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New Results on Stability of Discrete-Time Systems With
Time-Varying State Delay

Huijun Gao and Tongwen Chen

Abstract—This note is concerned with the stability analysis of dis-
crete-time systems with time-varying state delay. By defining new
Lyapunov functions and by making use of novel techniques to achieve
delay dependence, several new conditions are obtained for the asymptotic
stability of these systems. The merit of the proposed conditions lies in their
less conservativeness, which is achieved by circumventing the utilization
of some bounding inequalities for cross products between two vectors and
by paying careful attention to the subtle difference between the terms

( ) and ( ), which is largely ignored in the
existing literature. These conditions are shown, via several examples, to be
much less conservative than some existing result.

Index Terms—Delay dependence, networked control systems, robust sta-
bility, time-delay systems.

I. INTRODUCTION

Over the past few decades, time-delay systems have drawn much
attention from researchers throughout the world. This is due to their
important role in many practical systems. A great number of research
results concerning time-delay systems exist in the literature (see [1],
[3]–[6], [8]–[15], [17], and the references therein). The stability of
time-delay systems has been well known to be a fundamental problem
because of its importance in the analysis and synthesis of such systems.

Discrete-time systems with state delay have strong background in
engineering applications, among which network based control has been
well recognized to be a typical example. If the delay is constant, one
can transform a delayed system into a delay-free one by using state
augmentation techniques. In this way, stability of such systems can be
readily tested by employing classical results on stability analysis. Such
an approach, however, is not always implementable as the dimension of
the augmented system increases with the delay size. That is, when the
delay is large, the augmented system will become much complex and
thus difficult to analyze and synthesize. Moreover, the state augmenta-
tion technique is usually not applicable to the time-varying delay case,
which is more frequently encountered than the constant delay case in
practice. The reason is that for time-varying delay systems, the trans-
formed systems usually have time-varying matrix coefficients, which
are apparently difficult to analyze using available tools. Consequently,
much effort has been made towards investigating the stability of dis-
crete time-delay systems via Lyapunov approaches [5]–[7], [18]. How-
ever, it is worth mentioning that most of the results are concerned with
the constant delay case, and according to the best of the authors’ knowl-
edge, little progress has been reported for the stability analysis of dis-
crete-time systems with time-varying state delay, which motivates the
present study.
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In this note, we revisit the problem of stability analysis for dis-
crete-time systems with a time-varying delay in the state, which has
been investigated in [7]. By defining new Lyapunov functions, and by
making use of novel techniques to achieve delay dependence, several
new results are presented for the asymptotic stability. The proposed
conditions are advantageous in terms of less conservativeness, which
is achieved by circumventing the utilization of bounding inequalities
for cross products between two vectors and by paying careful atten-
tion to the subtle difference between the terms k�1

m=k�d
( � ) and

k�1

m=k�d
( � ), which is largely ignored in the previous results. Sev-

eral examples, including an inverted pendulum system with delayed
input, are provided to illustrate the advantage of the developed results.

Notation: n denotes the n-dimensional Euclidean space and the
notation P > 0 (�0) means that P is real symmetric and positive def-
inite (semidefinite). In symmetric block matrices or complex matrix
expressions, we use an asterisk ( � ) to represent a term that is induced
by symmetry and diagf. . .g stands for a block-diagonal matrix. Ma-
trices, if their dimensions are not explicitly stated, are assumed to be
compatible for algebraic operations.

II. MAIN RESULTS

A. New Stability Condition

Consider the following discrete-time system S with a time-varying
delay in the state:

S : x(k + 1) = Ax(k) +Bx(k � dk)

x(k) = �(k) k = �dM ;�dM + 1; . . . ; 0:

(1)

Here, x(k) 2 n is the state vector; A;Ad are system matrices with
compatible dimensions; dk is a time-varying delay in the state. A nat-
ural assumption on dk is made as follows.

Assumption 1: The time delays dk are assumed to be time-varying
and satisfy dm � dk � dM , where dm and dM are constant positive
scalars representing the lower and upper delays, respectively.

In system S; f�(k); k = �dM ;�dM + 1; . . . ; 0g is a given initial
condition sequence.

