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Direct Causality Detection via the
Transfer Entropy Approach

Ping Duan, Fan Yang, Member, IEEE, Tongwen Chen, Fellow, IEEE, and Sirish L. Shah, Member, IEEE

Abstract— The detection of direct causality, as opposed to
indirect causality, is an important and challenging problem in
root cause and hazard propagation analysis. Several methods
provide effective solutions to this problem when linear relation-
ships between variables are involved. For nonlinear relationships,
currently only overall causality analysis can be conducted, but
direct causality cannot be identified for such processes. In
this paper, we describe a direct causality detection approach
suitable for both linear and nonlinear connections. Based on an
extension of the transfer entropy approach, a direct transfer
entropy (DTE) concept is proposed to detect whether there is a
direct information flow pathway from one variable to another.
Especially, a differential direct transfer entropy concept is defined
for continuous random variables, and a normalization method for
the differential direct transfer entropy is presented to determine
the connectivity strength of direct causality. The effectiveness of
the proposed method is illustrated by several examples, including
one experimental case study and one industrial case study.

Index Terms— Differential transfer entropy, direct causality,
direct transfer entropy (DTE), information flow pathway, kernel
estimation, normalization.

NOMENCLATURE

x, y, z Continuous random variables.
x̃, ỹ, z̃ Quantized x , quantized y, and quantized z

with quantization bin sizes �x ,�y, and �z ,
respectively.

Tx→y Differential transfer entropy(TEdiff) from x
to y.

Dx→y Differential direct transfer entropy (DTEdiff)
from x to y.

tx̃→ỹ Discrete transfer entropy (TEdisc) from x̃ to ỹ.
dx̃→ỹ Discrete direct transfer entropy (DTEdisc)

from x̃ to ỹ.
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NTEx̃→ỹ Normalized discrete transfer entropy
(NTEdisc) from x̃ to ỹ.

NTEc
x→y Normalized differential transfer entropy

(NTEdiff) from x to y.
NDTEc

x→y Normalized differential direct transfer
Entropy (NDTEdiff) from x to y.

Eq. (1): Definition of the TEdiff from x to y.
Eq. (2): Definition of the TEdiff from x to z.
Eq. (3): Definition of the TEdiff from z to y.
Eq. (4): Definition of the DTEdiff from x to y.
Eq. (5): Definition of the DTEdiff from z to y.
Eq. (6): Definition of the TEdisc from x̃ to ỹ.
Eq. (10): Relationship between the TEdiff from x to

y and the TEdisc from x̃ to ỹ.
Eq. (11): Definition of the DTEdisc from x̃ to ỹ.
Eq. (18): Linear normalization of the TEdiff .
Eq. (19): Nonlinear normalization of the TEdiff .
Eq. (20): Normalization of the DTEdiff .
Eq. (21): Definition of the DTEdiff from x to y with

multiple intermediate variables.

I. INTRODUCTION

W ITH the increase in scale and complexity of process
operations, the detection and diagnosis of plantwide

abnormalities and disturbances are major problems in the
process industry. Compared with the traditional fault detection,
fault detection and diagnosis in a large-scale complex system
are particularly challenging because of the high degree of
interconnections among different parts in the system. A simple
fault may easily propagate along information and material flow
pathways and affect other parts of the system. To determine the
root cause(s) of certain abnormality, it is important to capture
the process connectivity and find the connecting pathways.

A qualitative process model in the form of a digraph
has been widely used in root cause and hazard propagation
analysis [1]. Digraph-based models usually express the causal
relationships between faults and symptoms and define the
fault propagation pathways by incorporating expert knowledge
of the process [2]. A drawback is that extracting expert
knowledge is very time consuming and that knowledge is not
always easily available [3]. The modeling of digraphs can also
be based on mathematical equations [4], [5], yet for large-
scale complex processes it is difficult to establish practical
and precise mathematical models.

Data-driven methods provide another way to find the causal
relationships between process variables. A few data-based
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methods are capable of detecting the causal relationships for
linear processes [6]. In the frequency domain, directed transfer
functions (DTFs) [7] and partial directed coherence (PDC)
[8] are widely used in brain connectivity analysis. Other
methods such as Granger causality [9], path analysis [10], and
cross-correlation analysis with lag-adjusted variables [11] are
commonly used.

The predictability improvement based on the nearest neigh-
bors is proposed as an asymmetrical measure of interde-
pendence in bivariate time series and applied to quantify
the directional influences among physiological signals [12]
and also industrial processes variables [13], [14]. Information
theory provides a wide variety of approaches for measuring
causal influence among multivariate time series [15]. Based on
transition probabilities containing all information on causality
between two variables, the transfer entropy (TE) was proposed
to distinguish between driving and responding elements [16]
and is suitable for both linear and nonlinear relationships; it
has been successfully used in chemical processes [17] and
neurosciences [18]. TE has two forms, discrete TE (TEdisc)
for discrete random variables [16], and differential TE (TEdiff )
for continuous random variables [19]. It has been shown
in [20] that, for Gaussian distributed variables with linear
relationships, Granger causality and TE are equivalent. The
equivalence of the two causality measures has been extended
under certain conditions on probability density distributions
of the data [21]. In [22], comparisons are given for sev-
eral causality detection methods; these methods include TE,
extended and nonlinear Granger causality, and predictability
improvement. That paper also includes a discussion on the
usefulness of the methods for detecting asymmetric couplings
and information flow directions in the deterministic chaotic
systems. The authors conclude that, given a complex system
with a priori unknown dynamics, the first method of choice
might be TE. If a large number of samples are available, the
alternative methods might be nonlinear Granger causality and
predictability improvement.

Since information flow specifically means how variation
propagates from one variable to another, it is valuable to detect
whether the causal influence between a pair of variables is
along a direct pathway without any intermediate variables or
indirect pathways through some intermediate variables. In the
frequency domain, a DTF/PDC-based method for quantifica-
tion of direct and indirect energy flow in a multivariate process
was recently proposed [23]. This method was based on vector
auto-regressive or vector moving-average model representa-
tions, which are suitable for linear multivariate processes. In
the time domain, a path analysis method was used to calculate
the direct effect coefficients [24]. The calculation was based
on a regression model of the variables, which captures only
linear relationships.

For both linear and nonlinear relationships, based on a
multivariate version of TE, the partial TE was proposed to
quantify the total amount of indirect coupling mediated by
the environment and was successfully used in neurosciences
[25]. In [25]. The partial TE is defined such that all the envi-
ronmental variables are considered as intermediate variables,
which is not necessary in most cases; and in any case, this will

increase the computational burden significantly. On the other
hand, the utility of the partial TE is to detect unidirectional
causalities, which is suitable for neurosciences; however, in
industrial processes, feedback and bidirectional causalities,
due to recycle streams, are common. Thus, the partial TE
method cannot be directly used for direct/indirect causality
detection in the process industry.

The main contribution of this paper is a TE-based method-
ology to detect and discriminate between direct and indirect
causality relationships between process variables of both linear
and nonlinear multivariate systems. Specifically, this method is
able to uncover explicit direct and indirect, as if through inter-
mediate variables, connectivity pathways between variables.

The rest of this paper is organized as follows. In Section II,
we apply the TEdiff for continuous random variables to detect
total causality and define a differential direct transfer entropy
(DTEdiff )1 to detect direct causality. Calculation methods and
the normalization methods are proposed for both the TEdiff
and the DTEdiff in the same section. Section III describes
three examples to show the effectiveness of the proposed
direct causality detection method. An experimental case study
and an industrial case study are introduced in Section IV to
show the usefulness of the proposed method for detecting
direct/indirect connecting pathways, followed by concluding
remarks in Section V.

II. DETECTION OF DIRECT CAUSALITY

In this section, an extension of the TE—direct transfer
entropy (DTE)—is proposed to detect the direct causality
between two variables. In addition to this, calculation methods
and the normalization methods are also presented for the TE
and the DTE, respectively.

A. DTE

In order to determine the information and material flow
pathways to construct a precise topology of a process, it is
important to determine whether the influence between a pair
of process variables is along direct or indirect pathways. The
direct pathway means direct influence without any intermedi-
ate or confounding variables.

