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Preface

Many techniques are available for designing linear multivariable ana-
log controllers: pole placement using observer-based controllers, loop-
shaping, the inverse Nyquist array method, convex optimization in
controller parameter space, and so on. One class of techniques is to
specify a performance function and then optimize it, and one such
performance function is the norm of the closed-loop transfer matrix,
suitably weighted. The two most popular norms to optimize are the
Ho and Hso norms. The fact that most new industrial controllers
are digital provides strong motivation for adapting or extending these
design techniques to digital control systems.

This book is intended as a graduate text in linear sampled-data
(SD) control systems. The subject of SD control is a subdomain of
digital control; it deals with sampled signals and their discrete-time
processing, but not with quantization effects nor with issues of real-
time software. SD control systems consist of continuous-time plants
to be controlled, discrete-time controllers controlling them, and ideal
continuous-to-discrete and discrete-to-continuous transformers.

As a prerequisite, the ideal reader would know multivariable analog
control design, especially Ho and Ho, theory—a user’s guide to Ho
and Ho theory is presented in Chapter 2. A prior course on digital
control at the undergraduate level would also be an asset. Standard
facts about state models in continuous and discrete time are collected
in the appendix.

Part I (Chapters 2-8) is aimed at first-year graduate students,
while Part II (Chapters 9-13) is more advanced. In particular, some
of the development in the later chapters is framed in the language of
operator theory.

In Part I we present two indirect methods of SD controller design:

— Discretize the plant and design the controller in discrete time.
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— Design the controller in continuous time, then discretize it.

These two approaches both involve approximations to the real prob-
lem, which involves an analog plant, continuous-time performance
specifications, and a SD controller. Part II proposes a direct attack
in the continuous-time domain, where SD systems are time-varying
(actually, periodic). The main problems addressed are Ho and Heo
optimal SD control. The solutions are presented in forms that can
readily be programmed in, for example, MATLAB. MATLAB with
the p-Tools toolbox was used for the examples.
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Chapter 1

Introduction

The signals of interest in control systems—command inputs, track-
ing errors, actuator outputs, etc.—are usually continuous-time signals
and the performance specifications—bandwidth, overshoot, risetime,
etc.—are formulated in continuous time. But since digital technology
offers many benefits, modern control systems usually employ digital
technology for controllers and sometimes sensors. A digital controller
performs three functions: It samples and quantizes a continuous-time
signal (such as a tracking error) to produce a digital signal; it pro-
cesses this digital signal using a digital computer; and then it converts
the resulting digital signal back into a continuous-time signal. Such
a control system thus involves both continuous-time and discrete-time
signals, in a continuous-time framework.

Similarly, in many communication systems the input and output
signals are continuous-time. For example, in the radio broadcast of a
live musical performance, the input to the communication system is
the music signal generated by the performers and the output is the
audio signal emanating from the radio’s speaker. For digital commu-
nication, the music signal could be sampled and quantized, giving a
digital signal; this latter could be transmitted over a communication
channel; and then the received digital signal could be transformed back
into continuous time.

Sampled-data systems operate in continuous time, but some continuous-
time signals are sampled at certain time instants (usually periodically),
yielding discrete-time signals. Sampled-data systems are thus hybrid
systems, involving both continuous-time and discrete-time signals.
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1.1 Sampled-Data Systems

We start with a control system example.

Example 1.1.1 Ball-and-beam. An interesting example is the ball-
and-beam setup shown in Figure 1.1. A metal ball rolls along a groove

beam

— PC motor

analog
filter

Figure 1.1: Ball-and-beam setup.

in a balance beam, the angle of tilt of the beam is driven by a motor,
and this in turn is driven by a personal computer (PC). The goal is to
control the ball’s position on the beam.

Look at the motor first. An excitation voltage is applied at its
input. This generates a motor torque, 7, by which the angle of tilt of
the beam is altered. The distance, d, of the ball from the centre of the
beam is sensed (for example, the ball could short a circuit and act as
a voltage divider), thus providing a voltage input to the analog filter,
a low-pass filter whose purpose is both to provide anti-aliasing and to
smooth the measurement of d. Denote by dy the output of the filter.

Now look at the PC. It has one output—the voltage input to the
motor—and three inputs—an externally generated reference voltage
(denoted r below) and two other voltages from the motor, one propor-
tional to the angle of the motor’s shaft (f) and the other proportional
to its angular velocity (f). The PC is fitted with a card that can do
analog-to-digital (A/D) and digital-to-analog (D/A) conversion.

The block diagram is shown in Figure 1.2.  The “u” component
denotes the actual processing unit of the PC. Note that a continuous-
time signal is drawn by a continuous arrow and a discrete-time signal
by a dotted arrow.
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_,Q—, ....... >
- A/D ....... IV ,D/A motor T all—beam—d—>
dj

analog filter

Figure 1.2: Block diagram of ball-and-beam.

This is an example of a digital control system. It is useful to
reconfigure the preceding block diagram. First, let us designate four
signals:

z = signal to-be-controlled.

Suppose at present that we are concerned only with the tracking re-
quirement that d should be close to r; then we should take

z=r—d.
The second signal is

y = measured signal

= input to digital controller.
In this case we have y a 3-vector:

r—dy
y= 0
0
The third signal is

w = exogenous input, consisting of reference commands,

disturbances, and sensor noise.

Thus w is obtained from all the signals coming from outside of the
control system. In this case we have simply

w=r.
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Finally, the fourth signal is

u

= control input

= output of the digital controller.

With these four signals we can reconfigure the system as shown in
Figure 1.3.

z w
G
Yy U
P )

Figure 1.3: Standard digital control system.

This setup in Figure 1.3 is called the standard digital control sys-
tem. Let us note the following points:

e 2z, y, w, u are continuous-time signals, perhaps vector-valued,

whose amplitudes can be any real numbers. Continuous-time
signals will be represented by Roman letters.

1, v are digital signals, possibly vector-valued (like % in the
example). (A digital signal is a discrete-time signal with a quan-
tized amplitude.) Discrete-time signals will be represented by
Greek letters.

G is a dynamical system consisting of physical components (the
motor, the ball-beam, the analog filter) and interconnection el-
ements (summing junctions; notice that only one of the two
summing junctions above is actually physically present). This
system, G, is called the generalized plant. 1t is fixed, that is,
designated prior to the control design problem.
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e A/D is an analog-to-digital converter, in general, multi-input,
multi-output.

e D/A is a digital-to-analog converter, in general, multi-input,
multi-output.

e 1 is a microprocessor or the central processing unit of a general
purpose digital computer.

For purposes of analysis and design, the standard digital control
system is idealized. Note that it has the form shown in Figure 1.4,
where the controller K consists of the three components

4 w

—————

Figure 1.4: Standard control system.

<_l)/A< ........ [V IR A/D<_

The mathematical idealization of K is

U v P Y
g e Ky e S =

These three components are described as follows:

1. S is the ideal sampler. Tt periodically samples y(¢) to yield the
discrete-time signal (k). Let h denote the sampling period.
Thus

P(k) :=y(kh).

In general, y(¢) and (k) are both vectors, of the same dimension.
Note that (k) is not quantized in amplitude.



6 CHAPTER 1. INTRODUCTION

2. K, is a finite-dimensional (FD), linear time-invariant (LTI), causal,
discrete-time system. Its input and output at time k are (k)
and v(k). We could use difference equations, state-space equa-
tions, or transfer functions to model K;. (Much more on this
later.)

3. H is the hold operator. It converts the discrete-time signal v into
the continuous-time signal u(t) simply by holding it constant over
the sampling intervals. Thus

u(t) =v(k) for kh <t<(k+1)h.

Note that S and H are synchronized, physically by a clock. They
are ideal system elements: S instantaneously samples its input; the
output of H instantaneously jumps at the sampling instants. (Real
A/D and D/A devices are electronic components and obviously don’t
behave exactly like this.) The full title of H is “zero-order-hold.”
There are many other ways to convert a discrete-time signal into a
continuous-time one.

Let us observe the following terminology:

sampling period: h
sampling instants: ..., —2h,—h,0,h,2h, 3h,...

sampling intervals: ...,[—h,0),[0,h),[h,2h),...
{Recall that [—h,0) denotes the set of times t with —h <t < 0.}

Using our idealizations S and H, we obtain the idealized model of
the standard digital control system shown in Figure 1.5. This is called
the standard sampled-data (SD) system. So “sampled-data” refers to a
system having both continuous-time and discrete-time signals, whereas
“digital” refers to a system having digital signals. In the setup in Fig-
ure 1.5 the controller itself is K = HKyS. It is emphasized that K
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Figure 1.5: Standard sampled-data system.

is linear and causal but time-varying (Exercise 1.1). In particular, K
does not have a transfer function. So transfer function techniques can-
not be used directly for analysis or design of the standard SD system.
One of the purposes of this book is to develop techniques that can be
used.

We conclude this section with some other examples.

Example 1.1.2 Telerobot. A telerobot consists of two robots, a
master and a slave, that are in separate locations; for example, the
slave robot might be on a space station and the master robot on an
earth station. The master robot is manipulated by a human user in
order that the slave robot perform some task. Typically, one wants
the slave robot to mimic the motion of the master robot when the
slave robot is not in contact with its environment, and force to be fed
back to the human when there is contact. The principal obstruction in
accomplishing these tasks is time delay in the communication channel.

Figure 1.6 shows a block diagram of a possible configuration of a
telerobot with a digital communication channel. The subsystems
are

Gm, Gs master and slave robots
K,,, K; master and slave digital controllers
C digital communication channel

and the signals are



8 CHAPTER 1. INTRODUCTION

% ....... N Ym,) R T ,Iﬂ&
Ll K| o, | G, e
L L N N

Figure 1.6: Telerobot.

Ym, Ys  master and slave measured signals

Um, Us master and slave control signals

Um, Us  signals transmitted from master and slave over the channel

Pm, Ps signals received by master and slave

In force human applies to master

fe force environment applies to slave.
(Sometimes the dynamics of the human and environment are modelled
t00.)

Finally we turn to a signal-processing example.

Example 1.1.3 Digital implementation of an analog filter. Let
G, denote an analog filter that has been designed. Suppose we wish
to implement G, digitally, that is, by a system of the form

SN R < oKy | Y R

Here K, is a digital filter, S is the sampler as before, and R is some
D/A device: It could be the zero-order hold for realtime applications
or it could be the ideal (noncausal) interpolator. We cannot talk about
the error between G, and K just as we cannot compare apples and
oranges. So it makes sense to look at the error system, G, — RK,4S,
shown in Figure 1.7. This is a sampled-data system. Clearly, we would
consider the discretization to be a good one if the error system had
small enough gain (suitably defined), ideally, zero gain.

This scenario also arises in digital filter design. To design an IIR
(infinite-duration impulse-response) digital filter, common practice is
first to design an analog filter and then to transform it into a digital
filter for implementation.
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G

ST I WKy | | R

Figure 1.7: The error system.

1.2 Approaches to SD Controller Design

In order to have something specific to discuss, let us state a formal
synthesis problem with reference to the standard SD system:

e given the generalized plant G and the sampling period h,

e design a discrete-time controller Ky so that the resulting system
has the two properties:

o internal stability;

o zis “sufficiently small” for all w in some pre-specified class.

This problem statement is quite vague, but the basic scenario is that G
and h are given, while K is to be designed. In some applications—such
as when you buy an A/D card for a PC with a sampling rate which can
be set—h is designable too. Often in an industrial setting, however,
the microprocessor is selected upstream from the control engineer and
h is then fixed prior to the design of the controller. The term “internal
stability” will be defined and studied later, as will what it means for
z to be “sufficiently small”.

There are essentially three approaches to the SD synthesis problem;
the first two are indirect and the third is direct.

Analog design, SD implementation

Let K denote an analog controller designed for G, that is, for satisfac-
tory performance of the system in Figure 1.4. Doing a SD implemen-
tation of K means approximating it by H K4S for some K,;. The two
most common choices of K  are as follows:
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1. K is the discretization of K, that is, Ky = SKH.

2. The transfer matrix of K, is obtained from that of K by bilinear
transformation.

The advantage of this method is that the design is performed in con-
tinuous time, where the performance specifications are most natural.
Also, we can expect the analog specifications to be recovered in the
limit as A — 0. In practice, however, several technical issues preclude
this assumption. First, smaller sampling periods require faster and
hence newer and more expensive hardware, so there is a new trade-off
between performance and cost in this sense. This is especially relevant
in consumer products such as CD players, where a small cost saving
per unit results in a large overall saving. Secondly, performing all the
control computations may not be feasible if the sampling is too fast.
This is relevant in, for example, flexible structures, whose models are
high order (think of implementing an LQG controller for a structure
with, say, 20 flexible modes). Thirdly, if a plant with slow dynamics
is sampled very quickly there will be little difference between succes-
sive samples and as result, finite precision arithmetic will demand a
large word size to avoid underflow errors. This implies another, dif-
ferent, performance/cost trade-off. And finally, the sampling period is
often affected, if not fixed, by other implementation issues unrelated
to the control scheme. The microprocessor may be used to perform
other functions, constraining the execution time of the digital con-
troller routine. Sensors or actuators may be connected via remote
data buses which operate at fixed rates, or may themselves be digital
devices.

Discretize the plant; do a discrete-time design

Discretizing the plant means introducing fictitious S and H at z and
w as follows:
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Move the lower S and H around to get

¢ z w w

A T

Define G4 = SGH, the discretization of G. We thus arrive at the
purely discrete-time setup

i Ky | z

So the next step would be to design Ky for G4, a purely discrete-time
control problem.

The advantage of this approach is its simplicity: We will see that
G is time-invariant (discrete time) if G is time-invariant (continu-
ous time). But there are disadvantages: The approach completely
ignores what is happening between the sampling instants (there might
be large intersample amplitudes); continuous-time performance spec-
ifications don’t always carry over in an obvious way to discrete-time
specifications; if A is changed, K; must be re-designed (G4 depends in
a complicated way on h).

Direct SD design

This means design K, directly for the SD system. The obvious advan-
tage of this method is that it solves the problem with no approxima-
tions. The disadvantage is that this approach is harder because the
SD system is time-varying.

In this book we will look at all three methods.
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1.3 Notation

Good notation is especially important in the study of sampled-data
systems. This section summarizes the notation used in this book.

All systems in this book are linear. In the time domain a linear
system can be regarded as a linear transformation from one vector
space of signals to another (or perhaps the same one). Consider an
n-dimensional continuous-time signal, z(¢). Assume that ¢ can take on
any value in R; then for each ¢, 2(t) € R”. Thus z is a function from
R to R™. Let L(R,R™) denote the space of all such functions; it is the
vector space of all n-dimensional continuous-time signals. Usually n
is irrelevant, so we write £(R). If the starting time for signals were
t = 0, then R, , the set of non-negative real numbers, would be the
relevant time set and L(R; ,R"™) the associated vector space of signals.

Next, consider an n-dimensional discrete-time signal, £(k). Assume
that k can take on any value in 7Z, the set of integers; then £ is a
function from Z to R™. Let £(Z,R"™), or simply ¢(Z), denote the space
of all such functions; it is the vector space of all n-dimensional discrete-
time signals.

Consider now the standard SD system in Figure 1.5. The four
subsystems are linear transformations as follows:

G: L(R) — L(R) Ky:0Z) — 0(Z)
S : L(R) — £(Z) H:0Z) - L(B)

Connecting systems in series amounts to composing the linear transfor-
mations; for example, the discretization of G, SGH, is the composition
of the three linear transformations:

0z) L c(®) % Lr) S5 0(z)
Other points of notation are listed as follows:

e Continuous-time signals are represented by Roman letters, discrete-
time signals by Greek letters.

e In a block diagram, continuous-time signals are represented by
continuous arrows, discrete-time signals by dotted arrows.

e In continuous time, “dot” denotes time derivative, for example,
#(t); in discrete time, it denotes forward time advance, for ex-
ample, £(k) :=&(k + 1).
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e The Laplace transform of a continuous-time signal z(t) is de-
noted Z(s).

e If @ is a linear time-invariant continuous-time system with impulse-
response function g(t), its transfer function (a matrix, in gen-
eral), the Laplace transform of g(t), is denoted g(s). With refer-
ence to a state model, the packed notation

A|B

C|D
denotes the transfer function, D + C(s — A)"'B. Here and
throughout the book the scalar matrix s/ is written simply as s.

e Traditional engineering practice is to use the z-transform in dis-
crete time. However, complex function theory (for example,
Cauchy’s theorem) deals largely with functions analytic in the
unit disc. For this reason it is more convenient to use the A-
transform, where A = 1/z. The A-transform of a discrete-time
signal £(k) is denoted £()), that is,

E0) = S E(kn,
k

For example, the A-transform of the unit step starting at time
k=01is

1

1 24 .=
+A+A+ T

e In continuous time the unit impulse and step are denoted respec-
tively by d(¢) and 1(¢); in discrete time by d4(k) and 14(k).

e [f (G is a linear time-invariant discrete-time system with impulse-
response function g(k), its transfer function (a matrix, in gen-
eral), the A-transform of g(k), is denoted G(A). With reference
to a state model, the packed notation

e

denotes the transfer function, D + A\C'(I — AA) 'B.
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e The following abbreviations are used:

LTI linear time-invariant
FD finite-dimensional
SISO  single-input, single-output

These are sometimes concatenated, for example, FDLTI.

Finally, consider the standard SD system in Figure 1.5. Since G
has two inputs (w, u) and two outputs (z, y), as a linear system it can
be partitioned into four components:

z = Gnw+ Gu
y = Gow+ Gopu.

It can be derived (Exercise 1.10) that the system from w to z equals
Gi1 + G12HKyS(I — Gy HK4S) ™' Ga, (1.1)
or equivalently

G11 + Gio(I — HK3SGa) 'HK SGo:. (1.2)

Exercises

1.1 Look at S and H in tandem:
U P Y

P E— H RN S’ le———

This system, H S, takes a continuous-time signal y into another continuous-
time signal u. For example, HS applied to a ramp:

)

Thus v = y at the sampling instants, but not in between. So HS # I
(I is the linear system whose output equals its input at every time).

1. Prove that HS is linear.
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2. Prove that HS is causal; that is, for every time 7, if y(¢) = 0 for
all t < 7, then u(t) =0 for all ¢ < 7.

3. Prove that HS is not time-invariant.

4. Find a nonzero input y such that u(t) = 0 for every t.

1.2 Consider again the sample-and-hold system, HS. This system
is linear and causal; and many such systems, including this one, have
mathematical models of the form

t

vt) = [ gttryutr) ar.
— 00

Find the function g(¢,7). [If this system were time-invariant, then

g(t, ) would depend only on the difference ¢ — 7.]

1.3 A continuous-time linear system with input u(¢) and output y(¥)
is defined to be periodic, of period T, if shifting v by time 7 results in
shifting y by time 7. (So a time-invariant system is periodic of every
period.)

1. Show that HS is periodic, of period h.

2. Consider two sample-and-hold pairs, S1, Hy of sampling period
hy and Sy, Hy of sampling period hyo. Thus S; samples at the
times t = khy and So samples at the times ¢ = khy. Connecting
them in parallel gives the new system G = H1S; + H2S5. For
what hq and hs is G periodic?

1.4 Look at S and H in the reverse order:

v u
s g kL

Show that v(k) = (k) Vk. Thus SH = I, the identity discrete-time
system.

1.5 For the ball-and-beam setup in Figure 1.1, find G when the sys-
tem is configured as in Figure 1.3.

1.6 Reconfigure the following system into the standard SD system:
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/Ld
R H Ky [ o H 50O P

Take

j— j— 7" j—
z=e w=| ), y=e

1.7 In the preceding exercise we took z = e, that is, the only signal
to-be-controlled was the tracking error. Suppose now that we want in
addition to control u. Repeat the previous exercise but with

z:(§>.

1.8 Figure 1.8 shows two motors controlled by one controller.

w
1 0 6,0, 0 1
K, 0(%* Tst 7T ! E|—| (E £ Js+f ~— Km

K

u1 U3

Figure 1.8: Master/slave.

The motors are identical, with shaft angles 6; and 6. The left-hand
motor is forced by an external torque w. The controller, K, inputs the
two shaft positions and their velocities, and outputs two voltages, uy
and ug, to the motors. The goal is that the system should act like a
telerobot: When a human applies a torque w, the “master” (left-hand)
motor should turn appropriately and the “slave” (right-hand) motor
should follow it. Take K to be a SD controller and reconfigure the
system into the standard SD setup.
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1.9 Consider the digital implementation of an analog filter. Recon-
figure the error system into the standard SD system.

1.10 Derive equations (1.1) and (1.2).

Notes and References

Sampled-data systems originated with the development of automatic-
tracking radar systems [55]. Radar signals were pulsed, providing a
sampled measurement of position. Important early work on the theory
of sampled-data systems was done by Ragazzini and his students at
Columbia University in the 1950s; an influential book of that time was
[121]. Popular modern introductory books on sampled-data control
systems are [9] and [54]. These books only touch on the related topic
of real-time software; for this, see [11].

Telerobotics is an interesting subject from the viewpoint of SD con-
trol, providing a good platform for testing new SD design techniques.
For a general presentation of telerobotics see [123].
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Chapter 2

Overview of
Continuous-Time Hy- and
H~o-Optimal Control

This chapter gives an overview of the standard Ho and He, problems
for continuous-time systems. Two examples illustrate how to set prob-
lems up as Ha or H, problems.

2.1 Norms for Signals and Systems

We begin with the L£o-norm of a signal v in £(R,R™). For each time
t, u(t) is a vector in R™; denote its Euclidean norm by [|u(t)||. The
Lo-norm of u is then defined to be

full:= ([ Tutolear) "

The space Lo(R,R™), or just Lo(R) if convenient, consists of all signals
for which this norm is finite. For example, the norm is finite if u(t)
converges to 0 exponentially as ¢ — +o00. (Caution: ||ull2 < oo does
not imply that u(t) — 0 as t - £oo—think of a counterexample.)
Before defining norms for a transfer matrix, we have to deal with
norms for complex matrices. Let R be a p X m complex matrix, that
is, R € CP*™. There are many possible definitions for ||R||; we need
two. Let R* denote the complex-conjugate transpose of R. The matrix
R*R is Hermitian and positive semidefinite. Recall that the trace of a

21
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square matrix is the sum of the entries on the main diagonal. It is a
fact that the trace also equals the sum of the eigenvalues.
The first definition for ||R|| is [trace(R*R)]l/z.

Example 2.1.1

R:[2+j j]

1—j 3-2j
pp - |27 14 245 7 643
- —j 342 || 1-j 3-2j| |6-3 14

norm = (7+14)Y2 =21

Observe in this example that if r;; denotes the ijth entry in R,
then

1/2

norm = Z Z |rij|?
i

This holds in general.

The singular values of R are defined as the square roots of the eigen-
values of R*R. The maximum singular value of R, denoted opmax(R),
has the properties required of a norm and is our second definition for
IR

Example 2.1.2 The singular values of
_|2+7 J
R= [ 1—-7 3-25 ]

equal 4.2505, 1.7128. These are computed via the function svd in
MATLAB. Thus norm = 4.2505.

The importance of this second definition is derived from the fol-
lowing fact. Let w € C™ and let y = Ru, so y € (. The fact is
that

Omax(R) = max{[[y : Jull =1}
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This has the interpretation that if we think of R as a system with
input u and output y, then omax(R) equals the system’s gain, that is,
maximum output norm over all inputs of unit norm.

Now we can define norms of a stable p x m transfer matrix g(s).
Note that for each w, §(jw) is a p x m complex matrix.

Ho-Norm

1 [ 1/2
lgll2 = {2—/ trace [Q(jw)*g(jw)]dw}
™ —0oQ

Note that the integrand equals the square of the first-definition norm
of g(jw).

Hoo-Norm

19]loc = sup omax [§(jw)]
w

So here we used the second-definition norm of §(jw).

Concerning these two definitions are two important input-output
facts. Let G be a stable, causal, LTI system with input u of dimension
m and output y of dimension p:

G

Let e;, 1 = 1,...,m, denote the standard basis vectors in R™. Thus,
de; is an impulse applied to the i*® input; Gde; is the corresponding
output.

The first fact is that the Hs-norm of the transfer matrix g is related
to the average Lo-norm of the output when impulses are applied at the
input channels.

Theorem 2.1.1 ||g]% = Y7, ||Gde;l|3
The second fact is that the Hoo-norm of the transfer matrix g is
related to the maximum Lo-norm of the output over all inputs of unit

norm.

Theorem 2.1.2 ||j]joc = sup{[lyll2 : llullz =1}
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Thus the major distinction between ||g2||2 and ||§]| is that the former
is an average system gain for known inputs, while the latter is a worst-
case system gain for unknown inputs.

It is useful to be able to compute ||g||2 and |||l by state-space
methods. Let

() = [%}3] ,

with A stable, that is, all eigenvalues with negative real part. Then
lgll2 = oo unless D = 0, in which case the following procedure does
the job:

Step 1 Solve for L:
AL+ AL'+ BB’ = 0.

Thus L equals the controllability Gramian.
Step 2 ||g]|3 = trace CLC’

The computation of |||/~ using state-space methods is more in-
volved. The formula below involves the Hamiltonian matrix

g | A+ B(y* - D'D)"'D'C vB(y* - D'D)~'B’
- _701(72 _ DD,)710 _[A + B(,.YZ _ DID)leIC]I )

where 7 is a positive number. The matrices 2 — DD', v> — D'D
are invertible provided they are positive definite, equivalently, v? is
greater than the largest eigenvalue of DD’ (or D'D), equivalently,
¥ > Omaz (D).

Theorem 2.1.3 Let yyqp denote the mazimum v such that H has an
eigenvalue on the imaginary axis. Then ||§]lco = max{omaez (D), Ymaz }-

The theorem suggests the following procedure: Plot, versus -y, the
distance from the imaginary axis to the nearest eigenvalue of H; then
Ymaz €quals the maximum v for which the distance equals zero; then
lG|loc = max{omaz (D), VYmaz}- A more efficient procedure is to com-
pute Ymaz by a bisection search.
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Figure 2.1: The standard setup.

2.2 H,-Optimal Control

Consider the standard setup of Figure 2.1. We must define the concept
of internal stability for this setup. Start with a minimal realization of

G:

- [242]

The input and output of G are partitioned as

HEH

This induces a corresponding partition of B, C', and D:

C1 Dy1 Dis
By B .
[ B1 B ], [02]’ [Dm D22]

We shall assume that D9 = 0, that is, the transfer matrix from u
to y is strictly proper. This is a condition to guarantee existence of
closed-loop transfer matrices. Thus the realization for G has the form

A| B B
Gg(s)=1| Ci | D1 D
L Cy | Doy 0

Also, bring in a minimal realization of K:

o= [t o]
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Now set w = 0 and write the state equations describing the controlled
system:

T = A£E+Bgu

= Coz
tx = Agzg + Bgy
u = Cgzg + Dgy.

Eliminate v and y:

T B A+ ByDgCy ByCk x
TK o BrCy Ak rr |

We call this latter matrix the closed-loop A-matriz. It can be checked
that its eigenvalues do not depend on the particular minimal real-
izations chosen for G and K. The closed-loop system is said to be
internally stable if this closed-loop A-matrix is stable, that is, all its
eigenvalues have negative real part. It can be proved that, given G,
an internally stabilizing K exists iff (A4, By) is stabilizable and (Cy, A)
is detectable.

Let T, denote the system from w to z, with transfer matrix #,,,(s).
The Ho-optimal control problem is to compute an internally stabilizing
controller K that minimizes ||£,,]||2. The following conditions guaran-
tee the existence of an optimal K:

(A1) (A, B») is stabilizable and (C2, A) is detectable;

(A2) the matrices Dis and D9 have full column and row rank, re-
spectively;

(A3) the matrices

[A—jw B2:| [A—jw Bl]
Cl D12 ’ C2 D21

have full column and row rank, respectively, Yw;
(A4) Dy =0.

The first assumption is, as mentioned above, necessary and sufficient
for existence of an internally stabilizing controller. In (A2) full column
rank of Dis means that the control signal w is fully weighted in the
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output z. This is a sensible assumption, for if, say, some component of
u is not weighted, there is no a priori reason for the optimal controller
not to try to make this component unbounded. Dually, full row rank
of Doy means that the exogenous signal w fully corrupts the measured
signal y; it’s like assuming noise for each sensor. Again, this is sensible,
because otherwise the optimal controller may try to differentiate y,
that is, the controller may be improper. Assumption (A3) is merely
technical-—an optimal controller may exist without it. In words, the
assumption says there are no imaginary axis zeros in the cross systems
from u to z and from w to y. Finally, (A4) guarantees that ||,,2
is finite for every internally stabilizing and strictly proper controller
(recall that #,,, must be strictly proper).

The problem is said to be regular if assumptions (A1) to (A4) are
satisfied. Sometimes when we formulate a problem they are not ini-
tially satisfied; for example, we may initially not explicitly model sen-
sor noise. Then we must modify the problem so that the assumptions
are satisfied. This process is called reqularization.

Under these assumptions, the MATLAB commands h2syn and
h2lgg compute the optimal controller. The following example illus-
trates the 7y design technique.

Example 2.2.1 Bilateral hybrid telerobot. The setup is shown
in Figure 2.2. Two robots, a master, G,,, and a slave, G, are con-

(¥ v
fh/\ m s ~

G G,
_T X _T fe

fm [s

Figure 2.2: Bilateral hybrid telerobot.

trolled by one controller, K. A human provides a force command, fp,
to the master, while the environment applies a force, f., to the slave.
The controller measures the two velocities, vy, and v, together with f,
via a force sensor. In turn it provides two force commands, f,,, and fs,
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to the master and slave. Ideally, we want motion following (vs = vyy),
a desired master compliance (v, a desired function of f), and force
reflection (f, = fe).

For simplicity of computation we shall take G,, and G to be SISO
with transfer functions

1 . 1
gm(s) = ;7 gs(s) - 1—08
We shall design K for two test inputs, namely, f.(¢) is the finite-width
pulse

10, 0<t<0.2
felt) = { 0, t>0.2, (2.1)

indicating an abrupt encounter between the slave and a stiff environ-
ment, and f(¢) is the triangular pulse

2, 0<t<1
) =< —2t+4, 1<t<2 (2.2)
0, t>2,

to mimic a ramp-up, ramp-down command.

The generalized error vector is taken to have four components: the
velocity error v, — vs; the compliance error f, — v, (for simplicity,
the desired compliance is assumed to be v, = f3); the force-reflection
error f,, — fe; and the slave actuator force. The last component is
included as part of regularization, that is, to penalize excessive force
applied to the slave. Introducing four weights to be decided later, we
arrive at the generalized error vector

Oy (Um - Us)

2 ac(fh - Um)
af(fm - fe)
asfs
The Laplace transforms of f. and fj are not rational:
. 10 _ ; 2 _s5\2
fe(s) = 5 (1—e7%), fuls) = ) (1—e™)".

To get a tractable problem, we shall use second- and third-order Padé
approximations,

o T5 [1—%+¥]/[1+%+%]
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and

_ Ts (Ts)®> (Ts)? Ts (Ts)?> (Ts)?
Ts = -

¢ ”[1 > "0 120 Mot T |-
Using the third-order approximation for fe(s) and the second-order
one for fj(s), we get

0.2 0.23s2 0.2s  (0.25)2  (0.2s)3
fels) = 20[7+ 120]/[1+ > "0 T 1 ]

: Ge(s)
. s s2\?
fh(s) 2/(1—1—54‘5)
h(s).

Il
Q»

Q

Q>

Incorporating these two prefilters into the preceding block diagram
leads to Figure 2.3.  The two exogenous inputs wy, and w, are unit

Wp, Um l Vs We
G O Gm G O Ge
_I K _T
fm fs

Figure 2.3: Telerobot with prefilters.

impulses. The vector of exogenous inputs is therefore

w:[fg].

Figure 2.4 compares f;,(t) with the impulse response of G,; and Fig-
ure 2.5 is for f.(¢). The error in the second plot is larger because f.(t)

is not continuous.
The control system is shown in Figure 2.6, where z and w are as

above and

fe
= v u = fm
y_ S ) |:fs:|

Um,
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05 . . . . .
0 05 1 15 2 25 3

Figure 2.4: f;(t) (dash) and the impulse response of G}, (solid).

20

Figure 2.5: f.(t) (dash) and the impulse response of G, (solid).
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Figure 2.6: Telerobot configured in the standard form.

Beginning with state models for Gy, Gy, G5, G, namely,

Ay | By A | B A | By A, | B.

Ch| 0 7 L Cu| O |7 [Cs|O ] [C|O )
with corresponding states xp, T, Zs, Te, using the interconnections in
Figure 2.3, and defining the state

Lm
Ts
Le
Th

Tr =

lead to the following state model for G:

A|B B
Cl 0 D12 —
Co| 0 0
[ A, 0 0 B,Crn| 0 0 -B, 0 ]
0 A, B,C. 0 0 0 0 —B,
0 0 A, 0 0 B. 0 0
0 0 0 A, | B, 0 0 0
ayCr  —yC 0 0 0 0 0 0
—a.Cpp 0 0 aCh | 0 0 0 0 (2.3)
0 0 —a;C. 0 0 0 afl 0 |V
0 0 0 0 0 0 0 .l
0 C, 0 0 0 0 0
0 C, 0 0 0 0 0 0
| Cn 0 0 0 0 0 0 0 |
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For the data at hand, D9; = 0, so (A2) fails. Evidently, the condi-
tion Do; = 0 reflects the fact that no sensor noise was modelled, that
is, perfect measurements of v,,, vs, fo were assumed. Let us add sensor
noises, say of magnitude e. Then w is augmented to a 5-vector and
the state matrices of G change appropriately so that the realization
becomes

Al0 B By
Ci[0 0 Dy
Colel O 0

Some trial-and-error is required to get suitable values for the weights;
the following values give reasonable responses:

ay, =10, a.=5, ay=10, ay;=0.01, e=0.1.

The MATLAB functions h2syn and h2lgg can be used to compute the
optimal controller. Figure 2.7 shows plots of vs(t) and vy, () when
the system in Figure 2.2 is commanded by fj(¢) (also shown). The
velocity tracking and compliance are quite good. Figure 2.8 shows

181

16

Figure 2.7: Analog design: v (solid), vy, (dash), and f;, (dot).

the response of f,,(t) commanded by f.(¢). The force reflection is
evident, though there is some oscillation in f,(t).



2.3. Hoo-OPTIMAL CONTROL 33

12

Figure 2.8: Analog design: f,, (solid) and f. (dash).

2.3 H,-Optimal Control

The Ho-optimal control problem is to compute an internally stabi-
lizing controller K that minimizes ||#,,||s for the standard setup of
Figure 2.1. This problem is much harder than the Hs problem. In-
stead of seeking a controller that actually minimizes ||, /oo, a simpler
problem is to search for a controller that gives ||t,. |0 < 7y, where 7 is
a pre-specified parameter. If v is too small, a controller will not exist,
so we need a test for existence. With this, the following procedure
leads to a controller that is close to optimal:

1. Start with a large enough v so that a controller exists.

2. Test existence for smaller and smaller values of v until eventually
7 is close to the minimum + for existence.

3. Compute a controller so that ||,y |lco < 7-

A bisection search can be used.
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The MATLAB command hinfsyn performs this procedure. The
regularity assumptions required are (A1)-(A3), but not (A4), in the
preceding section. The following example illustrates how a typical
frequency-domain design problem can be formulated as one of Hqo-
optimization.