Remark 1: The assumption on the time delay dk in Assumption 1
characterizes the real situation in many practical applications. A typical
example containing time delays that can be characterized by Assump-
tion 1 can be found in networked control systems, where the delays
induced by the network transmission (either from sensor to controller
or from controller to actuator) are actually time-varying, and can be
assumed to have lower and upper delay bounds without loss of gener-
ality.

A stability condition for system S in (1) with Assumption 1 has been
proposed in [7], by defining the following Lyapunov function:

V (k) = V1(k) + V2(k) + V3(k) + V4(k)

V1(k) = x
T (k)Px(k) V2(k) =

k�1

i=k�d

x
T (i)Qx(k)

V3(k) =

�d +1

j=�d +2

k�1

i=k+j�1

x
T (i)Qx(i)

V4(k) =

�1

i=�d

k�1

m=k+i

�
T (m)Z�(m)

�(k) = x(k + 1)� x(k):

The calculation of the forward difference �V (k) = V (k+1)�V (k),
based on which the stability condition was derived, deserves some
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comments. Firstly, to bring the information of the delay size into
the final result (to achieve delay dependence), a model trans-
formation was performed to the original system S in (1) and,
thus, an inequality was inevitably employed to bound the inner
product between two vectors, which gave rise to possible conser-
vativeness. Second, the calculation of �V1(k) and �V4(k) led to

k�1

m=k�d
�T (m)Z�(m) and � k�1

m=k�d
�T (m)Z�(m), respec-

tively. In order to achieve counteraction, k�1

m=k�d
�T (m)Z�(m)

was enlarged to k�1

m=k�d
�T (m)Z�(m). In other words,

k�d �1

m=k�d
�T (m)Z�(m) was additionally introduced, which

was the second source of possible conservativeness. In what follows,
we present a new stability condition for the discrete-time system S in
(1) by seeking improvement from the above two aspects.

Theorem 1: System S in (1) with Assumption 1 is asymptotically
stable if there exist matrices P > 0; Q � 0; R � 0; Zi > 0; i =
1; 2;M; S;N satisfying

�1 + �2 + �T2 + �3 �4
� �5

< 0 (2)

where

�1 =

ATPA � P + �Q+R ATPB 0

� BTPB �Q 0

� � �R
� = (dM � dm + 1)

�2 = [M +N S �M � S �N ]

�3 = dM [A � I B 0]T (Z1 + Z2)[A� I B 0]

�4 = [
p
dMM

p
dM � dmS

p
dMN ]

�5 = diagf�Z1;�Z1;�Z2g: (3)

Proof: To prove the theorem, choose a Lyapunov function candi-
date as

V (k) = V1(k) + V2(k) + V3(k) + V4(k) + V5(k)

V1(k) = x
T (k)Px(k) V2(k) =

k�1

i=k�d

x
T (i)Qx(i)

V3(k) =

k�1

i=k�d

x
T (i)Rx(i)

V4(k) =

�d

j=�d +1

k�1

i=k+j

x
T (i)Qx(i)

V5(k) =

�1

i=�d

k�1

m=k+i

�
T (m)(Z1 + Z2)�(m)

�(k) = x(k + 1)� x(k) (4)

where P > 0; Q � 0; R � 0; Zi > 0; i = 1; 2; are matrices to
be determined. Define �V (k) = V (k + 1) � V (k), then along the
solution of (1) we have

�V1(k) = x
T (k + 1)Px(k + 1)� x

T (k)Px(k)

�V2(k) � x
T (k)Qx(k)� x

T (k � dk)Qx(k� dk)

+

k�d

i=k�d +1

x
T (i)Qx(i)

�V3(k) = x
T (k)Rx(k)� x

T (k � dM)Rx(k� dM)

�V4(k) = (dM � dm)x
T (k)Qx(k)

�
k�d

i=k�d +1

x
T (i)Qx(i)

�V5(k) =

�1

i=�d

[�T (k)(Z1 + Z2)�(k)

� �
T (k + i)(Z1 + Z2)�(k+ i)]

= dM�
T (k)(Z1 + Z2)�(k)�

k�1

l=k�d

�
T (l)Z1�(l)

�
k�d �1

l=k�d

�
T (l)Z1�(l)�

k�1

l=k�d

�
T (l)Z2�(l):

(5)

Define �(k) = [xT (k) xT (k � dk) x
T (k � dM)]T . Then, we have

�V (k) � x
T (k)[Ax(k) +Bx(k � dk)]