The TE measures the amount of information transferred
from one variable x to another variable y. This extracted
transfer information represents the total causal influence from
x to y. It is difficult to distinguish whether this influence is
along a direct pathway or indirect pathways through some
intermediate variables. For example, given three variables x ,
y, and z, if the calculated transfer entropies from x to y, from
x to z, and from z to y are all larger than zero, then we can
conclude that x causes y, x causes z, and z causes y. We can
also conclude that there is an indirect pathway from x to y via
the intermediate variable z which transfers information from x
to y. However, we cannot distinguish whether there is a direct
pathway from x to y (see Fig. 1), because it is possible that
there exist both a direct pathway from x to y and an indirect
pathway via the intermediate variable z.

1We caution the reader to be aware of the term DTEdiff for “differential
direct transfer entropy” and that it is different from the term “discrete direct
transfer entropy” (DTEdisc) as it applies to discrete random variables.
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Fig. 1. Detection of direct causality from x to y.

In order to detect the direct and indirect pathways of the
information transfer, the definition of a DTE is introduced as
follows.

Since the data analyzed here is uniformly sampled data,
as obtained from processes that are continuous, we only
consider continuous random variables in this paper. Given
three continuous random variables x , y, and z, let them be
sampled at time instants i and denoted by xi ∈ [xmin, xmax],
yi ∈ [ymin, ymax], and zi ∈ [zmin, zmax] with i = 1, 2, . . . , N ,
where N is the number of samples. The causal relationships
between each pair of these variables can be estimated by
calculating the TEs [16].

Let yi+h1 denote the value of y at time instant i + h1, that
is, h1 steps in the future from i , and h1 is referred to as
the prediction horizon; y(k1)

i = [yi , yi−τ1 , . . . , yi−(k1−1)τ1] and
x(l1)

i = [xi , xi−τ1 , . . . , xi−(l1−1)τ1] denote embedding vectors
with elements from the past values of y and x , respectively
(k1 is the embedding dimension of y and l1 is the embedding
dimension of x); τ1 is the time interval that allows the scaling
in time of the embedded vector, which can be set to be
h1 = τ1 ≤ 4 as a rule of thumb [17]; f (yi+h1 , y(k1)

i , x(l1)
i )

denotes the joint probability density function (pdf), and f (·|·)
denotes the conditional pdf, and thus f (yi+h1 |y(k1)

i , x(l1)
i )

denotes the conditional pdf of yi+h1 given y(k1)
i and x(l1)

i
and f (yi+h1 |y(k1)

i ) denotes the conditional pdf of yi+h1 given
y(k1)

i . The differential TE (TEdiff ) from x to y, for continuous
variables, is then calculated as follows:

Tx→y =
∫

f (yi+h1 , y(k1)
i , x(l1)

i )

· log
f (yi+h1 |y(k1)

i , x(l1)
i )

f (yi+h1 |y(k1)
i )

dw (1)

where the base of the logarithm is 2 and w denotes
the random vector [yi+h1 , y(k1)

i , x(l1)
i ]. By assuming that

the elements of w are w1, w2, . . . , ws ,
∫
(·)dw denotes∫∞

−∞ · · ·
∫∞
−∞(·)dw1 · · · dws for simplicity, and the following

notations have the same meaning as this one.
The TE from x to y can be understood as the improvement

when using the past information of both x and y to predict
the future of y compared to only using the past information
of y. In other words, the TE represents the information
about a future observation of variable y obtained from the
simultaneous observations of past values of both x and y, after
discarding the information about the future of y obtained from
the past values of y alone.

Similarly, the TEdiff from x to z is calculated as follows:

Tx→z =
∫

f (zi+h2 , z(m1)
i , x(l2)

i )

· log
f (zi+h2 |z(m1)

i , x(l2)
i )

f (zi+h2 |z(m1)
i )

dη (2)

where h2 is the prediction horizon, z(m1)
i = [zi , zi−τ2 , . . . ,

zi−(m1−1)τ2] and x(l2)
i = [xi , xi−τ2 , . . . , xi−(l2−1)τ2] are embed-

ding vectors with time interval τ2, and η denotes the random
vector [zi+h2 , z(m1)

i , x(l2)
i ].

The TEdiff from z to y is calculated as follows:

Tz→y =
∫

f (yi+h3 , y(k2)
i , z(m2)

i )

· log
f (yi+h3 |y(k2)

i , z(m2)
i )

f (yi+h3 |y(k2)
i )

dζ (3)

where h3 is the prediction horizon, y(k2)
i = [yi , yi−τ3 , . . . ,

yi−(k2−1)τ3] and z(m2)
i = [zi , zi−τ3 , . . . , zi−(m2−1)τ3] are

embedding vectors with time interval τ3, and ζ denotes the
random vector [yi+h3 , y(k2)

i , z(m2)
i ].

If Tx→y , Tx→z , and Tz→y are all larger than zero, then we
conclude that x causes y, x causes z, and z causes y. In this
case, we need to distinguish whether the causal influence from
x to y is only via the indirect pathway through the intermediate
variable z, or, in addition to this, there is another direct
pathway from x to y, as shown in Fig. 1. We define a direct
causality from x to y as x directly causing y, which means
there is a direct information and/or material flow pathway from
x to y without any intermediate variables.

In order to detect whether there is a direct causality from
x to y, we define a differential DTE (DTEdiff ) from x to y as
follows:

Dx→y =
∫

f (yi+h , y(k)
i , z(m2)

i+h−h3
, x(l1)

i+h−h1
)

· log
f (yi+h |y(k)

i , z(m2)
i+h−h3

, x(l1)
i+h−h1

)

f (yi+h |y(k)
i , z(m2)

i+h−h3
)

dv (4)

where v denotes the random vector [yi+h, y(k)
i , z(m2)

i+h−h3
,

x(l1)
i+h−h1

]; the prediction horizon h is set to be h = max(h1,

h3); if h = h1, then y(k)
i = y(k1)

i , if h = h3, then y(k)
i =

y(k2)
i ; the embedding vector z(m2)

i+h−h3
= [zi+h−h3 , zi+h−h3−τ3,

. . . , zi+h−h3−(m2−1)τ3] denotes the past values of z which can
provide useful information for predicting the future y at time
instant i + h, where the embedding dimension m2 and the
time interval τ3 are determined by (3); the embedding vector
x(l1)

i+h−h1
= [xi+h−h1 , xi+h−h1−τ1 , . . . , xi+h−h1−(l1−1)τ1] denotes

the past values of x which can provide useful information to
predict the future y at time instant i+h, where the embedding
dimension l1 and the time interval τ1 are determined by (1).
Note that the parameters in DTEdiff are all determined by the
calculation of the TEs for consistency.

The DTEdiff represents the information about a future obser-
vation of y obtained from the simultaneous observation of past
values of both x and z, after discarding the information about
the future y obtained from the past z alone. This can mean
that if the pathway from z to y is cut off, will the history of x
still provide some helpful information to predict the future y?
Obviously, if this information is nonzero (greater than zero),
then there is a direct pathway from x to y. Otherwise, there is
no direct pathway from x to y, and the causal influence from
x to y is all along the indirect pathway via the intermediate
variable z.
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Note that the direct causality here is a relative concept; since
the measured process variables are limited, the direct causality
analysis is only based on these variables. In other words,
even if there are intermediate variables in the connecting
pathway between two measured variables, as long as none
of these intermediate variables is measured, we still state that
the causality is direct between the pair of measured variables.

After the calculation of Dx→y , if there is direct causality
from x to y, we need to further judge whether the causality
from z to y is true or spurious, because it is possible that
z is not a cause of y and the spurious causality from z to
y is generated by x , i.e., x is the common source of both
z and y. As shown in Fig. 2, there are still two cases of
the information flow pathways between x , y, and z, and the
difference is whether there is true and direct causality from z
to y.