Example 2.3.1 Figure 2.9 shows a single-loop analog feedback sys-
tem. The plant is P and the controller K; F' is an antialiasing filter

21 w2 22
w €2 €1
w1 (& Yy u
O F —O— K P

Figure 2.9: Analog feedback system.

for future digital implementation of the controller (it is a good idea to
include F' at the start of the analog design so that there are no surprises
later due to additional phase lag). The basic control specification is to
get good tracking over a certain frequency range, say [0, w]; that is, to
make the magnitude of the transfer function from w; to e small over
this frequency range. The weighted tracking error is z; in the figure,
where the weight W is selected to be a lowpass filter with bandwidth
wi. We could attempt to minimize the Hyo-norm from w; to z1, but
this problem is not regular. To regularize it, another input, wo, is
added and another signal, z2, is penalized. The two weights ¢; and
€2 are small positive scalars. The design problem is to minimize the
H oo-norm

from w = [wl ] to z = [ A ]
wa 2
Figure 2.9 can then be converted to Figure 2.1 by stacking the states
of P, F', and W to form the state of G.
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The plant transfer function is taken to be

. _ 20 — s
Pe) = oD@+ )

This can be regarded as an approximation of the time-delay system
%6_408, an integrator cascaded with a time delay of 40 time units.
With a view toward subsequent digital control with A = 0.5, the filter

F is taken to have bandwidth 7/0.5, the Nyquist frequency wy:
p 1
1) = o5/ms 10

The weight W is then taken to have bandwidth one-fifth the Nyquist
frequency:

Hle) = [W]Q'

Finally, €; and €2 are both set to 0.01.
Figure 2.10 shows the results of the design using hinfsyn. The solid

101 -

100 £

101E

102 E

103 E

104 L L R L L
103 102 101 100 10t 102

Figure 2.10: Bode magnitude plots: 1/(1 + pkf) (solid), & (dash), f
(dot).

curve is the Bode magnitude plot of the sensitivity function, that is,
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the transfer function from w; to e, namely, 1/(1+pkf). Also shown are
the magnitude plots for W (dash) and F' (dot). Evidently, the design
has achieved some tracking error attenuation over the bandwidth of
W. A greater degree of attenuation could be achieved by tuning the
weights W, €1, and €s.

Notes and References

For a comprehensive treatment of Ho- and Ho-optimal control theory
see [62], [156].



Chapter 3

Discretization

In this chapter we see how to go from continuous time to discrete
time; we look at two discretization techniques: step-invariant trans-
formation and bilinear transformation. There are really two reasons
why one might want to discretize a continuous-time system. First, a
digital controller sees a discretized plant; for this, the step-invariant
transformation is the only choice for discretization if the sampling
device is S and the hold device is H. Second, one might want to dis-
cretize an analog controller for the purpose of digital implementation;
that is, one might want to go from an analog K to a digital K. For
this second application, the step-invariant transformation is not the
only choice. Indeed, there are many other ways to discretize, bilinear
transformation being the most common.

3.1 Step-Invariant Transformation

In this section we want to see what happens when we take a continuous-
time system G and put H at the input and S at the output:

Al g LY g e g lb

G
The discrete-time system Gy := (fS’GH is called the step-invariant
transformation of the continuous-time system G. The reason for this
term can be explained as follows. Assume for simplicity that G is a
single-input system. When the continuous-time unit step 1(¢) is ap-
plied into G, the sampled output is SG1. On the other hand, when the

37
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continuous-time unit step 1(¢) is first sampled, then applied into Gy,
the output is G4S1. It turns out that these two outputs are equal, that
is, G4S1 = SG1. The proof is immediate upon noting that 1 = H1g,
SO

SG1 =SGH1,
and
G4S1 =G ;SH1; = G414 since SH = 1.

Now assume that G is FDLTT and let g(s) denote its transfer ma-
trix; it is proper and real-rational. Traditional engineering practice is
to use the z-transform in discrete time. For our purposes, however, it
is more convenient to use the A-transform, where A = 1/z. The trans-
fer matrix for Gy is denoted g4(A). We'll see that g4(A) is real-rational
too.

Let us begin with an illustration of how the step-invariant trans-
formation arises in a feedback system.

Example 3.1.1 The block diagram below shows a digital controller
and a continuous-time plant.

r e € P U

4?_5 ........ W Ky | o H P

The controller K sees a discrete-time input, (k) [the sampled error
e(t)], and produces a discrete-time output, 9 (k), which is then held
to get u(t). Noting that S is linear, we can move it past the summing
junction to arrive at the setup

The discretized plant is P; = SPH. The reference input in the second
figure is p(k), the sampled version of r(t). Notice that the second
figure is a purely discrete-time system: It is an exact model of the first
figure at the sampling instants.
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Now we turn to a procedure for doing step-invariant transforma-
tion. Start with state equations for G:

z(t) = Ax(t) + Bu(t)

y(t) = Cxz(t) + Du(t).

It is not necessary for this realization to be minimal. The transfer
matrix is

g(s) = [%’%] =D+ C(s—A) 'B.

For any two times t; < %o, the differential equation can be integrated
from time ¢; to time ¢q:

to
z(ty) = el2=tA5(1)) +/ e2="ABy(1)dr.
t1
Set t1 = kh and ty = (k + 1)h:

(k+1)h
o[(k + 1)h] = M (kh) + / lHDR=TIA By () .
kh

But u(7) is constant over the kth sampling interval; in fact, it equals
v(k). Thus
(k+1)h

z[(k +1)h] = e a(kh) + / el(t+Dh=TIA g7 By ().
kh

A change of variables gives

(k+1)h h
/ W[k Dh—7IA g _ / oA
kh 0

Defining the discrete-time state (k) to be the sampled continuous-
time state xz(kh) and letting “dot” in discrete time denote forward
time advance, we get

h
€= ehA§ +/ e™drBu.
0
Also, sampling the output equation immediately gives

Y = C&+ Du.

Let us summarize as follows:
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Theorem 3.1.1 The step-invariant transformation maps the state ma-
trices as follows:

(A,B,C,D) — (Ad,Bd,C,D)
h

Ay =€ By ::/ e™drB.
0

In particular, only A and B change. If A happens to be nonsingular,
we can integrate to get

h
/eTAdT = AN —1)

0
= ("M —1Ah

Usually we’ll leave it in integral form. Frequently we shall use the
MATLAB-like expression

(Ada Bd) = C2d(A’ B, h)

The transfer matrix g4(A) can be derived as follows. The A-transform
of, for example, the input v is defined to be

O(A) = v(0) + v (DA +v(2)A% + - - -.
Applying this to the state equations for G4 gives

ATHEOD) = A€\ + Bgo(N)
Pp(A) = CEN) + Do(N).

Solving for & (A) in the first equation and substituting into the second
gives

$(A) = [D +AC(I — AAg) "' Balo(N).
Thus
ga(\) = D+ XC(I — M\Ay) 'By.

The transfer matrix on the right-hand side is also written

Ag | Bg
C )
this notation is therefore context-dependent.

Now, some examples.
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Example 3.1.2 Suppose G is a pure gain D, so G is modelled by
y(t) = Du(t).

Then Gy is a pure gain too :
(k) = Du(k).

In other words,

- [5]

Example 3.1.3 Take

. 1 A

i) =5 = [ 1]

10 0
0 0 1

C=[10 0].

Observing that

Ay —1 By

det [ \C D

] = det(AAy — I)det[D + AC(I — AAq) By,

we get that g4(\) equals the ratio

Ay -1 By
det[ \C 0 ]/det()\Ad—I).

Now A is nilpotent: A3 = A*=...=0. So
h2
Ag=T+hA+ §A2

and

h2 B,
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We then compute that
A—1 b ARZ/2!

Myg—TI=| 0 rA=1 I |,
0 0 -1

h3/3!
Bg=| h%/2! |,
h

and then that

denominator g = (A — 1)3, numerator jq = (—1)*\detM,

where
1 0 0 AA/20 1/3! h 0 0
M:=|0 1/h 0 A-1 X 1/2 0 h? 0
0 0 1/hn? 0 x—-1 1 0 0 A3
Thus
3 AA/20 1/3!
~ 3
(A=1) 0 Ax—-1 1

This simplifies to

(=1)3h3 XA +4X + 1)
3! (A—1)3

9a(N) =
The zeros of g4(\) are at

A =0,-0.2679, —3.7321.
Thus there are two inside the unit disk, indicating a non-minimum-

phase characteristic. The first, at A = 0, comes from the zero of §(s) at
s = co. The second, however, is introduced by the sampling operation.
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Example 3.1.4 Take

R 1
g(s) = o
A similar derivation leads to
Aag, (A)
gg(N\) = (=1)"h" ——~
where «a, is the polynomial
AA2L - A/ (n—=1)! 1/n!
A-1 X - A(n=-2)! 1/(n—1)!
det | 1 s s
0 o --- A 1/2!
0 o --- A—1 1

The coefficients of nlay, () are as follows:

n coefficients

2 11

3 1 4 1

4 1 11 11 1
511 26 66 26 1

For n > 3 there are zeros in the open unit disk.

In conclusion, for g(s) = 1/s", g4(A) always has a zero at the origin
and for n > 3 it has another zero in |A| < 1, indicating non-minimum-
phase characteristic in discrete time. Why is this? Look at the step
response plots for g(s). The integer n is some measure of smoothness
at ¢ = 0+4; as n increases the step response looks more and more
sluggish, suggesting a sort of time-delay effect. But a time delay is
non-minimum-phase. More on this in Lemma 3.3.3.

3.2 Effect of Sampling

Suppose G is a continuous-time plant with some state realization and
we get a realization for G4 = SGH via the step-invariant transfor-
mation. What can happen? Can we gain or lose controllability (ob-
servability, stabilizability, or detectability)? In this section we answer
these questions. We begin with an example.
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Example 3.2.1 Again, the setup is

Al g LY g e g lb

ef
Let ws denote the sampling frequency (rad/s), that is,
27
Ws 1= —.
s h

Take G to be an oscillator with

Lo wgs

g(S) - 82 4 wg .

Now consider applying the unit step at v. Then u is the unit step in
continuous time. Hence
t) = inverse Laplace transform of ————
y(t) p Ery
= sinwgt, t>0

and so
P(k)=0, forallk>0.

It follows that Gy must be the zero system, that is, gg(\) = 0. So
here is a nonzero system G whose discretization is zero. But the dis-
cretization of G = 0 is also G4 = 0. This shows that the mapping
g(s) = gq(A) is not one-to-one: Two different continuous-time sys-
tems can have the same discretization.

Look at the example in terms of a state model:

Al B 0 110
g(s) = 7’?]: —w? 0|1 |, {eigenvalues A} = {+jw,}

0 ws|O
et = inverse Laplace transform of (s — A) ™!
o COS wyt wls sin w,t
—wgsinwgt  coswst

T _2¢

A hA cos 2T 2% sin 27 7
— ehA _
d h sin 21 cos 2T

h
By = / edtB = A7 (" —)B =0.
0
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Observe that (A, B) is controllable, but (A4, By) is not. So from this
point of view, the example shows that sampling can destroy controlla-
bility. Clearly the sampling frequency is inappropriate for this system,
which is an oscillator at frequency ws. This is called pathological sam-

pling.

Now we return to a general discussion. Consider a continuous-time
system with state model

gh

Definition 3.2.1 The sampling frequency ws is pathological (relative
to A) if A has two eigenvalues with equal real parts and imaginary
parts that differ by an integral multiple of ws. Otherwise, the sampling
frequency is non-pathological.

Example 3.2.2 Suppose the eigenvalues of A (counting multiplici-
ties) are

0,0,=7,1 =+ 25.

The pathological sampling frequencies can be calculated as follows.
The eigenvalues lie on two vertical lines: Re s = 0 and Re s = 1. Look
at the line Re s = 0; look at the lowermost eigenvalue, s = —j. The
distances from it to the other eigenvalues on this line are 1 and 2. Thus
the sampling frequency is pathological if kws; = 1 or kws = 2 for some
positive integer k. Thus the following frequencies are pathological:

vedoftnn)

By considering the line Re s = 1, we get that the following also are
pathological frequencies:

(e

Since we have looked at all possible vertical lines, we have counted
them all; thus the set of all pathological sampling frequencies is

[veoftnasfufione).
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Since 4 is divisible by 1 and 2, the set of all pathological sampling
frequencies is

(111

Notice that this set has an upper bound (4); therefore, ws; will be
non-pathological if it is large enough.

There is another way to describe the effect of pathological sam-
pling, and this needs the spectral mapping theorem, which is now briefly
described. Let A be a square, real matrix. The eigenvalues of A? are
equal to the squares of the eigenvalues of A. Another way to say this
is that if f is the complex function f(s) = s2, then the eigenvalues of
f(A) equal the values of f(s) at the eigenvalues of A:

{eigenvalues of f(A)} = {f(\) : A is an eigenvalue of A}.

This equation holds for every complex function f that is analytic at
the eigenvalues of A.

From the spectral mapping theorem with f(s) = e, the eigenval-
ues of A, are the points

{e" . Xis an eigenvalue of A}.

Also, the function s — e* is periodic with period jws. It follows that
the sampling frequency is non-pathological iff no two eigenvalues of
A are mapped to the same eigenvalue of A4. Another consequence of
non-pathological sampling is that the points {£jws, £2jws, ...} cannot
be eigenvalues of A. (In the preceding example, the eigenvalues of A
are {+jws}.)

It turns out that controllability and observability are preserved if
the sampling frequency is non-pathological.

Theorem 3.2.1 If the sampling frequency is non-pathological, then
(A, B) controllable = (Aq, Bg) controllable
(C, A) observable = (C, Aq) observable.

Proof We'll prove just the second implication—the other is similar.
So assume the sampling frequency is non-pathological and (C, A)
is observable. To prove that (C, A;) is observable, we’ll show all the
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eigenvalues of Ay are observable. Now each eigenvalue of Ay has the

form e, where \ is an eigenvalue of A. We must show that
_ oA
rank [ Ad Ce d ] =n (3.1)
(ie., e is an observable eigenvalue of A4) given that
rank [ 4 _C)\I ] =n (3.2)

(i.e., A is an observable eigenvalue of A).
Define the function

hs hA

e —e

968) = =5

This is analytic everywhere (the “pole” at s = X is cancelled by a
“zero” there). Moreover,

{zeros of g} = {s:eM* =eMs#N}
= {s:hs=h\+j2nkk==+1,£2,...}
= {s:s=A+jkws,k =+£1,£2,...}.

By non-pathological sampling, the zeros of g are disjoint from the
eigenvalues of A. Now the eigenvalues of the matrix g(A) are precisely
the values of g at the eigenvalues of A (this is the spectral mapping
theorem, again). Thus 0 is not an eigenvalue of g(A4), so g(A4) is
invertible. Now

el — &M = g(s)(s — \).
Hence

e — AT = g(A)(A — AI),
that is,

Ag — eI = g(A)(A = \I).
Thus

[Ad—ceh’\l] :[9(64) ?] [A—CAI].
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Since g(A) is invertible, so is

[9(64) ?]

Therefore

Ag—eM1 ] A— I
rank [ c ] = rank [ c ] ,

so (3.2) implies (3.1). [

Example 3.2.2 shows we can lose controllability by sampling. What
about the converse? Can we gain controllability by sampling? No:

Theorem 3.2.2 If (A, B) is not controllable, neither is (Aq, Bg).

Proof 1If (A, B) is not controllable, there exists an eigenvalue A of A
such that

rank[A—)\I B]<n.

Then there exists a vector x # 0 orthogonal to all the columns of this
matrix, that is,

e[ A—=X B | =0.
This implies that

2*A=Xg*, 2B =0.
Now we obtain in succession

t*A? = (zFA)A

= \*A
— )\ZZE*
z*A3 = M\g*
etc.
Since

hZ
ehA:I+hA+7A2+...
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we have
h2
rreht = gp* (I+hA+?A2+...>

hZ
= I*—i-h)\I*—F?)\ZIB*—F...

= Mg,
Thus
2(Ag — ) = 2 — M)
A
=0
and

h
"By = :1:*/ A dtB
0

h
= / et x* B
0 ~~
=0
= 0.
Hence
27*[ Ad—eh)‘I Bd ] =0
and so

rank [ Ay — eI By ] < n.

This implies that e is an uncontrollable eigenvalue of Ay, proving

that (Ag, Bg) is not controllable.

49

Similarly, we can’t gain observability by sampling. The results for
stabilizability and detectability are entirely analogous; the only change
is that in Definition 3.2.1 we only have to consider the eigenvalues in

the closed right half-plane.

3.3 Step-Invariant Transformation Continued

In this section we look at how g(s) is mapped to g4(A) directly, not
through state models. Again, the discretization G4 is defined in Fig-

ure 3.1.
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41'/) S’ Yy G H e

Gy
Figure 3.1: Definition of Gg.

We begin with a formula relating the two frequency responses,
§(jw) and g4 (e/?). We shall derive this formula in two steps. From
now on fix the sampling period h, and let wy; denote the sampling
frequency (27/h) and wy the Nyquist frequency (m/h).

The first step is to derive the relationship between the continuous-
time Fourier transform of y(t¢) and the discrete-time Fourier transform
of 9(k), that is, the frequency-domain action of S. The periodic ez-
tension of a function g(jw) is

oo
Je(jw) == > §(jw + jkws).

k=—00

Note that ¢, is a periodic function of frequency, of period wy:

ye[j(w + ws)] = @e(jw)'

Lemma 3.3.1 In the figure

DU SN o s

the Fourier transforms of y(t) and (k) are related by the equation

g () = S, (33)

Proof It is customary to prove this result using the idea of impulse-
train modulation. Define the continuous-time signal v(t):

v(t) = y(t) x Y _ o(t — kh).
k

The impulse train ), (¢t —kh) is a periodic function of time, of period
h; its Fourier series is formally given by

> 6t — kh) = % D edkest,
k k
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Thus we have (formally)

0 = ) x g e

1 ,
= = > y(t)elt st
k

Taking Fourier transforms, we get

py 1 p .
(jw) = 3D e+ jkw).

k
1. .
= 7e(jw). (3.4)

On the other hand,
(t) = y(t)x > 6(t—kh)
k

= Zy(kh)é(t—kh)
= Zq/; §5(t — kh).

Taking Fourier transforms again, we get
(jw) = / [Z¢ 5(t — kh ] e I¥tdt
= > (k) / §(t — kh)e 7¥tdt
k
= D w(k)eT I
k

= 9 (e_j“’h> . (3.5)
Comparing (3.4) and (3.5), we get the desired equation. [ |

The second step is to derive the relationship between the discrete-
time Fourier transform of v(k) and the continuous-time Fourier trans-
form of u(t), that is, the frequency-domain action of H. We need the
system with impulse response

r(t) = 21(0) — 710~ 1),
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that is,
[ 1/h, 0<t<h
r(t) = { 0, elsewhere. (3.6)
The transfer function is therefore
1—esh
r(s) = ———. 3.7
(s) = — (37)
The frequency-response function can be calculated like this:
i 1 — e Jwh
Fljw) = W
. h . h
B ﬁw% Y2 —e 7¥2
N Jjwh
_ e_jw% sinw%.
w9

Observe that

h
%2 at low frequency.

7(s) ~ e~
So at low frequency 7 acts like a time delay of %

Lemma 3.3.2 In the figure

Uu v

— H e

the Fourier transforms of v(k) and u(t) are related by the equation
a(jw) = hi(jew)o (e~ (3.8)
Proof From (3.6) and the definition of H, we can write
u(t) =hY v(k)r(t — kh).
k
Taking Fourier transforms, we get

i(jw) = hY_ v(k)F(jw)e I
k

= Wiy ()

Now we put the two preceding lemmas together:
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Theorem 3.3.1 The frequency responses §(jw) and gGq (ejg) are re-
lated by

oo
ga (77) = 37 §Gw + ke, )i (o + jhw,).

k=—00

Proof In Figure 3.1 let v be the unit impulse. Then

u(jw) = h#(jw), from Lemma 3.3.2
Jlw) = g(jw)i(jw)
= g(jw)h?(jw)
) - (o)
R
= - kzooy(]w + jkwg), from Lemma 3.3.1.

The theorem shows that at each frequency w, gq4 (e‘j“’h) depends
not only on ¢(jw), but also on all the values §(jw + jkws) for k =
+1,42,.... In the ideal case that §(jw) is bandlimited to the interval
(—wn,wn), then

gu (77 ) = gjw)i(jw), —wn <w < w.
In particular, at low frequencies

gu (&7} g (ju).

Example 3.3.1 Figure 3.2 shows the magnitude Bode plot of

i(s) :

)= ————

I = 2005+ 1

(solid) compared with the graph of |gq (e 7*") ‘ for ws = 10 (dash) and
for wg =1 (dot). For w, = 10, ‘gd e~Jwh) ‘ ~ |g(jw)| up to w = 1, but
for ws = 1 there is severe distortion except at very small frequenc1es
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10t

100

101}

102}

103 . L . L . L
102 10t 100 10t

Figure 3.2: Bode magnitude plots: |§(jw)| (solid); \gd (e*j“’h)‘ for
ws = 10 (dash) and ws; =1 (dot).

Figure 3.3: Digital implementation of K.
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Example 3.3.2 Let us consider digitally implementing the controller
designed in Example 2.3.1 by H-optimization. We had prespecified
h =0.5. Setting Kq = SKH, we get Figure 3.3. It can be computed
that this feedback system is, unfortunately, unstable for A > 0.021.
This shows the disadvantage of this method of design: We can’t pre-
specify h, do an analog design, implement it by the step-invariant
transformation, and expect the resulting digital control system to be
stable, let alone achieve the desired performance specifications. We
can expect to recover stability and performance only as h — 0.

Let us discretize with h = 0.01. To compare the performance
of this system with that of the analog system, we should derive the
relationship between the Fourier transforms of w; and e in Figure 3.3.
Recall from Lemmas 3.3.1 and 3.3.2 that the Fourier transforms of v(t)
and u(t) are related by the equation

o
W(jw) = #(jw)ka (¢71) 37 b(je + jhws).
k=—00

If F' were an ideal lowpass filter with bandwidth wp, then there would
be no aliasing and we would have

a(jw) = F(jw)ka (1) b(jw), |w| < wy.
This would imply the relationship

i(jw) = F(jw)ka (e741) f(jw)é(jw),
which in turn would imply that there exists a transfer function from
wy to e, namely,

1

L+ p(jw)? (jw)ka (e=99M) f(jw)’

valid over |w| < wy. Let us denote the latter function by
1 :

1+ prkqf
In summary, the SD system from w; to e in Figure 3.3 can be approx-
imated by the transfer function 1/(1 4 prkqf). o

Figure 3.4 shows Bode magnitude plots for 1/(1 4+ pkf) (solid)

and 1/(1 + prkqf) (dash). There is some deterioration in the digital
implementation.
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101 ¢
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Figure 3.4: Bode magnitude plots: 1/(1 + pkf) (solid) and 1/(1 +
prkqf) (dash) for h = 0.01.

Next we turn to a different formula relating §(s) and g4(\). Sup-
pose §(s) is strictly proper—the constant g(oo) transfers over directly
to gd-

Theorem 3.3.2 Let o be a real number such that 1§(s) is analytic in
Re s > 0. Then

1 g+joo eshy 1
Ja(A) = (1= XA)=— ———g(s)ds. 3.9
N ==X [ TN s (3.9

Proof Introduce signals as before:

= input to H
= Hv
Gu
= Sy.

S @ 2 <
Il
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o7

Let v be one of the standard basis vectors in RI™ % Set v equal to

the unit step times v, that is,

1
O(A) = .
0(A) =1—xv
Then
. 1
u(s) = o
N I
g(s) = —g(s)v.
s
The latter equation together with the initial-value theorem shows that
y(0) = 0. Then
1
y(t) = inverse Laplace of —g(s)v
s

1 o+joo est .
= 5 —g(s)ds v.
T) Jo—joo S

P = dy(h) + Ny(2h) + -
1 (ot

2my o—joo S

= “eftA e . g (s)ds .

The series converges for |e"A| < 1, that is, in the disk |\| < 1/e?”,

and we get
. 1 U-I-jool 65h>\
A) = — —————q(s)ds v.
0 =g [ s
But
P = §aNo(N)
r

Note that formula (3.9) provides g4() analytic initially in the disk

|A\| < 1/e°". Then do analytic continuation as usual.

We can now consider evaluating the integral in (3.9) by closing the
contour either left or right and then using residues. For this we must

note that if |A| < 1/e””, then (1 — e**A)~! is analytic in Re s < 0.



o8 CHAPTER 3. DISCRETIZATION

Close contour to the left

The formula is

esh
30 = (10 s |+ 500

where the sum is over residues at poles of 1§(s).

1
s+1

Example 3.3.3  g(s) =

A
Resat{s:O}:ﬁ

A
Res at {8:_1}:)\—

—eh
A

ga(A) = (1 - eh)m

Close contour to the right

Note that the orientation is now negative. First, find the poles of
1/(1 —eh)\):

esh>\ -1 P esh+j27rk>\ -1

<— sh=—In\— 727k

PN In A 27k
§=———7—.
no 7 Th

It is routine to compute that the residue of

2 L
1 —esh) sg
at the pole
ok
ok no7Th
equals
1 g(sg)
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Thus we get

94(A) = (1 = X)

SRS

PR
Now we’ll see that if the relative degree of § is at least 3 and the
sampling frequency is sufficiently fast, then ¢4 is non-minimum-phase,
even if § is not! We emphasize that we’re considering the zeros of ggy
other than the ones at A = 0, which arise from the strict properness
of g. The following lemma uses the polynomial a;(A) introduced in
Example 3.1.4.

Lemma 3.3.3 Suppose G is SISO and the relative degree | of § is
> 2. Then as h — 0, [ — 1 zeros of gq tend to the zeros of ay(\);
hence if the relative degree of g is > 2, then §q is non-minimum-phase
as h — 0.

Sketch of Proof Noting that the gain of g is irrelevant, we can write
. (s—z1)---(s = 2m)
g(s) = -

(s=p1)--(s—pn)’
where [ :=n — m > 2. Defining

. 1 . st(s —z1) -+ (s — 2m)
MY =5 B S
we get § = §1go. Notice that go(oco) = 1.
Fix ¢, 0 < § < 1, and note that for each k the function
Ao (52 i)
h h

converges to 1 uniformly in |A — 1| > 0 as h — 0. Now apply (3.10)
infA—1/>d0ash —0:

GaN) = (1—A)%Z%f2(sk)
(1-np 30 2
= gu(N).

Q

Thus
{zerosof ggin | A—=1|>d§} = {zerosof Gijgin|[A—1]>§}
= { zeros of Aqy(A)}.
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3.4 Bilinear Transformation

In this section we look at the other common way of discretization,
bilinear transformation (also called Tustin’s method).

The method is motivated by considering the trapezoidal approxi-
mation of an integrator. Consider an integrator, transfer function 1/s,
input u(t), and output y(¢). The trapezoidal approximation of

kh+h

y(kh + h) = y(kh) + /kh u(T)dr

is
h
y(kh + h) = y(kh) + E[u(kh + h) + u(kh)].
The transfer function of the latter equation is

Qx4+1_ﬁ1+A
2X1—-1 21—\

This motivates the bilinear transformation

1 hl+A

s 21-X
that is,

21—\

S = ———.

h1+ A

So a continuous-time transfer matrix g(s) is mapped into gy (M), where

R (21—

ge(X) =g (EH—A> .

It is straightforward to derive that

o N_ | A|B . _ | Abt | By

g(s) = [7’7] = gut(N) = [TM’TM :
where

A\ h
Ay = [(I-ZA I+-A
o = (1-31) (r+34)
h ho\
By = -(I-ZA) B

Cyp = C+ Aw)
Dy = D+ CBy.
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This state formula is valid provided the indicated inverse exists, that
is, 2/h is not an eigenvalue of A.

Example 3.4.1 If

. 1
g(S) - S+ 13
then
R 14+ A
got(A) = h

2+h) — (2= )X

We can see how the bilinear transformation maps poles and zeros
of g(s) into those of gp;(A): The mapping from s to A is given by
h
N 1-— 58

_l—i-%s'

So for example the right half-plane is mapped into the unit disk. In
particular, if §(s) has no poles or zeros in the right half-plane, then
gpt(A\) has none in the unit disk.

3.5 Discretization Error

Now we have two ways to discretize a continuous-time system, step-
invariant transformation and bilinear transformation. Which is better?
Indeed, how can we judge how good a discretization is? This section
provides a way to answer this. We’ll do the SISO case for simplicity.

Suppose §q(s) is a transfer function of an analog system and kq()\)
is a discretization, for example, l%d = Jad O Gapt- Let G, and K,y de-
note the corresponding linear systems. We cannot talk about the error
between G, and K, just as we cannot compare apples and oranges.
Suppose, however, that G, is an analog controller that has been de-
signed, and K is its discretization. Then the actual continuous-time
controller that is implemented is H K;S, as shown in Figure 3.5. So
the question that makes sense is, how well does H K4S approximate
G,? The error system, G, — HKyS, is shown in Figure 3.6.

We are going to study the error system in the frequency domain.
For this, we need to know the relationship between the Fourier trans-
forms 2(jw) and 4(jw). (Warning: The error system is time-varying,
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g | oKy | g 5

Figure 3.5: Sampled-data implementation of G,.

G

ST I W Ky | g

Figure 3.6: The error system.

so it has no transfer function!) Lemmas 3.3.1 and 3.3.2 allow us to
write the frequency-domain relationship between u(¢) and y(¢) in Fig-
ure 3.5: From (3.3) and (3.8)

§jew) = P(Gwka (77 i (o).
Now return to the error system, Figure 3.6. We have
2(jw) = a(jw)i(Gw) = 7(jw)ha (677" ) iy (j).
Assume 4 (jw) is bandlimited to frequencies less than wy, that is,
G(jw) = 0 for w > wy.
Then
e (jw) = U(jw) for w < wy,
so for w < wy
2(jw) = [galjw) = #(je)ka ()] ).
This motivates the definition of the error function,
Galjw) = #(je)lia (o7 71)]

and the mazimum error,

error(w) 1=

errormey = max error(w).
w<wn
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Let us recap: G, is a given continuous-time system and Ky is a
discretization of G, obtained in some way; for inputs that are ban-
dlimited to frequencies less than wy, error,,.; is a measure of how
closely HK4S approximates G,. It is natural to use this measure to
compare two different discretizations to see which is “better.”

For the bilinear transformation,

: 21— e dwh
A —jwh A
don () = o (EW)

(2
= o |Jg tan— |

. A 2 wh
Ga(jw) — 7(jw)da gy tan == ).

Thus

error(w) :=

The error is therefore due to two factors: the presence of the function
7; the “frequency warping”
2 wh
w— —tan —.
h 2

Note that error(0) = 0, that is, there is no error at DC. Suppose we
would prefer instead that the error were zero at some other frequency,
say wg. If the transformation is

= 1—X
S C——
1+ X

then the frequency warping is

w
w — ctan —.

So to ensure that wg is mapped to itself, we should take

(w05)
c = wp tan7 .

The mapping

wh) ™' 1-2A
S = Wy tanT 1—|——>\

is called the bilinear transformation with prewarping.
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Example 3.5.1 Consider g,(s) to be the elliptic filter with zeros
+£1.233344, £1.722905,

poles
—0.78280, —0.07543 £ 1.051655, —0.379155 £ 0.8753697,

and gain 0.175407. Its magnitude Bode plot is shown in Figure 3.7.
Figure 3.8 shows the graph of error(w) for the bilinear transformation

100 g
101 é
102 %
103 %

104 E

105 . R R . R SR
10t 100 10t

Figure 3.7: Bode Plot of Elliptic Filter.

with wy = 10, one decade higher than the cutoff frequency of the fil-
ter, and with the prewarping frequency of wg = 1, the cutoff frequency.
The error is quite large (errory.,; = 0.1564) because wy is quite small.
This large error suggests that bilinear transformation, a common dis-
cretization technique, may be inadequate for some applications and it
motivates us to search for a better technique.

In certain signal-processing applications, non-causal filters are al-
lowed. Consider Figure 3.5 with u(#) bandlimited to frequencies less
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100

101

102

103 I I T R N I I L
101 100 10t

Figure 3.8: Error for Bilinear Transformation with Prewarping of El-
liptic Filter.

than wy, but with H replaced by R, the ideal interpolator in the Sam-
pling Theorem, that is,

B sinwy (t — kh)
y(t) = ;W’f)m-

The resulting filter, namely RK;S, is noncausal. Then the relationship
between the Fourier transforms of u(t) and y(¢) in Figure 3.5 is known
to be

§(jw) = ky (&jwh) a(jw), w < wy.
It follows that the error in Figure 3.6 is given by
2jw) = [daliew) = ka (M) a(Gw), w < ww,
so the correct definition of the error function in this case is

Galjw) = a (771)|

error(w) :=
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Example 3.5.2 (Continuation of Example 3.5.1) For the same ellip-
tic filter and the same discretization, Figure 3.9 shows the graph of
error(w) for the noncausal case. The maximum error on the passband

101

102

103

104 I I T R N I I L
101 100 10t

Figure 3.9: Error for Bilinear Transformation with Prewarping of El-
liptic Filter, Noncausal Case.

is reduced from 0.1564 to only 0.0108. This shows the deteriorating
effect of the hold operator.

Exercises

3.1 Consider the continuous-time system G with state model
z(t) = Ax(t)+ Bu(t— h)
yt) = Cx(t).

Thus the input is delayed by one sampling period. This system can
be factored as G = G1 G4, where G is the time-delay system (output
equals input delayed by time h) and G is the above continuous-time
system but without the time delay. Find the discretized transfer ma-
trix g4(A) by noting the following:
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1. G4g=SG,G2H,
2. GoH = HU, where U is unit time-delay in discrete time.

3.2 Show that if the continuous-time system G has transfer matrix

then SG H has transfer matrix

A; | B
~ _ I d d
gd()‘) =A |: Cd Dd :| ’

where A4, By are as usual,
lh—T
C,=celth-mA  p,=cC / e!AdtB,
0

and [ is the integer such that 7 lies in the sampling interval ((I—1)h, [h].

3.3 Consider the analog control setup

T~ € 2 1
s s+1

and its sampled-data implementation

r e 1
........ WK o]
B § d H s+1

Let K, be the discretization K, via step-invariant transformation, of
the analog controller 2/s.

1. For h =1, find the transfer function kq()).

2. Let r(¢) be the unit step in the second figure and let € denote
the sampled error, that is, e = Se. Find &()).

3. Does e(k) — 0 as k — oo?
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Repeat but with K; = K.

3.4 Consider a continuous-time linear system with the following A-

matrix:

1 2 0 0 O 0 0 07
-2 1 0 0 O 0 00
0O 001 0 0 00
0O 01 0 O 0 00
0O 000 O 10 00
0O 000 —-10 0 0O
0O 000 O 0 00

| 0 0 0 0 O 0 0 0 |

What are the pathological sampling frequencies?