T
P [Ax(k)

+Bx(k � dk)]x(k)� x
T (k)Px(k)

+ (dM � dm + 1)xT (k)Qx(k)

� x
T (k � dk)Qx(k� dk)

+ x
T (k)Rx(k)� x

T (k � dM)Rx(k� dM)

+ dM [(A� I)x(k) +Bx(k � dk)]
T

� Z[(A� I)x(k) +Bx(k � dk)]

�
k�1

l=k�d

�
T (l)Z1�(l)

�
k�d �1

l=k�d

�
T (l)Z1�(l)

�
k�1

l=k�d

�
T (l)Z2�(l)

+ 2�T (k)M x(k)� x(k � dk)�
k�1

l=k�d

�(l)

+ 2�T (k)S x(k � dk)� x(k � dM)

�
k�d �1

l=k�d

�(l)

+ 2�T (k)N x(k)� x(k � dM)�
k�1

l=k�d

�(l)

� �
T (k) �1 + �2 + �T2 + �3 + dMMZ

�1

1 M
T

+(dM � dm)SZ
�1

1 S
T + dMNZ

�1

2 N
T

�(k)

�
k�1

l=k�d

[�T (k)M + �
T (l)Z1]Z

�1

1 [MT
�(k)

+ Z1�(l)]

�
k�d �1

l=k�d

[�T (k)S + �
T (l)Z1]Z

�1

1

� [ST �(k) + Z1�(l)]

�
k�1

l=k�d

[�T (k)N + �
T (l)Z2]Z

�1

2 [NT
�(k)

+ Z2�(l)]: (6)
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Since Zi > 0; i = 1; 2, the last three terms are all nonpositive.
By the Schur complement, (2) guarantees �1 + �2 + �T2 + �3 +
dMMZ�1

1
MT + (dM � dm)SZ

�1

1
ST + dMNZ�1

2
NT < 0. There-

fore, from (6) we have �V (k) < ��kx(k)k2 for a sufficiently small
� > 0 and x(k) 6= 0, and the asymptotic stability is established.

Remark 2: From the proof of Theorem 1, we can see that to achieve
delay dependence, no model transformation has been performed
to the original system and thus no bounding technique has been
employed to seek upper bounds of the inner product between two
vectors. This corresponds to the first comment preceding Theorem 1.
Moreover, when calculating the forward difference of �V5(k), we get
� k�1

l=k�d
�T (l)Z1�(l). In order to reduce possible conservative-

ness, we have not enlarged this to � k�1

l=k�d
�T (l)Z1�(l). Instead,

we have separated it into two parts, that is, � k�1

l=k�d
�T (l)Z1�(l)

and � k�d �1

l=k�d
�T (l)Z1�(l), and treated them using different

free-weighting techniques, respectively. As can be seen in the exam-
ples given later, these ideas render the stability condition presented in
Theorem 1 to be much less conservative than that in [7].

B. Robust Stability Condition

The stability condition developed in the above subsection can be fur-
ther extended to cope with uncertain systems. In this section, we as-
sume that the matrices in the dynamic equation of S in (1) have norm
bounded uncertainty [16] described by the following assumption.

Assumption 2: Assume that the matricesA;B in the dynamic equa-
tion of S in (1) have the following form:

A = A0 +�A B = B0 +�B (7)

where A0; B0 are known constant matrices of appropriate dimensions.
�A;�B are real-valued time-varying matrix functions representing
norm-bounded parameter uncertainties satisfying

[�A �B] = G�(k)[H1 H2]

where �(k) is a real uncertain matrix function with Lebesgue measur-
able elements satisfying �T (k)�(k) � I , and G;H1; H2 are known
real constant matrices of appropriate dimensions. These matrices
specify how the uncertain parameters in �(k) enter the nominal
matrices A0; B0.

Then, extension of Theorem 1 is presented in the following corollary
(The proof follows similar lines as in [7]).

Corollary 2: System S in (1) with Assumptions 1 and 2 is robustly
asymptotically stable if there exist matrices P > 0; Q � 0; R �
0; Zi > 0; i = 1; 2;M; S;N and scalar � > 0 satisfying (8), as shown
at the bottom of the page, where �;�i; i = 2; 4; 5, are given in (3) and
the second equation shown at the bottom of the page holds.