Thus, DTEdiff from z to y needs to be calculated

Dz→y =
∫

p(yi+h , y(k)
i , x(l1)

i+h−h1
, z(m2)

i+h−h3
)

· log
p(yi+h |y(k)

i , x(l1)
i+h−h1

, z(m2)
i+h−h3

)

p(yi+h |y(k)
i , x(l1)

i+h−h1
)

dv (5)

where the parameters are the same as in (4). If dz→y > 0,
then there is true and direct causality from z to y, as shown
in Fig. 2(a). Otherwise, the causality from z to y is spurious,
which is generated by the common source x , as shown in
Fig. 2(b).

The need for detection of direct and indirect causality based
on measured process variables is discussed. The traditional
TE method only determines whether there is causality from
x to y, but we cannot tell whether the causal influence is
along a direct pathway or indirect pathways through some
intermediate variables (see Fig. 1). The purpose of process
causality analysis is to investigate propagation of faults, alarms
events, and signals through material and information flow
pathways (for example via feedback control) and in this
respect it is important to know whether the connection between
variables of interest is direct or indirect. As shown in Fig. 1, if
direct causality from x to y is detected, then there should be a
direct information and/or material flow pathway from x to y.
Otherwise, there is no direct information and/or material flow
pathway from x to y and the direct link should be eliminated.
This is clearly illustrated in the experimental three-tank case
study presented in Section IV. Such cases are common in
industrial processes; the traditional TE approach will reveal
a myriad of connections, as it is not able to discriminate
between direct and indirect causality, whereas once one is
able to detect direct paths, the number of connecting pathways
reduces significantly.

Another important case is to detect the true or spurious
causality as shown in Fig. 2. In fact, this can tell whether there
is a direct information and/or material flow pathway from z to
y or there is no information flow pathway from z to y at all.
If we only use the traditional TE method, we may conclude
that there is causal influence from z to y and therefore there
is an information flow pathway from z to y, which is not true
because they are both influenced by a common cause. Thus,

(a) (b)

Fig. 2. Information flow pathways between x , y, and z with (a) true and
direct causality from z to y, and (b) spurious causality from z to y (meaning
that z and y have a common perturbing source, x , and therefore they may
appear to be connected or correlated even when they are not connected
physically).

the detection of direct and indirect causality is necessary for
capturing the true process connectivity.

An important application of causality analysis for capturing
process connectivity is to find the fault propagation pathways
and diagnose the root cause of certain disturbance or faults.
If we only detect causality via the traditional TE approach,
total causality and spurious causality would be detected to
yield an overly complicated set of pathways from which root
cause diagnosis of faults would be difficult if not erroneous.
However, if we are able to differentiate between direct and
indirect, true and spurious causality, then the derived causal
map may be much simpler and more accurate to tell the fault
propagation pathways and which variable is the likely root
cause. This point is clearly illustrated by the industrial case
study presented in Section IV.

B. Relationships Between DTEdiff and DTEdisc

The TEdiff and the DTEdiff mentioned above are defined
for continuous random variables. For continuous random vari-
ables, a widely used TE calculation procedure is to perform
quantization first and then use the formula of TEdisc [17]. Thus,
we need to establish a connection between this quantization-
based procedure and the TEdiff procedure.

For the continuous random variables x , y, and z, let x̃ , ỹ and
z̃ denote the quantized x , y, and z, respectively. Assume that
the supports of x , y, and z, i.e., [xmin, xmax], [ymin, ymax], and
[zmin, zmax], are classified into nx , ny , and nz nonoverlapping
intervals (bins), respectively, and the corresponding quantiza-
tion bin sizes of x , y, and z are �x , �y , and �z , respectively.
Taking x for an example, if we choose a uniform quantizer,
then we have

�x = xmax − xmin

nx − 1
.

We can see that the quantization bin size is related to the
variable support and the number of quantization intervals (bin
number). Given a variable support, the larger the bin number,
the smaller is the quantization bin size.

After quantization, the TE from x to y can be approximated
by the TEdisc from x̃ to ỹ

tx̃→ỹ =
∑

p(ỹi+h1 , ỹ(k1)
i , x̃(l1)

i )·log
p(ỹi+h1 |ỹ(k1)

i , x̃(l1)
i )

p(ỹi+h1 |ỹ(k1)
i )

(6)

where the sum symbol represents k1 + l1 + 1 sums over all
amplitude bins of the joint probability distribution and con-
ditional probabilities; ỹ(k1)

i = [ỹi , ỹi−τ1 , . . . , ỹi−(k1−1)τ1] and
x̃(l1)

i = [x̃i , x̃i−τ1 , . . . , x̃i−(l1−1)τ1] denote embedding vectors;
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p(ỹi+h1 , ỹ(k1)
i , x̃(l1)

i ) denotes the joint probability distribution;
and p(·|·) denotes the conditional probabilities. The meaning
of other parameters remains unchanged.

From (6) we can express TEdisc using conditional
Shannon entropies [26] by expanding the logarithm,
as

tx̃→ỹ =
∑

p(ỹi+h1 , ỹ(k1)
i , x̃(l1)

i ) log
p(ỹi+h1 , ỹ(k1)

i , x̃(l1)
i )

p(ỹ(k1)
i , x̃(l1)

i )

−
∑

p(ỹi+h1 , ỹ(k1)
i ) log

p(ỹi+h1 , ỹ(k1)
i )

p(ỹ(k1)
i )

= H (ỹi+h1 |ỹ(k1)
i )− H (ỹi+h1|ỹ(k1)

i , x̃(l1)
i ) (7)

where

H (ỹi+h1|ỹ(k1)
i ) = −

∑
p(ỹi+h1 , ỹ(k1)

i ) log p(ỹi+h1 |ỹ(k1)
i )

and

H (ỹi+h1 |ỹ(k1)
i , x̃(l1)

i )

= −
∑

p(ỹi+h1 , ỹ(k1)
i , x̃(l1)

i ) log p(ỹi+h1 |ỹ(k1)
i , x̃(l1)

i )

are the conditional Shannon entropies.
Similar to TEdisc, we can express the TEdiff using differen-

tial conditional entropies, as

Tx→y =
∫

f (yi+h1 , y(k1)
i , x(l1)

i ) log f (yi+h1 |y(k1)
i , x(l1)

i )dw

−
∫

f (yi+h1 , y(k1)
i ) log f (yi+h1 |y(k1)

i )du

= H c(yi+h1 |y(k1)
i )− H c(yi+h1 |y(k1)

i , x(l1)
i ) (8)

where u denotes the random vector [yi+h1 , y(k1)
i ], and

H c(yi+h1 |y(k1)
i ) and H c(yi+h1 |y(k1)

i , x(l1)
i ) are the differential

conditional entropies.
Theoretically, as the bin sizes approach zero, the prob-

ability p(ỹi+h1 , ỹ(k1)
i , x̃(l1)

i ) in (7) can be approximated by
�y�

k1
y �l1

x f (yi+h1 , y(k1)
i , x(l1)

i ). Then we have

lim
�x ,�y→0

tx̃→ỹ

= lim
�x ,�y→0

{∑
�y�

k1
y �l1

x f (yi+h1 , y(k1)
i , x(l1)

i )

· log
�y�

k1
y �l1

x f (yi+h1 , y(k1)
i , x(l1)

i )

�k1
y �l1

x f (y(k1)
i , x(l1)

i )

−
∑

�y�
k1
y f (yi+h1 , y(k1)

i )

· log
�y�

k1
y f (yi+h1 , y(k1)

i )

�
k1
y f (y(k1)

i )

}

= lim
�x ,�y→0

{∑
�y�

k1
y �l1

x f (yi+h1 , y(k1)
i , x(l1)

i )

·
(

log �y + log f (yi+h1 |y(k1)
i , x(l1)

i )
)

−
∑

�y�
k1
y f (yi+h1 , y(k1)

i )

·
(

log �y + log f (yi+h1 |y(k1)
i )

)}
.