3.5 Two pendula, of masses My and My and lengths [ and s, are
coupled by a spring, of stiffness K. The two inputs are the positions
u1 and uo of the pivots of the pendula, and the two outputs are their
angles y; and y2. The equations of motion are as follows:

M (i1 — hiih) = Mgy — K(ur — Liyi) + K(uz — lay2)
My (iiy — lafie) = Magys + K(up — l1y1) — K(ug — loy2).

1. Derive a state model.

2. Take the following numerical values: M; = 1 kg, My = 10 kg,
li =ls =1m, K =1N/m. Compute the pathological sampling
frequencies.

3. Select some non-pathological sampling frequency and compute
the transfer matrix of SGH.

3.6 Let G; and G2 be two continuous-time LTI systems. Explain
why the following is true: The discretization (via step-invariant trans-
formation) of G1 + G is the sum of the discretizations of G and G.
Use this fact to compute the transfer function of the discretized G,
where the sampling period is A and

a
g(s) = ——, a #0.
g(s) pE— #

3.7 Let g1(s) and g2(s) be two continuous-time transfer functions,
and let g14(\) and goq(\) be their discretizations. True or false: The
discretization of the product g;(s)g2(s) equals Gi4(A)Gag(A)-
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3.8 Consider the setup

<¢ Fd levvnnnns S P H e Gd levvnnnnn

The components are described as follows:

G4: output equals 0 at odd times; output at time 2k equals input
at time k

P has transfer function 1/(s + 1)

Fy: output at time k equals input at time 2k.

Show that the system from v to ¢ is LTI and find its transfer function.

3.9 The block diagram shows a modified hold function defined as
follows:
ult) = av(k), kh<t<kh+1
L bu(k), kh+L<t<kh+h

Here @ and b are real scalars. Find the discrete transfer matrix from
v to 1.

A
.| g LY

B
71D Hpod [«

3.10 The following block diagram shows a typical digital control sys-
tem.

TT F S ..... b ...... ’Kd ........ - H P 4

In addition to the usual elements are F', a low-pass (antialiasing)
filter, and 7, a digital noise signal introduced at the sampler (perhaps
to model quantization error). In such a sampled-data system, not all
input-output relationships need be time-invariant. Define 1) = Sy, the
sampled plant output. Is n-to-19 time-invariant? If so, find its transfer
function for

§e) = 1o J(8) =

Is r-to-y time-invariant?

kg(\) =X, h=0.1.
S—i—l’ d() )
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3.11 A single-input, multi-output continuous-time system has trans-
fer matrix

2]

It is forced by a unit-step input and its output is sampled at h = 0.1.
Find the A-transform of this sampled output. Repeat with a unit-
impulse input.

3.12 Let G be the continuous-time system of delay 7, with 0 < 7 < h.
Find g4(\). (Note that g4 is independent of 7, showing that an infinite
number of Gs can have the same discretization.)

3.13 Find an example of a pair (A, B) such that (A4, By) is control-
lable, yet the sampling frequency is pathological. [This shows that non-
pathological sampling is not necessary for controllability of (Ag4, By),
only sufficient.] Hint: B must have at least two columns.

3.14 Let GG; and G4 be two continuous-time LTI systems. True or
false: If a sampling period h is non-pathological relative to both G4
andGo, so is it relative to G1G4. If your answer is yes, explain; if your
answer is no, give a counterexample.

3.15 Suppose jkws is an eigenvalue of A, where k is an integer. Prove
that (Ag, Bg) is not controllable.

3.16 Take

() :
§) = ————.

9ol = 2025 + 1

Discretize g,(s) using both the step-invariant transformation and the

bilinear transformation, and for both wy = 10 and 100. In all four

cases plot the discretization error over the range w < wy.

3.17 This concerns the discretization problem shown in the setup

G S’ ......... .
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Both G and Ky are SISO. The transfer function g(s) is assumed stable
and strictly proper. The input w(t) is fixed (traditionally it is a step
or ramp). Extending the notion of step-invariant transformation, let
us say that the digital system K is a w-invariant discretization of G
if the error ( is identically zero.

1. Give a condition on w so that K, is uniquely determined by
saying it is a w-invariant discretization. (Answer: Sw # 0.)

2. Compute kg(\) for

1

:7, hzl
s24+s+1

w(t) = t1(t), g(s)

3. Give an example of a w(t) and a stable §(s) for which kg(\) is
not stable.

3.18 Consider the discretization setup in the preceding exercise. Both
G and K4 are FDLTI, SISO and the input w(t) is the unit ramp ¢1(#).
The goal is, given G and the sampling period h, to design K,  so that
the error ( is identically zero. Give a MATLAB procedure with

input: h, state model (A, B,C, D) for G

output: state model for Ky

Notes and References

Theorem 3.2.1 is due to Kalman, Ho, and Narendra [84]. Lemma 3.3.3
is due to Astrém, Hagander, and Sternby [8]. For traditional meth-
ods on the design of digital filters, see for example [116] and [147]. In
these traditional methods, it is not common to use the error function
as the object of merit. Indeed, an approximation error of any sort is
seldom considered. For recent works that do optimize an approxima-
tion error, see [139], [120], and [128]. Having a frequency-domain error
measure is important in control systems, since we can then bound the
deterioration that results when an analog controller is implemented
digitally.
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Chapter 4

Discrete-Time Systems:
Basic Concepts

The controller in a SD control system sees a discrete-time system,
namely, the discretized plant. For this reason it is useful to develop
some general techniques for analyzing discrete-time systems.

4.1 Time-Domain Models

We start with scalar-valued signals and move to the vector-valued
case in Section 4.4. The discrete time-set is taken to be the integers
{0,1,2,...}. So a discrete-time signal is a sequence

{v(0),v(1),v(2),...},
where each v(k) is a real number, the value of the signal at time k.
More often it is convenient to write this as an infinite column vector:
v(0)
v(1)

Then we can think of a linear system as a linear transformation on
such vectors.

Example 4.1.1 Discretized integrator. Consider the discretiza-
tion of the pure integrator. The equations are

f=§+hv
v = &

73
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For zero initial state [i.e., £(0) = 0] the output is

$(0) = 0

P(1) = ho(0)

P(2) = hv(0) + ho(l)

P(3) = hv(0) + ho(l) + hv(2)

These equations can be written conveniently in vector form:

$(0) 0000 - v(0)
b(1) hOOooO - (1)
$@2) = | h h 00 - v(2)
%(3) h h h O - v(3)

We can regard this infinite matrix as a representation of the system.

More generally, a discrete-time linear system G (we drop the sub-
script d in this chapter) has an associated infinite matriz, denoted
[G]. The first column is the output signal when the input is the unit
impulse,

{1,0,0,...}.

The second column is the output when the input is the shifted unit
impulse,

{0,1,0,0,...}.

And so on.

Example 4.1.2 Unit delay, U. Suppose the input-output equation
is

b0) =
P = w.
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Thus the output is the one-step delay of the input. The system matrix
is

S = O

0
0
1

o O O

(U] = : (4.1)

that is, all zeros except for 1s on the first subdiagonal.

Example 4.1.3 Moving average model. Here the output at time
k is a linear combination of all the inputs:

P(k) = g(k,Dv(l).
=0

The system matrix is

9(0,0) ¢(0,1)
9(170) 9(171) . (4.2)

A special case is the discrete-time convolution equation
o
p(k) =D g(k = Du(l)
1=0

that has system matrix
9(0) g(-1) g(-2)

g(1) g¢(0) g(=1)
g(2) g(1) g(0) .- |- (4.3)

Another special case is the truncation projection, Py, defined for

k > 0 by
N Jou@), i<k
7/’(2)_{ 0, >k

The corresponding matrix [Pg] has k + 1 1s along the main diagonal
and zeros elsewhere:

[Py] = diag (1,...,1,0,...).
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Example 4.1.4 State-space system. The system matrix of the
state-space model

E(k+1) = A&(k)+ Bu(k), £(0)=0
b(k) = C&(k) + Du(k)

18

D 0 0 0

CB D o 0 -
CAB CB D 0 --- |, (4.4)
CA’B CAB CB D ---

Some basic system concepts become transparent when viewed in
terms of the system matrix. The idea of causality is that the output
at time k depends only on inputs up to time k; in other words, if two
inputs are equal up to time k, then the two corresponding outputs
should be equal up to time k. The latter description leads to the
formal definition: The linear system G is causal if

(Vk) (VU,&)P]CU = P,0 = P,Gv = P.Gv.

It is easy to prove that G is causal iff [G] is lower triangular, as in (4.1)
and (4.4).

Example 4.1.5 For (4.2) to be lower triangular we need g(k,l) = 0
for k < [, in which case the moving average model is

k
b(k) = gk, Ho(l),
1=0
that is, ¥(k) depends only on v(0),...,v(k). Similarly, the convolu-
tion equation represents a causal system iff g(k) = 0 for £ < 0. An
example of a noncausal system is the one-step advance, denoted U*.
The defining equation is

Y =0,
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and the system matrix is

01 00

0010
[0 1=10 0 01
Check that the advance matrix [U*] equals the transpose of the delay
matrix [U]. Verify also that U*U = I (U* is a left inverse of U, or U
is a right inverse of U*) and UU* =1 — P.

Time-invariance means this: If an input {v(0),v(1),...} produces
the output {+(0),%(1),...}, then the input {0,v(0),v(1),...} pro-
duces an output of the form {7,4(0), #(1),...}. The initial value
of the latter signal will equal zero if the system is causal. So roughly
speaking, time-invariance means that shifting the input shifts the out-
put. The formal definition is that G is time-invariant if U*GU = G.

Again, it is easy to prove that G is time-invariant iff [G] is constant
along diagonals, as in (4.1), (4.3), and (4.4). Such a matrix is called
Toeplitz.

4.2 Frequency-Domain Models

It is well-known that an LTI system has a simple model in the fre-
quency domain, namely, it is multiplication by a transfer function.
We have already used A-transfer functions, but here is given a more
comprehensive presentation.

The A-transform of the signal

v ={v(0),v(1),...}
is defined to be
o(A) = v(0)+
= > vk~

=0

v(DA+ (2N + -

Example 4.2.1 1. Unit impulse.

v=1{1,0,0,...},5(\) =1
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2. Unit step.

1
v:{l,l,l,...},ﬁ()\):1+)\+)\2+---:ﬁ,poleat)\:1

3. Geometric series.
v=1{1,2,22,23 ... },0(0) = 1+22x+2\)*+---
1
= ———,poleat A = %

1—-2X

4. Sampled sinusoid.

v(k) u(t)

DT S

u(t) = sin(wt)1(t) [1(¢) = unit step]

v = {0,sinwh,sin2wh, sin 3wh, ...}
_ 1 {0 piwh _ gmjwh 2jwh _ ~2jwh }
2] ) ) P
. AT jwh  —jwh 2jwh —2jwh
o(A) = 2—]__6 —e + (e —e ))\—I—---]
AT ) .
— Z _e]wh(l + e]whA + e2ywh)\2 + .. )

— IR (1] o eTIwh ) 4 2IWh )2 L )]

A edwh 1 .
DYl F R S ,\] (poles: A = e*74™)
(sinwh)A

A2 — (2coswh)\ + 1

Thus a A-transform is defined as a power series, and hence is an-
alytic in some disk of sufficiently small radius; in the third example
above the disk of analyticity (region of convergence) is {\: [A| < 3}.

Now we turn to transfer functions.
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Example 4.2.2 Unit delay, U. If the input is
v = {0(0),v(1), v(2),...},

then the output is
¢ = {0,v(0),v(1),...}.
So
PN = 0+v(0)A+v(1)A2 + -
= Av(0) + v()A + -]
= A0(A

~—

So the transfer function of U, denoted @(\), equals .

More generally, we have seen that any causal LTI system G has a
matrix of the form

g(0) 0 0
(1) g¢(0) 0
6] = 3(2) g(l

) 9(0)

The impulse response is the sequence represented by the first column
(that is how the first column was defined), and the transfer function
is the A-transform of the impulse response:

g(\) = g(0) + g(DX+ g2\ + - --.

Let us summarize the notation:

D RACUTIN G leennnns

block diagram :

linear transformation equation : ¢ = Gu

k
convolution equation : (k) = Zg(k —Dv(l)

$(0) g(0) 0 - | [ v(0)
system matrix equation : (1) | = | 9(1) g(0) --- v(1)
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impulse response : {g(0),¢g(1),...}

o0

transfer function : g(\) = Zg(k))\k
k=0

Example 4.2.3 State-space model.

§ = At + Bu
P = C¢&+ Dv

The impulse response is
{D,CB,CAB,CA’B,...}
and therefore the transfer function is

g(\) = D+CBAN+CABXN +--.
= D+AC(I+XA+XA*+..)B
= D+ AC(I—-)A)'B.

Introduce the notation

[%’%] =D+ M\C(I—-)A)"'B.

Example 4.2.4 Discretized double integrator. Take

. 1
g(s) = 2 Gq=SGH.

To find g4()), start with

- L4813

Then
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where

1 h
hA _
“=[o1]

h 2
B; = /eTAdTB:[h/Q].
0 h

ga(\) = AC(I —MAg) 'By

= A1 0][16”\ 1‘?’;]1[

A 1—-X
-l o

h2 AL+ A)

2 (1-))2

1-A

81

h

"]

h%/2 ]

The MATLAB functions ¢f2ss and ss2tf can be used in discrete

time, but you have to convert to z.

Example 4.2.5 To get a realization of

AN - 2)
M2 23+ 1

first replace A by z~!, which amounts to reversing the order of the

coefficients, that is,

O3+ 22 —-2)140

023 — 2224240

A+ AZ—20+1
and then call ¢f2ss on

z(—2z+1)
23— 2224+ 241"

222242417
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4.3 Norms

Since the performance of a control system should be measured in terms
of the size of various signals of interest (tracking error, plant input,
and so on), it is appropriate to define norms for discrete-time signals.
We define two norms for the signal v = {v(0),v(1),...}:

2-Norm  ||v|z = [v(0)? + v(1)? + -- .]1/2
so-Norm  [[v]]as = supy [0(k)|

The 2-norm (actually, its square) is associated with energy. For exam-
ple, suppose u(t) denotes the instantaneous current flowing through
a resistor of resistance R in a circuit. The instantaneous power ab-
sorbed is Ru(t)?, and the (total) energy absorbed is the integral of this,
Jo° Ru(t)*dt. Usually we normalize so that [;° u(t)?d¢ is interpreted
as the energy of the signal u(t). In discrete time the corresponding
measure is Y o° v(k)%.

The oo-norm is the maximum amplitude of the signal [more pre-
cisely, the least upper bound (sup) on the amplitude]. This is an

important norm for measuring tracking errors.

Example 4.3.1 1. v = unit impulse: [|v[|y = [[v]|oo = 1
2. v = unit step: ||v|]2 = 00, ||v]|so =1

3. u(t) = e 1(t), v = Su

v = {let e .}
1
— —2h —4h 1/2:7
lvlle = 1+e " +e "+ =T
vlle = 1

Now we turn to LTI systems, where there are three norms of inter-
est. The first is the 1-norm of the impulse-response function and the
second and third are in terms of the transfer function:

1-Norm  |ig]ly = [g(0)| + |g(1)[ + -~ o
2-Norm > = (3 ;" la(e)Pdo)

so-Norm [loc = maxg |§(e?)|
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Example 4.3.2

1
ANy = 1
I =5
M1 2w 0 1/2
= / i 0
1 1/2
= [ [ o ate ]
_27r
- 1/2
B _27TJ ) ]
- N 1 1/2
= Z residues G(\)g (X) 3 at poles in unit disk]
- ) 1/2
= id t A==
_res1 ue P a 2]
_ L
V3
[§lloo = max s = —— e = 1
Flloo = TG e —2|  minle/? —2|

These norms are related by three important facts pertaining to a
stable LTI system G:

PR G leenenns

The first fact, an immediate consequence of Parseval’s equality,
is that if v is the unit impulse, d4, then the 2-norm of 1 equals the
2-norm of §.

Lemma 4.3.1 [|Gdgll2 = ||9]|2

Thus ||§|| equals the energy of the output for a unit impulse input.
There is also a random-signal version of this fact: If v is standard
white noise [i.e., the sequence ..., v(—1),v(0),v(1),v(2),... consists of
independent random variables, each of zero mean and unit variance],
then the root-mean-square value of 1 (k) equals ||g||o.
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The second fact is that the best bound on the co-norm of v over all
inputs of unit co-norm equals the 1-norm of g, the impulse-response
function:

Lemma 4.3.2 sup{[|¢}[los : [v]loc =1} = llglh

Proof To prove that LHS < RHS, let v be any input with ||v||s = 1.
From the convolution equation

(k) = Zg(z’)v(k — 1),

it follows that

Wl < Y le@vlh i)
SO

= llgll-

So [[9]lsc < llgll1-
To prove that LHS > RHS, fix k£ and define the input

vk =) = [g()|/9(9).

Then ||v]|oc = 1 and from the convolution equation
pk) = lg(0),

showing that [|9||cc > |lg]|1- .

Finally, the third fact is that the best bound on the 2-norm of
over all inputs of unit 2-norm equals the co-norm of §:

Lemma 4.3.3 sup{||¢[|2 : [[v]l2 = 1} = [|glloo

Proof That LHS < RHS is easy: Let v be any input with |Jv||s = 1.
Then

ol = [19ll2
= [19%ll2
< lglleolloll
= [19llco-
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To prove that LHS > RHS, let 6y be a frequency at which |g|
attains its maximum, that is,

7 ()] = 1l

Let € > 0 be arbitrary. It suffices to find an input v with ||v]j2 <1 so
that ||¢]|2 > ||g|lcc — €. The construction of such v will be sketched.

Since ‘ g (ej 9) ‘ is a continuous function of 6, there is a small interval,
of width d, say, centered at 6y throughout which

3 (") > lloe — .

This inequality holds also for the interval of width 0 centered at —6y.
Define v by saying that ‘1“) (eja) ‘ is constant on these two intervals; the
constant is determined by the normalization condition Y, [v(k)|> =1,
namely, the constant equals \/7r—/5 . Thus the graph of ‘1“) (eja) ‘ consists
of two narrow rectangles, centered at £6y. For this input, it is routine
to compute that [|1]|2 > ||G|locc — €. The only snag is that v(k) is not
equal to 0 for k£ < 0. To fix this, pass v through a very long time delay
and truncate the output, denoted vy, by setting it to zero for k < 0.
Then vy € l2(Z4) and |jvi|l2 < 1. If the time delay is long enough,
then for this input the output will satisfy |92 > [|G|lcc — €- [ |

Example 4.3.3 Consider the discrete-time system with

1. If the input is the unit impulse, then

(output energy)'/? = |92
= gll2

= (computed before)

Sl

2. If the input satisfies ||v]|o < 1 (i.e., it lies between £1), then
|¥]lco < llgll1; furthermore, ||g||1 is the least upper bound on
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|9]|0o- We have
1 1
i = L
9 21— L)
1 1.1
= —— (142422
2( oAttt )
B 1 1 1
g - 23 4& 8,
ol = S4gtgre=1
g = 9Ty -

3. If the input satisfies ||v]l2 < 1, then ||¢|2 < ||g]lco, and this is

the least upper bound. As computed earlier, ||§]|-c = 1.

It is a general fact that

19112 < 19l

(easy proof).

It can be inferred from the second fact that each bounded input
(i.e., [|[v]]oc < o00) produces a bounded output (i.e., ||t < o00) iff
llgll1 is finite, that is, Y77 |g(k)| < oo. In the finite-dimensional case
(i.e., g(A) rational), the following conditions are equivalent:

lglly < oo
g(\) has no poles in |A\| < 1.

Since we will only consider finite-dimensional systems in discrete
time, it makes sense to define G to be stable if g(\) has no poles in
|A| < 1.

Example 4.3.4 State-space model.

- (443

When is G stable? A sufficient condition is that all eigenvalues of A lie
in the open unit disk. This is necessary, too, if (A, B) is controllable
and (C, A) is observable.
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This section concludes with a simple way to compute the 2-norm
of g using state-space data. Suppose

G0 = [%}3] ,

with A stable, that is, all eigenvalues in the open unit disk. Remember
that we’re doing the single-input, single-output (SISO) case, so

D:1x1, C:1xn, B:nxl.
Let us first look at the matrix equation
L=ALA" + BB, (4.5)

where prime denotes transpose. This is a linear equation in the un-
known matrix L. It is called a (discrete) Lyapunov equation and can
be solved on MATLAB with the function dlyap. The following is a
fact: If A is stable, equation (4.5) has a unique, symmetric solution L.

In fact, we can see what the solution is, although not in closed
form. Do recursion on (4.5):

L=ALA + BB’

— L = A(ALA' + BB'\A' + BB
A’LA” + ABB'A' + BB’

= L = A’LA®+ A’BB'A” + ABB'A' + BB’
etc.
so L equals the convergent series of matrices
L=DBB' +ABB'A' + A°BB'A” + ...

Let us return to computing ||g||2. Parseval’s equality in discrete
time states that ||g||2 equals the 2-norm of g, the impulse-response
function,

g={D,CB,CAB,CA’B,...}.
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Thus

gl = llgll3

D? + (CB)?+ (CAB)* 4+ (CA?B)* + - --

D? + CBB'C' + CABB'A'C' + CA?BB'A?C' + - --
D? + C(BB'+ ABB'A' + A’BB'A” 4. )’

= D?*+CLC.

In summary, a state-space procedure to compute ||g||2 is as follows.

Procedure

Input A realization §(\) = [ é g ], A stable.

Step 1 Solve for L:

L=ALA + BB,

Step 2 ||§]l2 = (D? + CLC")'/?

Example 4.3.5 As a trivial check, let us recompute ||g|| for

9 =1—

We have:
) 12 | 1
0 = [
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4.4 Multivariable Systems

In this section we summarize the extension of the preceding three
sections to the case of vector-valued signals.
A discrete-time signal v is now allowed to be

{v(0),v(1), ...},

where each v(k) lies in R". Then the column-vector notation has

partitioning:
v(0) tn

v = v(1) tn

In a multivariable discrete-time linear system G, the input, v, and
output, v, can be vector-valued:

v =Gv, Pk) e R v(k)eR™.

Then the matrix [G] has a corresponding partitioning into p xm blocks.
The first column of [G] equals the output signal when a unit impulse
is applied at the first input channel, that is,

1 0 0
0 0 0

v = ) . ) ) )
0 0 0

the second column of [G] equals the output signal when a unit impulse
is applied at the second input channel, that is,

0

S =

And so on.
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Example 4.4.1 State-space model.

£ = Af+ Bu
P = C&+ Du
A:n Xxn, B:nxm

C:pxn, D:pxm

D 0 0 0

CB D 0 0

G =| ¢AB CB D 0
CA’B CAB CB D

A system G is causal iff [G] is block-lower triangular (as in the
preceding example); it is time-invariant iff [G] is constant along block-
diagonals (as in the preceding example).

Example 4.4.2 Let us construct a time-varying system as follows.
Take

Ek) = a(k)e(k) +v(k),£(0) =0
Pk) = &(k),
where a(k) is a periodic coefficient with

0, k even
a(k) _{ 1, kodd.

(Difference equations with periodic coefficients can still be implemented
by a finite-memory computer, whereas difference equations with gen-
eral time-varying coefficients cannot.) The system matrix is

000000
100000
110000
001000 ,
001100
000010
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which is not constant along the second subdiagonal. Note, however,
that if we redefine the input and output to be

=10, =[]

$(0) = V(O)], Y1) = [W) ]

- P(1) P(3)
then the system s time-invariant, because the system matrix is
0 0|0 00 O i
1 00 0|0 O
1 1{0 0|0 O
0 0|1 0(0 O
0 0|1 1({0 O
0 00 Of1 O

Converting the 1-dimensional signal v into the 2-dimensional signal v
is an example of an operation called lifting. This technique will be
used again in Chapter 8.

The A-transform of a multivariable signal v is still defined as
5(A) = 0(0) + v (DA + 02N +---.

So ©(A) is a vector, each component being a function of A\. For example,
if v is a 3-vector with a unit impulse in the first component, a unit
step in the second component, and 0 in the third component, then

1
o\ = | =
0

Here’s a summary of the notation for an m-input, p-output, causal,
LTI system:

block diagram :
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k
convolution equation : (k) = Zg(k —Do(l)
=0

g(k) € RPx™
$(0) g(0) 0 v(0)
system matrix equation : P(1) | = | 9(1) g(0) v(1)

impulse response : {g(0),¢g(1),...}

transfer function matrix:  g(\) = Z g(k)\F
k=0

G(A) is a p X m matrix

D+ XC(I -)A)™'B

- 4]

Norms for multivariable signals and systems is a more complicated
topic, so we’ll give an abbreviated discussion, namely, the 2-norm and
the oo-norm of a stable p x m transfer function matrix g(\).

state-space model : §(\)

2-Norm

1 2w ) ) 1/2
ol ={ 55 [ trace 3(6)°9(e7%] a0}
m™Jo

oo-Norm
100 = max oima [3(e7)]
Note that the two definitions reduce to the SISO ones when m = p = 1.

Concerning these two definitions are two important input-output
facts. Let G be a stable LTI system with input v and output :

DT G e




4.5. FUNCTION SPACES 93

Extending from the one-dimensional case, define the 2-norm of a mul-
tivariable signal ¢ to be

0 1/2
pllo = (Z ¢(k>’¢(k>> :
k=0

Let e;, : = 1,...,m, denote the standard basis vectors in R™. Thus,
dq€; is an impulse applied to the 7" input; Gdge; is the corresponding
output.

The first fact, the MIMO generalization of Lemma 4.3.1, is that
the 2-norm of the transfer function g is related to the average 2-norm
of the output when impulses are applied at the input channels.

Theorem 4.4.1 ||§]|3 =Y, [|Gdge;l|3

The second fact, the MIMO generalization of Lemma, 4.3.3, is that
the oo-norm of the transfer function g is related to the maximum 2-
norm of the output over all inputs of unit 2-norm.

Theorem 4.4.2 ||g|lcoc = sup{||¥||2 : ||v]]2 = 1}

Thus the major distinction between [|g2||2 and ||§||~ is that the former
is an average system gain for known inputs, while the latter is a worst-
case system gain for unknown inputs.

Finally, the state-space procedure to compute the 2-norm is as
follows:

Step 1 Solve for L:

L=ALA'+ BB'.
Step 2 |||z = [trace(DD’ + CLC")]'/?

4.5 Function Spaces

In linear algebra we view an n-tuple of real numbers as a point in the
vector space R”. This gives us a position of power: We can say whether
two vectors are close to each other, whether they are orthogonal, and
so on. So too in the subject of signals and systems it is of value to
view a signal or a transfer function as a point in an appropriate space.
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Time Domain

You are assumed to know the definitions of vector, normed, and inner-
product spaces. Suppose X and ) are vector spaces. There is a natural
way to add them to get a third vector space, called their external direct
sum, denoted X @& Y. As a set, X @ )Y consists of all ordered pairs,
written

Ml

Addition and scalar-multiplication are performed componentwise. If
X and Y are inner-product spaces, their external direct sum has a
natural inner-product, namely

I 9
([ ],[ ])::<$1,$2>+<y1,y2>.
Y1 Y2

Some notation: Z is the set of all integers—mnegative, zero, and
positive; Z _ is the set of negative integers; Z is the set of non-negative
integers.

Example 4.5.1 An important example of a vector space is ¢(Z, R"),
the space of all functions Z, — R", that is, vector-valued signals

v=| v(1) |, wv(k) eRr".

If n is understood or irrelevant, we may abbreviate by ¢(Z ).

An important example of a normed space is £,(Z4,R"), or just
0,(Z4). For 1 <p < oo it is the subspace of ¢(Z,) of sequences that
are p-power-summable, that is,

00 1/p
lolly = (Z ||v(k>||p> < o0,
k=0

Here ||v(k)]| is some R"-norm of v(k). It is natural to take the p-norm
of the vector v(k)—the p-norm of a vector (z1,...,x,) is defined to
be

(217 -+ + o) 7.
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For p = oo, ¢,(Z) is the subspace of ¢(Z,) of bounded sequences,
that is,

IVlloo = sup [lo(k)|| < co.

Again, it is natural to take the oo-norm of the vector v(k); the co-norm
of the vector (z1,...,z,) is defined to be

max |z;|.
)

The special case ¢2(Z) is an inner-product space with

<o >i= Y (k) v(k).

k=0

Two subspaces V, W of an inner-product space X are orthogonal
if vLw, or (v,w) = 0, for every v in V and w in W. Then we write
their sum as V@& W. Note that their intersection consists solely of the
zero vector. The orthogonal complement of V is

Vi={zeX:zloVveV}

Example 4.5.2 Take
V= {v € ly(Z;) : v(0) = 0}.

Then
Vi={vel(Zy):vk)=0Yk>0}.

The set of real numbers R enjoys the property that every clus-
tering sequence actually has its limit in R. This is not true of the
set of rational numbers: Just think of a sequence of rational numbers
converging to, say, w. In this sense R is “complete.” More formally,
a sequence {zy} of real numbers is a Cauchy sequence provided the
numbers cluster together, that is,

(Ve)(AN)k,l > N = |z, — x| < €.

Then R is complete in the sense that every Cauchy sequence in R
converges to a point in R.
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This notion of completeness extends to normed spaces. A Banach
space is a complete normed space; a Hilbert space is a complete inner-
product space. It can be proved that ¢,(Z.) is a Banach space for
every p, and #5(7Z) is a Hilbert space.

Finally, a subspace V of a normed space X is closed if every se-
quence in V which converges in X actually has its limit in V), that is,
V contains the limits of all its convergent sequences.

Example 4.5.3 Every subspace of R" is closed. For an example of a
subspace that is not closed, we have to go to an infinite-dimensional
space such as ¢5(Z4). In this space, define V to be the subspace of all
sequences that converge to zero in finite time, or in other words, that
are nonzero at only finitely many times. This is certainly a subspace
(if v1 and v are in V, so0 is v +v9; and if v is in V and ¢ is in R, then
cv € V). To show that V is not closed, define the following sequence
in V:

vy = {1,0,0,0,...}

1
vy = {1,5,0,0,...}
_ 11 1 0
vy = a2a223 PR

etc.

This sequence converges in ¢9(Z) to

11 1 1
v = o, Ta e
727227237 Y

that is lim,,_, ||vp, — v||]2 = 0. But v is not in V.

If X is an inner-product space and V is a closed subspace, then V
and V' sum to all of X, that is, ¥ =V @ V.

Frequency Domain

Next we turn to the frequency domain. Let D denote the open unit
disk in the complex plane and 0D its boundary, the unit circle. The
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Lebesgue space Lo(0D, C"*™) consists of all square-integrable func-
tions 9D — C™*™, that is, n x m matrix-valued functions f(e/?) for
which the norm

2 o o
||f||2 = (%/0 trace [f(eﬂﬂ)*f(eyﬂ)] d0>

is finite. Here superscript * means complex-conjugate transpose. This
space, abbreviated L2(0D), is a Hilbert space with inner-product

1/2

1 2w oo )
— trace [f(eje)*g(ejg)} de.
2T 0

<f,§>:

Example 4.5.4 Consider a polynomial matrix
FO) = FO)+ FDA++ FR)NE, - f(i) € R,

Considered as a function on 9D, that is, for A = e/’ f belongs to
L5(0D). In this way, L2(0D) contains all polynomials.

Real-rational matrices are ones with real coefficients. The real-
rational matrices in £9(0D) are precisely those with no poles on 9D.
This subset is denoted RL2(0D), the prefix R denoting real-rational.

The Hardy space Ho(ID) consists of all complex-valued functions
f (M) defined and analytic on D and such that the boundary function
F(e7%) belongs to £2(8D). By identifying f and its boundary function
we can regard Ho(DD) as a closed subspace of L4(9D); hence, it has an
orthogonal complement, H(ID)*.

Example 4.5.5 Polynomial matrices are in Hs(D) too. The real-
rational matrices in Hy(DD) are precisely those with no poles in D or
on OD; this subset is denoted RHz(D). Similarly, RHo(D)+ consists
of the strictly proper real-rational matrices having no poles in |A| > 1.

Finally, the space L (0D) consists of matrices f(e/?) whose oo-
norm

Hf”oo = Sl;p Uma.x[f(ejg)]

is finite. The subspace of matrices analytic in I is Hoo (D). Observe
that RH2(D) = RH oo (D).
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Operators

Let X and Y be normed spaces and let ¥ : X — ) be a linear trans-
formation. Then F' is bounded if

(Fe) (Vo) [[Fz|| < cf|z]-

The least such constant c is called the norm of F' and is denoted || F|.
A bounded linear transformation is called an operator. Alternative
expressions for the norm are as follows:

IF] = inf{c: (Vo)||Fz]| < cllz|}

1Fol _
E

= inf{c: (Vz #0)

_IFa
= p

= sup ||[Fuf
=1

sup || Fzl.
llzll<1

Example 4.5.6 Let G be a stable, multivariable, LTT system. Then
it can be regarded as an operator from f5(Z.) to itself. Theorem 4.4.2
says that [|G]| = [|g]lc-

Isomorphism between Time Domain and Frequency Do-
main

Recall that ¢5(Z ) is the space of square-summable sequences defined
for non-negative times. We shall need two additional spaces. Define
05(7Z_) to be the space of square-summable sequences defined for neg-
ative times, k = ..., —2,—1. A signal v in l5(Z_) is written
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and has the property
-1

Z v(k)'v(k) < co.

— 00

This is a Hilbert space under the inner-product
-1
< >=Y (k) v(k).
— 00

Also, define ¢5(Z) to be the external direct sum of ¢2(Z_) and ¢5(Z):
gQ(Z) = 62(27) ® 62(Z+)
Elements of ¢3(Z) will be written

v

[ P ] € la(Z),v € (Z).

With the inherited inner-product, ¢2(Z) is a Hilbert space, ¢2(Z) is
a closed subspace, and #5(Z_) is its orthogonal complement.

The theorem coming up connects the time-domain Hilbert spaces
to the frequency-domain Hilbert spaces. It is compactly stated via
the notion of isomorphism. Let X and ) be Hilbert spaces. An iso-
morphism from X to ) is a linear transformation F' having the two
properties

It is surjective: (Vy)(3z)y = Fz.

It preserves inner-products: (Vzi,z9) < Fxy, Fxe >=< x1,29 >

Such a function automatically has the further properties
It preserves norms: (Vx)||Fz| = ||z
It is injective: (Vz)Fx =0 = 2 =0.
It is bounded.
It has a bounded inverse.
If such an isomorphism exists, then X and ) are isomorphic.

Theorem 4.5.1 The \-transformation is an isomorphism from £2(7Z)
onto Lo(0D); it maps lo(Z,) onto Hao(D) and l3(Z_) onto Ho(DD)*.