C. Augmented Stability Condition

In the following, we present another new stability result.
Theorem 3: System S in (1) with Assumption 1 is asymptotically

stable if there exist matrices

P =

P11 P12 P13

� P22 P23

� � P33

> 0; Q =
Q11 Q12

� Q22

� 0

R =
R11 R12

� R22

� 0 (9)

and Zi > 0; i = 1; 2;M; S;N; T satisfying

�1 +�2 +�T

2 +�3 +�T

3 �4

� �5

< 0 (10)

where �;�4;�5, are given in (3) and

�1 =

�4 0 0 �5 P12 P13

� �Q11 0 P T

12 P22 �Q12 P23

� � �R11 P T

13 P T

23 P33 �R12

� � � �6 P12 P13

� � � � P22 �Q22 P23

� � � � � P33 �R22

�2 = [M +N S �M � S �N 0 0 0]

�4 = �Q11 +R11

�3 = T [�(A� I) �B 0 I 0 0]

�5 = P11 + �Q12 +R12

�6 = P11 + �Q22 +R22 + dM(Z1 + Z2): (11)

Proof: To prove the theorem, choose a Lyapunov function candi-
date as

V (k) = V1(k) + V2(k) + V3(k) + V4(k) + V5(k)

V1(k) = �
T (k)P�(k) �(k) =

x(k)

x(k � dk)

x(k � dM)

�(Z1 + Z2) 0 �4 0
p
dM(Z1 + Z2)G

� �P �3 0 PG

� � �1 + �2 + �T2 + �2 �4 0

� � � �5 0

� � � � ��I

< 0 (8)

�1 =

�P + �Q+R 0 0

� �Q 0

� � �R
�2 = �[H1 H2 0]T [H1 H2 0]

�3 = [PA0 PB0 0] �4 = [
p
dM(Z1 + Z2)(A0 � I)

p
dM(Z1 + Z2)B0 0]
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V2(k) =

k�1

i=k�d

�
T (i)Q�(i)

V3(k) =

k�1

i=k�d

�
T (i)R�(i)

V4(k) =

�d

j=�d +1

k�1

i=k+j

�
T (i)Q�(i) �(k) =

x(k)

�(k)

V5(k) =

�1

i=�d

k�1

m=k+i

�
T (m)(Z1 + Z2)�(m)

�(k) = x(k + 1)� x(k) (12)

where P;Q;R with structures given in (9), and Zi > 0; i = 1; 2, are
matrices to be determined. Define �V (k) = V (k+1)�V (k). Then,
along the solution of (1) we have

�V1(k) = 2

x(k)

x(k � dk)

x(k � dM)

T

P

�(k)

�(k� dk)

�(k� dM)

+

�(k)

�(k� dk)

�(k� dM)

T

P

�(k)

�(k� dk)

�(k� dM)

: (13)

By following similar lines as in the proof of Theorem 1, we obtain

�V2(k)

� �
T (k)Q�(k)� �

T (k � dk)Q�(k� dk)

+

k�d

i=k�d +1

�
T (i)Q�(i) (14)

�V3(k)

= �
T (k)R�(k)� �

T (k � dM)R�(k� dM) (15)

�V4(k)

= (dM � dm)�
T (k)Q�(k)�

k�d

i=k�d +1

�
T (i)Q�(i)

(16)

�V5(k)

= dM�
T (k)(Z1 + Z2)�(k)�

k�1

l=k�d

�
T (l)Z1�(l)

�

k�d �1

l=k�d

�
T (l)Z1�(l)�

k�1

l=k�d

�
T (l)Z2�(l):

(17)

In addition, based on (1), we have

�(k) = x(k + 1)� x(k) = (A� I)x(k) +Bx(k � dk): (18)

Then, for any matrix T , we have

�
T (k)T [�(k)� (A� I)x(k)�Bx(k � dk)] = 0: (19)

Define �(k) = [xT (k) xT (k � dk) x
T (k � dM) etaT (k) �T (k �

dk) �
T (k � dM)]T . Then, similarly to (6), we have

�V (k)

� �
T (k) �1 +�2 +�T

2 +�3 + dMMZ
�1

1 M
T

+(dM � dm)SZ
�1

1 S
T + dMNZ

�1

2 N
T

�(k)