(9)

As �x ,�y → 0, we have
∑

�y�
k1
y �l1

x f (yi+h1 , y(k1)
i , x(l1)

i )

→
∫

f (yi+h1 , y(k1)
i , x(l1)

i )dw = 1,

∑
�y�

k1
y f (yi+h1 , y(k1)

i )→
∫

f (yi+h1 , y(k1)
i )du = 1

and the integral of the function f (·) log f (·) can be approxi-
mated in the Riemannian sense by

∑
�y�

k1
y �l1

x f (yi+h1 , y(k1)
i , x(l1)

i ) log f (yi+h1 |y(k1)
i , x(l1)

i )

→
∫

f (yi+h1 , y(k1)
i , x(l1)

i ) log f (yi+h1 |y(k1)
i , x(l1)

i )dw
∑

�y�
k1
y f (yi+h1 , y(k1)

i ) log f (yi+h1 |y(k1)
i )

→
∫

f (yi+h1 , y(k1)
i ) log f (yi+h1 |y(k1)

i )du.

Thus

lim
�x ,�y→0

tx̃→ỹ

= lim
�y→0

log �y

+
∫

f (yi+h1 , y(k1)
i , x(l1)

i ) · log f (yi+h1 |y(k1)
i , x(l1)

i )dw

− lim
�y→0

log �y

−
∫

f (yi+h1 , y(k1)
i ) · log f (yi+h1 |y(k1)

i )du

=
∫

f (yi+h1 , y(k1)
i , x(l1)

i ) · log f (yi+h1 |y(k1)
i , x(l1)

i )dw

−
∫

f (yi+h1 , y(k1)
i ) · log f (yi+h1 |y(k1)

i )du

=
∫

f (yi+h1 , y(k1)
i , x(l1)

i ) · log
f (yi+h1 |y(k1)

i , x(l1)
i )

f (yi+h1 |y(k1)
i )

dw

= Tx→y . (10)

This means that the differential TE from x to y is the same
as the discrete TE from quantized x to quantized y in the limit
as the quantization bin sizes of both x and y approach zero.

Remark: From (9) and (10), we can see that the difference
between the differential conditional entropy and the limiting
value of the Shannon conditional entropy as �x ,�y → 0
is an infinite offset, lim�y→0 log �y . Thus, the differential
conditional entropy can be negative.

Similar to TE, the DTE from x to y can be approximated
by a discrete DTE (DTEdisc) from x̃ to ỹ

dx̃→ỹ =
∑

p(ỹi+h , ỹ(k)
i , z̃(m2)

i+h−h3
, x̃(l1)

i+h−h1
)

· log
p(ỹi+h |ỹ(k)

i , z̃(m2)
i+h−h3

, x̃(l1)
i+h−h1

)

p(ỹi+h |ỹ(k)
i , z̃(m2)

i+h−h3
)

(11)

where ỹ(k)
i , z̃(m2)

i+h−h3
, and x̃(l1)

i+h−h1
are embedding vectors of ỹ,

z̃, and x̃ , respectively. The definitions of the other quantities
are similar to that in (4).
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Fig. 3. Relationships between TEs and DTEs. RV means random variable.

For the DTEdiff and the DTEdisc, using the same proof
procedure with the TE, we can obtain

lim
�x ,�y ,�z→0

dx̃→ỹ = Dx→y

which means that the DTEdiff from x to y is the same as the
DTEdisc from quantized x to quantized y in the limit as the
quantization bin sizes of x , y, and the intermediate variable
z approach zero. Fig. 3 illustrates the relationships between
TEdiff and TEdisc, and between DTEdiff and DTEdisc.

It should be noted that the smaller the bin size, the more
accurate is the quantization and the closer are DTEdisc and
DTEdiff . Note that the computational burden of the summation
and the probability estimation in (6) and (11) will increase
significantly with increasing quantization bin numbers, i.e., nx ,
ny , and nz . Thus, for the choice of bin sizes, there is a tradeoff
between the quantization accuracy and the computational
burden in TEdisc and DTEdisc calculations. In practice, the
conditions that the quantization bin sizes approach zero are
difficult to satisfy. Thus, in order to avoid the roundoff error
of quantization, we directly use TEdiff and DTEdiff to calculate
TE and DTE, respectively.

C. Calculation Method

1) Required Assumptions for the DTE Calculation: Since
the concept of DTE is an extension of TE, the required
assumptions for DTE is exactly the same as TE; the collected
sampled data must be stationary in a wide sense with a
large data length, preferably no less than 2000 observations
[17]. Stationarity requires that the dynamical properties of the
system must not change during the observation period. Since
in most cases we do not have direct access to the system and
we cannot establish evidence that its parameters are indeed
constant, we have to test for stationarity based on the available
dataset.

For the purpose of testing for stationarity, the simplest and
most widely used method is to measure the mean and the
variance for several segments of the dataset (equivalent to an
ergodicity test) and then use a standard statistical hypothesis
test to check whether the mean and the variance change. More
subtle quantities such as spectral components, correlations,
or nonlinear statistics may be needed to detect less obvious
nonstationarity [27]. In this paper, we use the mean and
variance to test for stationarity.

We divide a given dataset, denoted by xi , i = 1, 2, . . . , N ,
into m consecutive segments, denoted by X1, X2, . . . , Xm ,
each containing s data points. Let μ j denote the mean value of

X j , j = 1, 2, . . . , m, and μ̄ =∑m
j=1 μ j/m; then the standard

error of the estimated mean μ̄ is given by

σ =
√∑m

j=1(μ j − μ̄)2

m(m − 1)

where the standard deviation divided by an extra
√

m is the
error when estimating the mean value of Gaussian distributed
uncorrelated numbers [27]. The null hypothesis for stationarity
testing is that the dataset is stationary. The significance level
for the mean testing is defined as

|μ j − μ̄|
σ

> 6 for j = 1, 2, . . . , m. (12)

A six-sigma threshold for the significance level is chosen here.
Specifically, if there exists μ j > μ̄+ 6σ or μ j < μ̄− 6σ for
j = 1, 2, . . . , m, then the null hypothesis that the dataset is
stationary is rejected. If μ̄ − 6σ < μ j < μ̄ + 6σ holds for
all js, then the null hypothesis is accepted that the dataset is
stationary.

For the variance test, let x̂i , i = 1, 2, . . . , N denote the
normalized dataset of xi , and x̄1, x̄2, . . . , x̄m denote the
corresponding consecutive segments. Then we have x̄ j =
x̂s( j−1)+1, x̂s( j−1)+2, . . . , x̂s j for j = 1, 2, . . . , m. Since the
sum of squares of the elements in each segment has the
chi-squared distribution with s degrees of freedom v̂ j =
x̂2

s( j−1)+1+ x̂2
s( j−1)+2+ . . .+ x̂2

s j ∼ χ2
s , we can check whether

or not the dataset is stationary by comparing v̂ j with χ2
s (α).

If there exists v̂ j > χ2
s (α) for j = 1, 2, . . . , m, then the

null hypothesis that the dataset is stationary is rejected with
(1−α)× 100% confidence. If v̂ j < χ2

s (α) for all js, then the
null hypothesis is accepted.

Multimodality is often encountered in industrial processes
due to the normal operational changes as well as changes in
the production strategy [28]. For such multimodal processes,
a dataset with a large number of samples is most likely to be
nonstationary as the data would reflect transitions from one
mode to another, whereas a key assumption of the TE/DTE
method is stationarity of the sampled data. In order to handle
the process multimodality, one would have to partition the
data into different segments corresponding to different modes.
A few time-series analysis methods [29], [30] have been
proposed for segmentation of time series to determine when
the process mode has changed. As long as the segments
corresponding to different modes are obtained, we can detect
(direct) causality for each mode of the process using the
appropriate segment. Note that the causal relationships may
change with mode switching of the process.

2) Estimation of the TEdiff and the DTEdiff : For the TE
from x to y, since (1) can be written as

Tx→y = E

{
log

f (yi+h1 |y(k1)
i , x(l1)

i )

f (yi+h1 |y(k1)
i )

}

it can be approximated by

Tx→y= 1

N − h1 − r + 1

N−h1∑
i=r

log
f (yi+h1 |y(k1)

i , x(l1)
i )

f (yi+h1 |y(k1)
i )

(13)
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where N is the number of samples and r = max{(k1 − 1)
τ1 + 1, (l1 − 1)τ1 + 1}.

