D, E of the sys-
tem in (1) contain partially unknown parameters. Assume that

Ω
�
= (A,B,C,D,E) ∈ �, where � is a given convex-bounded

polyhedral domain described by s vertices

� =

{
Ω(λ)

∣∣∣∣∣Ω(λ) =
s∑

i=1

λiΩi ;
s∑

i=1

λi = 1, λi ≥ 0

}
(61)

where Ωi=(Ai,Bi, Ci,Di, Ei) denote the vertices of the poly-
tope.

Since the LMI condition (49) in Theorem 2 is affine in the
system matrices, this theorem can therefore be directly used for
the robust �∞ tracking control problem on the basis of quadratic
stability notion. Then, we present the following corollary with-
out proof.

Corollary 3: Consider the networked control system in Fig. 1,
and suppose the system in (1) contains polytopic uncertainty de-
scribed in (61). There exists a state-feedback controller in the
form of (3) such that the augmented closed-loop system in (8)
achieves the �∞ output tracking performance γ if there exist
matrices P̄ > 0, Q̄ > 0, M̄i > 0, Ūi , V̄i , i = 1, 2, and K̄ satis-
fying (49) for i = 1, . . . , s, where the matrices A,B,C,D,E
are taken with Ai,Bi, Ci,Di, Ei , respectively.

V. ILLUSTRATIVE EXAMPLE

Example 2: Suppose the physical plant in Fig. 1 is a satellite
system that appears in [4] and [13]. The satellite system consists
of two rigid bodies joined by a flexible link. This link is modeled
as a spring with torque constant k and viscous damping f .
Denoting the yaw angles for the two bodies (the main body and
the instrumentation module) by θ1 and θ2 , the control torque by
u(t), the moments of inertia of the two bodies by J1 and J2 ,

and the torque disturbance by w(t), the dynamic equations are
given by

J1 θ̈1(t) + f(θ̇1(t) − θ̇2(t)) + k((θ1(t) − θ2(t))) = u(t)

J2 θ̈2(t) + f(θ̇1(t) − θ̇2(t)) + k((θ1(t) − θ2(t))) = w(t).

When the output is the angular position θ2(t), the state-space
representation of the aforesaid equation is given by




1 0 0 0
0 1 0 0
0 0 J1 0
0 0 0 J2







θ̇1(t)
θ̇2(t)
θ̈1(t)
θ̈2(t)


 =




0 0 1 0
0 0 0 1
−k k −f f

k −k f −f




×




θ1(t)
θ2(t)
θ̇1(t)
θ̇2(t)


 +




0
0
1
0


 u(t) +




0
0
0
1


 w(t)

y(t) = [ 0 1 0 0 ]




θ1(t)
θ2(t)
θ̇1(t)
θ̇2(t)


 .

Here, we choose J1 = J2 = 1, k = 0.09 and f = 0.04 (the val-
ues of k and f are chosen within their respective ranges). Sup-
pose the reference model is given by

ẋr (t) = −xr (t) + r (t)

yr (t) = 0.5xr (t) . (62)

Then, the corresponding matrices described in Section II are
given by

A =




0 0 1 0
0 0 0 1

−0.3 0.3 −0.004 0.004
0.3 −0.3 0.004 −0.004




B =




0
0
1
0


 , E =




0
0
0
1




C = [ 0 1 0 0 ] , D = 0, Ar = −1, H = 0.5.

Σ1 =




Ῡ −Ū1 + V̄ T
1 B̃0K̄ U1 0

∗ Θ22 −Ū2 + V̄ T
2 V1 U2

∗ ∗ −V̄ T
2 − V̄2 0 V2

∗ ∗ ∗ η−1
m Υ1 0

∗ ∗ ∗ ∗ κ−1Υ2
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

Ē P̄ C̄T
0 P̄ ĀT

0 P̄ ĀT
0

0 0 0 0
0 K̄T DT

0 K̄T B̃T
0 K̄T B̃T

0
0 0 0 0
0 0 0 0

−γ2I 0 ĒT ĒT

∗ −I 0 0
∗ ∗ −η−1

m M̄1 0
∗ ∗ ∗ −κ−1M̄2




(*)

Σ2 = [ J̄1 P̄ 0 J2K̄ 0 0 0 0 0 0 ]

ΣT
3 = [ F̄ T

1 0 0 0 0 0 FT
2 F̄ T

1 F̄ T
1 ]

Ῡ = Ā0 P̄ + P̄ ĀT
0 + Q̄ + ŪT

1 + Ū1 .