�

k�1

l=k�d

[vT (k)M + �
T (l)Z1]Z

�1

1

� [MT
v(k) + Z1�(l)]

�

k�d �1

l=k�d

[vT (k)S + �
T (l)Z1]Z

�1

1

� [ST v(k) + Z1�(l)]

�

k�1

l=k�d

[vT (k)N + �
T (l)Z2]Z

�1

2

� [NT
v(k) + Z2�(l)]: (20)

SinceZi > 0; i = 1; 2, the last three terms in the previous equation are
all nonpositive. By the Schur complement, (10) guarantees �1+�2+
�T
2 +�3+dMMZ�11 MT +(dM�dm)SZ

�1

1 ST +dMNZ�12 NT <

0. Therefore, from (20) we have �V (k) < ��kx(k)k2 for a suffi-
ciently small � > 0 and x(k) 6= 0, and the asymptotic stability is
established.

Remark 3: By introducing more matrix variables, Theorem 3 gives
another stability condition. One will naturally ask whether it can be
estabilished theoretically that Theorem 3 is generally less conservative
than Theorem 1. To answer this question, let us select the following
special structures for the matrix variables in Theorem 3:

P =

P11 0 0

� �I 0

� � �I

> 0 Q =
Q11 0

� 0
� 0

R =
R11 0

� 0
� 0

M =

M1

M2

M3

0

0

0

S =

S1

S2

S3

0

0

0

N =

N1

N2

N3

0

0

0

T =

T1

T2

T3

T4

T5

T6

with � being a sufficiently small positive constant. Then, under the
aforementioned constraints, condition (10) can be written as

W +X +X
T + UTV + (UTV )T < 0 (21)

where the equation shown at the bottom of the next page holds. Then,
by using the elimination lemma with respect to the matrix T , we can
conclude that (21) is equivalent to (2). This means that by imposing spe-
cial structures on the matrix variables in Theorem 3, we readily obtain
Theorem 1. In other words, Theorem 3 is generally less conservative
than Theorem 1.

It is also worth noting that though Theorem 3 has the advantage of
providing less conservative stability test, the matrix variables to be de-
termined are much more than those in Theorem 1. In particular, in The-
orem 3, the system matrices are involved in the products with six matrix
variables (T1; . . . ; T6)), while in Theorem 1 only three matrix variables
(P; Z1 andZ2) are involved. Therefore, it is antipicated that Theorem 1
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TABLE I
CALCULATED UPPER DELAY BOUNDS FOR DIFFERENT CASES

is more powerful when used for synthesis problems, such as controller
and filter designs, which is worth further researching.

III. ILLUSTRATIVE EXAMPLES

In this section, three examples are provided to illustrate the advan-
tage of the proposed stability results.

Example 1: Consider the following discrete-time system with a
time-varying state delay [7]:

x(k + 1) =
0:8 0

0:05 0:9
x(k) +

�0:1 0

�0:2 �0:1 x(k � dk):

Here, dk represents a time-varying state delay. Now assume the lower
delay bound of dk is dm = 2, and we are interested in the upper delay
bound dM below which the above system is asymptotically stable for
all dm � dk � dM . By using [7, Th. 1], it is found that the upper
delay bound dM = 7. However, by applying Theorem 1, we obtain
the upper delay bound dM = 13. Theorem 3 also yields dM = 13.
A more detailed comparison is given in Table 1, from which we can

see that the stability conditions presented in this note are much less
conservative than that in [7].

Example 2: Consider the following uncertain discrete-time system
with a time-varying delay in the state:

x(k + 1) =
0:8 + �(k) 0

0 0:9
x(k)

+
�0:1 0

�0:1 �0:1 x(k � dk)

where j�(k)j � ��. The system matrices can be written in the form of
(7) with matrices given by

A0 =
0:8 0

0 0:9
B0 =

�0:1 0

�0:1 �0:1 G =
��

0

H1 = [1 0] H2 = [0 0] �(k) =
�(k)

��
:

Now assume the time-varying delay dk satisfies 3 � dk � 5, and our
purpose is to determine the upper value of �� such that the above system
is asymptotically stable. By using Theorem 5 in [7], it is found that the
upper value of �� is 0.1615, while by using Corollary 2 in this note,
the upper value of �� is found to be 0.2405, which is much larger. A
more detailed comparison is given in Table II. From Table II, we can
see that the robust stability condition presented in this note is much
less conservative than that in [7]. In particular, when 2 � dk � 8 the
previous result in [7] is not feasible, while by Corollary 2 we can still
conclude that the system is asymptotically stable for �� � 0:1667.