Just as with TEdiff , the DTEdiff (4) can be written as

Dx→y = E

{
log

f (yi+h |y(k)
i , z(m2)

i+h−h3
, x(l1)

i+h−h1
)

f (yi+h |y(k)
i , z(m2)

i+h−h3
)

}

which can be approximated by

Dx→y = 1

N − h − j + 1

·
N−h∑
i= j

log
f (yi+h |y(k)

i , z(m2)
i+h−h3

, x(l1)
i+h−h1

)

f (yi+h |y(k)
i , z(m2)

i+h−h3
)

(14)

where j = max{(k1 − 1)τ1 + 1, (k2 − 1)τ3 + 1,−h + h3 +
(m2 − 1)τ3 + 1,−h + h1 + (l1 − 1)τ1 + 1}.

3) Kernel Estimation of pdfs: In (13) and (14), the condi-
tional pdfs are expressed by the joint pdfs and then obtained
by the kernel estimation method [31]. Here, the following
Gaussian kernel function is used

k(u) = 1√
2π

e−
1
2 u2

.

Then a univariate pdf can be estimated by

f̂ (x) = 1

Nγ

N∑
i=1

k

(
x − Xi

γ

)
(15)

where N is the number of samples, and γ is the bandwidth
chosen to minimize the mean integrated squared error of the
pdf estimation and calculated by γ = 1.06σ N−1/5 according
to the “normal reference rule-of-thumb” [31], [32], where σ
is the standard deviation of the sampled data {Xi }Ni=1.

For q-dimensional multivariate data, we use the Fuku-
naga method [31] to estimate the joint pdf. Suppose that
X1, . . . , XN constitute a q-dimensional vector (Xi ∈ R

q )
with a common pdf f (x1, x2, . . . , xq). Let x denote the
q-dimensional vector [x1, x2, . . . , xq]T; then the kernel esti-
mation of the joint pdf is

f̂ (x) = (det S)−1/2

N�q

N∑
i=1

K
{
�−2(x − Xi )

TS−1(x − Xi )
}

(16)

where � is similar to the bandwidth γ in (15). The estimated
joint pdf is smoother when � is larger. However, a substantially
larger � is most likely to result in an inaccurate estimation.
Thus, � is also chosen to minimize the mean integrated
squared error of the joint pdf estimation and calculated by
� = 1.06N−1/(4+q). S is the covariance matrix of the sampled
data, and K is the Gaussian kernel satisfying

K (u) = (2π)−q/2e−
1
2 u .

Note that when q = 1, (16) is simplified into (15).
For the TE, the estimation of the computational complexity

is divided into two parts: the kernel estimation of the pdf
using (16), and the calculation of the TEdiff using (13). For
each joint pdf of dimension q , the computational complexity
is O(N2q2). Considering the conditional pdfs are estimated
by the joint pdfs, the maximum dimension of the joint pdf

is k1 + l1 + 1 and, thus, the computational complexity for
the pdf estimation is O(N2(k1 + l1)

2). For calculation of the
TEdiff in (13), approximately N summations are required.
Thus, the total computational complexity for the TEdiff is
O(N2(k1 + l1)

2). Similarly, we can obtain that the compu-
tational complexity for the DTEdiff using (14) is O(N2(k +
m2 + l1)

2). It is obvious that the number of samples and
the embedding dimensions determine the computing speed.
Since the samples number is preferred to be no less than
2000 observations [17], we need to limit the choice of the
embedding dimensions. The details on how to choose the
embedding dimensions are given in the following subsec-
tion.

Note that the computational complexity is relatively large
because of the kernel estimation of the (joint) pdfs, and
that the computational complexity for the DTE increases
with an increasing number of intermediate variables. There-
fore, one would have to apply the method to smaller
units with a smaller number of variables. A large-scale
complex system can be broken down into smaller units
and thereafter analyzed for causal relationships within each
unit and between different units, and finally the informa-
tion flow pathways of the whole process can be estab-
lished.

4) Determination of the Parameters of the TE: In the
use of the TE approach to detect causality, there are four
undetermined parameters: 1) the prediction horizon (h1); 2) the
time interval (τ1); 3) and the embedding dimensions (k1 and
l1). Since these four parameters greatly affect the calculation
results of the transfer entropies, we need to find a systematic
method to determine them.

First, since h1 = τ1 ≤ 4 as a rule of thumb [17], we can
further set initial values for h1 and τ1 according to a priori
knowledge of the process. For example, we start by setting the
initial values for h1 = τ1 = 1.

Second, we can determine the embedding dimension of y,
i.e., the window size of the historical y used for the future
y prediction. The embedding dimension of y, i.e., k1, can be
determined as the minimum nonnegative integer above which
the change rate of H c(yi+h1 |y(k1)

i ) decreases significantly.
Considering a large k1 can increase the dimension of the joint
pdf and the difficulty in pdf estimation, if k1 is greater than 3,
we need to increase h1 and τ1 and repeat the calculation until
a k1 ≤ 3 is found to make the change rate of H c(yi+h1 |y(k1)

i )
decrease significantly.

Finally, we can determine the embedding dimension of x ,
i.e., the window size of the historical x used for the future
y prediction. Based on the values of k1, h1,, and τ1, the
embedding dimension of x , i.e., l1, is determined as the
minimum positive integer above which the change rate of the
TE from x to y decreases significantly.

5) Normalization: It is easy to prove that both the TE and
the DTE are conditional mutual information; thus they are
always nonnegative. However, small values of the TE and the
DTE suggest no causality or direct causality while large values
do. In order to quantify the strength of the total causality and
direct causality, normalization is necessary.
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In [33], the normalized discrete TE (NTEdisc) is defined as

NTEx̃→ỹ =
tx̃→ỹ − tshuffled

x̃→ỹ

H (ỹi+h1 |ỹ(k1)
i )
∈ [0, 1] (17)

where tshuffled
x̃→ỹ is an estimate of the same TE in shuffled data

of x̃ and ỹ. This NTEdisc intuitively represents the fraction of
information in ỹ not explained by its own past but explained
by the past of x̃ .

Eq. (17) is suitable for the normalization of the TEdisc.
For TEdiff , we cannot just substitute H (ỹi+h1 |ỹ(k1)

i ) with
the differential conditional entropy H c(yi+h1 |y(k1)

i ), since
H c(yi+h1 |y(k1)

i ) could be negative. Moreover, using shuffled
data to eliminate the calculation bias is not accurate because
random shuffling may destroy the statistical properties of the
time series. Also, tshuffled

x̃→ỹ is an average of transfer entropies
obtained on n trials. To obtain a better result, n should be
large enough, which will increase the computational burden
significantly. Thus, we need to propose a new normalization
method for TEdiff .

In (17) the zero point is regarded as the origin and it
represents a deterministic variable. For differential entropy,
the value −∞ instead of zero means that the variable is
deterministic. The maximal differential entropy given a finite
support is in the form of a uniform distribution [34]. So, we
define the origin as the maximal differential entropy of y with
the uniform distribution

H0(y) = −
∫ ymax

ymin

1

ymax − ymin
log

1

ymax − ymin
dy

= log(ymax − ymin)

where ymax and ymin denote the maximum and minimum
values of the variable y, respectively.

Considering that the TEdiff is the difference between two
differential conditional entropies, as shown in (8), we define
the normalized differential TE (NTEdiff ) as

NTEc
x→y =

H c(yi+h1 |y(k1)
i )− H c(yi+h1 |y(k1)

i , x(l1)
i )

H0 − H c(yi+h1 |y(k1)
i , x(l1)

i )

= Tx→y

H0 − H c(yi+h1 |y(k1)
i , x(l1)

i )

∈ [0, 1]. (18)

Intuitively, the numerator term represents the TE to capture
the information about y not explained by its own history
and yet explained by the history of x ; the denominator term
represents the information in y that is provided by the past
values of both x and y. It is obvious that NTEc

x→y = 0 if
Tx→y = 0. If y is uniformly distributed and the information
about y explained by the history of both x and y is completely
explained by the history of x , which means H c(yi+h1 |y(k1)

i ) =
H0, then according to (18) we obtain NTEc

x→y = 1.
Since an entropy H represents the average number of bits

needed to optimally encode independent draws of a random
variable [16], the uncertain information contained in a signal
is in fact proportional to 2H . Here, a signal means a specific
realization of the random variable. We extend the linear

normalization function in (18) to a nonlinear function as
follows:

NTEc
x→y =

2Hc(yi+h1 |y
(k1)
i ) − 2Hc(yi+h1 |y

(k1)
i ,x

(l1)
i )

2H0 − 2Hc(yi+h1 |y
(k1)
i ,x

(l1)
i )

∈ [0, 1]. (19)

The meaning of (19) is the same as that in (18). This nonlinear
normalization function (19) will be used later.