This result is a combination of the Riesz-Fischer theorem and Parse-
val’s equality.
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4.6 Optimal Discretization of Analog Systems

In Section 3.5 we looked at the problem of doing a digital implemen-
tation of an analog system, either a controller or a filter. The bilinear
transformation is one method for doing this. In this section we will
present a second method that is based on optimization.

The setup is shown in Figure 4.1.  Shown are two continuous-time

Ga
o Ja, 1LY j_ .
K o K [ Yy H

Figure 4.1: The error system.

systems, G, and Gy, and a discrete-time system, K;; G, represents
an analog system to be discretized and K the discretization. The two
systems G, and H K4S are compared by applying a common input,
u, and observing the error, z, between their outputs. Actually, we
choose at this time for simplicity to observe only the sampled error,
(. The other analog system, G, is a weighting filter used as a design
parameter in the optimization process. The idea is that G, should
pass only those signals u for which we desire the error to be small.
The input to G, is chosen to be the unit impulse.

The optimal discretization problem we pose is as follows: Given
G, and Gy, design Ky to minimize ||{||2. One strong motivation for
choosing the performance measure ||||2 is that it makes the problem
solvable! We will have to check at the end if a small discretization
error is achieved in the sense of Section 3.5.

In the derivation to follow, G,, G, and Ky are assumed to be
SISO for simplicity. We assume in addition that g,(s) is stable and
proper and that g, (s) is strictly proper. Then l;d(A) is constrained to
be stable.

It is convenient to define

. . . 1
Gur(s) = 50u(s),  Guals) =

so that gy = Guwi1gwe. Then in Figure 4.1
u = Gwl ng(s.
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Now G20 is the unit step, which equals the output of H when its
input is the discrete-time unit step, denoted, say o [o(k) = 1 for all
k > 0]. Thus

u=Gy1Ho.
The discretized error is therefore
¢ = S(Gy—HK;S)u
= S(G,— HK;S)Gy1Ho
= (SG,Gy1H — K;SG 1 H)o.
Define the two discrete-time systems
Tyg=S5G,GpH, T5o5=5G,1H.
Then
¢ = (Tia — KqTa)o.

Since ||¢[|2 = ||¢||2, we arrive at the following equivalent optimization
problem in RHs(D):

~min  ||(Fig — Eafoa)d|2-

kgeRHMa(D)
If we are lucky enough that t,4/foq is in RH2(DD), then this is obvi-
ously the optimal k4. The solution of this optimization problem in the
general case is postponed to Section 6.6.

Example 4.6.1 Let g,(s) be the elliptic filter in the example in Sec-
tion 3.5. Again, take wy = 10. Some trial-and-error is required to get
a good filter g, (s); the following one gives infinite weight to an error
at DC, and has a cutoff frequency of 1 rad/s:

1
s(s4+0.001)(s + 1)

For this data, 14/toq is indeed in RH2(D). Figure 4.2 shows the graph
of error(w) for both the causal (i.e., the filter HK3S) and noncausal
(i.e., the filter RK;S) cases. The maximum errors on the passband
are, respectively, 0.1549 and 0.5808 x 10~%. The latter is a remarkable
improvement over the bilinear transformation.

Juw(s) =
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100

101}

102}

103}

1041

105

106}

107 I I T R N I I L
101 100 10t

Figure 4.2: Error for Discretization of Elliptic Filter: Causal Case
(solid line), Noncausal Case (dash line).

Exercises

4.1 Consider the discrete-time linear system with input v and output
1, modeled by the difference equation

(k) — Pk — 1) + 3¢k — 2) = 2v(k) — v(k — 2).

Find the transfer function from v to . Find a state-space model.

4.2 Consider a linear system G modeled by the difference equation
Yk +2)+ 2k — D)k + 1)+ (k) = kv(k+ 1) + v(k).
Find the first five rows of [G].

4.3 Suppose ¥y = Gu, with

A

g = A+3)(A—4)

Suppose the energy of v is known to equal 0.5. Compute the best
upper bound on the energy of ).
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4.4 For stable SISO transfer functions f(\) and §()), prove that

1£9llec < 1 loollglloo;
1fgllz < 1f lloollgll2-

4.5 Consider the LTI system G with

0000

100 0

100
[GI=11 11 ¢

A

4 3 2

Find g(A), [|g]l2, and ||§]|co- (This shows that H (D) is a proper subset
of HQ (D))

4.6 For a square matrix A, let p(A) denote spectral radius—maximum
magnitude of all eigenvalues. Is p(A4) a norm?

4.7 Let V := {v € ly(Z4) : v(0) = 0}. Prove that V is closed.

4.8 A linear system is strictly causal if the output is initially zero
and the output at time k£ 4+ 1 depends only on inputs up to time k.
Give a formal definition of strict causality, and characterize it in terms
of the system matrix.

4.9 Consider a SISO discrete-time system G with input v(k) and
output (k) related by the equation

o.¢]
P(k) =Y $k+Du(l), —oo<k<oo
l[=—o00
where ¢(k) is a given sequence.

1. Under what conditions on ¢(k) is G time-invariant? Causal?
Bounded on £ (Z)?

2. Find the relationship between the A-transforms of v and .

4.10 Consider the state-space model G, but where the four matrices
A(k), B(k), C(k), D(k) are all periodic, of period N. Then it is not
true that U*GU = G, but what is true?
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4.11 Show that a linear system G is causal and time-invariant iff it
commutes with U.

4.12 A linear system G is memoryless if its system matrix is (block)
diagonal; thus, the output at time £ depends only on the input at time
k. Show that G is memoryless and time-invariant iff it commutes with
both U and U*.

4.13 Consider a linear system G : l2(Z4,R) — ¢3(Z4,R) which is
causal and bounded in the sense that the norm

1G]l = sup [|Gv|2
lofl2<1

is finite. Since G is time-invariant iff G and U commute, the quantity
T7:=||GU - UG||

is a measure of how “time-varying” G is (GU —UG is like the derivative
of G).

Take the following specific G: The input v(k) and output (k)
satisfy

v(k), k even
(k) = { 20(k), k odd.

Compute 7.

4.14 For this exercise only, we shall redefine some notation. Consider
sequences defined for all time, k& € Z. Define the backward and forward
shifts U and U* on #(Z) in the obvious way. Finally, let G be a linear
transformation on #(Z). Show that the following three conditions are
equivalent:

U*GU =G
G commutes with U

G commutes with both U and U*

4.15 In this problem and the next, all functions are scalar-valued.
Fix a point @ in the open unit disk. Find a function f in Hs(D) such
that for every ¢ in Ho(ID)

< f,4>=jla).
(Hint: Cauchy’s integral formula.)
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4.16 Define f(A) =2\ —1 and V = fH,(D); that is, V equals the set
of all functions fg, as ¢ ranges over Hs(ID). Show that V is a closed
subspace of Hz(ID). Show that the dimension of V!, the orthogonal
complement in H5(ID), equals 1. Find a basis for V.

4.17 Find the projections in Ho(D) and Ha(D)L of
A3(A+3) ]

DTFA+2
AZ—2)
4.18 Compute the Hqo(D)-norm of

A2+1
el ] |

A
L X—x=6 A

4.19 Prove that if an n x m matrix f is in Heo(DD), then

£ 12 < Vmll flloo,
so that f € Hy(D).

4.20 Compute the Hs(D)-norm of
[ 2241 1

A2

A
A2—\—6 A

4.21 Consider the system

£ = Af+ Bu

P = C&+ Do.
Apply an input with v(k) = 0 for £ odd. Defining ¢(k) = 1(2k) and
v(k) = v(2k), find the transfer matrix from v to ¢.

4.22 Consider a discrete-time transfer matrix § with minimal real-
ization

Ay _ | A|B
- 413
Assume A has the property that no two eigenvalues outside the closed
unit disk add up to zero. Show that if
A? | AB
| 1),
then p(A) < 1.

4.23 Write a MATLAB program to compute the optimal K, for the
elliptic filter in Example 4.6.1. Reproduce the plots in Figure 4.2.
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Notes and References

Regarding linear systems as linear transformations on function spaces
puts the subject into the mathematical domain of linear operator the-
ory, a very rich source of results. For the use of norms in characterizing
performance and proofs of the facts in Sections 4.3 and 4.4, see [21] and
[39]. General references for Section 4.5 are [33], [58], and [67]. The op-
timization problem, technique of solution, and example in Section 4.6
are due to Smith [128].



Chapter 5

Discrete-Time Feedback
Systems

This chapter collects some useful material in linear control theory:
observer-based controllers; feedback stability; parametrization of all
stabilizing controllers; tracking step inputs.

5.1 Connecting Subsystems

One frequently wants to connect subsystems having state models, and
then to obtain a state model for the resulting system. The purpose
of this short section is to develop some formulas for the connection
of two subsystems. The systems can be continuous-time or discrete-
time—the formulas are the same. For convenience the block diagrams
are drawn as continuous-time systems (solid lines).

The first formula is

Parallel connection

107
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Ay | By
Ci | Dy
— O—
Ay | B
Cy | Dy
A0 By
0 A2 B2

The figure shows the connection of two systems in parallel and state
models for each component; following it is a state model for the com-
bined system. The result is easy to derive, as follows. Start with state
models for the two subsystems:

1 = Ajz1+ Biu
y1 = Ciz1+ Diu
I9 = Asxzo+ Bou
yos = Coxg + Dou.

The equation at the summing junction is

Yy =y + Yo

Therefore the combined system is modelled by
T A 0 x1 + By u
To 0 A2 Z2 By
y = [C1 Cy] [ 2 ] + (D1 + Ds)u.

The other formulas are as follows:

e Series connection
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A1 ‘ Bl AQ ‘ B2
Ci | Dy Cy | Dy
A1 0 Bl A2 BQCl B2D1
BgCl A2 B2D1 = 0 A1 Bl
D;C, Cy | DDy Co DyCy | DoDy

e Feedback connection, no. 1

~ A | By Ay | B
_T 01 ‘ D1 02 ‘ 0
A1 —Blcg Bl
BQCI A2 — B2D102 B2D1
0 Co |0

e Feedback connection, no. 2

M A ‘ By
Ci | Dy
Ay | By
Co| 0
Ay B Cs By
BQCI A2 + B2D102 By Dy
Ch DOy 2

o (eneral interconnection
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- " A ‘ B, By [~
Cy1 | Di1 D2
Cy | Doy 0

A+ ByDg(Cy ByCk B1+ BysDg Doy
BrCy Ag By Doy
Ci + D12DgCy> D15Ck | D11 + D12Dg Dy

5.2 Observer-Based Controllers

This section presents basic results on observers and observer-based
controllers. Consider the plant model

§ = At + Bu

P = C&+ Do.
(Remember that ¢ in discrete time means unit time advance.) An
observer—more properly, an asymptotic state estimator—is another
system, with inputs v, 4 and output ¢, having the property that the
state error vector £(k) — (k) converges to 0 as kK — co. The general
form of an observer is

é:o = A&, + Boiv + Byt

§ = Colo+ Do1v+ Do,
So the two systems are hooked up as in Figure 5.1. The observer is to

provide state estimation in the following sense: For every initial state
£(0) and &,(0) and every input v, we should have

E(k) —&(k) =0 as k — oo.

Let us define the estimation error, e := ¢ — &, and then view the
plant-observer combination as a system with input v and output e.
We have

& = A&+ Bu
é:o = Aogo + Boiv + BOZ(CS + DU)
e = £~ Colo— Doiv — Do?(cf + DU)'



5.2. OBSERVER-BASED CONTROLLERS

plant

Al B 1P
el S

g.. Ao ‘ Bol Bo2

CO ‘ Dol D02 4

observer

Figure 5.1: Plant and observer.

111

So Figure 5.1 becomes Figure 5.2. Again, we want ¢(k) — 0 as k — oo

. A 0 B
T BoZC AO Bol + BOQD
I — DOQC _Co ‘ _Dol - D02D

Figure 5.2: Plant-observer combination.

for every initial state and every input. In Figure 5.2, (A4, B,C, D)
is given and (A,, Bo1, Bo2,Co, Do1, Dy2) is to be designed. There is
a simple solution. It turns out that an observer exists if (C,A) is
detectable. To get an observer, first select L so that A+ LC is stable,
and then take the observer equations to be

£, = Afy+ Bu+ L(CE& + Du — 1))

= 507

that is,

A+ LC|B+LD —-L

AO‘BOI B02:|:|:
Co ‘ Dol Do2

I | 0 0
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Notice that the observer has this special structure:

£o=Aty+Bv +L]  C& + Du — ).
~—_——— —————

simulation of plant estimate of output

/

output error

To verify that this is an observer, write out the corresponding equa-
tions:

¢ = At+Bv
£ = (A+LC), — LCE + Bu
e = &— &

Subtract the first two:
£—&=(A+LO)E-&).
Thus
€ =(A+ LO)e,

so the transfer matrix from v to € equals zero. Also, (k) — 0 for
every £(0), £,(0), and v.

Let us summarize:

Theorem 5.2.1 For the setup in Figure 5.3, if (C, A) is detectable
and L is chosen so that A+ LC is stable, then (k) — &o(k) — 0 for

every £(0), £(0), v.

£o A+ LC|B+LD -L L :
I 0 0 et

Figure 5.3: Plant and observer.
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Only detectability of (C, A) was required for the preceding con-
struction, but if we want fast convergence of £(k) — &,(k), then we
should place the eigenvalues of A + LC well inside D. To reassign all
eigs, of course we need observability, not just detectability.

We are poised now to think of a two-stage controller: The first stage
would be an observer to generate an estimate of the plant’s state; the
second stage would be to feed back this estimate as though it were the
state. Let us see this when the goal is to stabilize an unstable plant.

Let the plant be
v Al|B (
C|D

with (A, B) stabilizable and (C, A) detectable. Choosing L so that
A+ LC is stable, hook up the observer as in Figure 5.3. Finally, close
the loop via v = F¢,, where F' is chosen to stabilize A + BF'. In this
way we get Figure 5.4. This can be simplified by writing the equations

e AIB | v,
D

A+LC|B+LD -L i
I \ 0 0 e

Figure 5.4: Observer with feedback.

from 7 to v:

£ = (A+LC)+ (B+ LD)v — Ly
v = F§¢,.

Thus

¢, = (A+BF + LC + LDF)¢, — L1
v = F§¢,.
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v Al B (G
e e

A+ BF + LC+LDF | —L
F | 0

Figure 5.5: Observer-based controller.

Thus the configuration reduces to that of Figure 5.5.

This system is autonomous—it has no inputs. But it is internally
stable in the following sense: For every initial value of the states, £(0)
and &,(0), the states £(k) and &,(k) converge to zero as k — oo.

Proof Write the state equations corresponding to Figure 5.5:

§ = At + Bu
= A¢+ BF¢,
¢, = (A4 BF + LC + LDF)¢, — Ly
(A+ BF + LC + LDF)¢, — L(C¢ + Do)
= (A+ BF + LC + LDF)¢, — L(C¢ + DF¢,)
(A+ BF + LC)¢, — LCE.

Thus
E1_41¢
M
where
A BF
A::[—LC’ A+BF+LC]' (5:2)

So stability is equivalent to the condition that A be stable. To show
that A is indeed stable, define

T:H?]
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A simple computation gives

A+ BF BF

71 _
T AT = 0 A+LC |’

Thus the eigs of A are the eigs of A + BF together with the eigs of
A+ LC. But these latter two matrices are stable by design. |

Let us put the configuration into the more conventional form of
the unity-feedback system of Figure 5.6. Suppose P is a given plant

Figure 5.6: Unity-feedback system.

and K is a controller to be designed. Beginning with a stabilizable,
detectable realization of P,

pON) = [%}3] ,

choose F' and L to stabilize A + BF and A + LC, and then take the
transfer matrix of K to be

A+BF +LC+ LDF | L
() = F 0 |-

[It’s +L instead of —L because we switched to negative feedback in
Figure 5.6.] In this way we have Figure 5.7. Using one of the

p e |A+BF+LC+LDF|L vv | A|B
........ :Q = K BG TN T’T .

=

Figure 5.7: Observer-based controller.
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formulas from the preceding section, we get that the transfer matrix

P €
from [ 5 ] to [ v ] equals

A BF 0 B
~LC A+BF+LC‘L ~LD
—C —DF I -D

0 F ‘ 0 I

The A-matrix here is precisely A in (5.2). Thus the transfer matrix

P
d

stable in this sense as well.

from ] to [ 2 ] is stable, so the feedback system is input-output

5.3 Stabilization

The preceding section showed how to stabilize a plant using an observer-
based controller. That is just one way. In this section we look at
stabilization more generally.

Let us start with the multivariable unity-feedback setup in Fig-
ure 5.6. We shall assume that P is strictly causal [p(0) = 0] and K is

causal [£(0) finite]. Suppose we start with minimal realizations of P
and K:

=[], = [kt

Let £p, &k denote the state vectors. Internal stability means that

¢p(k),Ex (k) — 0 as k — oo for every £p(0),Ex(0).

The A-matrix of the autonomous system (i.e., p =0, 6 =0) is

Ao [ Ap — BpDCp BpCgk ]

—BKCP AK

so internal stability is equivalent to the condition that A has all its
eigenvalues inside D.

In Figure 5.6 the transfer matrix from [ ’g ] to [ 2 ] equals

Ap — BpDxCp BpCxk ‘ BpDx Bp

—-BgCp Ax Bg 0
—Cp 0 I 0
—DgCp Ck Dy I
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Again, the A-matrix here is precisely A, so internal stability implies
that this input-output transfer matrix is stable as well.

Now we extend the discussion to the general case in Figure 5.8.
Let us first observe what kind of control structure is depicted in this

Figure 5.8: General discrete-time system.

figure. Since G has two inputs (w and v) and two outputs (¢ and ),
it can be partitioned as

Gu G2
G = ,
[ Go1 Ga ]

that is, the inputs and outputs are related by the equations

¢ = Guw+Giav
P = Goiw+ Gav.

This together with v = K1) allows us to derive the input-output system
from w to (:

¢ =[G + G1aK(I — GK) 'Go|w

(provided the inverse exists). As a function of K, this input-output
system is called a linear-fractional transformation (LFT) and is de-
noted by F(G, K).

To define precisely what internal stability means in Figure 5.8,
start with stabilizable, detectable state realizations for G and K:
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Let &¢, &k denote the state vectors. Internal stability means that
€a(k),Ex (k) — 0 as k — oo for every £¢(0), €k (0) and with w = 0.

Partition B, C, D corresponding to the two inputs (w and v) and
two outputs (¢ and ) of G:

A| Bi By
g(A)=| C1| D11 Diy
02 D21 0

For simplicity it has been assumed that Dyy = 0, that is, the block of
G from v to 1, denoted Goo, is strictly causal. It is routine to derive
that the A-matrix of the autonomous system (i.e., w = 0) is

. |: A+ ByDgCy ByCk ] (5 3)

A_ BrCy AK

So internal stability is equivalent to the condition that A has all its
eigenvalues inside D.
Let us note several points:

1. For A to have all its eigenvalues inside DD, it is necessary that
(A, Bz2) be stabilizable and that (C2, A) be detectable.

2. If (A, By) is stabilizable and (Cq, A) is detectable, then there does
indeed exist an internally stabilizing K. Matrix A in (5.3) has
exactly the same form as A in (5.2), so K could be an observer-
based controller. In particular, it suffices that K internally sta-
bilize G2 as in Figure 5.9.

A | By
Cy| O

e A | B |
Cx | Di

Figure 5.9: Controller with Goas.
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3. When K is connected in Figure 5.8, the transfer matrix from w
to ¢ equals

A+ ByDgCy  ByCk | Bi+ BaDg Dy
BrCy Ak Br Dy
Cy + D12DgCo  D13Ck | D11 + D12Dg Doy

The A-matrix here is precisely A, so this transfer matrix is stable.

Let us summarize:

Theorem 5.3.1 For the setup in Figure 5.8, start with a minimal
realization of G. An internally stabilizing controller exists iff (A, Bs)
is stabilizable and (Ca, A) is detectable. When these conditions hold,
it suffices to choose K to internally stabilize Goo in Figure 5.9. An
internally stabilizing controller achieves stability of the transfer matriz
from w to .

5.4 All Stabilizing Controllers

We continue the study of internal stability for the general setup of
Figure 5.8 with

A| B B
gA) =1 C|Dn Dy |. (5.4)
02 D21 0

We wish to parametrize all K's that achieve internal stability for G. As
shown in the preceding section, this reduces to internally stabilizing
G292 under the assumption that (A, Bs) is stabilizable and (Cs, A) is
detectable.

Parametrization

Start with some matrices F' and L such that A + ByF and A + LCy
are stable. All stabilizing controllers for G can be parametrized by a
linear fractional transformation of some arbitrary but stable system,
as follows.

Theorem 5.4.1 The set of all (FDLTI and causal) Ks achieving in-
ternal stability in Figure 5.8 is parametrized by the formula

k=7F(j,4), §€RHx(D), (5.5)
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A+ ByF +LCy | —L —B;y
i) = F 0o -I |. (5.6)
—Ch I 0

Note that the controller K in (5.5) is an LFT of @, which is FDLTI,
causal, and stable. Such a controller is represented as the input-output
transfer matrix of the block diagram

] @ o

Here J is partitioned as usual. As a special case, if () = 0, the con-
troller K reduces to Jy; with the transfer matrix

A+ByF+LC | -L ]
F U E

this is simply an observer-based controller for G (see Figure 5.5).
In this theorem, we have taken D9y = 0 for simplicity; the result
can be generalized to the case Dos # 0—see Exercise 5.9 for the details.

Proof of Theorem 5.4.1 Rewrite (5.5) as
K = Ji + Ji2Q(I — J22Q) ' Jar. (5.7)

First, we claim that the mapping @) — K is a bijection (one-to-one
and onto) from the set of FDLTI, causal systems to itself. Since J is
FDLTI and causal with Jog strictly causal, it follows easily that K is
FDLTI and causal if @ is. Conversely, assume K in (5.7) is FDLTI
and causal. Since ,]1_21 and J2_11 exist as FDLTI and causal systems,
solve equation (5.7) for Q:

Q = J3 (K — Ju)Jyt [T+ J5 (K — Jn) g5 ]
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Hence () is also FDLTI and causal. Now it suffices to show that K in
(5.7) internally stabilizes Gy iff @ is stable.

Assume first that K in (5.7) internally stabilizes Go. Let £ denote
the state of G corresponding to the realization in (5.4); let £; denote
the state of J for the realization in (5.6); and let {; denote the state
of @ for any minimal realization. It can be verified that the induced

realization for F(J, Q) is stabilzable and detectable, so £ := [ ? ]
Q

is a satisfactory state for K. Connecting the parametrized controller
to G92, we have Figure 5.10. In this figure, by internal stability

e M Goy |- :
J
e Q| :

Figure 5.10: The LFT F(J,Q) controlling Gas.

€a(k),&5(k),Eo(k) — 0 as k — oo for all initial conditions.

The upper two blocks in Figure 5.10 can be combined as a new system,
P, to give Figure 5.11. In this figure,

Ep(k), (k) — 0 as k — oo for all initial conditions.

But in fact P = 0: Based on the realizations of G292 and J in (5.4) and
(5.6), we have

A ByF —By
]3()\) = —LCy A+ ByF + LCy | —Bsy
Co —Cy | 0
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] @ L

Figure 5.11: @ controlling P.

A+ LCy 0 0
= —LCy A+ ByF | —B,
Cs 0 | 0

= 0
the second realization is obtained using the similarity transformation
Lo 1]
0 I |
Thus, @ stands alone and

£g(k) — 0 as k — oo for all initial conditions.

Hence () is stable.
Proof of the converse is similar. [ |

If a realization of @) is known, a realization of the controller K can
be obtained by application of the formula in Section 5.1.

Closed-Loop Transfer Matrix

The preceding theorem gives every stabilizing K as an LFT of a pa-
rameter ¢ in RH (D). Now we want to find the transfer matrix from
w to ¢ in Figure 5.8 in terms of this parameter. It has the form

£1 + i?ini%
where #; are fixed transfer matrices in RH (D) depending only on §.
To get these #;s explicitly, we substitute the controller parametriza-

tion in the preceding theorem into Figure 5.8 to get that the controlled
system is modeled as in Figure 5.12. If ) is memoryless, that is,
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¢ w
RS A ‘ B, B, PRV
Cy1 | Di1 D2

Dy 0 R :

R Cy

e, o A+ BoF + LCy ‘ —-L —-By

s P

Figure 5.12: Generalized plant with parametrized controller.

G(\) = Qo, a constant matrix, then

B = A+ BoF + LCy + B3QoCs | —B2Qo — L
F+QoCh | —Qo

(5.8)

In general, however, Figure 5.12 can be converted to Figure 5.13, where

Figure 5.13: Closed-loop system with controller parameter Q).

T is stable (since Jq; internally stabilizes G2) and its transfer matrix
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is given by
A+ BQF BQF Bl _B2
i) = 0 A+LCy | =B — LDy 0
C1+ DppF DoF Dy —D12
0 —Cy Doy 0

Thus, the input-output system from w to ¢ is an LFT of ). We read
off that

A+ ByF By F B,
ti(\) = 0 A+ LCy | =By — LDoy
| C1 +DppF  DpF Dy,
A+ ByF ByF —-By
tia(A) = 0 A+LCy| 0
| C1 +DoF  DigF | —Dq2

A+ ByF ‘ —Bs ]
| C1+ DioF | =Dy

[ A+ By F By F B,
tra() = 0 A+ LCy | =By — LDy
| 0 —-Cy | Doy
. -A+LCQ‘B1+LD21:|
| G | Dy
t(N) = 0.
Defining

tr=t, ta=ty, t3=1tu,
we get that the transfer matrix from w to { equals t1 + togts with £;
all in RH o (D).
Special Case: Stable Plants

As a special case of the preceding results, suppose G is already stable,
that is, § € RHs (D). Then in Theorem 5.4.1 we may take F' = 0 and
L = 0. This leads to the following simplifications:

A._[o —I]_
S
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the controller parametrization is
ko= =G~ g2d)
= —(I=492) 74 4 € RHo(D);
and the closed-loop transfer matrix from w to ¢ is

g1 — §124ga1-
5.5 Step Tracking

One learns in an undergraduate course how to design a controller so
that the output of the plant will track a step command signal. One
learns that the basic mechanism to do this is integral feedback control.

In general, a system is step-tracking if certain designated signals
can track step command inputs. In the standard discrete-time system

G

S B

¢ is interpreted as an error signal, so the definition of step-tracking
is that {(k) — 0 as k — oo for every step input w. A multivariable
step input is a signal of the form w(k) = wply(k), where wy is a con-
stant vector and 14(k) is the 1-dimensional unit step function. In the
definition of step-tracking we will also require internal stability.

Let us begin with an example.

Example 5.5.1 Consider the usual unity-feedback system in Figure 5.14.
Assume K and P are SISO and P is strictly causal. The problem is
to design a causal, internally stabilizing K so that the system is step-
tracking, that is, e(k) — 0 as k — oo when p is the unit step. Such
a controller exists iff p does not have a zero at A = 1, where p has a
single pole.

If p already has a pole at A = 1, then we just have to design
K to internally stabilize P—step-tracking would be automatic. We
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Figure 5.14: Unity-feedback system.

could take K to be an observer-based controller. If p does not have
such a pole, then k must introduce it, that is, K must have the form
K = K K», where ki (A\) = 1/(1 — \). Now imagine Figure 5.14 with
P replaced by Py, := PK; and K replaced by K. It just remains to
design K> to internally stabilize Pj,;; again, we could take K5 to be
an observer-based controller.

Another, more methodical approach is first to parametrize all sta-
bilizing controllers and then to choose the parameter to get step-
tracking. For simplicity, assume further that P is already stable. The
parametrization now takes a simple form:

k=41 —-pg)~", §€RHxo(D).
Then we have
= (1-pg)p.

To achieve step-tracking, it is sufficient (and necessary) to choose § in
R’HOO(ID)) to satisfy the equation

—-p(1)g(1) =

(
If p(1) = 0 (p has a zero at A = 1), no stable ¢ exists to solve this
equation; if p(1) # 0, then ¢ must be chosen to satisfy the interpolation
condition

q(1) =1/p(1).
We could take, for example, G(A) = 1/p(1).

The second method just discussed works in general. For the stan-
dard discrete-time setup, parametrize K and then write the transfer
matrix from w to ¢ in terms of the parameter Q:

$ = (11 + tadts)w.
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Then step-tracking is achieved iff
B (1) + £ (1)d(1)is(1) = 0. (5.9)

This is a linear matrix equation in ¢(1).

Example 5.5.2 Figure 5.15 is a block diagram of a very simple mas-
ter/slave system. There are two masses, a master (left-hand) and a

PN (0 uy L Y2

1 _1
i 52 RN 1052
K

U1

Figure 5.15: Master/slave system.

slave (right-hand). A human applies a force f to the master. The
controller K applies an opposing force u; to the master and also a
force uy to the slave. The controller inputs the two positions y; and
Y2-

It is desired that the system function as a telerobot: When a human
applies a force, the master should move appropriately in the direction
of the applied force and the slave should follow the master. With this
in mind, the performance goals are stated to be

1. internal stability,
2. for f a unit step, y;(00) = 1 and ya(00) = y1(00).

The system can be put in the standard form

z w

-~
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with the signals defined to be

y1— f Y1 Uy
z = y w = ) = ) u = .
[91_92] fy |:y2:| [UQ]
Defining the state variables of G to be

T =Y, T2=10Y1, T3 =Y, T4 =7Y2,

we get that
A| By B
gAN)=|Ci | D 0
Cy| O 0
where
01 00 0 0 0
0 0 0 O 1 -1 0
A=1lo o001 B=|o 0 0
0 0 0O 0 0 -0.1

10 0 0 1 00
Cl_[lO—lO]’ [

~1
0 10’D”_[0]'

Let us (arbitrarily) choose h = 0.1 and contemplate using a digital
controller:

ST I y Ky

Gy
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The state matrices for G4 are

Ad| Bia Bag
ga(\) =1 Ci| D 0
Cy 0 0

We are now set up to parametrize Ky as in the preceding section
and then to choose a suitable parameter. The steps are as follows:

1. Choose F' and L to stabilize A + BoyF and Az + LCs.

2. Get a realization of #;:

A B Ay + BogF BoyF By
1?1 ()\) = |: 1 1 :| = 0 A+ LCy | —Byyg
Ci1 | D cr 0 D,

3. Get the DC gains of t1, to, and 5

t1(1) = Dy +Cu(I—Ay) "By
t2(1) = —C1(I — Ag— BogF) "By
t3(1) = Cy(I — Ay — LCy) 'Byg.

~ ~ ~

t1(1) + 2(1)g(1)t3(1) = 0
for ¢(1) and set Qy = G(1).
5. Get the controller from (5.8):

Fa(\) = Aq+ BogF + LC3 + B2qQoCh | =By4Qo — L
! F+ QoC ‘ —Qo

Figure 5.16 shows step-response plots of the discretized signals for
F and L obtained by the MATLAB commands

F = —dlgr (Aq,Bag, I,1)
L = —digr (A},C I,I).

The master follows the commanded step and the slave follows the
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12

0.8
0.6
04f |

02t .

Figure 5.16: Step-response of master/slave example: y; (kh) (leftmost
plot) and y,(kh) (rightmost plot) versus k.

master, as required. Of course, the responses are not optimal in any
sense.

We have implicitly assumed that if we achieve step-tracking of the
discretized system, then it will also be achieved for the continuous-time
SD system. This assumption will be justified in Section 11.3.

Exercises

5.1 Derive the other four formulas in Section 1.

5.2 Consider the discrete-time linear system with input v, output v,
modeled by the difference equation

(k) — Pk — 1)+ 3¢k — 2) = 2v(k) —v(k —2).
Find a state model

£ = Af+ Bu

P = C&+ Do.
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Choose F' to put all the eigenvalues of A + BF' at the origin. For the
control law

v=FE+p,

plot the response of ¢ to a unit step in p.

5.3 Consider the discrete-time system

§ = At + Bu
Y = C¢+ Do,
with
-1 —-1.5 -1
A_[s 3‘5],3_[2],0_[11],1)_2.

Verify that an observer exists. Design an observer, writing it in the
form

&0 = Ao + Bo1v + Bot).

Can you achieve convergence of the error, that is, £,(k) —&(k) — 0, in
finite time?

5.4 Consider the system

A
H(A) = ——.
PN =15
Design a causal, internally stabilizing K so that (k) — 0 as k — oo
when p is the unit ramp. First, use the two-step procedure: Parametrize
all internally stabilizing controllers; select the parameter to achieve the
desired tracking. Second, use an observer-based controller.
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5.5 Same setup as in previous problem but with
AAN+1)
H(A) = ———.
P =5y
For p the unit step, design a causal, internally stabilizing K so that

e(k) — 0 in finite time [i.e., e(k) = 0 for all k£ greater than some finite
value]. Such a response is called deadbeat.

5.6 What are necessary and sufficient conditions for the existence of
a matrix ¢ in RH (D) solving (5.9)?

5.7 Consider the following setup:

s €

4?_5 ........ W Ky | o H P

The plant and controller are SISO. The plant transfer function is
1
s—1

Design a causal, internally stabilizing Ky to achieve

Z3(8) _ e—O.ls

internal stability,
e(t) = 0 as t = oo when r(t) is a step

using this procedure: Select h; compute P; = SPH; in discrete time,
design an internally stabilizing, step-tracking K4 for Py.

5.8 Figure 5.17 shows the bilateral hybrid telerobot of Example 2.2.1.

Take GG, and G to be SISO with transfer functions
1 R 1
gm(s) = ;7 gs(s) - 1—08

Put the system in the standard form by defining

Vs — Um In
z= , W= .
|: fm - fe :| |: fe :|
Following Example 5.5.2, try to design a sampled-data controller so

that the discretized system is internally stable and step-tracking. Con-
clude that step tracking is not achievable. Explain physically.
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In ~ Um Vs

Gum G, O
o]« o
Im fs

Figure 5.17: Bilateral hybrid telerobot.

5.9 This exercise is to extend Theorem 5.4.1 to the case Dyy # 0.
In this case, for well-posedness of the feedback system in Figure 5.8
(i.e., for the closed-loop system to exist and to be causal), we require
that I — ngl%(O) be invertible. Under the same assumptions as in
Theorem 5.4.1, show that the set of all stabilizing K's is parametrized

l% = ‘7:(57 (j)a q € RHOO(D)a I— DQZQA(O) invertible,

A+ ByF + LCy + LDyyF | =L —(By + LDy))
i\ = F 0 .y
—(Co + Doy F) I Dy

Find the closed-loop transfer matrix w — ( in terms of this parameter

q.

5.10 Consider the discrete-time system

where the plant has the transfer function

A—0.5
S(\) —
PN =3
and the reference signal is

1 1 1
=t N TR

?a’a2’a3’
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We are interested in the following control problem: Design an LTI
and causal controller K to achieve internal stability and asymptotic
tracking, namely, e(k) — 0 as k — oo.