Example 3: In this example, we consider an inverted pendulum
system with delayed control input. The inverted pendulum on a cart
is depicted in Fig. 1. In this system, a pendulum is attached to the side
of a cart by means of a pivot which allows the pendulum to swing in

W =

�Q11 +R11 0 0 P11 0 0
p
dMM1

p
dM � dmS1

p
dMN1

� �Q11 0 0 �I 0
p
dMM2

p
dM � dmS2

p
dMN2

� � �R11 0 0 �I
p
dMM3

p
dM � dmS3

p
dMN3

� � � P11 + dM(Z1 + Z2) 0 0 0 0 0

� � � � �I 0 0 0 0

� � � � 0 �I 0 0 0

� � � � � � �Z1 0 0

� � � � � � � �Z1 0

� � � � � � � � �Z2

X =

M1 +N1 S1 �M1 �S1 �N1 0 0 0 0 0 0

M2 +N2 S2 �M2 �S2 �N2 0 0 0 0 0 0

M3 +N3 S3 �M3 �S3 �N3 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

U =

I 0 0 0 0 0

0 I 0 0 0 0

0 0 I 0 0 0

0 0 0 I 0 0

0 0 0 0 I 0

0 0 0 0 0 I

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

V = [�(A� I) �B 0 I 0 0 0 0 0]
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TABLE II
CALCULATED UPPER VALUES OF � FOR DIFFERENT CASES

Fig. 1. Inverted pendulum system.

the xy-plane. A force u is applied to the cart in the x direction, with the
purpose of keeping the pendulum balanced upright. x is the displace-
ment of the center of mass of the cart from the origin O; � is the angle
of the pendulum from the top vertical; M and m are the masses of the
cart and the pendulum, respectively; l is the half length of the pendulum
(i.e., the distance from the pivot to the center of mass of the pendulum).
It is assumed that the pendulum is modeled as a thin rod, and the sur-
face is assumed to be friction free. Then, by applying Newton’s second
law, we arrive at the equations of motion for the system [2]

(M +m)�x+ml�� cos � �ml _�2 sin � = u

ml�x cos � +
4

3
ml

2�� �mgl sin � = 0

where g is the acceleration due to gravity. Now, by selecting state vari-
ables z = [z1 z2]

T = [� _�]T , and by linearizing the above model at the
equilibrium point z = 0, we obtain the following state–space model:

_z(t) =
0 1

3(M+m)g
l(4M+m)

0
z(t) +

0

� 3
l(4M+m)

u(t): (22)

Here the parameters are selected as M = 8:0 kg, m = 2:0 kg, l = 0:5
m, g = 9:8 m/s2. By assuming the sampling time to be Ts = 30 ms,
the discretized model for the above pendulum system in (22) is given
by

x(k + 1) =
1:0078 0:0301

0:5202 1:0078
x(k)

+
�0:0001

�0:0053
u(k): (23)

The poles of the system are 1.1329 and 0.8827, thus this discretized
system is unstable. It is assumed that a state-feedback delayed control
law is given by

u(k) = [102:9100 80:7916]x(k � dk)

with dm � dk � dM . When dk = 0, the closed-loop system has poles
placed at 0.9962 and 0.5809 and is thus stable. Now, assume dm = 1,
and we are interested in the upper value of dM such that the closed-loop
system remains to be asymptotically stable. By using [7, Th. 1], it is
found that the upper delay bound dM = 1. However, by applying The-
orem 1, we obtain the upper delay bound dM = 2, and by Theorem 3
the upper delay bound dM = 3, for which the closed-loop system is
asymptotically stable. These results show again that the stability con-
ditions presented in this note are generally less conservative.