Since the DTEdiff in (4) represents the information directly
provided from the past x to the future y, a normalized
differential DTE (NDTEdiff ) is defined as

NDTEc
x→y=

Dx→y

H c(yi+h |y(k)
i )−H c(yi+h |y(k)

i , z(m2)
i+h−h3

, x(l1)
i+h−h1

)

∈ [0, 1) (20)

where H c(yi+h |y(k)
i ) and H c(yi+h |y(k)

i , z(m2)
i+h−h3

, x(l1)
i+h−h1

) are
the differential conditional entropies. Intuitively, this NDTEdiff
represents the percentage of direct causality from x to y in the
total causality from both x and z to y.

D. Extension to Multiple Intermediate Variables

The definition of the DTEdiff from x to y can be easily
extended to multiple intermediate variables z1, z2, . . . , zq , as

Dx→y =
∫

f (yi+h , y(k)
i , z(s1)

1,i1
, . . . , z

(sq )
q,iq

, x(l1)
i+h−h1

)

· log
f (yi+h |y(k)

i , z(s1)
1,i1

, . . . , z
(sq )
q,iq

, x(l1)
i+h−h1

)

f (yi+h |y(k)
i , z(s1)

1,i1
, . . . , z

(sq )
q,iq

)
dξ (21)

where s1, . . . , sq and i1, . . . , iq are the corresponding parame-
ters determined by the calculations of the transfer entropies
from z1, . . . , zq to y, and ξ denotes the random vector

[yi+h , y(k)
i , z(s1)

1,i1
, . . . , z

(sq )
q,iq

, x(l1)
i+h−h1

]. If dx→y is zero, then
there is no direct causality from x to y, and the causal
effects from x to y are all along the indirect pathways via the
intermediate variables z1, z2, . . . , zq . If dx→y is larger than
zero, then there is direct causality from x to y.

The formulations of the proposed DTE and the partial TE
in [25] are similar, but the basic ideas are quite different. The
major difference is that for the partial TE, all the environmen-
tal variables are considered as intermediate variables, whereas
for the DTE, the intermediate variables are chosen based on
calculation results from the traditional TE. Specifically, the
partial TE was proposed as a substitution of the traditional TE.
We can choose either traditional TE to detect total causality or
partial TE to detect partial causality only. However, the DTE
was proposed here as an extension of the traditional TE and
should be used after capturing the information flow pathways
via the traditional TE method. The intermediate variables from
x to y are determined as the variables within the information
flow pathway from x to y (see Fig. 1) and common sources
of both x and y (see Fig. 2).

More specific comparisons between the partial TE and the
DTE are as follows:
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1) The partial TE is defined such that all the environmental
variables are considered as intermediate variables, which
is not necessary in most cases and in any case this will
increase the computational burden significantly. More-
over, this may even result in false causality detection. For
example, given three variables x , y, and z, assume that
x and y are independent and the true causal relationship
between them is that x causes z and y also causes z,
i.e., x → z ← y. It is clear that, given the information
of z, x and y are no longer independent. If we use the
partial TE to detect the causality from x to y, given
information of z, it is most likely to conclude that there
is causality between x and y as long as there is a
time delay between them, although in fact the detected
causality between x and y does not exist. While using
the DTE method, we need to first detect causality by
using the traditional TE method, and then determine
which variable is the intermediate variable. Since the
information of z is unknown while using the traditional
TE method in which only two variables x and y are
considered, the causality between x and y cannot be
detected, and then we conclude that there is no causal
relationship between x and y, which is consistent with
the fact.

2) For calculations of the traditional TE, the partial TE, and
the DTE, it is important to determine the parameters for
each variable, i.e., the prediction horizon, embedding
dimensions, and the time interval. Much research has
been done on how to determine these parameters for
the traditional TE. For example, in [17], many simula-
tions have been done to determine these parameters. In
this paper, we also propose a parameter determination
method for calculating the traditional TE in Section II-
C. We can see that, for only two variables, it is not easy
to determine the parameters. If all the environmental
variables are considered as intermediate variables, the
parameters for a large number of variables need to
be chosen simultaneously and appropriately, which is
nontrivial to achieve. But, for the DTE method, the
parameters are determined based on the calculation of
the traditional transfer entropies; thus, as long as the
parameters of the traditional TE for each pair of the vari-
ables are determined, the parameters in the formulation
of the DTE can be determined accordingly. Details can
be found in the definition of the DTE in Section II-A.

3) From the application point of view, the utility of the
partial TE is to detect unidirectional causalities [25]. The
authors of [25] use the difference between the partial TE
from x to y and the partial TE from y to x to quantify
the causality from x to y, which is suitable in neu-
rosciences; however, in industrial processes, feedback
and bidirectional causalities are common due to recycle
streams. If we still use the difference between TE from
x to y and the TE from y to x to quantify the causality
from x to y, it is most likely to lead to the conclusion
that there is no causal relationship between x and y,
although in fact there is bidirectional causality between
x and y. Thus, we use the calculated TE and DTE to

quantify total causality and direct causality, respectively.
In addition, we propose normalization methods to quan-
tify the strength of the total causality and direct causality,
respectively.

III. EXAMPLES

In this section, we give three examples to show the use-
fulness of the proposed method. The first two examples use
simple mathematical equations to represent causal relation-
ships and the third example is a simulated 2×2 multiple-input
multiple-output (MIMO) system.

Example 1: Assume three linear correlated continuous ran-
dom variables x , y, and z satisfying{

zk+1 = 0.8xk + 0.2zk + v1k

yk+1 = 0.6zk + v2k

where xk ∼ N(0, 1), v1k, v2k ∼ N(0, 0.1), and z(0) = 3.2.
The simulation data consists of 6000 samples. To ensure
stationarity, the initial 3000 data points were discarded.

To calculate the transfer entropies between x , z, and y,
we need to determine the four design parameters. We take
the TE from x to y in (1) as an example. First, we set
initial values for h1 and τ1 as h1 = τ1 = 1. Second, we
calculate H c(yi+h1 |y(k1)

i ) with k1 = 0, 1, . . . , 10, as shown in
the upper part of Fig. 4. The change rate of H c(yi+h1 |y(k1)

i )
with k1 = 0, 1, . . . , 10 is shown in the lower part of Fig. 4; we
can see that as k1 increases, the change rate of H c(yi+h1 |y(k1)

i )
does not vary sharply, which means that the history of y does
not provide useful information for the future values of y.
Therefore, we choose k1 = 0. Finally, we calculate the TE
Tx→y and its change rate with l1 = 1, . . . , 10, as shown in
Fig. 5. Since the change rate of Tx→y decreases significantly
after l1 = 2, as shown in the lower part of Fig. 5, we choose
l1 = 2. Using the same procedure, the parameters for each
pair of x , z, and y are determined as h1 = h2 = h3 = 1,
τ1 = τ2 = τ3 = 1, k1 = m1 = k2 = 0, l1 = 2, and
l2 = m2 = 1. For the following example and case studies,
the same procedure is used.

After the parameters are determined according to (19), the
normalized transfer entropies between each pair of x , y, and z
are shown in Table I. We can see that x causes z, z causes y,
and x causes y because NTEc

x→z = 0.409, NTEc
z→y = 0.393,

and NTEc
x→y = 0.348 are relatively large. Thus we need to

first determine whether there is direct causality from x to y.
According to (4), we obtain Dx→y = 0.016. According to
(20), the normalized DTE from x to y is NDTEc

x→y = 0.016,
which is very small. Thus, we conclude that there is almost no
direct causality from x to y. The information flow pathways
for Example 1 are shown in Fig. 6(a).

This conclusion is consistent with the mathematical func-
tion, from which we can see that the information flow from
x to y is through the intermediate variable z and there is no
direct information flow pathway from x to y.