1. For what value(s) of a, does this control problem have no solu-
tion?

2. Suppose a is chosen such that the problem has solutions; find a
solution.

5.11 Consider the following sampled-data control system:
d

I y
S| o Ky | o H O P

1

)= o551

1. Suppose d(t) = 1(t), the unit step. Design a controller K, so that
the feedback system is internally stable and y(t) converges to
zero at the sampling instants, that is, y(kh) — 0 as k — 0o. Use
the method of controller parametrization. (For internal stability,
internally stabilize the discretized feedback system.)

2. Repeat but with d(t) = sin(10¢)1(¢).

Notes and References

The idea of parametrizing all internally stabilizing controllers is due
to Youla, Jabr, and Bongiorno [155] and Kucera [96] via coprime fac-
torizations, for which state-space formulas are given in [89] and [114].
Proofs of controller parametrization via coprime factorization for the
continuous-time case can also be found in [51]; the discrete-time case
is identical modulo the obvious changes. The parametrization in The-
orem 5.4.1 is from [45]; the simple proof here is adapted from [21].



Chapter 6

Discrete-Time Ho-Optimal
Control

This chapter gives a state-space approach to a discrete-time Ho-optimal
control problem. This problem concerns the standard setup:

e I

The input w is standard white noise—zero mean, unit covariance ma-
trix. The problem is to design a K that stabilizes G and minimizes the
root-mean-square value of (; equivalently, the problem is to minimize
the Ha(D)-norm of the transfer matrix from w to .

6.1 The LQR Problem

Before attacking the general Hs-optimal control problem, we shall de-
vote some time to an easier problem, the Linear Quadratic Regulator
(LQR) Problem, which can be stated as follows. We consider the usual
state-space model in discrete time:

£00) = &

135
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£(k) = AE(k)+ Bo(k), k> 0.

The initial state, &y, is fixed. The control sequence v(k) is to be chosen
to minimize the weighted sum

oo

T = [(k)QE(k) + v(k) Ru(k)] .

k=0

The matrices @ and R, called weighting matrices, are symmetric, with
@ positive semidefinite and R positive definite.

As we will see, it turns out under some mild technical assumptions
that the sequence that minimizes J has the form v(k) = F¢(k), that
is, the optimal control law is state feedback. Furthermore, A + BF
is stable. So the solution of the LQR problem provides an alternative
way to stabilize an unstable plant; in fact, this way is more sound
numerically than eigenvalue assignment.

The matrix F' is uniquely determined by the data (A, B,Q, R).
The MATLAB command is

F = —dlq’f’(A, Ba Qa R)

Typically, @@ and R are used as design parameters: One proceeds as
follows:

1. Choose any @, R.

2. Compute F' by solving the LQR problem.

3. Simulate the controlled system.

4. To improve the response, modify (), R and return to step 2.

It is interesting to note that the LQR problem is a special 2-norm
optimization problem. To see this, first note that the initial condition
can be absorbed into the state equation by bringing in the unit impulse
function, d4(k), as follows:

Ek)y = 0, k<O
£ = At + 648 + Bo.
Second, note that

cocorm=[<] [ 2][5)

v
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Being positive semidefinite, () and R have positive semidefinite square
roots. Defining

1/2 0
e=[% ] p=lan]

we get

98- [5]ie o

The further definition
¢ =C¢+ Do,
gives
£Q€ +v'Ro = ¢

and therefore

oo

=3 CkyCh) = I3

0

In this way, the LQR problem can be restated as follows: Given the
system depicted as

where the transfer matrix for G is

o _ | Alé B
G0 = [4—0 =
and where the disturbance input is w = Sd, find the control sequence

v to minimize ||C||2.
We will pursue this latter direction in Section 6.4.
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Heuristic Derivation of the Optimal Feedback

A rigorous derivation of the optimal feedback F' will be given later in

this chapter. In this section we will give a heuristic derivation (that is,

with lots of hand-waving) to provide some motivation for the formulas.
First, let us modify the cost function slightly by halving it:

o

> [ER) QER) + v(k) Ru(k)] .

k=0

1
J =
2
Obviously, this doesn’t change what the optimal control sequence is.

We can view the problem as that of minimizing J subject to the equal-
ity constraint

—£+ Af+ Bu=0.

This suggests the method of Lagrange multipliers. So introduce a
vector sequence A(k + 1) (the time value is k + 1 instead of k to get a
nicer equation below) and then define the Lagrangian L to be

(1. 1,
> { GEwrQe) + 3oy Roti+

k=0
Ak + 1) [—€¢(k + 1) + AE(k) + Bu(k)]}

Regarding L as a function in turn of A(k+1), v(k), and £(k), we set the
three partial derivatives to zero as necessary conditions for optimality:
oL
Ok + 1)
oL
ov(k)
oL

PRI

These evaluate to
—{+ Aé+Bv =
VR+NB =
EQ-N+NA =

=0

Substituting the second equation, that is,

v=—R'B')\ (6.1)
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into the first and cleaning up, we get

I BR'B'|[¢] [ A4 0]fc¢
0 Al M T - T AT
In order to proceed, we shall assume that A is invertible. Then in
the preceding equation we can define'

[T L4
to get
[i]:sg[i] (6.2)

Let us return to the definition of J:

J =

N | —

> [E(k)QE(R) + v(k) Ru(k)] .
k=0

Since R is positive definite, for J to be finite, it must necessarily be

true that v(k) — 0 as £ — oo. From (6.1), a sufficient condition for

this is that A(k) — 0. Also, another necessary condition for .J to be

finite is that Q'/2¢(k) — 0. In light of these observations, we shall

impose upon solutions £(k), A(k) of (6.2) that they converge to zero.
Define

The solution of (6.2) is

¢(k) = S5¢(0).

Suppose ¢(0) is an eigenvector of Sy corresponding to an eigenvalue y
with || < 1. Then

S2(0) = p(0)

and this implies that

S5¢(0) = 1" ¢(0).

!The subscript “2” on S is meant to link it to the Hs problem.
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Thus

¢(k) = pFp(0) — 0.

More generally, ¢(k) — 0 iff the initial state, ¢(0), lies in the space
spanned by the generalized eigenvectors of Sy corresponding to eigen-
values strictly inside the unit disk.

Now we need two additional assumptions on Sy. First, assume it
has no eigenvalues on the unit circle. It is possible to show that So
has the property that p is an eigenvalue iff 1/u is an eigenvalue. So
the first assumption implies that half the eigenvalues of Sy lie strictly
inside the unit disk—that is, they are stable—and the other half lie
strictly outside—they are unstable. Let n denote the dimension of the
vector &; then Sy is 2n x 2n. So n eigenvalues of Ss are stable and
n are unstable. Define T' to be the 2n X n matrix whose columns are
the generalized eigenvectors of Sy corresponding to stable eigenvalues.
Partition T as follows:

T =

Secondly, assume that Ty is invertible. Defining X = TQTI_I, we have

[ 1
T__X]ﬂ.

So the matrices T' and [ )‘2 ] have the same column span. We conclude

that ¢(k) — 0 iff ¢(0) belongs to the column span of [ )I( ]

Claim If ¢(0) belongs to the column span of [
X&(k) for all k.

I
X ], then (k) =

Proof Assume ¢(0) belongs to the column span of [ ! ], that is,

X

X
the generalized eigenvectors of Sy corresponding to stable eigenvalues.

I
for some vector v. Now the columns of [ ] span the same space as
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Suppose for simplicity that ¢(0) is in fact one of these eigenvectors;
then

S2¢(0) = pgp(0)
for some || < 1. Thus

¢(k) = S5¢(0)
= uF¢(0)

-] L]

This implies that
[ —X I ]¢(k)

In this way we get

that is, \(k) = X&(k). [ |

I
e

Finally, substitute A(k) = X¢(k) into (6.1) to get the optimal
control law as follows:

v = —R'B'A
= —R'B'X¢
= —R7'B'X[A¢ + Bu]
= —R'B'XA¢ - R™'B'XBv
= v = —(R+B'XB)'B'XA¢
= F = —(R+B'XB)"'B'XA.
Summary

e Given data: (A, B,Q, R) with A invertible.
e Define

52:[1 BRle]l[ A o]_

0 A
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e Assume S has no eigenvalues on the unit circle.

e Compute a matrix T" whose columns are the generalized eigen-
vectors of Sy corresponding to stable eigenvalues. Partition 7' as

K

Assume Tj is invertible.

Compute X = TQTI_I.

Conclusion: The optimal feedback is F = —(R+B'XB)~'B'X A.

Example 6.1.1 A very simple example is

£ = &+
7= g ek uw?),
for which
A=B=Q=R=1.
Then

2 -1
s-l 2]
The MATLAB command
[V, D] = eig(S2)

yields eigenvalues along the diagonal of the matrix D and correspond-
ing eigenvectors as the columns of V:

V= [ —0.8507 —0.5257 ] . D= [ 2.6180 0

0.5257  —0.8507 0  0.3820 |°
Thus
—0.5257 —0.8507
71"[ —0.8507 ]’ = Tososr OIS0

Then F' = —0.6180. This is exactly the same as that produced by the
MATLAB command

F = —dlgr(1,1,1,1).
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6.2 Symplectic Pair and Generalized Eigen-
problem

In the preceding section, we saw that the LQR problem, which is
closely related to Ho-optimal control, can be solved via computing the
stable eigenspace of an associated matrix, called a symplectic matriz:

I BR'B']'[ 4 0

0 A -Q I |
For this matrix to exist, A must be nonsingular. Such an assumption
can be very restrictive in many applications; in many problems the A-
matrix that appears in the symplectic matrix is not the plant A-matrix
(which is normally nonsingular, being obtained from the step-invariant
transformation)—it is an intermediate matrix. It is possible to remove
this assumption by considering the generalized eigenproblem for the
matrix pair

A 0 I BR™'B'
-Q I}’ 0 A '
Let M; and M, be two n X n matrices and M the ordered matrix

pair (M;, M,). 2 The set of generalized eigenvalues of the pair M,
denoted o(M), are those numbers A satisfying

Mz =AM,z

(6.3)

for some nonzero vector x, called a generalized eigenvector. It is easy to
see that the generalized eigenvalues are the roots of the (generalized)
characteristic equation

det(M; — AM,) = 0.

Note that if M, is nonsingular, the generalized eigenproblem re-
duces to the eigenproblem for the matrix M, 'M;. If M, is singular,
o(M) may be finite, empty, or infinite:

(1 0] 1 0]

Ml__2 3 ] M,«__0 0 o(M) = {1}
(1 0] [0 0]

Ml__23_, Mr__lo_, o(M) =10
(1 0] 1 0]

M, = N M, = 0 ol o(M) =C.

2The subscripts [ and r stand for “left” and “right.”
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In general, det(M; — AM,) has the form

n
det(M; — AM,) = [[(Bi — ai)). (6.4)
i=1
For example, the second case above corresponds to ¢y = a9 = 0 but
B1, B2 # 0; the third case corresponds to o; = B; = 0 for some ¢ and
thus det(M; — AM,.) is identically zero.

With the expression in (6.4), we can define the multiplicity of a
generalized eigenvalue in the obvious way. Furthermore, if A is a gen-
eralized eigenvalue with multiplicity p > 1, then the set of vectors
{z1, 22, -+, 24} satisfying

Mlxl = >\er1
(Ml - AMT):L‘IC = erk—la k= 2737 g < p,

is a chain of generalized principal vectors.

What can be said about the generalized eigenvalues of the matrix
pair in (6.3)7 For a general discussion, let A, P, @ be real n x n
matrices with P and ) symmetric. Define the ordered pair of 2n x 2n
matrices

S:(Sz,Sr)rZ([_AQ ?][é 5’])'

A pair of matrices of this form is called a symplectic pair. > As
mentioned before, if A is nonsingular, the generalized eigenproblem of
the symplectic pair S reduces to the eigenproblem of the symplectic
matrix

INEN!

However, we shall not make this simplification.

It is a nice property (to be shown later) that the generalized eigen-
values of a symplectic pair are symmetric about the unit circle. To
state this fact precisely, we need to introduce generalized eigenvalues
at infinity.

Note that if A # 0, then

1
det(M; — AM,) = 0 < det (M, - XMl> = 0.

3The symbol S is used both for a symplectic pair and for the sampling operator;
context should prevent any confusion.
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In other words, A is a generalized eigenvalue of the pair (M;, M,) iff
1/X is a generalized eigenvalue of the pair (M,, M;) with the same
multiplicity. Based on this, let us define that A = oo is a generalized
eigenvalue with multiplicity » of (M;, M,) if A = 0 is a generalized
eigenvalue with multiplicity r of (M,, M;). It follows that (M, M,)
has generalized eigenvalue at 0 iff M; is singular and has generalized
eigenvalue at oo iff M, is singular.

Theorem 6.2.1 The generalized eigenvalues of the symplectic pair S
are symmetric about the unit circle, that is, X € o(S) iff 1/X € o(S)
and both have the same multiplicity.

Proof Define
0 -1
[0

Then it is easily checked that the symplectic pair (S;,S,) has the
algebraic property

S, JS| = S,JS.. (6.5)

For simplicity, consider A € ¢(S) with multiplicity 1. We may assume
that A # 0 and A # oo, for otherwise the theorem holds:

0e€o(S) & det(S) =

Thus it suffices to prove that for a finite, nonzero A\, A € o(S) implies
1/X € 0(S). To show this, note that

Xea(S,8)] = Aeoal(S],S,)]
1
> 5 eol(s) Sl
The latter condition implies that there exists a nonzero vector z such
that
1

S;x:)\

S|z (6.6)
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We claim that Sjz # 0. To see this, write

o]

Tr =

Z2

and suppose Sjz = 0. Then from (6.6) S,z = 0. From the definition
of S;, S}z = 0 implies z = 0; similarly, S,z = 0 implies z; = 0. Thus

x = 0, a contradiction.
Now pre-multiply (6.6) by S,J and use (6.5) to get

1
SISz = XS,«JSZ':E.
This implies 1/X € o(S) since JS]z is a nonzero vector. [ |

The MATLAB command
[V, D] = eig(S;, Sr),

computes the generalized eigenvalues of the pair (S;, S;) along the di-
agonal of the matrix D and corresponding eigenvectors as the columns
of V.

6.3 Symplectic Pair and Riccati Equation

The solution to the general Ho problem requires some basics about
Riccati equations whose solutions can be obtained via the generalized
eigenproblem for symplectic pairs. From now on, we shall drop the
adjective “generalized” whenever no confusion will arise. We start with
a special case of the Riccati equation, namely, a Lyapunov equation.

Lyapunov Equation
The equation
AXA-X+Q=0

is called a (discrete-time) Lyapunov equation. Here A, @, X are all
square matrices, say nxn, with Q@ symmetric. (The MATLAB function
to solve this equation is dlyap.)

One situation is where A and @ are given and the equation is to
be solved for X. Existence and uniqueness are easy to establish in
principle. Define the linear map

O RV R (X)) = A'XA - X.
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Then the Lyapunov equation has a solution X iff () belongs to Im @,
the image space (range) of ®; if this condition holds, the solution is
unique iff ® is injective, hence bijective. Let o denote the spectrum
of a linear transformation, that is, the set of eigenvalues. It can be
shown that

O'((I)) =S {)\1)\2 —1: X, X0 € O'(A)}

(If A\1,A\2 € o(A), then A\, Ay € o(A’). Thus there exist non-zero
vectors z1 and zo such that A’z; = \jzy and A'zy = Xozo. Letting
X :=x125 # 0, we have

O(X) = AziziA— z175
= (M —1)X,

s0 A;A2—1 € o(®).) Thus the Lyapunov equation has a unique solution
iff A has the property that no two of its eigenvalues are reciprocals.
For example, if A is stable, the unique solution is

o0
X =) A*QAF.
0

We will be more interested in another situation, where we want to
infer stability of A.

Theorem 6.3.1 Suppose A, QQ, X satisfy the Lyapunov equation,
(Q, A) is detectable, and Q and X are positive semidefinite. Then
A is stable.

Proof For a proof by contradiction, suppose A has some eigenvalue
A with |[A] > 1. Let z be a corresponding eigenvector. Pre-multiply
the Lyapunov equation by z* and post-multiply by = to get

(IN? = 1)z* Xz + 2*Qz = 0.

Both terms on the left are > 0. Hence z*Qxz = 0, which implies that
Qz = 0 since Q > 0. Thus

Vot

By detectability we must have z = 0, a contradiction. |
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Riccati Equation

Let A, P, (Q be real n x n matrices with P and () symmetric. The
equation

AXI+PX)'"A-X+Q=0

is called the (discrete-time algebraic) Riccati equation. We will be
interested in solutions X satisfying two properties, namely, X is sym-
metric and (I + PX) A is stable. Such solutions can be found by
looking at the eigenproblem for the associated symplectic pair

S:(Sz,Sr)=<[_AQ ?]’[é 5’])’

which was studied in Section 6.2.

Counting multiplicities and the eigenvalue at infinity, the pair S
always has 2n eigenvalues. Now we assume S has no eigenvalues on
0D, the unit circle. Then by Theorem 6.2.1 it must have n inside and
n outside. Let us focus on the n stable eigenvalues and denote by
X;(S) the stable generalized eigenspace of S, namely, the subspace in
R?" spanned by all the eigenvectors and principal vectors of S corre-
sponding to the stable eigenvalues. This space X;(S) has dimension
n. Finding a basis for X;(S), stacking the basis vectors up to form a
matrix, and partitioning the matrix, we get

X;(S) = Im [ 2 ] : (6.7)

where X1, Xy € R**", It follows that there exists a stable n x n matrix
Si, whose eigenvalues correspond to the stable eigenvalues of S, such
that

S, [ X ] =S, [ % ] S;. (6.8)

Some properties of the matrix X{ Xy are useful.
Lemma 6.3.1 Suppose S has no eigenvalues on 0D. Then
(i) X{Xo is symmetric;

(ii) X! X3 >0if P >0 and Q > 0.
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Proof (i) Write (6.8) as two equations:

AX, = XiS;+ PX,S;, (69)
Xy = QX1+A,XQSi. (610)

We need to show that X{Xs — X, X; = 0. To do this, substitute X5
from (6.10) to get

X1 Xy — X5X) = (AX1)' X2, — SiX5(AX))

and then replace AX; on the right-hand side by (6.9):
XXy — X0 X, = S/(X]1 Xy — X,X1)S;.

This is a Lyapunov equation; since S; is stable, the unique solution is
XXy — XX, =0.

(ii) Define M := XX = X5 X, and pre-multiply (6.9) by S;X) to
get

SIX,AX, = SIMS; + S, X,PX58S,;. (6.11)
Take transpose of equation (6.10) and then post-multiply by X to get

M= X[QX; + SIX,AX;. (6.12)
Thus equations (6.11) and (6.12) give

SIMS; — M + S| X,PX58; + X1QX; = 0.
This is a Lyapunov equation. Since S; is stable, the unique solution is

[oe]
M =" SF(SIXLPX,S; + X1QX1)SF,
0

which is > 0 since P and Q) are > 0. |

Now assume further that X; is nonsingular, that is, the two sub-
spaces

X(S), Im [ ?]

are complementary. Set X := Xo X, L. Since

5] [
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we get

‘%w):hn[é] (6.13)

The n X n matrix X is uniquely determined by S (though X; and X,
are not), that is, S — X is a function. We shall denote this function
by Ric and write X = Ric(S).

To recap, Ric is a function mapping a symplectic pair S to a matrix
X, where X is defined by equation (6.13). The domain of Ric, denoted
dom Ric, consists of all symplectic pairs S with two properties, namely,
S has no eigenvalues on D) and the two subspaces

&@%Im[?]

are complementary.
The function Ric stands for “Riccati”; the reason is apparent from
the lemma below.

Lemma 6.3.2 Suppose S € dom Ric and X = Ric(S). Then
(1) X is symmetric;
(i) X satisfies the Riccati equation
AXI+PX) '"A-X+Q=0;
(iii) (I + PX) 1A is stable.
Proof With X; = I and Xy = X, (i) follows from Lemma 6.3.1;
moreover, (6.9) and (6.10) simplify to the following two equations

A = (I+PX)S, (6.14)
X = Q+AXS;. (6.15)

Now we need to show that the matrix /+PX is nonsingular. It is easier
to see this with the additional assumption that P > 0 and @ > 0. (This
is the case throughout the chapter.) Then by Lemma 6.3.1 X is also
> 0. Thus the matrix PX has no negative eigenvalues, which implies
that I + PX is nonsingular. The general proof for the nonsingularity
of I + PX is much harder; see [149]. Therefore from (6.14)

S; = (I + PX) 'A. (6.16)
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This proves (iii) since S; is stable. Substitute (6.16) into (6.15) to get
the Riccati equation. |

The following result gives verifiable conditions under which S be-
longs to dom Ric.

Theorem 6.3.2 Suppose S has the form

o A 0] I BB
N -c'c 11’0 A
with (A, B) stabilizable and (C, A) having no unobservable modes on

JdD. Then S € dom Ric and Ric(S) > 0. If (C,A) is observable, then
Ric(S) > 0.

Before proving the theorem, let us note the relationship between
Riccati and Lyapunov equations. Suppose S € dom Ric and X :=
Ric(S). The associated Riccati equation is

AX(I+BB'X)'A-X+C'C=0. (6.17)
Define
F = —(I+B'XB)"'B'XA

= -B'X(I+BB'X) A
It is easily verified that

= (I+BB'X)'A.

Then the first term in (6.17) can be written as follows:

AX(I+BB'X)'A = AXAp
= AW(I+XBB)XAr
= ALXAp+ F'F.

Thus the Riccati equation can be rewritten as the Lyapunov equation

"XAp - X +C'C+F'F=0.
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Noting that Ap is stable (Lemma 6.3.2), we have

X =) A}(C'C+ F'F)AL. (6.18)
0

The MATLAB commands to compute X and F' are these:

[(Fimp, X] = digr (A,B,C'C,I),
F = —Fypp

This computation is based on the eigenproblem of symplectic matrices
instead of the generalized eigenproblem of symplectic pairs and hence
it implicitly assumes that the matrix A is nonsingular.

Proof of Theorem 6.3.2 We first show that S has no eigenvalues
on the unit circle. Suppose, on the contrary, that e/’ is an eigenvalue

and [ z ] a corresponding eigenvector; that is,

A 0 x| _ | I BB T
e |-l WL
Write as two equations and re-arrange:
(A —e'%e =e’BB'z, (6.19)
(A —e )z = —C'Cu. (6.20)
Pre-multiply (6.19) and (6.20) by e 7%2* and z* respectively to get

e 105 (A-ea = ||B'z|?
(A —e )z = —||Cz|?

Take complex-conjugate of the latter equation to get

—|Cz])? = e 2" (A— e
= [IB"2|.

Therefore B’z =0 and Cz = 0. So from (6.19) and (6.20)

(A—e%z = 0,
(A—el?) 2
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We arrive at the equations
Z[A-e? B = 0

_ i
[Ace ]x = 0.

By controllability and observability of modes on 0D it follows that
x = z =0, a contradiction.
Next, we will show that the two subspaces

X,(S), Im [ ?]

are complementary. As in the proof of Lemma 6.3.1 bring in matrices
X1, Xo, S; to get equations (6.9) and (6.10), re-written as below (P =
BB',Q =C'C):

AX| =X S; + BBIXQSZ', (6.21)
—C,CXl + Xy = A,XQSZ'. (6.22)

We want to show that X, is nonsingular, that is, Ker X; = 0. First, it
is claimed that Ker X; is S;-invariant. To prove this, let z € Ker Xj.
Pre-multiply (6.21) by z'S! X} and post-multiply by = to get

2'SIX, X, iz + ' S| X, BB' X9 iz = 0.

Note that since X, X; > 0 (Lemma 6.3.1), both terms on the left
are > 0. Thus B'X,S;z = 0. Now post-multiply (6.21) by z to get
X1S;z = 0, that is, S;z € Ker X;. This proves the claim.

Now to prove that X is nonsingular, suppose on the contrary that

Ker X7 # 0.

Then S; has an eigenvalue, u, whose corresponding eigenvector, z, is
in Ker X7:

Six = px, (6.23)
0#|p <1, 0#zeKerX;.

Post-multiply (6.22) by = and use (6.23):

(A" — 1) X9z = 0.
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Since B’ X3z = 0 too from B'X5S;z = 0 and (6.23), we have

=i

o X} [ A-L1 B } = 0.
Then stabilizability implies Xoz = 0. But if X;2 = 0 and Xsz = 0,
then z = 0, a contradiction. This concludes the proof of complemen-
tarity.

Now set X := Ric(S). By Lemma 6.3.1 (P = BB',Q =C'C, X; =
I,X,=X), X >0.

Finally, suppose (C, A) is observable. We will show using (6.18)
that if 2/ Xz = 0, then = 0; thus X > 0. Pre-multiply (6.18) by 2’
and post-multiply by x:

(0] (e.)
o' Xz =Y |CARz|® + > |F A}z,
0 0

If z/Xx =0, then
CALz =0, Vk>0;
FA%z =0, VE>O0.

Based on the two equations, we can readily infer by induction that
CA¥z =0, V>0,

which implies that = belongs to the unobservable subspace of (C, A)
and so z = 0. |

6.4 State Feedback and Disturbance Feedfor-
ward

First we allow the controller to have full information. In this case, as
we will see, the optimal controller is a constant state feedback with a
disturbance feedforward. With the exogenous input being some im-
pulse function, say, w = dqwo (wo is a constant vector and &y the
discrete unit impulse), we can even think of v as unconstrained. The
precise problem is as follows:
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e Given the system equations

G : 5 = AL+ Biw+ Bov, w=dqwo, £(0) =0
C = le+D11w+D12U

with the assumptions

(i) (A, By) is stabilizable;
(ii) M := D}yD15 is nonsingular;
(iii) the matrix

[A—A By ]
C1 Dy

has full column rank VA € oD

e Solve the optimization problem

. 2
min .
Jmin I3

Note that for ease of presentation we initially allow v to be in ¢(Z),
the extended space for £5(7Z ) consisting of all sequences; however, the
optimal v, to be seen later, will actually lie in ¢5(Z,). Assumptions
(i) and (iii) are mild and standard restrictions. Assumption (ii) means
that the system must have at least as many outputs to be controlled
as control inputs and the control weighting is nonsingular.

The setup can be depicted as

where the transfer matrix for G is
. A| B B ]
A) = .
9 [ Cy | Dii Dy

Define the symplectic pair

g = ([ A— ByM~'D},C4 0 ]
2 ~CY(I =DM~ D)0y T |°
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I BoM B}
0 (A — B2M71D11201)l )

If D{,C; = 0, Sy reduces to the symplectic pair associated with the
corresponding LQR problem with @ = C|{Cy; and R = M. In the
general case, it is easy to show that the only possible eigenvalues of
Do M~1Dj, are 0 and 1; thus the matrix I — Do M ~' D, is positive
semidefinite. If D},C; = 0, the symplectic pair Sy reduces to the one
we saw for the LQR problem in the preceding sections with @ = C]Cy
and R = M.

Lemma 6.4.1 Ss belongs to dom Ric.

Proof First, it is easy to show that (A — BoM 1D/, Cy, BoM~'/?) is
stabilizable. Next, observe the following identity

I —-ByM'Dj, A—-—X B 1 0

0 I Cy Do —M_ID’IQCl I

B [ A—ByM~'D\,Ci =X 0 ]

(I - D1uM'D!,)Cy  Dyy |-
Since the first and third matrices on the left are nonsingular, it follows
from assumption (iii) that the resultant matrix also has full column
rank YA € dD. Thus
[ A— BeM1D},Cy — )\
(I — D1oM~1D},)Cy

where n is the dimension of the matrix A. It is not hard to show then
that

rank

]:n, Y € oD,

[ A— ByM~'D},C1 — X
| (I - DiyM~'D}y)' 20y
In view of Theorem 6.3.2, this means that the required matrix pair

has no unobservable modes on dD; by Theorem 6.3.2, S € dom Ric.
|

rank

]:n, VY € OD.

By this lemma, X := Ric(S3) is well-defined and is > 0 (Theo-
rem 6.3.2). Hence the matrix M + B} X By is nonsingular. Define the
matrices

F = —(M + BYXBy) Y(B,X A+ D},C1)
Fy = —(M+ ByXB;) '(B4XBy + DiyD11)
Ar = A+ ByF
Cir = Ci+ DioF
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and the transfer matrix

Ap | B+ ByF
Cip | D11+ Di2Fy |

gc()‘) =

Some algebra shows that
Ap = (I +ByM'ByX)"Y (A - B,M~'D,Cy).

By Lemma 6.3.2, Ay is stable and so §. € RHz(D).
If the matrix A— By M ~1D},C} is nonsingular, the MATLAB com-
mand for computing X is

[Fymp, X| = dlgr (A — BoM ™' D},C1, By, C{(I — D1oM ™' D},)Cy, M).

Theorem 6.4.1 The unique optimal control is vepy = F§ + Fyw.
Moreover,

min [¢[}> = [lgewoll2-

In contrast with the full-information case in continuous time where
the optimal control is a constant state feedback, the discrete-time op-
timal control law involves a disturbance feedforward term, and this is
true even when Dy, = 0. The optimal control is therefore

(k) . F()wg, k= 0
Vort\®) = Fe(k), k> L.

It becomes a constant state feedback when & > 1.

Note that in the LQR problem in Section 6.1, the optimal control is
a state feedback with no feedforward. This can be explained as follows.
If we convert the LQR problem into a 2-norm optimization problem
as in Section 6.1, the initial state & is replaced by an impulse input
5,150. The impulse is applied at £ = —1 whereas we are interested in
v(k) for k > 0; thus the possible feedforward, an impulse at &k = —1,
is out of consideration. (See also Exercise 6.6.)

A useful trick is to change variable. Start with the system equations

é = A§+Blw+BZU
¢ = Ci&+ Dyiw+ Diav,

and define a new control variable

p:=v— F¢ - Fyw.
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The equations become
§ = Apé+ (B + BoFp)w + Bap
¢ = Cir&+ (D + DioFo)w + Digp.

So in the frequency domain

~

¢ = gewo + Gip,

where g, is as above and g; is seen to be

a0 = [t ]

Two properties of the matrices . and §; are crucial for the devel-
opment to follow. For this we need a useful notation: For any transfer
matrix §()\), we write §~(\) as simply g(A~!)’. [Formulas of ¢~ in
terms of state-space data can be easily obtained (Exercise 6.3).]

Lemma 6.4.2 The matriz §;°g. belongs to RH(D): and
g0 =M + BLX Bs.
Proof We show §;"g. € RHa(D)*. To simplify notation, define

Duir = D11+ Diaky.

Then
Gi(\) = Dia+ AC1pBy+ XN*Ci1pApB2 + - -
97°(\) = Dig+ N 'ByClp+ A ?ByARCIp + - (6.24)
9c(A) = Dup+ACipBip + NCipApBip + - (6.25)

Multiplying the two series in (6.24) and (6.25) gives
GTNGN) =+ AN PE L+ XN E + By + AEL + N2 Ey + - -,
Now we need to show that £y = E; = --- = 0. Note that

Eg = D’12D11F + BéCiFCIFBlF + Bé IFC{F01FAFBIF + e
= D}yDyir + BY(CpCir + A%ClpC1pAp + - - ) BiF. (6.26)

Using the equivalent Lyapunov equation (Exercise 6.4)

IFXAF - X + C{FCH?‘ =0,
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we get that since Ap is stable, the unique X is the quantity in the
parentheses of (6.26). Hence

Ey = D\yD11Fp + BLX Byp.
Now bring in the definitions of D1, Bir, and then Fj to get
Ey = D3D11 + B4X By + (M + B5X By)Fy = 0.

Similarly,
Ey = D}3CipBir + By(C1pCir + ARClpCipAp + -+ ) ApBip
= D,C1pBip + By XApBir
= (D|5Cir + B5X Ap)Bip
=0
by definitions of Cip, Ar, and F'; and so on for Fy = K3 =--- = 0.
The proof of the second statement is similar. |

There is a useful time-domain interpretation of this lemma. For
this, we need to regard G, and G;, the systems with transfer matrices
Jc and §g;, as systems defined on the whole time set Z, that is, as linear
transformations on ¢5(Z). In view of the decomposition

U(Z) = Uo(Z-) ® ba(Z4),
the matrix representation of, for example, G, is
0 ge(0)] 0 0
[Ge]=| -+ (1) | 9c(0)
e 90(2) gc(l) gc(o)

Here the vertical and horizontal lines separate the time intervals {k <
0}, {k > 0}, and g.(k) is the impulse-response function. Notice that
the matrix is Toeplitz because G, is time-invariant. Also, the impulse
response is observed to be the first column of [G,] to the right of the
vertical lines; the A-transform of this column is therefore the transfer
matrix g.(\).

Consider the linear system G whose matrix is the transpose [G;]'.
This is the adjoint system, a topic covered in some depth in Sec-
tion 10.3. Now consider the system G} G.. The first column of [G}G ]
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to the right of the vertical lines is the impulse response function, and
the A-transform of this is the transfer matrix g;”g.. Because this trans-
fer matrix belongs to RHo(D)*, by Lemma 6.4.2, so the impulse re-
sponse function of GG, belongs to ¢2(Z_), that is, the matrix [G}G,]
is strictly upper triangular.

Proof of Theorem 6.4.1 Since v is free in ¢(Z.), so is p. Thus we
can write (formally) in the time domain

(Gedawo, Gip) = (G Gcdawo, p).-

Since GG dqwo € 2(Z_), the right-hand side of the preceding equa-
tion equals 0 for all p in £(Z). This allows us to write in the frequency
domain

€115 = Nlgewoll3 + l1iall3-
Since ¢;"g; = M + B4X By by Lemma 6.4.2, we have
ICI3 = llgewoll3 + I[(M + ByX Ba)'pl 3.

This equation gives the desired conclusion: The optimal p is p = 0
(i.e., v = F¢ + Fyw) and the minimum norm of ¢ equals ||gcwollo. W

With v,y applied, the resultant system is stable since Ar is stable;
thus v,y indeed lies in #5(Z.), as commented before.

There is a different interpretation of Theorem 6.4.1. Consider the
setup

¢ w

.......... ¢ P A | B By
Sy Ch Dy Dy
g(x) 7 0 0

: : 0 1| |o

s YK

Thus the controller input is [ f} ], the state together with the dis-

turbance. Theorem 6.4.1 implies that (under the assumptions stated
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at the beginning of this section) the unique internally stabilizing con-
troller that minimizes the Ho-norm from w to ¢ is the constant con-
troller

kN =[F F].

Finally, what if the controller is allowed to process only the state,
that is,

A| Bi By
gA) = | Ci | Dy D |?
I 0 0

It turns out that the unique internally stabilizing controller that min-
imizes the Ho-norm from w to ¢ is the constant controller k£(\) = F.

6.5 Output Feedback

This section studies the Ho-optimal control problem posed at the start
of this chapter, where the measured output 7 does not have full in-
formation and therefore dynamic feedback is necessary. All discussion
pertains to the standard setup

e T

Let T¢,, denote the closed-loop system from w to (. We say a causal,
FDLTI controller K is admissible if it achieves internal stability. Our
goal is to find an admissible K to minimize ||£¢,||2.