IV. CONCLUSION

By defining new Lyapunov functions and by making use of novel
techniques to achieve delay dependence, several new results have been
obtained for the stability analysis of discrete-time systems with a time-
varying delay in the state. The merit of the proposed conditions lies in
their less conservativeness, which is achieved by avoiding the utiliza-
tion of bounding inequalities for cross products between two vectors
and by paying careful attention to the subtle difference between the
terms k�1

m=k�d ( � ) and k�1
m=k�d ( � ). Three examples have been

provided to show the advantage of the developed results.
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Delayed Observers for Linear Systems
With Unknown Inputs

Shreyas Sundaram and Christoforos N. Hadjicostis

Abstract—We present a method for constructing reduced-order state ob-
servers for linear systems with unknown inputs. Our approach provides a
characterization of observers with delay, which eases the established neces-
sary conditions for existence of unknown input observers with zero-delay.
We develop a parameterization of the observer gain that decouples the un-
known inputs from the estimation error, and we use the remaining freedom
to ensure stability of the error dynamics. Our procedure is quite general
in that it encompasses the design of full-order observers via appropriate
choices of design matrices.

Index Terms—State estimation, system inversion, unknown input ob-
server.

I. INTRODUCTION

In practice, it is often the case that a dynamic system can be mod-
eled as having unknown inputs. For example, in decentralized control,
it may not be possible to have knowledge of the control signals gen-
erated by different controllers [1]. Unknown inputs can also be used
to represent uncertain system dynamics and faults [2]. The problem of
constructing an observer for such systems has received considerable
attention over the past few decades, and various methods of realizing
both full and reduced-order observers have been presented in the liter-
ature (e.g., [3]–[5]). In [6], Valcher presented an elegant design proce-
dure to construct full-order observers for linear systems with unknown
inputs, along with necessary and sufficient conditions for the existence
of such observers. The investigations by Valcher and other researchers
have demonstrated that strict conditions must be met in order to recon-
struct the entire state vector in the presence of unknown inputs. In [7],
it was shown that these conditions can be relaxed by allowing delays
in the observer, but no design procedure was provided. In [8], the au-
thors handled delayed observers by constructing a higher dimensional
system which incorporated the delayed states into the new state vector.
Geometric conditions were then given for the existence of an observer
for this augmented system; this approach, however, may cause the di-
mension of the observer to be much larger than the dimension of the
system.
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In this note, we provide a design procedure to construct reduced-
order observers with delays. Specifically, our approach generalizes the
design procedure proposed by Valcher to the case of reduced-order de-
layed observers, and allows us to treat the full-order observer as a spe-
cial case of a reduced-order observer where the dynamic portion re-
constructs the entire state vector. In contrast to the work in [8], the
dimension of our observer is no greater than the dimension of the orig-
inal system, and we present algebraic existence conditions. Observers
that produce delayed estimates of the system state have the potential
to be used in a variety of applications, including feedback control [9],
chaotic communication systems [10], and fault detection and identifi-
cation [2]. Of course, in all of these applications, it will be desirable to
construct an observer with the smallest possible delay, which is a fea-
ture of the observers provided by our design procedure.

II. UNKNOWN INPUT OBSERVER

Consider a discrete-time linear system S of the form

xk+1 = Axk +Buk

yk = Cxk +Duk (1)

with state vector x 2
n, unknown input u 2

m, output y 2
p,

and system matrices (A;B;C;D) of appropriate dimensions. Note that
known inputs can be handled in a straightforward manner, and so we
omit them for clarity of development. We also assume without loss of

generality that the matrix
B

D
is full column rank. This assumption

can always be enforced by an appropriate transformation and renaming
of the unknown input signals.

The response of system (1) over � + 1 time units (� = 0; 1; 2; . . .)
is given by

yk

yk+1
...

yk+�

Y

=

C

CA
...

CA�

�

xk

+

D 0 � � � 0

CB D � � � 0
...

...
. . .

...
CA��1B CA��2B � � � D

M

uk

uk+1
...

uk+�

U

: (2)

The matrices �� and M� in the previous equation can be expressed
in a variety of ways. We will be using the following identities in our
derivations:

�� =
C

���1A
=

���1
CA�

(3)

M� =
D 0

���1B M��1

=
M��1 0

C���1 D
(4)

where ���1 � [A��1B A��2B � � � B].
Definition 1 (Rank-d Linear Functional): Let � be a d � n matrix

with rank d. Then the quantity �xk will be termed a rank-d linear func-
tional of the state vector xk .

We are now ready to proceed with the construction of an observer
to estimate the states in S . We start by determining the set of states
that can be directly obtained from the output of the system over �+ 1
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