Example 2: Assume three nonlinear correlated continuous
random variables x , y, and z satisfying{

zk+1 = 1− 2 | 0.5− (0.8xk + 0.4
√

zk) | +v1k

yk+1 = 5(zk + 7.2)2 + 10
√| xk | + v2k
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Fig. 4. Finding the embedding dimension of y for Example 1.
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Fig. 5. Finding the embedding dimension of x for Tx→y of Example 1.

TABLE I

NORMALIZED TRANSFER ENTROPIES FOR EXAMPLE 1

NTEc
row→column x z y

x NA 0.409 0.348

z 0.058 NA 0.393

y 0.055 0.044 NA

where xk ∈ [4, 5] is a uniform distributed signal, v1k, v2k ∼
N(0, 0.05), and z(0) = 0.2. The simulation data consists of
6000 samples. To ensure stationarity, the initial 3000 data
points were discarded.

The normalized transfer entropies between each pair of x ,
z, and y are shown in Table II. We can see that x causes
z, z causes y, and x causes y because NTEc

x→z = 0.623,
NTEc

z→y = 0.308, and NTEc
x→y = 0.274 are relatively

large.

Fig. 6. Information flow pathways for (a) Example 1. (b) Example 2.

TABLE II

NORMALIZED TRANSFER ENTROPIES FOR EXAMPLE 2

NTEc
row→column x z y

x NA 0.623 0.274

z 0 NA 0.308

y 0 0.048 NA

0.7

Fig. 7. System block diagram for Example 3.

Thus, we need to first determine whether there is direct
causality from x to y. According to (4), we obtain
Dx→y = 0.373. According to (20), the normalized DTE from
x to y is NDTEc

x→y = 0.304, which is much larger than
zero. Thus, we conclude that there is direct causality from x
to y. Second, we need to detect whether there is true and
direct causality from z to y. According to (5), we obtain
Dz→y = 0.538, and thus the normalized DTE from z to y is
NDTEc

z→y = 0.438, which is much larger than zero. Hence,
we conclude that there is true and direct causality from z to y.
The information flow pathways for Example 2 are shown in
Fig. 6(b).

This conclusion is consistent with the mathematical func-
tion, from which we can see that there are direct information
flow pathways both from x to y and from z to y.

Example 3: Fig. 7 shows a block diagram of a MIMO
system with two inputs r1 and r2, and two outputs y1 and y2.
Assume that r1 ∼ N(0, 1) and r2 ∼ N(0, 1) are independent,
and v ∼ N(0, 0.1) is the sensor noise. The simulation data
consists of 6000 samples. To ensure stationarity, the initial
3000 data points were discarded.

The normalized transfer entropies between each pair of r1,
r2, y1, and y2 are shown in Table III. We can see that r1
causes y1 and y2, r2 also cause y1 and y2, and y2 causes y1.
The corresponding information flow pathways are shown in
Fig. 8.
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TABLE III

NORMALIZED TRANSFER ENTROPIES FOR EXAMPLE 3

NTEc
row→column r1 r2 y1 y2

r1 NA 0.014 0.242 0.187

r2 0.016 NA 0.212 0.259

y1 0.018 0.016 NA 0.043

y2 0.017 0.016 0.184 NA

Fig. 8. Information flow pathways for Example 3.

As shown in Fig. 8, since y1 and y2 have common sources
r1 and r2, we need to first detect whether the causality from
y2 to y1 is true or spurious. According to (21), we obtain that
the DTE from y2 to y1 with intermediate variables r1 and r2
is Dy2→y1 = 0.474. According to (20), the normalized DTE
from y2 to y1 is NDTEc

y2→y1
= 0.366, which is much larger

than zero. Hence, we conclude that there is true and direct
causality from y2 to y1.

Second, since r1 causes y2, y2 causes y1, and r1 causes y1,
we need to further detect whether there is direct causality from
r1 to y1. According to (4), we obtain that the DTE from r1
to y1 with the intermediate variable y2 is Dr1→y1 = 0.610.
According to (20), the normalized DTE from r1 to y1 is
NDTEc

r1→y1
= 0.573, which is much larger than zero. Thus,

we conclude that there is direct causality from r1 to y1 in
addition to the indirect causality through intermediate variable
y2. Similarly, we obtain that the DTE from r2 to y1 with
the intermediate variable y2 is Dr2→y1 = 0.732 and the
normalized DTE from r2 to y1 is NDTEc

r2→y1
= 0.617, which

is also much larger than zero. Thus, we conclude that there is
direct causality from r2 to y1. The information flow pathways
are the same as those obtained from the results of calculated
TEs, as shown in Fig. 8.

This conclusion is consistent with the block diagram, from
which we can see that there are direct information flow
pathways from r1 to y1, from r2 to y1, and from y2 to y1.

No matter whether the relationships of variables are linear
or nonlinear, the DTE can detect direct causality and the
normalized DTE can quantify the strength of direct causality.

IV. CASE STUDIES

In this section, an experimental and an industrial case
studies are illustrated to validate the proposed direct causality
detection method.

A. Experimental Case Study

In order to show the effectiveness of the proposed methods,
a three-tank experiment was conducted. The schematic of the
three-tank system is shown in Fig. 9. Water is drawn from a

Fig. 9. Schematic of the three-tank system.

1 3000

x1

x2

x3

x4

Samples

Time Trends

Fig. 10. Time trends of measurements of the three-tank system.

reservoir and pumped to tanks 1 and 2 by a gear pump and
a three way valve. The water in tank 2 can flow down into
tank 3. The water in tanks 1 and 3 eventually flows down into
the reservoir. The experiment is conducted under open-loop
conditions.

The water levels are measured by level transmitters. We
denote the water levels of tanks 1–3 by x1, x2, and x3,
respectively. The flow rate of the water out of the pump is
measured by a flow meter; we denote this flow rate by x4. In
this experiment, the normal flow rate of the water out of the
pump is 10 l/min. However, the flow rate varies randomly with
a mean value of 10 l/min because of the noise in the sensor
and minor fluctuations in the pump. The sampled data of 3000
observations are analyzed. Fig. 10 shows the normalized time
trends of the measurements. The sampling time is 1 s.

In order to detect the causality and direct causality using TE
and DTE, we need to first test the stationarity of the dataset.
Taking x1 as an example, we divide the 3000 data points into
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(a)

(b)

Fig. 11. Testing for stationarity. (a) Mean testing. (b) Variance testing. The
dashed lines indicate the threshold.

TABLE IV

NORMALIZED TRANSFER ENTROPIES FOR THE THREE-TANK SYSTEM

NTEc
row→column x1 x2 x3 x4

x1 NA 0.024 0.010 0

x2 0.012 NA 0.200 0

x3 0.017 0.007 NA 0

x4 0.199 0.171 0.152 NA

10 consecutive segments, each containing 300 data points. The
threshold of the mean values for each segment is determined
by (12). In Fig. 11(a), the solid line shows the mean for
each segment and the dashed line represents the threshold.
Since all the mean values are within the threshold, we may
conclude that the data is stationary according to the mean
testing. Next, we test the properties of the variance. Here we
choose α = 0.001; thus, the threshold is χ2

300(0.001) = 381.43
with a 99.9% confidence. The χ2 statistics of the variance
for each segment is shown in Fig. 11(b), where the solid
line shows the sum of squares of the elements for each
segment after normalization and the dashed line represents
the threshold. We can see that all the variance values are
smaller than the threshold, and therefore we conclude that
the dataset of x1 is stationary. Using the same procedure,
the stationary properties of other variables are tested. For
the following industrial case study, the same procedure is
used.

The normalized transfer entropies between each pair of x1,
x2, x3, and x4 are shown in Table IV. We can see that x2
causes x3, and x4 causes x1, x2, and x3. The corresponding
information flow pathways are shown in Fig. 12(a). As shown
in Fig. 12(b), since x4 causes x2, x2 causes x3, and x4 causes
x3, we need to first detect whether there is direct causality
from x4 to x3.

Fig. 12. Information flow pathways for the three-tank system based on the
calculation results of normalized transfer entropies.