Two Special Problems

For later benefit, we begin with two special Hs-optimal control prob-
lems.
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The first special problem has a plant of the form

A| Bi By
gA) = | Ci| D1 D
Cy| I 0

with the assumptions
(i) (A, Ba) is stabilizable;
(i) M := D},D2 is nonsingular;

(iii) the matrix

[A—A By ]
C1 Dy

has full column rank VA € oD
(iv) A — B1(5 is stable.
Since D9y = I, the disturbance, w, enters the measurement directly.
Define
S, — A— ByM~'D},C4 0
—C{(I — D12M71D112)Cl I’

I BoM~'B)
0 (A-BeM~'D,Cy)

X = RiC(Sg)
F = —(M + BYXBy) '(B,XA+ D},Cy)
Fy = —(M + BYXBy) Y(B,XB; + D},D1)
W) = [ A+ ByF | B+ BFy ] _
C1 + D1oF | D1y + Do Fy

The next result says that the optimal controller achieves the same
performance as does the optimal state feedback and disturbance feed-
forward controller when the state and the disturbance are directly
measured.

Theorem 6.5.1 The unique optimal controller is

. A+ ByF — By FyCy — B1CYy ‘ By + ByFy

Fopt(A) := F — FyCs R
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Moreover,
min [[fcu[l> = [|gello-

Proof Apply the controller K,,; and let 1 denote its state. Then the
system equations are

= Af + Byw + Byv

= C1¢+ Dyyw+ Digv

= (Y +w

= (A+ ByF — ByFyCy — B1Co)n + (By + BaFy)y

= (F - FoC2)n + Foyb,

S I S o oo

SO
n=An+ Biw+ Bov + By () — Con — w).
Defining € := £ — n, we get
¢ =(A— Bi1(y)e.

It is now easy to infer internal stability from the stability of A + BoF'
and A— BC5. For zero initial conditions on ¢ and 7, we have (k) = 0,
that is, n(k) = £(k). Hence
v = (F-FC)n+ Foy
= F{+ Fy(yp — Cxf)
= F¢{+ Fyw.
This means that K,y,; has the same action as the optimal state feedback

and disturbance feedforward. Thus by Theorem 6.4.1 K,,; is optimal
and in this case

lEcwll2 = llgell2-

The proof that K,y is unique is left as Exercise 6.9. |

The second special problem is the dual of the first; so G has the
form

A| B By
gAN)=| Ci|Dn I
Cy| Dy O

with the assumptions
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(i) (C3,A) is detectable;
(ii) N := D91 D4, is nonsingular;

(iii) the matrix

[A—A B ]
Cy Doy

has full row rank VA € oD
(iv) A— B2C is stable.
Define

T - (A— B Dy N~1Cy) 0
2 —B\(I-Dy, N 'Dy)B, I |’

I CQN*ICQ
0 A- B Dy N~'Cy

Y = Ric(Ty)
L = —(AYCh+4 BiDb)(N + CoYChy)™!
Ly = —(CiYCh+ Dy Dy)(N + CoYCh)™
R B A+ LC, | Bi+ LDy
Ji [ Cy + LoCs | D1y + LoDy ] '

Theorem 6.5.2 The unique optimal controller is

k () = A+ LCy — ByLyCy — BoCy ‘ L — Byl
e Cy+ LoCo | Lo '

Moreover,

intcull2 = l1G7]l2-
min [[tgo |2 = 1972

Proof Notice the duality: I;;Opt is the unique optimal controller for §

iff I%:)pt is the unique optimal controller for §’. Then the results follow

from Theorem 6.5.1. [ |
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The General Problem

Now consider the general output feedback case with

A| Bi By
g= 1| Ci| D1 D2
Cy | Doy 0

and with the following assumptions:
(i) (A, Ba) is stabilizable and (Cy, A) is detectable;
(ii) M := D}yD12 and N := Dy D), are nonsingular;

(iii) the matrices

[A—A BQ] [A—A Bl]
Cl D12 CQ D21

have full column and row rank, respectively, YA € 0D

The first parts of the three assumptions have been seen in Section 6.4;

the second parts are dual to their first parts: Together they guarantee

that the symplectic pair T5 introduced above belongs to dom Ric. The

second part of assumption (ii) means that the sensor noise weighting is

nonsingular. Finally, assumption (iii) is related to the condition in the

model-matching problem that #(\) and #3(\) have no zeros on JD.
Define

6 A-B,M'D,C; 0
27 | -0l - DieM'DiL)Cy T |

I BoM~'B}
0 (A — B2M71D11201)I

X = Ric(Sy)
F = —(M + BYXBy) ' (B,X A+ D},C1)
Fy = —(M+ BZXBQ) Y(BLX B, + D},D11)
() = [ A+ ByF By + B Fj ]
Ci + Do F ‘ D11 + D12 Fy

T - (A= BiDy,N~1C)" 0
27 BII DQIN 11)21)31 I’

0 A- B1D§1N402
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Y = Ric(Ty)
L = —(AYCy+ B1D)))(N + CoYCy)!
Ly = (FYC)+ FyDy)(N +CoYCh) ™t
R = (M + BYXBy)'/?
60 = A+ILCy | Bi+LDy ]
R(LoCy — F) | R(LoD21 — Fp)

Theorem 6.5.3 The unique optimal controller is

hors () = A+ ByF + LCy — BoLoCh | L — By
P LyCo — F | Lo ‘

Moreover,

min |13 = 19:15 + 1197113

The first term in the minimum cost, [|g.||3, is associated with opti-
mal control with state feedback and disturbance feedforward and the
second, [|g¢||3, with optimal filtering. These two norms can easily be
computed as follows:

lgell3 = trace [(Di1 + Di2Fp)' (D1

+D12Fy) + (B + BaFy) X (By + BoFy)]
197115 = trace {R[(LoDy1 — Fo)(LoDa1 — Fo)'
+(LoyCy — F)Y (LyCy — F)'|R'}.

Here X and Y also satisfy respectively the two Lyapunov equations

(A + BQF),X(A + BQF) - X+ (01 + D12F)I(Cl + D12F) = 0
(A + LCQ)Y(A + LCQ), -Y + (Bl + LDQI)(BI + LDQI)I = 0.

Proof of Theorem 6.5.3 Let K be any admissible controller. Start
with the system equations

é = A§+Blw+BZU

¢ = Ci+ Dyw + Digv,

and define a new control variable, p := v — F¢ — Fyw. The equations
become

¢ = (A+ BoF)¢ + (B + ByFy)w + Bap
¢ = (Ci+ Di2F){+ (D11 + DiaFy)w + Diap,
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or in the frequency domain

¢ = gew + gip,
where

5\ = A+ By F ‘BQ
g = Ci+DyF | Dyg |’

This implies that
f(w = gc + gifpwa

where 1,, is the transfer matrix from w to p. So it follows from
Lemma 6.4.2 that

lEcwll3 = 19el13 + | Ripull3.

Now we look at how p is generated:

P w
GP
......... leevnnnns A ‘ B1 B2
N = | —F|-F 1
d) P v Co | Dyy O
o e L

Note that K stabilizes G iff K stabilizes G, (the two closed-loop sys-
tems have identical A-matrices). So

in|[tc, |12 = 1d.13 in || RE,||2.
m[én|| wll2 ||gc||2+m[én|| pwll2

Define
Pnew = RP
Knew = RK
R 0 I 0
Comew = [0 I]G"[O R‘l]'

Then minimizing || R% |2 is exactly minimizing the norm on Hs(ID) of
the transfer matrix w — ppew:
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Pnew w
Gpnew
.......... e eeennnne A ‘ Bl B2R71
gpnew(,\)_ —RF | —RF, I
C2 D21 0
ORI o Ko |-t

Now this is the second special problem. So by Theorem 6.5.2 the
unique optimal controller is

- B A+L02—BZL002+BZF\L—BQLO]

knew,Opt(A) = R(LUCQ - F) ‘ RLO

and the minimum cost is
min || Ripy|l2 = [|97]l2-
Therefore for the original problem we have
kopt(N) = R knew,opt (M)

[ A+ LCy = BoLogCy + BoF | L — ByLy
B LyCy — F | Lo

min|[fell5 =193 + 197115

Example 6.5.1 Bilateral hybrid telerobot (cont’d). This ex-
ample continues the telerobot problem begun in Example 2.2.1. There
an analog controller was designed using Hq-optimization in continu-
ous time. Here we discretize the problem. The sampled output is
( := Sz = ST,,w and the corresponding SD system is shown in
Figure 6.1. Instead of minimizing . ||T,wde;]|3 as before, we shall
now minimize Y, ||ST,w0¢;]|3, namely, the average energy of ¢. Fix
w = Je;. Bringing the two samplers and the hold into G in Figure 6.1
leads to Figure 6.2. This is not quite a discrete-time system because
of the continuous-time input w. Notice that SG19H and SGooH are
the usual step-invariant transformations G194 and Gao4. So the system
from w to ( is as follows:

¢ = SGi10e; + GraaKy(I — GaaKy) ' SGade;. (6.27)
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Figure 6.1: SD system with sampled output.

w = de;
SG11 SGioH
SGy SGpH |,
...... Ik, o

Figure 6.2: Discretized system with continuous-time input w.
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To convert this to a purely discrete-time system, we need to find
discrete-time systems having the same outputs as SG11de; and SGoyde;.
The next lemma provides this.

Lemma 6.5.1 Suppose G is a continuous-time system with transfer
matriz

[ A| B
L C 10 |
Let Fy denote the discrete-time system with transfer matriz

'ehA ehAB
C [ CB ]

Then SGoe; = Fydqe;.

The proof is left as Exercise 6.15.
Using this lemma in (6.27) and also using the realization

A | B By
Ci| 0 D
Co] 00

of G [see (2.3)], we arrive at the equivalent discrete-time system, Fig-
ure 6.3. It is emphasized that the discrete-time system G4 q is not

¢ w = dq6;
Geq,d
......... leevnnnns Ad ‘ AdB1 BZd
: : Jeq,d(A) = | C1 | CiBy Dy
Cy | CoBy 0
] Ky o

Figure 6.3: Equivalent discrete-time system.

the discretization Gy of G. Let T¢,, denote the system from w to ¢ in
Figure 6.3. The optimization problem has been reduced to the mini-
mization of >, || T¢,,dqe;/|3. But this equals precisely ||tACw||%, the square
of the Ho-norm of Z¢,(A).
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Let us summarize the derivation:
> |ISTzwbes]l3 in Figure 6.1 = || T¢udgeill3 in Figure 6.3
7 [
= |tcwl3 in Figure 6.3.

In this way we arrive at a discrete-time Ho problem, namely, the min-
imization of ||t¢,||2 in Figure 6.3.

For the computation below, we take h = 0.2 and the weights ay,,
e, af, and oy are as before. Some regularization is required. First,
the poles of g, (s) and gs(s) at s = 0 are perturbed to s = 1073.
Second, for the problem at hand, the matrix in the Dsj-location of
Gleq,q equals

0 20
CoBi=1|0 0
0 0

To get the rank up to 3, the number of rows, two additional columns
are added to give

0 0 0 20
e 00 O
0 e 0 O

Then C7B; and AyB; in the Dy1- and Bj-locations are padded with
two zero columns. Again, € was set to 0.1.

The resulting responses are shown in Figures 6.4 and 6.5. For
comparison, Figures 6.6 and 6.7 show the responses for K; equal to the
discretization of the optimal analog controller computed before. Since
h = 0.2 is large, the latter controller is quite inferior to the optimal
discrete-time one.

6.6 7H,-Optimal Step Tracking

In Section 5.5 we saw how to design a step-tracking controller, that is,
a controller K so that the system
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18
16
141

121

08r
0.61
04r

02t /!

Figure 6.4: Design for discretized problem: v (solid), v, (dash), and
In (dOt).
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Figure 6.5: Design for discretized problem: f,, (solid) and f. (dash).
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Figure 6.6: Discretization of optimal analog controller: v, (solid), vy,
(dash), and f;, (dot).

10

Figure 6.7: Discretization of optimal analog controller: f,, (solid) and
fe (dash).
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S B

has the property that ((k) — 0 for every constant vector wp; 14 is
the scalar-valued unit-step function. In this section we fix w and
strengthen the convergence criterion by requiring that K minimize
I]|2. By absorbing wg into G, we can assume from the start that w is
the scalar-valued step, 14.

We shall outline a solution that reduces the problem to the stan-
dard Hs-optimal control problem. Begin with a state model for G:

A| B B
g(A\) = | Ci | D1 D
Cy | Doy 0

It is assumed, as usual, that (A, Bs) is stabilizable and (Cy, A) is de-
tectable. Also, since w is 1-dimensional, the three matrices By, D1,
D3 have only one column each. As in Section 5.4, parametrize K and
then write the transfer matrix from w to ¢ in terms of the parameter

Q:
{ = (B + tads) 0.
Then ((k) — 0 iff [see also (5.9)]

~ ~ ~

B1(1) + £ (1)a(1)Es(1) = 0.

This is a linear matrix equation in ¢(1). Assuming a solution ex-
ists, let Qo be constant matrix solution. Then the following formula
parametrizes all solutions in RH o (D):

GgA) = Qo+ (1 =N)Gi(A), @1 € RHx(D).

Letting NV denote the SISO system with transfer function 1 — A\, we
get the following formula for Q: @ = Q¢ + NQ:. With this formula
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and the representation 14 = N~'§,, we get the following time-domain
relationship from w to (:

C = (T1 + TQQTg)w
= [Tl +T2(Q0 +NQ1)T3]N715d
= (T + ToQoTs)N 64 + ToQ1 T35

Defining R := (T} + ToQoT3)N !, we get
¢ = (R+ T2Q1T3)dq-

The latter equation corresponds to the block diagram

e R T, [
3 0

B

which is a standard Hs-optimal control problem.
Let us summarize the steps as follows:

Step 1 Starting with a realization of GG, obtain a parametriza-
tion of all stabilizing controllers; get the three matrices #; (i =
1,2, 3) so that

C = (T1 + TQQTg)w.

Step 2 Solve the following constant matrix equation for Qq:
t1(1) +12(1)Qof3(1) = 0.

(If no solution exists, then step tracking is not possible.)

Step 3 Define 7(A\) = 1 — X and get a state model for R :=
(T + ToQoT3)N L. (Exercise 6.13 is useful here.)
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Step 4 Get a state model for

R T
o= 4 7]

;3 0

and solve the corresponding Hy problem. Denote the optimal
controller by Q.

Step 5 Back-solve for @) from Q) = Q¢+ NQ1; then get K from
Q.

Example 6.6.1 Consider the sampled-data setup of Figure 6.8. The
plant P is a stable, SISO, second-order system with transfer function

o 1
PO) = Mo T D@5 7 1)

and the reference input r is the unit step. The goal is that the plant
output y should track r “optimally.”

r e € Yy
o S | ’Kd ...... Y H P

Figure 6.8: A sampled-data tracking system.

We shall design the controller by discretizing the plant at the sam-
pling period h = 1 s, which is much smaller than the time constants
of the plant (10 and 25 s). The discretized plant P; = SPH has the
transfer function

2.0960 x 10 3X\(\ + 1.0478)

5O =
p(M) (A — 1.0408)(\ — 1.1052)
0.8675 —0.0037 | 0.9325
= 0.9325  0.9981 | 0.4773
0 0.0040 | 0
and the discretized system is shown in Figure 6.9. Here p := Sr,

e := Se, and ¢ := Sy. Note that since r is the continuous-time
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unit step, p is the discrete-time unit step, 14. The optimal tracking
problem we pose is to design an LTI K; to achieve internal stability
and minimize |[¢|l2. This performance criterion ignores intersample
behaviour: ||¢]|2 could be small and yet ||e]|2 could be large. This is
an important point and we shall return to it later.

Figure 6.9: The discretized tracking system.

This discrete-time problem can be solved by the general proce-
dure given above, but here we give a slight variation. We begin by
parametrizing the family of controllers that achieve internal stability.
The formula for lAcd is

~
~

hi=1—t— € RHw(D).
— Pdq

Then the transfer function from p to € is 1 — pgg. Thus

EN) =11 = 2a(NqaN]T—

s0 ¢(A) must be of the form
g(A) =14 (1 =) (V) 41 € RHoo(D)

and then

~

€ =1t — 1241,

where

L) = 1—-pa(N)

1-X 7
The time-domain equation is
e = (T1 — TrQ1)w,

where w is the unit impulse. This problem is in the standard form,
namely,
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e T -1 I
I 0

] 01 Lo

Now bring in realizations of 77 and T5:

. | An | Bu . | Ap | Bp
hd) = [ Cyu | D ] o 220 = [ Ci2 | Dy2 ] '

The induced realization for

T T
Gtmp = [ Il 02 ]

18

A ‘ Bl B2 Atl 0 Btl 0
oD Fo) 0 Ao 0 Byo
01 IH 012 Cn —Ci | Dpy —Dy
0 0 I 0
For the data at hand, the numbers are
0.8675 —0.0037 0 0
A 0.9325 0.9981 0 0
- 0 0 0.8675 —0.0037 [’
0 0 0.9325 0.9981
0.9325 0
—249.5227 0
Br= o | P27 09325 |
0 0.4773

Ci=[0 —0.0040 0 —0.0040 |, Dy =1, Djy=0.

Since D12 = 0, the problem does not satisfy the assumptions of
Section 6.5. But

lell3 = ()11 + €113
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If £ denotes the state of Gy, then
e =Ci{+ Dyw,

SO
£(0) = Dy1w(0).

Hence
lellz = 1 D1w(0)]* + [I€]3

and an equivalent optimization problem is to minimize ||€||2. For k& > 0
we have
¢ = Oif
= ClAf + C’lBlw + ClBQU.

Thus the equivalent problem pertains to the generalized plant

A | B B
ClA ClBl CIBZ
0 I 0

In this case, the values are

CiA = [ —0.0037 —0.0040 —0.0037 —0.0040 |
CiBy = 0.9981
CiBy = —0.0019.

This model satisfies all four assumptions required for Theorem 6.5.1.
We compute

M = (C1By)(C1By)
= 3.6451 x 1076

and

0.8675 —0.0037 0 0
0.9325  0.9981 0 0
—1.8219 —1.9500 —-0.9544 —1.9538
—0.9325 —0.9981 0 0

A~ ByM 'BLCIC1A =
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Note that the latter matrix is singular; so we have to work with the
generalized eigenproblem for the symplectic pair. The computations
give

X = 0O4x4

F = —(M + ByXBy) Y(B,XA+ B,C|C,A)
= [ -1.9538 —2.0911 —1.9538 —2.0911 |

Fy, = —(M + B,YXBy) ' (B,LX B, + B4yC,C1By)
= 522.7759.

Then from Theorem 6.5.1

) A+ ByF | By + BoFy
@) = F ‘ Fy

The computation of ¢ and then ky proceeds by back-substitution. The
optimal controller is

() — —ATEI0190 — L1052)() — 1.0408)
A (\+ L.0478)(A — 1)

Notice that kg contains the pole at A = 1 required for step tracking.
In addition, it cancels all the stable poles and zeros of pg. For this
controller, the sampled error, ¢, is the unit impulse, € = §;. The dis-
cretized system has a deadbeat response, the plant output 1 requiring
only one discrete-time step (1 s in real time) to reach its final value.
The sampled-data system of Figure 6.8 was simulated for a step
input (simulation of sampled-data systems is treated in Chapter 8).
The continuous-time output y(¢) is plotted in Figure 6.10.  Notice
that y(t) = 1 at the sampling instants, but considerable intersample
ripple is present, and the settling time is quite long too. This exam-
ple indicates that optimal design based on discrete performance specs
alone may be ill-posed because intersample behaviour is completely
ignored and the behaviour at sampling instants is over-emphasized.

6.7 Transfer Function Approach

So far we have focused on a state-space approach to Hs optimiza-
tion; this approach has the advantage that all computations involve
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Figure 6.10: Step-response of example.

only matrices. Before we conclude this chapter, it is enlightening to
look at briefly an alternative approach, based on transfer functions,
which continues with the method developed in Chapter 5, namely,
to parametrize all stabilizing controllers and then to seek a suitable
parameter in the frequency domain.

In general, one can use the controller parametrization of Section 5.4

to reduce an Ho-optimal control problem to one of the form
LjE?{n’;’-Llor;(D) ||t1 + t2qt3H2.
Let us now address this latter problem; for simplicity, we restrict to the
SISO case where #; and ¢ are 1 x 1. Then we may as well assume that
t3 = 1. Also, the problem is more suggestive as one of approximation
when it has a minus sign:

~min ||t — f24]lo.

GERH o0 (D)

We shall use some function spaces from Section 4.5. Fix #; and
ty in RH2(D) = RHo(D). Think of 1 as a model to be matched
by the product o by designing ¢ in RH2(D). The model-matching
error is precisely the RHz(D)-norm ||#; — #24||o. The trivial case is
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when £, L' R#3(D), for then the unique optimal § is obviously ty Y.
Thus the more interesting case is when #; ' ¢ RH(ID). For simplicity
(and also for the existence of the optimal ¢, see Exercise 6.20) we shall
assume that £ has no zeros on the unit circle.

It is now important to introduce the notions of inner and outer
functions. A function in RHy(D) is an inner function if its magnitude
equals 1 everywhere on the unit circle. It is not difficult to show that
such a function has pole-zero symmetry in the sense that a point \g is
a zero iff its conjugate reciprocal, 1/ Ao, is a pole. Consequently, all its
zeros lie inside the unit disk ID, hence the adjective “inner.” An inner
function is, up to sign, the product of factors of the form

A—a
1.

1—a\ laf <
Examples of inner functions are
A—0.5
L, A —.
’ T 1-0.5)

A function in RHs(D) is an outer function if its zeros are all outside
D. Examples of outer functions are

A—2

A+3

It is a useful fact that every function in RHs(D) can be written as the
product of two such factors: For example

1, A-—1,

AA=1)A+3)2X+1)  [AA+0.5)] [2(A = 1)(2A +3)(1 +0.5))
A—4 1+0.5A A—4
Using this factorization, we can solve the Hs model-matching prob-

lem as follows. Fix § in RHo(D). Let ty = fo;fo, be a factorization
into inner and outer factors. Then

It =243 = llf — aitaodll3
= |lt(tity;' — £209) |13
= |luty;" — taodll3-
The last equality follows from the fact that |f2;(\)] = 1 whenever

|A| = 1. The function #;£;;" lives in RL2(0D). Project it into RHo(D)
and RHz(D)*:

s a1 p g1 21
tity, = (tity; Jramr + (tity )R (D)-
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Now use the fact that ||f + gl|2 = ||f]|2 + [|g]|2 for f in RHa(D)* and
§ in RHs(D):

16y —t2dlls = 1ty ) raamyr + (it ) mao(m) — f20dll3

= ||(i1£2_i1)RH2(ID>)l 15 + 11(Eri" ) Raes () — E20d15-

Observing that #,, € RH2(D), we conclude that the unique optimal §
is given by

Example 6.7.1 In Example 6.6.1, an Hs-optimal step tracking prob-
lem was reduced to an H3 model matching problem:

min ) t1 — t2d1 |2

G1ERM oo (D
with
oy = —pa(d) _ —0.9979(\ —1.1527)
1—X  (A—1.1052)(\ — 1.0408)
and
A 12,0960 x 1073 X\(X + 1.0478)

t2(A) == pa(N) =

(A — 1.0408) (A — 1.1052)

The inner factor of # is simply #2;(\) = A, and then #s, = t5/t5;. The
projections of flfgil are

-+ 1.1481

. 1 ..
—1 _* -1 _
(brta ) maa(o)+ () N (it YR (V) (A —1.1052) (X — 1.0408)

Thus the optimal ¢; is

_—477.1019(X — 1.1481)
- A+ 1.0478

t5o (15" ) Rats () (M)

Back-substitute to get the same optimal controller as in Example 6.6.1.
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Exercises
6.1 Consider
£ = At + Bu, £(0) =&,

with A stable. Prove true or false: For every v in #5(Z.y), £(k) tends
to 0 as k tends to oo.

6.2 Consider a discrete-time system with control input v, disturbance
input w, and output {1, modeled in the frequency domain by the equa-
tion

s A+ 22 R
10 A vy w1 O e v s e LA G
1. Set

&=, cz[g].

Derive a state model for the system from [ ;j ] to (. Let &

denote the state.

2. Now consider state-feedback control, that is, 1 = &:

Compute the optimal internally stabilizing K to minimize ||(||2
when w is the unit impulse. Also, compute the minimum value

of [|¢]f2-
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6.3 Given

- [245]

with A nonsingular, show that

. A/—l ‘ _Al—lcrl
g~(\) = |: BAT ‘ D — B A"

6.4 Define Sy, X, F, Ap, C1F as in Section 6.4. Write down the Ric-
cati equation associated with X. Show that this Riccati equation can
be rewritten as a Lyapunov equation:

PXAp — X + ClpCip =0.
You might want to establish the following two identities first:
Ap = (I + BoM™'ByX)™ (A — B,M~'D},CY),
~BYXAp = MF + D},C1.
6.5 Prove the second statement in Lemma 6.4.2.

6.6 Recall in the LQR problem in Section 6.1, the optimal control
is a constant state feedback alone. If one converts the LQR problem
into an Hy-optimization problem as in Section 6.1, one gets an impulse
input of the form d4(k+1)wp. This exercise is to study full-information
control in this situation.

The system equations are

§ = A+ Biw+ By, w=daw, {(-1)=0
C = le + DHUJ + D12U
with the same assumptions as in Section 6.4. The optimization prob-

lem is again

min .
min <]

Define S, X, F, §; as in Theorem 6.4.1 and Lemma 6.4.2, but define

5(A) = A+ ByF ‘31
el = Ci+ DioF | Dy |
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1. §2°Gi € RH2(D). Thus §g.w € RH2(D)*.

2. The unique optimal control is v, = F'§. Moreover,
min||¢[l2 = [|gewolla-

6.7 Suppose v and ¢ are scalar-valued signals and the transfer func-
tion from v to ¢ is A2/(X — 1)2. For the standard canonical realization
(A, B, C) consider the optimization problem

where p is positive. Plot the eigenvalues of A+ BF' as p varies from 0
to oo.

6.8 Pertaining to the standard setup, prove the following two state-
ments:

1. Given the plant

A | B B
Cy D1 Do

LG (8]

with exactly the same assumptions on the matrices as in Theo-
rem 6.5.1, the Ho-optimal controller is

- A+ ByF — BiCy | B By + ByFy
Fopt (V) = F ‘ 0 Fy ’

where the matrices F' and Fj are as defined in Theorem 6.5.1.

2. Given the plant

A| B [B 0]
gAN=|C|Dn [0 I]
Cy| Dy [0 0]
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with the same assumptions as in Theorem 6.5.2, the Ho-optimal
controller is

A+ LCy—ByCy | L

Fopt(A) = C, 0 |,
Ch + LOCQ Ly

where L and Lj are as defined in Theorem 6.5.2.

6.9 Prove uniqueness in Theorem 6.5.1. (Hint: for every admissible
controller the equation

lEcwll3 = l1ell3 + (M + ByX Ba) 13
is still valid; see the proof of Theorem 6.5.3. Now show that the unique

solution of #,, = 0 is the controller given.)

6.10 In addition to the four assumptions made in Theorem 6.5.3, let
us assume further the orthogonality and normality conditions:

(a) Diy[ Ci Dz J=[0 TI],

v o, |Pa=[7]

For example, (b) concerns how the exogenous signal w enter G: The
plant disturbance and the sensor noise are orthogonal and the sensor
noise weighting is normalized. Simplify the formulas in Theorem 6.5.3.
What simplification can you make for Theorem 6.4.1 under condition

(a)?
6.11 Consider the following setup:

Y1 Y2

U ) My L~ M
Ky
OO OQR

Shown are two carts, of masses M; and Ms, two springs, with spring
constants K7 and Ko, and a damper, with constant R. A force u is
applied and y;, y» denote displacements.

Consider a controller with input yo and output w. The control task
is to have the righthand cart follow a given step reference signal r; the
tracking error is therefore r — ys.
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1. Taking the controller to be of the form SK;H, put the system
into the standard SD form and find a state model for G with

T = (Y1, 91,Y2, Y2)-
2. Outline a procedure to design a stabilizing controller K; to min-
imize

1S (r = y2)ll2-

6.12 Consider Hq-optimal control pertaining to the standard setup,
where the system G has the following data:

Note that Dg; = 0; so the problem has a singular sensor noise weight-
ing. Often this can be fixed by introducing a time advance in the w
channel. Define

, R Ao

e =90 | g ]

1. Show that the Ha(D)-norm of the closed-loop system is un-
changed upon the introduction of A=! in the w channel.

N

Obtain a state-space realization for g,eq,-

@

Compute the optimal controller for §pe,. (This is also the opti-
mal controller for g.)

6.13 Show that if

o-[445

and g(1) =0, then
1

| A|AA-D)"'B
ﬁg(”—[o} D

o
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6.14 This is a discrete-time optimal observer problem. All signals
are defined on the time set Z.
The system is modelled as

£=A¢, o =CE

The state estimate, 7, is to be the output of a FDLTT stable system K
with input . Since £(0) would be unknown, we average the estimation
error over the cases £(0) = e;, where e; is the i*" basis vector. Thus
the observer K is to minimize

Sl = €1+ €(0) = ex}.

Set this problem up as an Hs optimal control problem. Give con-
ditions for a solution to exist. Give a procedure to compute a solution.

6.15 Prove Lemma 6.5.1.

6.16 In the telerobot example, fe(s) and fh(s) are not rational, con-
taining time-delay terms. They were approximated by rational func-
tions, ge(s) and gi(s). This simplifies the analog design because it
makes the problem finite-dimensional. But actually it is not neces-
sary for the discretized system because time delays discretize to finite-
dimensional systems. Do the telerobot example by discretizing the
problem but without approximating f.(s) and fu(s).

6.17 Solve the 2 model-matching problem for
. A+05 A(BA—1)
t1(N) = ta(N) = ——.
N =5= =W A+4

6.18 For the system in Figure 6.9, take

A
C—2)Br+2)

pa(N) =

Compute the LTI controller kg to achieve internal stability and mini-
mize ||e]|]2 when p is the unit impulse. Use this method: Parametrize
all stabilizing controllers; reduce to an Hy model-matching problem.

6.19 Repeat, but with

Bl = 1050 P =

a>1.



190 CHAPTER 6. DISCRETE-TIME H2-OPTIMAL CONTROL

6.20 This problem looks at what happens in Hs model matching
when #5 has a zero on the unit circle. Take #;(\) = 1 and #o(\) = 1— .
Find a sequence of ¢s in RHoo(D) such that the associated model
matching errors converge to zero. From this conclude that an optimal
q does not exist.

Notes and References

The Ho-optimal control problem posed in this chapter is deterministic,
but it is mathematically equivalent to the minimum variance control
problem and the LQG problem. The material in Section 6.1 is standard
and is treated in many books, for example [54]. For more on Hs-
optimal control, and the role of the Riccati equation, see for example
[10], [38], [95], [4]. The idea to use the generalized eigenproblem for
symplectic pairs to study Riccati equations is due to Pappas, Laub,
and Sandell, Jr. [118]; Theorem 6.2.1 is from [118]. Lemma 6.3.2 is
standard; see for example [118], [149], and [75]. Theorem 6.3.2 is due
to Kucera [95]. An indirect proof is given in [118] that X is invertible;
the proof given here follows that in [51]. The derivations in Sections 6.4
and 6.5 are new; they follow the continuous-time approach taken in
[40]. The solution technique in Section 6.7 is due to Youla, Jabr, and
Bongiorno [155] and Kucera [97].



Chapter 7

Introduction to
Discrete-Time
H~o-Optimal Control

The problem studied in this chapter is the minimization of the H, (ID)-
norm from w to ¢ in the standard setup:

A Ao z

Recall (Theorem 4.4.2) that the Hoo(ID)-norm equals the least upper
bound of ||||2 over all w with [|w|]e < 1; thus, the Hoo(D)-norm mea-
sures the system gain in the sense of energy. It is a useful alternative
to the Hs(D)-norm when the exogenous inputs are not fixed.

A complete development of the theory of discrete-time #H ,,-optimal
control would take many pages. Instead, this chapter presents only an
introduction.

191
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7.1 Computing the H,-Norm

Recall from Section 4.5 that the H,-norm of a stable transfer matrix
ga(A) is defined to be the peak magnitude on the unit circle:

dlse = 510 0mas [0 ()]

One way to compute this is to take a finite grid of frequencies, 0 <
0 <--- <6, <7, and compute

max Omax [gd (ej0i>] .
i

There is another way, one that uses state data.
Begin with a state model

ga(A) = [%’i] ,

with p(A) < 1. The formula below for ||g4|loc involves the symplectic
pair

S = (S,5)
_ A+ BD'(y*-DD')7'C 0
B —C'(y*-=DD)'C T ]’

e e ey ]):

where -y is a positive number. For D = 0 and v = 1, this is just like
the one in Hy theory except for a sign change in the (1,2)-entry of S,
(see Theorem 6.3.2). The matrices v — DD', 2 — D'D are invertible
provided they are positive definite, equivalently, ¥? is greater than the
largest eigenvalue of DD’ (or D'D), equivalently, v > 0y02(D).

Theorem 7.1.1 Assume v > opmaz(D) and 0 < 0 < 2w. Then vy is a
singular value of gq (eja) iff €799 is an eigenvalue of S.

Proof (=) Assume 7 is a singular value of g, (e/?). Then 4?2 is an
eigenvalue of ggy (ej 9)* Jd (eje). So there exists a nonzero vector u such
that

. * .
Jd (eﬁ) Jd (eﬁ) u = v u.
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Defining v = v~ gq4 (eja) u, we have the pair of equations
. ANE
o () u =, 4a () 0=
Thus in terms of state matrices

. ) 1
Du +¢e?C (I — eJaA) Bu

Yv
, , ~1

D'v+e B (I - e*JQA') C'v = nu.

Define
0 0 4) o 4\ L

r:=el (I—eJA) Bu, s:z(I—eJA> C'v (7.1)
so that

Du+Cr=~v, D'v+e7B's=~u.
Using the fact that

-p' 1 (v*~D'D)™" D'(y2 - DD')~!
[ D g ] - [ g( *-D'D)”! 7(772 - DD ]

we can solve the latter equations for v and v:

u = D'(y*-DD') 'Cr+ey(y* -~ D'D) 'B's (7.2)
= ~v(?*=DD")'Cr+e¢D(y* - D'D)"'B's. (7.3)

From (7.1) we have
e % = Ar + Bu, s=eA's+ Cv.
Substituting from (7.2) and (7.3) for v and v gives

e % = Ar+BD'(y* = DD')"'Cr+e¢%yB(y* — D'D)"'B's
s = e A's+~C'(v* - DD 'Cr+e7C' (4> — DD')"'DB's,

that is,

HE!

Since [ Z ] # 0 (since u # 0), e 77 is an eigenvalue of S.