GAO AND CHEN: NETWORK-BASED �∞ OUTPUT TRACKING CONTROL 665

Fig. 2. Outputs y(t) and yr (t) for inputs (63).

Fig. 3. Network-induced delays.

It is assumed that: the sampling period h = 10 ms; the network-
induced delay bounds in (5) are given by ηm = 5 ms, and ηM =
10 ms; the maximum number of data packet dropouts δ̄ = 1.
Then, from (15) we have κ = 25 ms.

Our purpose is to design a state-feedback controller in the
form of (3) such that the output y(t) of the satellite system
tracks the reference signal yr (t) generated by model (62) well
in the �∞ sense. By solving the LMIs in Theorem 2 utilizing
the Matlab LMI Toolbox, we obtain the following gain matrices
for the state-feedback controller in (3):

K1 = [−41.56 − 17630.50 − 20.92 − 4256.35 ]

K2 = 6917.26

and the obtained minimum guaranteed �∞ tracking performance
in terms of the feasibility of (49) is γ∗ = 0.1267.

For simulation purposes, we assume

w(t) = 0.5 sin 5t, r(t) = sin 0.5t. (63)

Fig. 4. Data packet dropouts.

Fig. 5. Outputs y(t) and yr (t) for inputs (64).

In addition, the initial condition of the satellite system is as-
sumed to be [−0.5 1.3 0.3 − 0.3 ]T and the initial con-
dition of the reference model is 0.5. The output y(t) of the
satellite system and yr (t) of the reference model are shown in
Fig. 2, from which we can see that y(t) tracks yr (t) well. In
the simulation, the network-induced delays and the data packet
dropouts are generated randomly according to the aforesaid as-
sumption, and shown in Figs. 3 and 4. From Fig. 2, we can
see that though the initial condition is nonzero, the tracking
performance is pretty good.

Now, we take another set of input signals as follows:

w(t) =
{

0.1 sin 5t, 8 ≤ t ≤ 22

0.0, otherwise

r(t) =




0.6, 5 ≤ t ≤ 15

−0.6, 15 ≤ t ≤ 25
0.0, otherwise

(64)



666 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 3, APRIL 2008

and the initial condition is assumed to be zero for both the
satellite system and the reference model. The network-induced
delays and data packet dropouts are the same as earlier. Fig. 5
depicts the outputs y(t) of the satellite system and yr (t) of
the reference model. By calculation, ‖v‖2 = ‖w‖2 + ‖r‖2 =
0.2897, ‖e‖2 = ‖y − yr‖2 = 2.6961, which yields

‖e‖2

‖v‖2
= 0.1075 < γ∗ = 0.1267

showing the effectiveness of the �∞ tracking controller design.

VI. CONCLUSION

This paper has investigated the problem of �∞ output tracking
for networked control systems. The problem is solved by using
a sampled-data approach, which has taken both the network-
induced delays and data packet dropouts into consideration.
The network-induced delays are assumed to have both a lower
bound and an upper bound, which is more general than those
used in the literature. A new model based on the updating in-
stants of the ZOH (instead of the sampling instants) has been
formulated, and a state-feedback controller design procedure
has been proposed, which guarantees the output of the closed-
loop networked control system that tracks the output of a given
reference model well in the �∞ sense. The introduction of the
lower bound of network-induced delays has been shown, via
a numerical example, to be advantageous for reducing conser-
vatism. The controller design method was further extended to
more general cases, where the system matrices of the physi-
cal plant contain parameter uncertainties, represented in either
polytopic or norm-bounded frameworks. An illustrative exam-
ple has shown the usefulness and effectiveness of the proposed
tracking controller design methods. Finally, it is worth men-
tioning that the proposed controller is a constant one, and more
involved sampler and holder systems are expected to achieve
better performance, as illustrated in [27], which deserve further
study in the network environment.
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