Fig. 13. Information flow pathways for three-tank system based on calcula-
tion results of normalized DTE.

Fig. 14. Schematic of part of the FGD process.

According to (4), we obtain Dx4→x3 = 0.006. According
to (20), the normalized DTE from x4 to x3 is NDTEc

x4→x3
=

0.030, which is very small. Thus, we conclude that there is
almost no direct causality from x4 to x3. The corresponding
information flow pathways according to these calculation
results are shown in Fig. 13, which are consistent with the
information and material flow pathways of the physical three-
tank system (see Fig. 9).

B. Industrial Case Study

Another case study is a part of a flue gas desulfurization
(FGD) process at an oil company in Alberta, Canada. The
schematic of this part of the process is shown in Fig. 14,
including a reactor, two tanks, and a pond. Tank 1 receives
the overflow from the reactor if it overflows. The liquid in
Tank 1 is drawn into the reactor by Pump 1; the liquid in
the reactor is drawn into Tank 2 by Pump 2, and the liquid
level of the reactor is controlled by adjusting the flow rate
of the liquid out of Pump 2; the liquid in Tank 2 is drawn
into the pond by Pump 3, and the liquid level of Tank 2
is controlled by adjusting the flow rate of the liquid out of
Pump 3. These two level control loops imply that there is a
bidirectional relationship between the levels and the flow out
of the tank due to material as well as information (due to
feedback) flow pathways.
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Fig. 15. Time trends of measurements of the FGD process.

TABLE V

NORMALIZED TRANSFER ENTROPIES FOR PART OF FGD PROCESS

NTEc
row→column y1 y2 y3 y4 y5

y1 NA 0.001 0.089 0.177 0.014

y2 0.131 NA 0.117 0.154 0.010

y3 0.078 0.005 NA 0.008 0.105

y4 0.128 0.005 0.095 NA 0.019

y5 0.016 0.001 0.130 0.012 NA

Fig. 16. Information flow pathways for part of FGD process based on
calculation results of normalized transfer entropies.

We denote the liquid levels of the reactor, Tanks 1, and 2 by
y1, y2, and y3, respectively. There is no measurement of the
flow rate of the liquid out of Pump 1. We denote the flow rates
of the liquid out of pumps 2 and 3 by y4 and y5, respectively.
The sampled data of 3544 observations are analyzed. Fig. 15
shows the normalized time trends of the measurements. The
sampling time is 1 min.

The normalized transfer entropies between each pair of y1,
y2, y3, y4, and y5 are shown in Table V. We can choose
the threshold as 0.02: if the normalized TE is less than
0.02, then there is almost no causality. The information flow
pathways based on the normalized transfer entropies are shown
in Fig. 16. We need to further determine whether the causality
between y1, y2, y3, y4, and y5 is true and direct.

Calculation steps of direct transfer entropies and corre-
sponding simplified information flow pathways are shown in
Fig. 17. We first determine whether the causality between y1
and y3 is true and direct by considering y2 and y4 as the
possible intermediate variables (Steps 1 and 2). The calculation
results of DTE and normalized DTE are shown in Table VI.
Since the normalized DTEs between y1 and y3 are very small,

TABLE VI

CALCULATED AND NORMALIZED DTES FOR PART OF FGD PROCESS

Intermediate Variable (s) DTE Normalized DTE

y1 → y3 y2, y4 0.031 0.024

y3 → y1 y2, y4 0.028 0.023

y2 → y1 y4 0.374 0.425

y2 → y4 y1 0.013 0.025

y2 → y3 y1, y4 0.027 0.021

Fig. 17. Calculation steps of direct transfer entropies.

Fig. 18. Information flow pathways for part of FGD process based on
calculation results of normalized DTE.

we conclude that there is almost no direct causality between
them. Secondly, we determine whether the causality from y2 to
y1 is direct by considering the possible intermediate variable
y4 (Step 3). Similarly, the causality from y2 to y4 can be
determined by considering the possible intermediate variable
y1 (Step 4). Finally, we detect the direct causality from y2 to
y3 with the possible intermediate variables y1 and y4 (Step
5). Based on the calculation results shown in Table VI, we
conclude that, except for the causality from y2 to y1, the other
detected causality is indirect or spurious. Note that here we
do not need to further detect the direct causality between
y1 and y4, from y4 to y3, and from y5 to y3 since there
is no possible intermediate variable in their pathways. The
information flow pathways based on calculated direct transfer
entropies are shown in Fig. 18.

An overview of causality between process variables is
shown in Fig. 19. Causal relationships from variables on the
vertical axis to variables on the horizontal axis are represented
by three different symbols. ‘.’ means no causality; ‘�’ means
direct causality; ‘�’ means causality can be detected but it is
indirect or spurious.

From Fig. 18, we can see that the spurious causality between
the liquid levels of the reactor and Tank 2, i.e., between y1 and
y3, is generated by the flow rate of the liquid out of Pump 2,
i.e., y4. Similarly, if we can obtain the measurement of the
flow rate of the liquid out of Pump 1, the causality from the
liquid level of Tank 1 to the liquid level of the reactor, i.e.,
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Fig. 19. Overview of causal relationships between FGD process variables.
“.” means no causality; “�” means direct causality; “�” means causality can
be detected, but it is indirect or spurious.

from y2 to y1, will also disappear. However, since the flow
rate of the liquid out of Pump 1 is not measured, we still say
that there is direct and true causality from y2 to y1. Thus, the
connecting pathways shown in Fig. 18 are consistent with the
information and material flow pathways of the physical process
shown in Fig. 14, where the solid lines indicate material flow
pathways and the dashed lines denote control loops. Note that,
as mentioned earlier, the bidirectional causality between y1
and y4 and between y3 and y5 are due to the level feedback
control loops.

V. CONCLUSION

In industrial processes, abnormalities often spread from one
process variable to neighboring variables. It is important to
determine the fault propagation pathways to find the root cause
of the abnormalities and the corresponding fault propagation
routes. TE can measure the causality between two process vari-
ables, i.e., the direction of the information flow. Furthermore,
it is valuable to detect whether the influence is along direct or
indirect pathways. A direct causality detection method based
on the DTE has been proposed to detect whether there is a
direct information and/or material flow pathway between each
pair of variables. The DTEdiff for continuous random variables
was defined based on an extension of the TE, which is suitable
for both linear and nonlinear relationships. The TEdiff and
the DTEdiff were shown, respecitively to be equivalent to the
TEdisc and the DTEdisc in the limit as the quantization bin sizes
approach zero. The NTEdiff and the NDTEdiff were defined
to measure the connectivity strength of causality and direct
causality, respectively. The proposed methods were validated
by two examples and two case studies.

Although the proposed method can be used to detect the
direct causality between two process variables, there are still
a number of unresolved questions.

1) The detection of direct information flow can be refor-
mulated as a hypothesis test problem. Taking the direct
causality from x to y with an intermediate variable
z as an example, the null hypothesis should be that
there is no direct causality from x to y and that the
causality from x to y is indirect through z. In order
to carry out this hypothesis testing, similar to the TE,
we may use the bootstrap method [25] or the Monte
Carlo method [17] by constructing resampling data or
surrogate data (randomly shuffled data or by the iterative

amplitude adjusted Fourier transform (iAAFT) method
[35]). However, the constructed data must satisfy the
null hypothesis that the direct information flow from x
to y must be completely destroyed while the indirect
pathway through z still exists. At the same time, the
statistical properties of x , y, and z should not change.
It is generally difficult to construct such surrogate or
resampling data. Thus, our ongoing study is related to
the confidence level determination of the DTE.

2) Similar to the TE, the calculation of the DTE needs to
estimate the high-dimensional joint pdfs; for example,
the dimension of f (yi+h , y(k)

i , z(m2)
i+h−h3

, x(l1)
i+h−h1

) in (4)
is m2 + l1 + k + 1 ≥ 3. It is important to employ an
accurate (less Type I and Type II errors) and efficient
(less computational burden with a certain accuracy level)
pdf estimation algorithm. Although the kernel estimation
method is widely used, with increasing dimension of the
variables, a more accurate and efficient pdf estimation
algorithm needs to be developed.
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