(<=) Reverse the argument—start with r, s and get w. [ |
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Corollary 7.1.1 Let vy denote the maximum v such that S has an
eigenvalue on the unit circle. Then ||qllco = max{omaz(D), Ymaz }-

Proof By the maximum modulus theorem,

||gd||oo > Umax[gd(o)] = Uma:v(D)-
If |gdlloo > Omaz (D), then from the theorem
Hgd“oo = “Ymaz
= max{amax(D)a'Yma:v}-

If ||gallco = Omaz(D), then for all v > 0,0.(D), S does not have an
eigenvalue on the unit circle, so

||§d||oo = Uma:v(D)
= maX{Umax(D)a'Yma:v}'

The computation of y,,4, can be performed effectively by bisection
search.

Example 7.1.1 As a very simple example, consider

.oy [ 051 140.5)
gd(A)_[ 1 \1]_1—0.5X

The Bode magnitude plot of §; is maximum at DC (A = 1) and that
maximum value equals 3. Thus ||g4l.c = 3.

Figure 7.1 is a plot, versus v !, of the distance from the unit circle
to the closest eigenvalue of S. Thinking in terms of root loci, one
can see that as v~ ! increases from 0, some branch approaches the unit
circle, remains on the unit circle, and then moves away from the unit
circle again. There is an eigenvalue on the unit circle for y~! in the
range [1/3,3]. The minimum value equals 1/3, SO Ymqz equals the
reciprocal, 3. Since D = 1 we can apply the corollary to get

|Gdlloo = max{1,3} = 3.
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Figure 7.1: The distance from the unit circle to the closest eigenvalue

of S plotted versus y~1.

Example 7.1.2 This is an MIMO example:
A A
EEDY 2—X

o

gd()‘) = 5\
(4+X)(4—X)

14+0.1X

A realization is

[04 005 0 0 0
1 0 0 0 0
A=| 0 0 —0.3333 0.0625 0.0208
0 0 1 0 0
L0 0 0 1 0
c_[05 005 0333 0  —0.0208
1 05 03125 01042 0

Figure 7.2 is a plot of omax [gd (ejg)] versus 0.

)

)

B =

D=

OO OO

r 1
o O

O O = O O

The peak magni-
tude equals 1.4122; so this equals the H,(ID)-norm. The value of the
function ranges over the interval [1.1509,1.4122]. According to The-
orem 7.1.1, S has an eigenvalue on the unit circle for all values of v
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145

35

Figure 7.2: omax [gd (ejg)] versus 6.

in the range [1.1509,1.4122], that is, for all values of v ! in the range
[0.7081,0.8689].

Figure 7.3 is a plot, versus v~ ", of the distance from the unit circle
to the closest eigenvalue of S.  There is an eigenvalue on the unit
circle for y~! in the range [0.7081,0.8689]. The minimum value equals
0.7081; by the corollary the reciprocal of this equals ||G4||co-

1

7.2 Discrete-Time H.-Optimization by Bilin-
ear Transformation

Since MATLAB has the function hinfsyn for continuous-time H,o-
optimal controller design, perhaps the simplest way to do discrete-time
Hoo-optimal controller design is by converting to a continuous-time
problem via bilinear transformation. The reason this works is that the
bilinear transformation preserves H..-norms (whereas it does not pre-
serve Ho-norms, for example). More precisely, let g4(\) be a transfer
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0.7

0.6-

08 09 1

Figure 7.3: The distance from the unit circle to the closest eigenvalue

of S plotted versus y~1.

matrix in Hoo (D). Define g.(s) via

() =au (1)

Then g. € Hoo(Cs) and ||gclloo = [|gdlloc- The mapping between Cy
and D used here is

_1-s 1=

T1ts T 1
Notice that any other conformal mapping could be used with equal
benefit. Notice also that the continuous-time system G, so constructed
is entirely artificial: It does not represent any physical system naturally
associated with Gj.

Design of an H-optimal discrete-time controller K, for the system

in Figure 7.4 via bilinear transformation goes as follows:

Step 1 Let the given state model for G4 be

A4 | Ba  Ba
. A, | B
ga(A) = [TZ’TZ] = | Cq1 | Dair  Dgi2
Ca2 | Dg21 Do
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Gq

S DKy

Figure 7.4: Discrete-time system; K, is to be designed.

Step 2 Define the artificial continuous-time system G. by

Ac | B Be
R A B C C C.
ge(s) = [TC’TC] = | Ce1 | Deir Der2 |,
ele Ce2 | Deo1 Deoo

Ac = (Ag-D)(Ag+D)7!
B, = (I-A)By

C. = Cy(Ag+1)7"

D, - C.By.

3
I

Step 3 Design an Hoo(C; )-optimal controller K. for G.. Let
the state model for K. be

7 _ AKc BKC
Fe(s) = [ Cre | Dre ] :

Step 4 Define the discrete-time system K, by
; Akd | Brd ]
kg(A) = ,
aN) [ Ckd | Dka

Axg = (I —Age) *(I+ Agk.)
Brkq = (I—Ag:) 'Brke

Cka = Cke(l+ Akq)

Dkq = Dge+ CreBka-
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Then Ky is Hoo(D)-optimal for Gg.

Clearly a necessary assumption for validity of the procedure is that
Ag+ 1T and I — Ak be invertible, that is, that —1 not be an eigenvalue
of Az and that 1 not be an eigenvalue of Ag.. Also, the continuous-
time Ho, problem in Step 3 must be regular.

Example 7.2.1 Let us continue Examples 2.3.1 and 3.3.2. There we
designed an analog controller K by H,-optimization in continuous
time and discretized it. Here we shall design a discrete-time controller
by discretizing the problem and designing in discrete time.

Figure 7.5 shows the feedback system with the discrete-time con-

troller K; to be designed. Figure 7.5 can be converted to the
2 fUQ Z2
w €2 €1

ﬂTe FH& S| Kyl H u P

Figure 7.5: SD feedback system.

standard SD setup of Figure 7.6. Discretize the input and output as

z w
G
S |- o Ky |- H

Figure 7.6: Standard SD system.

in Figure 7.7. Defining G4 := SGH, we arrive at Figure 7.4. Then K,
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S |- o Ky |- H

Figure 7.7: Discretization.

10t -

100 ¢

101

102 PR Y S W TR S S S S T NI W W R U TR R A
103 102 101 100 10t 102

Figure 7.8: Bode magnitude plots: optimal analog controller (solid),
optimal discrete-time controller (dash); h = 0.5.
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can be designed by the procedure above.

Figure 7.8 shows the results for the sampling period h = 0.5. The
solid line is the Bode magnitude plot of 1/(1 + pkf), where k is the
continuous-time controller obtained by H ..-optimization in continuous
time; the dashed line is the Bode magnitude plot of 1/(1 + ﬁfl%df),
where kg is the discrete-time controller obtained by Heo-optimization
in discrete time. There is a large deterioration in performance because
h is so large. Figure 7.9 shows the results for h = 0.01: The solid line is
for the optimal analog controller, the dashed line is for its discretization
(as in Figure 3.4), and the dotted line is for the optimal discrete-time
controller; all three methods give essentially the same result.

10t -

100 Ty

101

102 L L R L L
103 102 101 100 10t 102

Figure 7.9: Bode magnitude plots: optimal analog controller (solid),
discretization of optimal analog controller (dash), optimal discrete-
time controller (dot); h = 0.01.

This example is continued in Example 8.4.3.
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Exercises

7.1 Compute the Hqo(D)-norm of
1

_ - 22

2+ A

1y Lt
12 = A4+ )2

by finding a state model and using Corollary 7.1.1.

7.2 Compute the H, (D)-norm of the preceding matrix by converting
to continuous time using the bilinear transformation, then using the
MATLAB function hinfnorm.

Notes and References

The Hoo-optimal control problem in discrete time is treated in [75],
[13], [103], [61], [64], [106], [131], [107], [93], [63], [77], and [156]. The-
orem 7.1.1 is adapted from the analogous continuous-time result in

[20].



Chapter 8

Fast Discretization of SD
Feedback Systems

The methods in Chapters 5, 6, and 7 are to design controllers for
the plant discretized at the sampling frequency. This might result in
unfortunate intersample ripple (Example 6.6.1). One way to guard
against this is to discretize the signals of interest at a rate faster than
the sampling frequency. This chapter develops this approach. The
same idea also finds application in computer simulation of sampled-
data systems.

8.1 Lifting Discrete-Time Signals

The idea of lifting a discrete-time signal has already been introduced
in Example 4.4.2. Consider this situation: There is an underlying
clock with base period h and there is a discrete-time signal v(k) that
is referred to the subperiod h/n of the base period, where n is some
positive integer. That is, v(0) occurs at time ¢t = 0, v(1) at ¢ = h/n,
v(2) at t = 2h/n, etc. The lifted signal, v, is defined as follows: If

v ={v(0),v(1),v(2),...},

then
v(0) v(n)
. v(1) v(n+1)
v(n —1) U(2n‘— 1)
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Thus the dimension of v(k) equals n times that of v(k) (hence the
term “lifting”) and v is regarded as referred to the base period; that
is, v(k) occurs at time ¢t = kh. The [lifting operator L is defined to be
the map v — v and is depicted by the block diagram

v

.

The slow-rate signal is shown with slow-frequency dots; the fast-rate
signal with high-frequency dots. The vector representation of the equa-
tion v = Lv when n = 2 is

IS IS IS
=

|
o olo oo~

O OO Ol~N O
O OO NO O
O OINOlIC O
O NIO OO O

For the partition shown, [L] is neither lower-triangular nor Toeplitz;
therefore, as a system L is non-causal and time-varying.

It can be arranged that L is norm-preserving. Let us see this for
the case of ¢y-norms:

v €
v €
[l =
lull3 =

v(n —1) v(n —1)
vim) 1'[ v
+ f : +--
v(2n — 1) v(2n — 1)

0(0)'v(0) +v(1)v(1) + -

lv3-
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Thus ||Lv||s = |jv]|s.
The inverse of lifting, L™, is defined as follows: If

$1(0) P1(1)

URS : , : .
Pn(0) Pn(1)
and
v =Ly,
then

v = {¢1(0)v e a¢n(0)v¢1(1)a' o a¢n(1)v v }

The corresponding matrix for n = 2 is

I 0|0 0|0 Of---1

27 =

o) Neo] Hen) Nean)
QIO O~
OO ~NIO
o) Neo] Hen) Nean)

0
0
0
I

OIN OO

Clearly, L~ is causal but time-varying.

8.2 Lifting Discrete-Time Systems

For a discrete-time FDLTI system G, with underlying period h/n,
lifting the input and output signals so that the lifted signals correspond
to the base period h results in a lifted system, G, := LG4L™!, as
depicted in Figure 8.1. It is not hard to show that G, is LTI too.

v v 1)
e L71 ........ N Gd w, L LT

Figure 8.1: The lifted system.

Given gq4 in terms of state-space data,

ga(N) = [%’i] ,

how can one compute the transfer function g J for G ;7
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Theorem 8.2.1 The lifted system G, is FDLTI; in fact,

A™ A"lB A" 2B ... B

C D 0 )

g,0) = CA CB D e 0
CA" 1| CcA™ 2B CA™3*B -.- D

Proof We shall prove the result when n = 2; the general case follows
similarly. Looking at the system matrices, we have

[G,) = [I][Ga) [L71]
D 0 0 0
CB D 0 0 ---
= [L] CAB CB D 0 - [ [
CA’B CAB CB D ---

D 0 0
CB D 0
- CAB CB | D
CA’B CAB|CB

g oo o

(Note that [G,] looks the same as [G4] except for a repartition of the
blocks.) The transfer matrix corresponding to the latter matrix is

A’ | AB B
C|D o0
CA|CB D

This is therefore g, (when n = 2). With such a state-space model, G4
is clearly FDLTI and causal. |

If A is stable, so is A™. Since the lifting operation preserves norms,
it follows that norms of the two transfer functions gq and g, satisfy:

13all3 = 113,113 /m and l|galleo = Ig,lloc- This is a very useful property.

8.3 Fast Discretization of a SD System

We now turn to the standard SD system in Figure 8.2. Choose an
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z w
G
S |- o Ky |- H

Figure 8.2: The standard SD system.

S |- o Ky |- H

Figure 8.3: Fast discretization.
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integer n, introduce fast sample and hold operators, Sy and Hy, with
period h/n, and consider the discretized system in Figure 8.3. This is
the fast discretization of the system in Figure 8.2. We would expect
the latter to emulate the former if n is sufficiently large, and thus
fast discretization is useful for both analysis and design. The design
techniques in Chapters 5, 6 had n = 1.

To make the system in Figure 8.3 amenable to analysis, first move
the samplers and holds in Figure 8.3 into G to get Figure 8.4, where

[s; 0 Hy 0
pe| W s lel VR

This is a discrete-time system, alright, but at two sampling rates.
Figure 8.4 therefore represents a time-varying discrete-time system.

e o Ky |-

Figure 8.4: Two-rate discrete-time system.

Introduce lifting in Figure 8.4 as shown in Figure 8.5. Absorb L

¢ ¢ ¢ w w w
RN L71<"_" L e N L71<"" L e

e o Kg |- :

Figure 8.5: Two-rate system with lifting.
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and L~! into P to get Figure 8.6, where

e[ 0[5 )

Finally, if we focus on the lifted signals ¢ and w instead of ¢ and w,

¢ ¢ w w
RSN L71<"_" l€- - - - L e

r

e of Ky |- - .

Figure 8.6: Two-rate system with lifted generalized plant.

we arrive at Figure 8.7, a single-rate discrete-time system.

¢ w

< - . - € - - .

r

e of Ky |- - .

Figure 8.7: Single-rate lifted system.

The advantage of Figure 8.7 is that P is time-invariant, as we shall
see. Back in Figure 8.2 partition G as

[ G111 Gio ]
G =
G211 Ga
Then
p= [ Py, Py ] _ [ LS§GuHfL™" LS;G2H
= Py Py | | SGuHfL! SGooH
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Take any realization of G:

A| Bl B
g(s)=1| Ci | Di1 D
Cy | Da1 Do

Discretize at the slow rate
[Ag, Bag) := c2d (A, Ba, h)
and at the fast rate:
[Af, [Biy, Bog]] := c2d (A, [By,Bo],h/n).

We shall derive a state model for P based on these matrices; but first
let us look at each of the four entries in P in turn.

Transfer Function for P,

Note that S;Gi1Hy is the fast-rate discretization of G1y; the corre-
sponding transfer function is

[Af Blf]
Ci | D |’

The transfer function for P, follows directly from Theorem 8.2.1:
Define

B, = [A;%—lBlf AT2By; e Blf]
- o
Ci A
Q1 = : !
| G A}
r Dy 0 0
ClBlf D11 0
Dy, = : : :
| 1A} By GlAY By - Dy
Then

= [ ]

(Note that Ay = A}.)
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Transfer Function for P,
The definition of Py, is
P, = LS;G2H.
It is easy to check that H;SyH = H (Exercise 8.5), that is, when
acting on the output of H, H;S; equals the identity system. Thus
Py =L(S;Gi12Hy)SsH.

Again, SyG12H  is the fast-rate discretization of G712, its transfer func-
tion being

[Af Bgf]
Ci| D2 |’

Also, the matrix representation of SyH is

I 0
: n

I 0

[S;H]=| 0 1
: n

0 I

From this and [L] it can be inferred that

I
LS;H = | : |, (n blocks)
I
that is,
I
SfH=L1'| :
I
Thus

BIZ = L(SfGlQHf)Lil
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The transfer function for L(S;G12Hf)L™" can be obtained again by
Theorem 8.2.1. In this way, we get the transfer function for P,:

[ Ay A?_lBgf A?_2B2f Bgf 7
Ch Do 0 A 7
PN = CiAy C1 Bay Dy e 0 :
o i L
| C1 A} ! C1A} By C1A} By -++ Dia
[ Ay (A} '+ A} 2+ -+ D)Byy
Cq Dy
- CiAy C1Bayg + D12
L ClA;chl ClA?72BQf + -+ ClBQf + Di2 |

Define C'; as before and define

D15

C1Byy + D2
Q12 = .

ClAgfoBgf + -+ ClBgf + D19

It follows from the equation

h h/n h
/ e™Adr = / e Adr 4 + / e™dr
0 0 (n—1)h/n

that

(Arfbfl + -+ Af + I)Bgf = Byy.
Thus

R _ | A4 | Boa

2N = [ Cy| Dy |
Transfer Function for P,,

It is an easy-to-prove fact that S = SH;S; (Exercise 8.5). Also, the
matrix representation of SHy is
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from which it follows that
SHf=[I 0 -~ 0]L.
Thus

= SHf(SfGQle)Lfl
= SH;L 'L(S;GoHy)L™!
= [I 0 -+ 0]L(SyGouHy)L™".

Thus a state model can be derived,

b = 5]

where B, was defined earlier and

Dy :=[Dy 0 --- 0].

Transfer Function for P,,

This is simply the slow-rate discretization of Gao:
N Aaq | Bad ]
A) = .
Pyp(N) [ Co | Do
Transfer Function for P

The realizations for the four entries in P fit nicely together to form a
realization for P:

A4 | By B
@(A) = Q1 Dy, Dy,
Cy | Dyy Do
In detail, the underlined matrices on the right-hand side is
-1 -2
B, =| A}'Biy AYBiy - By

Dy 0 e 0

Ci1Bqy Dy, - 0

211 = . . .

C1A} By C1A} By -+ Dn
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D, = [ Dyy O -+ 0 ]
C1 Dqs
Ci A C1Bay + D12
C = : , Dy = :
ClA;cLil Z?:_(? ClAifBQf + Dyo

Thus P is time-invariant, as mentioned before.

In summary, fast discretization of the standard SD system leads
to a two-rate discrete-time system which can be lifted to a single-rate
discrete-time system.

8.4 Design Examples

In this section we look at design of three examples via fast discretiza-
tion.

Example 8.4.1 Bilateral hybrid telerobot (cont’d). Let us use
the fast discretization method for the telerobot problem of Exam-
ple 6.5.1. Recall that the telerobot under sampled-data control can
be configured to the standard form shown in Figure 8.8. The input is

z w
G
S |- o Ky |- H

Figure 8.8: The standard SD system.

the 2-vector



8.4. DESIGN EXAMPLES 215

and the output is the 4-vector

Oy (Um - Us)

ac(fh - Um)
af(fm - fe)
asfs
The state model for G has the form
A | B By
Ci| 0 Do
Cy| 0 0

Let T, denote the SD system from w to z in Figure 8.8. Let us
choose to fast-sample at twice the base rate: Let Sy denote the sampler
with period h/2. Letting e, e denote the standard basis in R%, we
choose to minimize

> IS Tewbeills.
2

(Recall that in Example 6.5.1 we minimized Y, || ST, d€;]|3.) Since
lifting is norm-preserving, we can equivalently minimize

SO NLS Tedei 3
)

The relevant block diagram for this optimization problem is Figure 8.9.
Bringing L, Sy, S, and H into G gives the system in Figure 8.10

¢ z w = de;
« . L <C Sf e
G
S |- Ky |- H

Figure 8.9: Fast sample and lift z.

(compare with Figure 6.2). Finally, as in the derivation of Figure 6.3,
Figure 8.10 can be converted to the equivalent discrete-time system in
Figure 8.11, where
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¢ w = de;
<« s e e LSfGll LSfGlZH e—
SGo SGoH

e W Ky |-

Figure 8.10: Discretized system with continuous-time input w.

Gis

e o Ky |- - :

Figure 8.11: Equivalent discrete-time system.
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A | AgBy Baa
Cy C1 By Dqo

gdis(k) = ClAf ClAfBl ClBgf + Doy | . (81)
Co CyBy 0

(The derivation is left as Exercise 8.11.)
To summarize, let T, denote the LTI discrete-time system from w
to ¢ in Figure 8.11. Then

Z 1S Towde; |3 in Figure 8.8 = ||i¢,||3 in Figure 8.11.

2

In this way we arrive at a discrete-time Ho problem, namely, the min-
imization of ||#¢, |2 in Figure 8.11.

For computations, we take h, ay, ac ayf, and as as in Exam-
ple 6.5.1. The same regularization is performed, namely, 1) the poles
of §m(s) and §s(s) at s = 0 are perturbed to s = 1073, 2) the matrix
in the Doj-location of G ;s is perturbed to

0 0 0 20
01 0 0 0 |,
0 01 0 0

and 3) the matrices in the D;;- and Bj-locations are padded with two
zero columns.
The resulting responses are shown in Figures 8.12 and 8.13.

In comparing these plots with Figures 6.4 and 6.5, one sees only a
small improvement, namely, the error between f,, and f. converges to
zero a little faster. Presumably, some additional improvement could
be obtained by fast sampling faster than twice the base frequency. We
shall return to this example in Chapter 12.

The next example involves step tracking. Let us develop a general
procedure for doing this. Start with the system in Figure 8.14. In
this figure, the input w is the 1-dimensional unit step function 1(t)
(for a multidimensional step of the form w(t) = 1(¢)wy, the constant
vector wy can be absorbed into G). It is desired to minimize the
continuous-time error |z||2. This is approximated by ||Sfz||2, which
equals || LSyz||2. In this way, our goal is to design Ky to minimize ||(||2
in Figure 8.14.
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18
16
141

121

08r
0.61
04r

02- /!

Figure 8.12: Design by fast discretization: vg (solid), vy, (dash), and
fn (dot).

10

0 1 2 3 4 5 6 7 8 9 10

Figure 8.13: Design by fast discretization: fp, (solid) and f, (dash).
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¢ z w(t) = 1(t
G
S R | Kd ,H

Figure 8.14: SD system with step input; z is fast-sampled and lifted.

A step enjoys the property that it can be the output of a hold
operator. In Figure 8.14 write the continuous-time step 1(¢) as the
response of H to the discrete-time step 14(k); this gives Figure 8.15.

Finally, convert Figure 8.15 into Figure 8.16 by defining

¢ z

w=1y

€ -« .

S |- Ky |- H

Figure 8.15: Discrete-time step input.

G o LSf 0 G11 G12 H 0
dis = 0 S Gor Goo 0 H
[ LS;GH LS;GH
- SGoy H  SGypH |-

In terms of state models, if

A| Bl B
g(s)=1| Ci | D1 D12 |,
Cy | Doy 0

then
Gais(N) =
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¢ w=14

< - . - € - - .

Gdis

e of Ky |- - .

Figure 8.16: Equivalent discrete-time system with step input.

[ Ad Bld B2d
Cy Dy Dqo
ClAf Dy + ClBlf D+ ClBQf

0114?_1 Dy +---+ ClA?_2Blf Dig+---+ C1A?_232f

Cs Do 0 i

The problem depicted in Figure 8.16 is a standard Ho-optimal step-
tracking problem as studied in Section 6.6.

Example 8.4.2 Let us reconsider Example 6.6.1, where we got severe
intersample ripple by naively discretizing the plant. The block diagram
is shown in Figure 8.17. The plant transfer function is

r e € Yy
o S ""Kd""H P

Figure 8.17: A sampled-data tracking system.

. 1

P) = 05 + (255 1 1)
the reference input r is the unit step, and the sampling period is h = 1.
Instead of minimizing the fo-norm of ¢, as we did in Example 6.6.1,
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let us minimize the £3-norm of ¢ := Sye, as shown in Figure 8.18, for
n = 2.

Sf ...... o LT

Figure 8.18: A tracking system with fast sampling of the error.

The computation of the optimal K; can be performed by trans-
forming Figure 8.18 into Figure 8.14 and applying the general proce-
dure. The solution is

. —488.85(\ — 1.1052)()\ — 1.0408)
Fa(A) = (A4 1.3955) (A — 1)

The sampled-data system of Figure 8.17 with this controller was sim-
ulated for a step input. Figure 8.19 shows the plot of y(t) versus ¢ in
solid. For comparison, the dashed line is for the controller of Exam-
ple 6.6.1. The improvement of the new method is obvious.

Example 8.4.3 Let us reconsider Example 7.2.1. There we designed
an optimal H.-controller by discretizing at the sampling frequency of
the controller. An alternative procedure is to discretize the problem
at a faster rate than the sampling frequency of the controller. That
is, instead of Figure 7.7 we could discretize as in Figure 8.20. Lifting
¢ and w as in Section 8.3, we arrive again at Figure 7.4.

Figure 8.21 shows the results of this fast-discretization method for
h = 0.5 and the sampling period for Sy and Hy equal to h/2. The
solid line is the Bode magnitude plot of 1/(1 + pkf), where k is the
continuous-time controller obtained by H ..-optimization in continuous
time; the dashed line is for 1/(1 + prkyf), where ky is the discrete-
time controller obtained by H.,-optimization in discrete time; and
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16

14r

Figure 8.19: Step-response of example: design by fast discretization
(solid) and by slow discretization (dash).

S |- Ky |- H

Figure 8.20: Fast discretization.
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101 ¢

100 ¢

101

102 PR Y S W TR S S S S T NI W W R U TR R A
103 102 101 100 10t 102

Figure 8.21: Bode magnitude plots: optimal analog controller (solid),
optimal discrete-time controller (dash), optimal discrete-time con-
troller via fast discretization (dot); A = 0.5.
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the dotted line is for the discrete-time controller obtained by Hoo-
optimization after fast discretization. The fast-discretization method
is a little better than the slow-discretization one in that the peak is
smaller. Figure 8.22 shows the results for h = 0.15, where the fast-
discretization method is quite superior on the operating band even
though h is still quite large.

101 ¢

100 ¢

101

102 T S S ¥ Y T S A W TR R R AW R YT TR R WA
103 102 101 100 10t 102

Figure 8.22: Bode magnitude plots: optimal analog controller (solid),
optimal discrete-time controller (dash), optimal discrete-time con-
troller via fast discretization (dot); h = 0.15.

8.5 Simulation of SD Systems

Fast discretization provides an effective way to simulate the standard
SD system of Figure 8.2. A simulation procedure takes the data

a model for G
a model for K,

the sampling period h
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the input w(t) over some period 0 <t <t
and computes
the output z(t) over the period 0 <t < ty.

The continuous-time input w can be closely approximated by H ;S rw
provided n is large enough. Define w = Syw. Since only a finite
amount of data can be computed, it makes sense for the procedure to
compute Syz instead of z. In this way we arrive at Figure 8.3.

For simplicity, suppose the simulation time interval [0, %] consists
of an integral number, m, of slow sampling intervals, that is, ; = mh.
Relative to Figure 8.3, the simulation procedure is to input the data

a model for G
a model for K,
integers m and n and the sampling period h
the input w(k) for 0 < k < mn
and compute
the output (k) for 0 < k < mn.
A simple simulation procedure is therefore as follows:
Step 1 Lift: w = Lw.
Step 2 Simulate the discrete-time system in Figure 8.7.
Step 3 Inverse lift: ( = L_lg.

Step 4 Compute the times corresponding to the sampled values
¢(k), namely, t = kh/n (k=1,...,mn).

This procedure can readily be implemented in MATLAB.

Exercises

8.1 This problem looks at the lifting operation in the frequency do-
main. Let v € ¢3(Z4) and v = Lv, where L is the lifting operator for
n = 2. Find the relationship between ¥ and ©. Extend your result for
general n.
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8.2 Let G be an LTI discrete-time system and let L denote the lifting
operator for n = 2. Write the transfer matrix g(A) as follows:

g = g(0)+Xg(1) +X2g(2) +---
= [9(0) + A%g(2) + -] + A [g(1) + X2g(3) + -]
G0(02) + 231 (32). 62)

Prove that the transfer matrix of LGL™! equals

[QOO‘) >\§1(>\)]
g1(A) g(N) |-

Extend this result for general n.

8.3 Let GG be a continuous-time LTT system and consider the discrete-
time system SyGH obtained by fast-sampling the output and slow-
holding the input. Is it LTI? Causal? Repeat for SGH.

8.4 Let P; be a linear discrete-time system. Recall from Chapter 4
that P; is time-invariant if U*P;U = P;, where U and U* are unit
delay and unit advance respectively. For a positive integer n, let us
define Py, to be n-periodic if (U*)" P;U™ = P;. This means shifting the
input by n time units corresponds to shifting the output by n units.
For the lifting setup in Figure 8.1, show that G is time-invariant iff
G4 is n-periodic. As a special case, if Gy is LTI, so is G;.

8.5 Prove that HfoH =H and S = SHfo.
8.6 Derive the matrix representations of SyH, SHy, and LS H.

8.7 This question concerns causality of G4y and G, in Figure 8.1.
Assume G| is linear and n-periodic. Show that G is causal iff G is
causal and g (0) is (block) lower-triangular, where g is the impulse
response of G;.

8.8 Repeat the design in Example 8.4.2 for n = 4 and compare the
step response with that for n = 2.

8.9 Write a MATLAB function sd_sim.m for SD simulation. Its ar-
guments should be the state matrices for G (assuming Dy = 0),

A’BlaBQaCIa023D113D123D21’



8.5. SIMULATION OF SD SYSTEMS 227

the state matrices for K,
AKaBKaCKaDK’

the numbers h,m,n, and the input vector w. It should compute the
output vector ¢, together with the time vector, the elements of which
are the simulation instants.

As a simple test of your program, simulate the following system:

w=y Z=u

4.5’ ........ - H —m——

(Choose your own values for h,m,n.)

8.10 Consider the analog control system

w/i:y 1 U 1
N S s+ 1

and a sampled-data implementation of the controller, as shown here:

Z:y
w u
S I o Ky |- o H 3—:|l—1

Using your program, simulate the step response of the latter system,
taking h = 0.1,m = 50,n = 10. Plot the output z versus time and
overlay the step response of the analog system for comparison. Repeat
with h = 1,m = 50,n = 10. Observe the effect of the sampling
period on the quality of the digital implementation (remember that
the objective is to recover the analog design).

8.11 Derive equation (8.1).

8.12 Let G be a continuous-time system with transfer function

- [45]

Let H denote the hold with period h and S; the fast sampler with
period h/3. Give a procedure to compute the induced norm

sup ||SyGHulls.
llvll2<1
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Notes and References

The technique of lifting is basic to the early work of Kranc on multirate
sampled-data systems [94]. He used a method called switch decompo-
sition to convert a multirate system into a single-rate one. The idea
is as follows, described for the case n = 2 for simplicity. Consider the
switch system

(h/2)
The switch closes periodically with period h/2, so that

[ w(), t=kh/2, keZ
y(t) = { 0, else.

Thus the switch is like the fast sampler S; except its output is continuous-
time. This switch system is input-output equivalent to the following
system, where the fast switch has been decomposed into two parallel
slow ones:

u(t) Y1 (t)

esh/2 Y2 (t) e sh/2 y(t)

In a certain sense [ Zl ] is y lifted. More precisely, if we let (k) =
2

y(kh/2) and (k) = g1 (kh), a(k) = ya(kh), then [ m

1 lifted. So Kranc’s switch decomposition is essentially lifting.
Friedland [56] developed lifting explicitly to convert a periodic
discrete-time system into a time-invariant one. Later, Davis [35] did
the same for stability analysis of the feedback connection of an LTI
plant and a periodic (memoryless) controller. The idea of lifting is sim-
ilar to the digital signal processing idea of blocking—taking a discrete-
time signal, regarding it as a vector, and subdividing the vector into
blocks. This is used, for example, in block convolution [116] [112]. The
decomposition in (8.2) is called a polyphase decomposition. Introduced

] is precisely
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by Davis [35], it is a very important tool in multirate signal processing
[144].

The lifting framework of Section 8.1 was developed by Khargonekar,
Poolla, and Tannenbaum [90]. They showed how closed-loop zeros
could be assigned by periodic controllers, concluding, for example,
that the system’s gain margin could be increased without bound (even
if there is a bound for time-invariant controllers). Discrete lifting was
also used by Araki and Yamamoto [7] in their study of multirate SD
systems.

The fast sampling idea for approximating continuous-time perfor-
mance is due to Keller and Anderson [87].

The simulation procedure in Section 8.5 is new. Several software
packages can simulate nonlinear sampled-data systems.
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Chapter 9

Properties of S and H

In this chapter we view S and H as linear transformations and derive
some of their properties. We also study performance recovery—how
analog performance specifications can be recovered when an analog
controller is implemented digitally and the sampling period tends to
Zero.

9.1 Review of Input-Output Stability of LTI
Systems

Sampled-data systems are time-varying. Before we look at stability of
such systems, it is instructive to review the case of LTI systems.

Definitions

l. For 1 < p < oo, L,(Ry,R") denotes the space of piecewise-
continuous functions from R, to R™ such that the following norm
is finite:

all, = {5 Iu@lPae] 1< p < oo
supy [|u(t)]], p = oo.
Here the norm on R" is the Euclidean norm. If n is irrelevant,
we write just £,(R;). We are primarily interested in the cases
p = 2,00, for then the p-norm has a physical significance—||u||3
is energy and ||u|| is maximum value.

233
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2. C(Ry,R™), or just C(Ry ), denotes the space of continuous func-
tions from Ry to R™.

Now we summarize some stability theory for LTI systems. Let G be
an LTT, causal, continuous-time system, that is, it has a representation
of the form

y(t) = gou(t) + / g1(t — 7)u(r)dr,

where gy is a constant matrix and g;(¢) = 0 for ¢ < 0. The impulse
response function is therefore §(t)go + g1 (%).

Theorem 9.1.1 The following are equivalent:
1. G: Li(Ry) — L1(Ry) is bounded.
2. G: Loo(Ry) — Loo(Ry) is bounded.
3. G: Ly(Ry) — Ly(Ry) is bounded for every p.
4. Each element of gy is in L1(Ry).

v

. Assume G is finite-dimensional and let be a minimal

C|D
realization of the transfer matriz. Then A is stable (all eigs in
the open left half-plane).

So any one of these five conditions could qualify as a definition of
stability of G.

Continuing with such G, define the induced norm

M, := sup ||Gul,.

llullp<1

This is the gain of the system from £,(R}.) to £,(R}.). To get an upper
bound on this gain, introduce a matrix N as follows: Take the 4j
element of the impulse response matrix and write it as god () + g1 (¢);
then the 5" element of N is defined as |go| + [|g1]1-

Theorem 9.1.2 Assume G is stable. Then M, < omax(N). Also,
M; = [|g]|co-

Now assume G is LTI, strictly causal (go = 0), and stable. If we
want to sample its output, we are interested in knowing that its output
is continuous. It is not hard to prove that GL,(Ry) C C(Ry.).
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9.2 M. Riesz Convexity Theorem

We shall want to be able to infer Lo(Ry )-stability from £;(Ry )- and
Loo (R )-stability. Theorem 9.1.1 provides this for LTI systems. Since
sampled-data systems are not time-invariant, we need a more powerful
result, the M. Riesz convexity theorem.

Let L£1.(R;) denote the extended L£1(R,) space, the space of all
piecewise-continuous functions from R; to R such that ||u(t)|| is in-
tegrable on every finite time interval.

Theorem 9.2.1 Suppose G is a linear system with the property that
Gu € L1(Ry) for every input u in Li.(Ry). If

G: Li(Ry) — L1(Ry) is bounded, with induced norm My, and
G: Lo(Ry) — Loo(Ry) is bounded, with induced norm My,
then for every p

G: Ly(Ry) — Ly(Ry) is bounded, with induced norm M, <
1 1

1 1—1
M? My *.

1 1

1 q_1
Why is this called a convexity theorem? Note that M, < MMy *
iff

1 1
In M, < -InM; + <1 - —) In M,
p p

or, with  := 1/p, f(z) := In M,

flz) <z f(1) + (1= )f(0).

This says that f is a convex function on the interval [0, 1].

9.3 Boundedness of S and H

Now we have the mathematical machinery to begin our study of S and
H. The (perhaps unexpected) fact is that sample-and-hold is not a
bounded operator on, for example, Lo(R; ).

Theorem 9.3.1
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1. For any v € £,(Z), |Hl, = B'/P||ll,. Thus H : £,(Z,) —
L,(Ry) is bounded and of norm h'/P.

2. S:C(RL)NLo(Ry) = loo(Zy) is bounded and of norm 1.

3. S:C(Ry)NLY(Ry) — £y(Zy) is not bounded for any 1 < p < oo.

Proof The first and second statements are immediate. Now we show
the third.

Define u to be a series of ever-narrowing triangular pulses as fol-
lows:

k=1

2k? : h
’Uk(t): 1_T|t_kh|’ if |t—]€h|<2—]€2

0, otherwise.

Thus vy, is a triangular pulse centered at ¢ = kh with height 1 and base
width h/k?. Then (Su)(k) =1 for all k > 1, so Su & £,(Z). Yet

kh-l-%% 2k2 p h
P=2 1——(@{—kh)| dt=——,
g =2 [ 1= | =
SO
= h =1
[ully = Z lvkll; = Pt Z 2 < 0.
k=1 k=1
Therefore u belongs to C(Ry) N L,(R;). [

The hold operator has the nice property that by proper scaling it is
norm-preserving from ¢,(Z,) to £,(R;). But the sampling operator
is unbounded from C(Ry) N L,(Ry) to £,(Z4) for all 1 < p < oo,
which unfortunately includes the case p = 2 that we shall focus on.
The counterexample in the preceding proof shows that the problem is
caused by allowing into S a signal of ever-increasing derivative. If the
derivative of the input is limited, one might expect S to be bounded.
This is indeed the case. It will be proven next that S preceded by a
low-pass filter is a bounded operator on C(R}) N L, (Ry).
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The setup is shown in Figure 9.1—the sampling operator with a
prefilter F'. Assume F' is causal and LTI with impulse response matrix

f in ‘CI(R—F)a i'e'a
1l = / O [ (D)) < o0,

where the norm on f(t) is the maximum singular value of the matrix
f(t). Thus F is a bounded operator on £,(R ) for every p. Define the

U Y

[ F S .......... >

Figure 9.1: S with a prefilter.

sequence ¢ by
p(k) == sup  |If@)I. (9.1)

te[kh, (k-+1)h)
Theorem 9.3.2 If ¢ € ((Zy), then SF : L,(Ry) — £y(Zy) is
bounded for every 1 < p < oo.

The proof uses the following basic fact:

Lemma 9.3.1 If g and u are in L1(Ry), so is their convolution g *u;
moreover

lg * wlly < llglly - flelly-

The same result holds for two sequences in ¢1(Z).

Proof of Theorem 9.3.2 First note from Theorem 9.3.1 that for
any p, the operator SF : L,(Ry) — £,(Z4) is bounded iff HSF :
Ly(Ry) = L,(R}) is. Apply Theorem 9.2.1 to the operator HSF: It
suffices to show that SF' is bounded Lo (Ry) — loo(Z4) and L1 (Ry) —
01(Z4). Tt is easy to see that SF' is bounded Lo (Ry) — oo (Z4), with
ISEI < |Ifh.

Now suppose u € L£1(Ry). For £k >0

kh k ih
yh) = [ kb —ryu(r)dr =3 / F(kh — 7yu(r) dr

0 =1 J(i—Dh
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So
k ih
ly(kh)|| < ;/(i_l)h |f(kh — 7)| - [Ju(7)]| dT
k ih
< p(k — i) [u(T)| d7
Dotk |

(i=1)h

Define the sequence v by v(i) := f(iih_l)h |lu(T)|| dr. Then the right-
hand side of the above is the convolution of ¢ and v. Note that ¢ €
01(Z4) by the hypothesis and v € ¢1(Z4) since ||v]j1 = |lu]li < oo.

Invoke Lemma 9.3.1 to get
D lyER) < Bl - ol = Il - flulh
k

Hence the operator SF' is bounded £i(Ry) — ¢1(Zy) with [|[SF| <
[16]1- m

It follows from the proof that upper bounds for the £;(R,)- and
Loo(Ry )-induced norms of HSF are h||¢||1 and ||f]|1, respectively.
Thus by Theorem 9.2.1 an upper bound for the £, (R )-induced norm
is (h[|¢l1) /2 (|| f111)"/? where L+% = 1. Since || f[l; < hl|¢]l1, we obtain
that hl|¢||1 is an upper bound for |HSF|| on every L,(R} ) space.

Corollary 9.3.1 If F is FDLTI, stable, and strictly causal, then

SF: Ly(Ry) — £p(Zy)
15 bounded for every 1 < p < oo and for every sampling period h > 0.

Proof Such a filter F' admits a state-space representation

- (442

with A stable. Then f(t) = Ce!4B1(t). It can be verified that the
corresponding ¢ belongs to ¢1(Z) for any h > 0. [ |

So far, F' has been a filter with impulse-response function in £;(R),
such as a stable, strictly causal, FDLTI filter. What about an ideal low-
pass filter: f(jw) = 1 up to some cutoff frequency, f(jw) = 0 at higher
frequency? This is not causal and its impulse-response function is the
well-known sinc function, asin(bt)/t. This function is not absolutely

integrable, that is, not in £;(R). The next result handles such a filter.
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Lemma 9.3.2 Let F;y be an ideal bandpass filter with passband € :=
[wi, wo] and F an LTI filter such that f(jw) is invertible for every
w € Q. If T is a linear map such that TF is bounded on L9(R), then
TF;q is bounded on Lo(R) and

|ITFyq|l < max [|f (jw) ™" - ITF|.
weN

Proof It is a fact that Fj4 is bounded on L9(R) with norm 1. Thus
by the hypothesis, the map TFF;; is bounded on L3(R) and hence
on the subspace B := F;4L2(R), namely, the space of L9(R) functions
that are bandlimited to €2. The operator F'F;; maps B to B and the
restriction F Fjy|B has a bounded inverse since f(jw) is invertible over
the frequency band 2. Let T'|z denote the map 7" when the domain
space is restricted to B. Then

T|s = (TFF;q)(FFql5) ™"
So TF;y = T|gFjq is bounded on L3(R) and
ITFqll < T8l < 1(FFialp) 7" - ITFFiql| < glgé(llf(jw)_lﬂ [ TFY.

The preceding result is applied as follows: Given any ideal band-
pass filter Fig, invoke Corollary 9.3.1 [with, say, f(s) = 1/(s + 1)]
and Lemma 9.3.2 to conclude that HSF;q is bounded on L5(R) for
every sampling frequency (not just those greater than the Nyquist fre-
quency). However, since the impulse-response function of Fjq does not
belong to £ (R), the map Fj; is bounded on neither L (R) nor £4(R).
Hence HSFj4 is not bounded on L (R) or £1(R).

Now we turn to the question of whether or not HS =~ I as the
sampling period tends to zero; more precisely, does limy, o [|[I—HS|| =
07 To see that the answer is no, check that the norm of I — HS on
Lo (R4 ) equals 2 no matter how small A is! Again, low-pass prefiltering
rectifies the situation.

Let F' be causal and LTI with impulse-response function f in
L1(Ry). Define

fu(t) == sup |If(t) = f(t = a)ll. (9-2)

a€(0,h)
From (9.1)

¢(0) = sup |[lf(®)].

tel0, h)
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Theorem 9.3.3 If $(0) is finite for some h > 0 and limy_q || foll1 =
0, then (I — HS)F converges to zero as h tends to zero in the L,(Ry)-
induced norm for every 1 < p < oo.

Proof Again by Theorem 9.2.1 it suffices to prove that limy,_o ||( —
HS)F| =0 for the £1(Ry)- and Lo (R; )-induced norms.

First let u € Lo(R}). For any ¢ > 0, choose k such that kh <t <
(k + 1)h. Then since y = Fu,

(I = HS)Fu](t) = y(t) — y(kh)

kh t
_ / F(t—7) — fkh — Du(r)dr + [ F(t— ryu(r)dr.
0 kh

Hence
I[(1 = HS)Fu](#)]
kh

< [ It =7)lul)lldr +/ 1F (& =D - lu()lldr (9.3)
0 kh

< Allfnllr + he(0) Hulloo-

The quantity in parentheses is independent of ¢, so it is an upper
bound for the Lo (R4 )-induced norm of the operator (I — HS)F. By
our hypothesis this upper bound tends to zero as h tends to zero.

Next suppose u € L£1(R;). Again, for any ¢ > 0, choose k such
that kh <t < (k + 1)h. From inequality (9.3)

t
I - HS)Fu)()]| < /0 Jult = 7)u(r)l| dr +
t
/ V(= )| - u(r) | dr
kh

(k+1)h
< (fux llull)(®) + 6(0) /kh lu(7)|l dr
Apply Lemma 9.3.1 to get

(I = HS)Fully < [[fall1 - [lully + he(0)[|ullx

Thus an upper bound for the £;(R; )-induced norm of the operator
(I — HS)F is again ||fs]l1 + hé(0), which tends to zero as h tends to
zero by our hypothesis. |
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In Theorem 9.3.3, there is no assumption that ¢ belongs to ¢1(Z.);
hence, there is no implication that HSF' is bounded [only (I — HS)F
is bounded for small enough A].

Corollary 9.3.2 If F is FDLTI, stable, and strictly causal, then HSF
converges to F as h tends to zero in the L,(Ry )-induced norm for every
I <p<oo.

Proof Bring in a realization for F' as in the proof of Corollary 9.3.1
to get f(t) = Ce!AB1(t), where A is stable. It is clear that ¢(0) is
bounded for any A > 0. From (9.2)

() < IBI-IC]- e sup ([T —e 4
a€(0,h)
< |BII-llC] - [l e - 1)

Since A is stable, [;°|je’!||dt is finite. It follows that |fy[[; — O at
least as fast as h — 0. [ |

Corollary 9.3.2 and Lemma 9.3.2 allow us to deduce that for any
ideal bandpass filter F;q, HSF;q converges to F;q as h tends to zero in
the Lo(R )-induced norm.

9.4 Performance Recovery

This section looks at an application of the preceding properties: We
will see that internal stability of the digital implementation of an ana-
log system is recovered as the sampling period tends to zero. The same
can be proved for other types of performance specifications. This is
comforting to know, but it isn’t always useful because frequently the
sampling period is not designable.

Start with the setup in Figure 9.2. Assume P and K are FDLTI
and strictly causal. Moreover, assume the system is internally stable
in the sense that the mapping

8] a2 e

is bounded.
Now do a digital implementation as in Figure 9.3. This isn’t set up
quite right for £o(R, ) stability because the input to the left-hand S
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d
T z u
O K O P

Figure 9.2: Multivariable analog feedback system.

Figure 9.3: Implementation of controller via c2d.

d
r z J\’U/
W T HS [ K [— HS —O—— P

Figure 9.4: Inclusion of filter on reference input.
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isn’t filtered. Instead, we’ll study stability of the system in Figure 9.4,
where W is FDLTI, strictly causal, and stable.
Reconfigure the preceding figure to look like Figure 9.5.  This in

HS -1 HS -1
1 2 /Lan /1\333 /Ldu
1% O K P

T N T2 / U/

Figure 9.5: Drawing the SD system as a perturbation of the analog
system.

turn can be viewed as in Figure 9.6, where
z 1
U d

M

Figure 9.6: Linear-fractional representation.

[ Gii Gio
G =

| G21 Gao

[ (I+PK)"'W —-P(I+KP)™!
Gu = -1 -1

| K(I+PK)""W  (I+KP)

[ -P(I+KP) 'K —-P(I+KP)!
Gz = -1 -1

| {{+KP)"'K (I + KP)

[ (I+PK)"'W —-PI+KP)™!
Ga1 = -1 -1

| K(I+PK)"'W —KP(I+KP)
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G — -P(I+KP)"'K -P(I+KP)™!
2 - (I+KP)'K —KP(I+KP)!
and
HS-1 0
k= [ 0 HS -1 ] '

Thus G is FDLTT and stable and R is time-varying. Notice that R is
a perturbation of the original analog system.

. (& z .
The mapping from [ d ] to [ " ] is

G + G12(I — RG22)71RG21.

Since G971 and G99 are strictly causal, we have from Theorem 9.3.2 that
RG9; and RG9y are bounded on L9(R,); also, from Theorem 9.3.3
||RGa2|| tends to zero as h — 0. Thus by the small-gain theorem
(I — RG23)~ ! is bounded for small enough h.

For reference, one version of the small-gain theorem is as follows:
Let X be a Banach space and let T" be a bounded linear operator on
X. If the induced norm of T is less than 1, then (I —T)~! is a bounded
linear operator on X. In summary:

Theorem 9.4.1 If the analog system Figure 9.2 is internally stable
and if h is small enough—namely, if ||RGa2|| < 1—then the sampled-
data system Figure 9.4 is stable [bounded on Lo(Ry)]/.

Exercises

9.1 Consider a SISO, LTI system, y = g * u, with g € £1(Ry) and
satisfying g(¢) > 0 for all ¢. Prove that

sup [lylla = sup [|yllo-
lufl2<1 lufloo <1

9.2 Consider a continuous-time system with transfer matrix

1 S
s+1 s+ 2
1 4

[0s +1

Compute an upper bound for M3, the induced norm on L3(R, ).
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9.3 Let f(s) = 1/(s +1). Corollary 9.3.1 concludes that SF :
Lo(Ry) — ¥#5(Zy) is bounded. Show that S : FLy(Ry) — lo(Zy)
is not bounded. Hint: S is not bounded iff

(VM)(Jy) y € FL(Ry), llyll2 < 1, [[Syll2 > M.

Note also that y € FLo(Ry) iff y, 7y € La2(Ry).

9.4 Consider a SISO, FDLTI, stable, strictly causal, continuous-time

system G. Is SG : L3(Ry) — loo(Zy) bounded? If so, how can its
norm be computed?

9.5 Repeat Exercise 4 for the operator GH : l2(Zy) = Loo(Ry).

9.6 Let G : Loo(Ry) = Loo(Ry) be a SISO system with state model

o6 =[]
where A is stable.
1. Prove that ||G|| = ||g]|1-

2. State the discrete-time counterpart.

3. Let Gq = SGH : lo(Z4) = loo(Z4). Show that if g(¢) does not
change sign for ¢ > 0, then |G| = ||Gq4l|- (All first-order systems
have this property.)

9.7 Consider the analog control system in Figure 9.7. Assume W,

Figure 9.7: Analog control system.

P, and K are FDLTI, strictly causal, with W stable. Assume this
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feedback system is internally stable and that the following performance
specification is satisfied:

sup ||z]leo < €. (9.4)
lIrfloo <1

Suppose now that the controller K is replaced by the sampled-data
controller HK4S, where K; = SKH. Prove that if h is sufficiently
small, then the performance specification (9.4) is recovered. What if
K is obtained from K by bilinear transformation?

9.8 Consider the SD system K;SP, where

Find a continuous-time LTI system G such that SG = K;SP. Con-
clude that K;SP : L3(Ry) — #2(Z) is bounded, even though P is
not bounded on L5(R} ).

Notes and References

Theorems 9.1.1 and 9.1.2 are from [145] (Section 6.4.1, Theorem 45
and Lemma 46). For the M. Riesz convexity theorem, see [129]. Sec-
tions 9.3 and 9.4 are based on [28]. It was observed at least as far back
as 1970 [127] that S is unbounded on £, (1 < p < oo) and that low-
pass filtering the input rectifies this situation. Recent results on the
boundedness of S are contained in [86]. For extensions of the results
of this chapter to time-varying systems, see [76].



Chapter 10

Continuous Lifting

In Chapter 8 we saw how to lift certain time-varying discrete-time
systems into time-invariant systems. The basic idea was to extend
the input and output spaces properly. The advantage of doing so is
obvious: After lifting, we get LTI systems.

In this chapter we shall introduce a construction to “lift” a continuous-
time signal into a discrete-time one. This construction will also be used
to associate a time-invariant discrete-time system to a continuous-time
SD one. The lifting technique will be the main tool for the develop-
ment of this chapter and several chapters to follow.

As an application of the continuous lifting technique, in this chap-
ter we shall also study induced norms of several special SD systems.
Induced norms measure the input-output gain of the system, say from
disturbance input to plant output; the concept of induced norms for
systems is central in the philosophy of modern analog control design
methods, such as Hy and £ optimization.

10.1 Lifting Continuous-Time Signals

In this section we shall develop a construction to lift a continuous-
time signal into a discrete-time one. The fact that SD systems are
periodic warrants that this construction can be used to associate a
time-invariant discrete-time system to a continuous-time SD one.
Lifting can be done in a fairly general framework, but for the first
pass let us do the concrete case of L£o. Start with a signal u in the

247
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extended space Lo (R) [i.e., Lo(R,R™)], that is,
T
/ u(t)'u(t)dt < oo VT > 0.
0

Now think of the pieces of v on the sampling intervals
.oy [=h,0),]0,h),[h,2R),....

Denote by uy, the piece in the £™ sampling interval [kh, (k + 1)h)
translated to the interval [0, h); that is,

up(t) :=u(kh +1t), 0<t<h.

Each uy, therefore lives in the space K := £5[0,h) [i.e., L2([0, k), R™)],
which is an infinite-dimensional Hilbert space with inner product

h
(v, w) = /0 o(8)w(t)dt
and norm

o=/ hv(t)'v(t)dt]

We think of uj as the k'™ component of w. It is then natural to
introduce the discrete-time signal wu:

1/2

U_2
U—1

[S
I

Uo
U1

The horizontal lines in the latter array separate the time intervals
{k < 0} and {k > 0}. This discrete-time signal, u, lives in the space
¢(Z,K), defined as all sequences of the form
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where each v (k) lives in /C.
Let L denote the lifting operator mapping u in L9.(R) to u in
¢(Z,K). It can be depicted by the block diagram

— L | -

If u has finite 2-norm, that is, if u lives in L9(R), then u lives in
l5(Z,K), the subspace of ¢(Z,K) of all square-summable sequences
with values in IC. This is a Hilbert space with inner product
o
() =D (k) (k).
— 00
the right-hand inner product being the one on K.
The following computation shows that L as a mapping from Ls(R)
to ¢2(Z, K) preserves inner products:

u,v € L9(R) =

(u,v) = /OO w(t)v(t)dt

— 00

% (k+1)h
-3 / w(t)v(t)dt

k= —oo " kh

% p
_ /0 g () og () dt

k=—00
00

= > (wgv)

k=—00
= (u,v)
= (Lu, Lv).

So L is norm-preserving as well. Since L is surjective, it is an isomor-
phism of Hilbert spaces.

10.2 Lifting Open-Loop Systems

Now we look at what lifting means for certain systems. In what follows,
G is a FDLTI system. Its input, state, and output evolve in finite-
dimensional Euclidean spaces. Because the dimensions of these spaces
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will be irrelevant, they will all be denoted by £€. We will not initially
assume that G is stable. Thus G is regarded as a linear operator on
the extended space Lq2.(R,E). Let A, B,C,D denote parameters of
some state realization and z(t) the corresponding state vector.

Lifting G

We begin by lifting G itself. If the input-output equation is y = Gu,
then the relation between the lifted input, u = Lu, and the lifted
output, y = Ly, is y = Gu, where G := LGL™! is the lifted system.
The block diagram is

L—l

IQ 4

The lifted system, G, acts on the discrete-time space fo9.(Z, K) and
consequently it has a matrix representation of the form

g(—=1,-1) 0
Q(O, —1) Q(0,0 0 0
g(l —1) g(1,0 0

The horizontal and vertical lines again separate the time intervals {k <
0} and {k > 0}. Each block, g(i,7), is a linear transformation from
to K. Because G is time-invariant, so is G, so this matrix is Toeplitz:

Q@ (v
—~
[
~—
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The computation below will show that this matrix in fact has the form

0

D 0
CB 0 0 - |, (10.1)
D 0

CAB

so G could be modeled by the discrete-time equations

E(k+1) = A&(k) + Bug,
yr = C¢(k) + Duy.

Here uy, and y;, are the k' components of the lifted input and output
of G.

To determine these four new operators, A,...,D, apply an input
to G having support in [0, h):

0, t<0
u(t) =< wo(t), 0<t<h
0, t>h

The output is then

0, t<0
y(t) = { Dug(t) + [y Cet="ABug(r)dr, 0<t<h
JI Celt- M)A Bug (1) dr, t> h.

The corresponding input and output of G are

0 0
u=Lu=|wu |, y=Ly=1 yo
0 Y1
where
t
yo(t) := Duo(t)—i-/ Cel' A Buy(1)dr
0
yi(t) = ylt+h)
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h
C’etA/ eh=1A By (1)dr
0
plt) = ylt+2h)
h
= C’etAehA/ e(h*T)ABUU(T)dT
0

etc.

Defining linear transformations

A: E—E Az =iy

B: K=&, Bu= foh eh=")ABu(1)dr

C: £—=K, (Cz)t)=Cex

D: K—K, (Du)(t) = Du(t) + [ Cet=)4Bu(r)dr,
we have

Yo = Dug

y1 = CBug

yo = CABu

etc.

as required for matrix (10.1).

The important point to observe is how finite-dimensionality of G
is manifest in GG, namely, A acts on the same state-space as does the
original A: Tts matrix is Ay := e, which would appear in a dis-
cretization of G using sample and hold. It is customary to identify the
linear transformation A with its matrix representation A;. Then the
matrix representation of G is given by

D 0

D 0 0
¢B | D 00
CA4B | CB D 0

and the state model by

—’—éd g ] . (10.2)

Note that operators B and C have finite rank—the co-domain of B
and the domain of C are £. Operator D is the compression of G to K.

It is not hard to see that the corresponding state vector for G in
(10.2) is ¢ defined via &(k) = z(kh).
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Lifting SG

A more interesting system to lift is SG, which maps continuous time
to discrete time. The resulting system maps discrete time to discrete
time, and consequently is a simpler object of study.

We shall lift SG, where G is as before except with D = 0. Then SG
maps Lo(R,E) to lo.(Z,E). The output from SG is already discrete-
time, so we need lift only the input. The lifted system, SG := SGL™",
acts from loo(Z, ) to loe(Z,E). The block diagram is

......... N L—l G S |

N~

S

and the matrix is easily derived to be

0 0 00 -
CB |10 00 - |, (10.3)
CAB|CB 0 0 -

with B as above. Note that the other linear transformation is C' (i.e.,
z — Cz), not C.
Again, the state model for SG is

48

with the same state vector ¢ as above.

Lifting GH

Finally, we shall lift GH. This is an operator from £5.(Z, E) to Lo (R, E).
The input to GH is already discrete-time, so we need lift only the out-
put. The lifted system, GH := LGH, acts from l5.(Z,E) to l2.(Z,K).
The block diagram is

......... o H G L |
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and the matrix is

Qres 0 0 0

CBy | D 0

—=Tres

CA4By | CBy D

o O

res

where By := foh e™drB and D,,, denotes the restriction of D to &,
that is,

t
Doy €K, (D)0 = |D+ [ cotars] .
0
A state model for GH, with the same state vector &, is
Aq| By
Q Qres .
10.3 Lifting SD Feedback Systems

In this section we shall put the formulas in the preceding section to-
gether to get a lifted model for the standard SD system shown in
Figure 10.1 with

A| Bl B
Gg(s)=1| Ci | Di1 D
Cy 0 0

We have taken Dy to be zero so that the signal is lowpass filtered
prior to the sampler. The state vector for this model is z ().

In the preceding section we lifted a continuous-time LTI system
G into a discrete-time LTI system G := LGL~'. For G to be time-
invariant, it is necessary and sufficient that G be h-periodic in contin-
uous time. To see this, suppose that G is h-periodic, i.e.,

D;GDy, = G,
where D), and Dy are time delay and time advance by A in continuous
time respectively. Let U and U* be unit time delay and time advance

operators on £, (Z, K), defined in the obvious way. It is readily verified
that

U*L=LD;, L 'U=D,L".
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Figure 10.1: The standard SD system.

Thus

U*GU = U*LGL'U
= LD;GD,L !
= LGL™!
= G

This means that G is time-invariant. The converse is true by reversing
the argument.

Now T, being the map w — z in Figure 10.1, is h-periodic. So we
lift this operator to get LT,,,L~"'. This corresponds to do the following
in Figure 10.1: Move S and H into the generalized plant and introduce
the lifting operators L and L~! appropriately to get Figure 10.2, the
lifted SD system, where G, the lifted generalized plant, is given by

L 0 L™ 0
o =[5 5]e[% 7]
B LGHL*l LGoH
N [ SGo L™ Gagg ] '

Thus the lifted operator LT, L~ is exactly the map w +— z in Fig-
ure 10.2.

We stress that Figure 10.2 is a discrete-time LTI system with
w = Lw and z = Lz both living in f5.(Z, ). The lifted plant G
maps Yoo (Z, ) @ l2e(Z,E) to loe(Z, K) ® lae(Z,E) and has four blocks:
The (2,2)-block is the discretization of Ga2 and the other blocks were
studied in Section 10.2. Given the state model of G, we can obtain
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I

Figure 10.2: The lifted SD system.

state models for all the four blocks and then put them together to
obtain a state model for G,

Ay| B By
Cy| Dy Dy |,
Cy| O 0

where (Ag, Byg) is obtained via ¢2d of (A, Bs) and the operator-valued
entries are

h

B,: K=& Byw :/ eh=MAB w(T)dr
0

Ci: E=K, (Cx)(t)=Cre'z

t
Di: K=K, (Dyw)t)=Dyuw(t) +C / =B w(r) dr
0

t
212 1 £ — ]C, (212/0)(15) = DlQU + Cl / eTA dr BQ'U.
0

The corresponding state vector for this state model of G is £ defined
via £g(k) = zg(kh).

In summary, SD feedback systems can be lifted into time-invariant
discrete-time systems with infinite-dimensional input and output spaces.
This procedure will be the main tool for analysis and synthesis of SD
systems in later chapters.

10.4 Adjoint Operators

Adjoints are fundamental to the study of operators on Hilbert space.
Let us begin with the familiar case.
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Example 10.4.1 Consider a matrix A in R"*™. The corresponding
linear transformation, denoted by, say, T', is multiplication by A:

T:R" - R", Txz= Auzx.

(Normally the same symbol is used for both A and T', but for clarity
we use two different symbols here.) The transpose matrix, A’, satisfies
the equation

(Az)'y =2'(A'y), z€R", yeR",
or in inner-product notation
(Az,y) = (z, A'y).
The linear transformation
T :R" - R"™, T*y=Ay
is called the adjoint of T'; it is the unique linear transformation satis-
fying the equation
(Tz,y) = (z, T"y).

The next example, of a discrete-time system, is similar.

Example 10.4.2 Consider a causal, LTI discrete-time system G that
is bounded as an operator from ¢9(Z) to ¢5(Z). Its matrix representa-
tion then has the form

Go| 0O 0 O

Gi|Go 0 O

G2 |G Gy O

The adjoint G* of G turns out to be the operator from ¢5(Z) to ¢2(7Z)
whose matrix representation is the transpose of the preceding one:

Gy |Gy Gy
0 |G, G
00 G
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Let us consider a more interesting example.

Example 10.4.3 Consider the hold operator H : ¢5(Z) — L2(R):

.........  H —

—,H* ........ >

It is uniquely determined by the equation
(Hv,y) = (v, H"y).

We can find the action of H* by evaluating both sides of this equation.
First, define x = Hv. Then the left-hand side equals

(k+1)h
/ (tYytdt = Y / S8y (B)dt

 Jkh
(k+1)h

= > (k) / y(t)dt.

k kh

Similarly, if ¢ := H*y, the right-hand side equals

> w(k) (k).

It follows that
(k+1)h

wwzl y(t)dt.

h

To recap, H* is defined as follows:

(k+1)h
T L) = 6@, (T® = [y
Thus the value of H*y at time k equals the integral of y over the k't
sampling interval.
Let us continue and find the operator H*H : ¢5(7Z) — ¢5(Z). Note
that this operates solely in the discrete-time domain:
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......... S H*H |

Apply an arbitrary input v to H*H and let ¢ denote the output. From
the two equations

y = Hv
Y = H'y,

it follows that 1y = hv. Therefore, H*H = hl, where I denotes the
identity operator.

The concept of an adjoint is general: For every bounded operator
T from a Hilbert space X to another ), there is a unique bounded
operator T from Y to X satisfying the equation

(Tz,y) = (z,T"y).

For two Hilbert space operators T : X — Y and G : )Y — Z, it is easily
verified that (GT)* = T*G*.
We conclude this section with a final example.

Example 10.4.4 In the preceding section, we introduced several new
operators associated with a state model (A, B, C, D) for a FDLTT sys-
tem G. In particular, we had

B: K=& Bu=[l'e" DABu(r)dr
C: &€= K, (Cx)(t)=Cer.

The adjoints of these operators can be calculated to be
B*: £—=K, (B*z)(t) =By
C*: K=& Cro=[le?Cu(t)dt.

From these formulas we then get that B B* and C*C both act on &,
that is, they are (equivalent to) matrices. Specifically,

h
EB* — / etABBIetA’ dt
0

h
C*C = / et o' CetA dt.
0
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10.5 The Norm of SG

We return now to the study of SG and the computation of its induced
norm. So that SG is indeed a bounded operator from Ly(R, &) to
l5(Z,E), we shall assume that G has a strictly causal state model
(A, B,C,0) with A stable. The induced norm of SG is defined to be

ISG|| = sup [|SGulls.

Jull2<1
The lifted system SG = SGL ' is then bounded from ¢3(7Z,K) to
05(Z,€E). Since L is norm-preserving, we have that [|[SG| = [|SG]|.

Now it is a general fact that for any bounded Hilbert space operator
T,

T\ = |T*|| = |T*T||*/? = | TT* ||/,
Therefore

ISG|| = ISG (SG)*|['/*.
This equation motivates us to determine the operator SG (SG)* :
(7, E) — U5(Z, E) explicitly.

The matrix representation of SG in (10.3) can be written as the
product

0 0
c |0
CAy | C

B0 0
0B 0
010 B

o Ol e

Note that the left-hand matrix, denoted [M;], represents a discrete
system M : U5(Z,E) — 42(Z, &), its transfer matrix being

Therefore, the matrix representation of (SG)* is

B*

0
B* 0 [M;]'.
0 B*
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Multiplying these two matrices, we get that the matrix representation

of SG (SG)* is

B

B*| 0 0
0 |BB* 0
0 0 BB

[M]'.

(10.4)

The center matrix represents a pure gain from ¢5(Z, &) to lo(Z,E)—we

calculated the matrix B B* in the preceding section.

For convenience, define

h
J:=BB* = / tABB MY dt
0

and bring in a matrix B satisfying B;B', = J (for example, B; =
J1/2). Also, introduce the discrete-time system M : l5(Z, &) — lo(Z, E)

with transfer matrix

m(A) = mi(A\)By
| Aq| By
N c| o0 |-
It follows then from (10.4) that

SG (SG)* = MM*.

We conclude that ||SG|| = ||[M]|. The advantage of this is that M is a

FDLTTI system, so || M| equals the norm in Hoo (D) of .

Let us summarize with the following procedure to compute ||SG||:

Step 1 Start with state parameters (A, B, C,0) of G, A stable.

Step 2 Compute

h
J = / tABB M dt.
0

Step 3 Compute B; satisfying B;B’, = J (Cholesky factoriza-

tion).
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Step 4 Define

m(x):[‘éd %’] (A=),

Step 5 Then the induced norm of SG : L3(R,E) — £o(Z,E)
equals ||| -

Example 10.5.1 For the simplest case, take

i) =1 = [

Then we calculate that

h
J = / e 2tdt
0

1—e 2
2

e~ | VI
1 0
MW

1—e h)

1SGI = |l

VI

1—eh
1+eh 12
- [2(1 - eh)] |
Continuing, recall that the hold operator has the property that
|Hv||2 = V/h||v||2 for every v in £5(Z, E). Thus, for this example

0By 112
msal = vilsel = 5o |

(1—e?)

() =

In particular,
lim ||[HSG| = 1.
h—0

Also,
IGII = 11glloc = 1.
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This verifies for this example the general fact that

lim | HSG|| = (|G-
—0

In the example, computing J was trivial (A was a scalar); but it
requires some work in the matrix case. Now we look at how to do
Step 2 in general using matrix exponentials. The key lemma serving
this purpose is as follows.

Lemma 10.5.1 Let Ay and Ago both be square and define

" i | e[ Az e 0o

Then Fu(t) — etAn’ F22(t) — etA22’ and
t
Fia(t) :/ elI=TA A 567422 dr.
0

Proof Since the matrices are block upper-triangular, we easily get
Fll(t) = etA“, F22 (t) = etAT".
Differentiate (10.5) to get

EA el B il | R

Thus

d
%Fm(t) = A11F12(t) + A12F22(t).

Solve this differential equation, noting Fy(t) = e!422 and Fy5(0) = 0:

t
Flg(t) = / e(ti’r)AHz‘hgeTA22 dT.
0

To compute

h
J= / tABB Y qt
0
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in Step 2, define

Py P | o —A BB
0 Py | P 0o A ][
Then by Lemma 10.5.1

’
Py = M

h
Py = /e(T_h)ABB'eTA,dT
0

h
= ehA/ e™ABB ™ dr.
0
So

This gives a way to evaluate J via computing a matrix exponential,
which is easy in MATLAB.

In conclusion, in this section we saw that SG, a hybrid operator
mapping continuous to discrete time, has the same norm as a certain
purely discrete-time system M. The induced norm of M is readily
calculated as the H,o(D)-norm of its transfer matrix.

10.6 The Norm of GH

A companion to SG is the operator GH, to which we now turn. So
that GH is a bounded operator from /3(Z,€) to L2(R,E), we shall
assume that G has a state model (A, B,C, D) with A stable (strict
properness is not necessary).

Again, the main ingredient in the computation is a lift: We have

IGH|| = |GH|| = |(GH)" GH]|'.

The operator (GH)*GH : l5(Z,E) — £5(Z,€) is again FDLTI, but
noncausal. The next step is to introduce a discrete-time system IV :
Uy(Z,E) — l5(Z,E) such that

(GH)*GH = N*N.
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To compute N, we observe that the matrix representation of GH has
the following factorization

0
0 [Nl]’
D

res ]

I

where [N] is the matrix representation of the discrete-time system N;
with transfer matrix

Ad By
AN =1| I {0
0|1

Thus similar analysis leads first to computing matrices Cy, Dy satisfy-
ing the equation

C' Q*
and then taking N to have transfer matrix
A = [Ca Dy ]in(V)

- ]

It remains to compute the right-hand side of (10.6), denoted J:

;o [ c'C o C'D,, ]
Q:BSQ Q:BSQTBS ’

h
cc o= / oA Ot A,
0

h t
C*D,,, = / et ! [D+C / eTAdTB] dt,
0 0

h t / t
Q:esQres = / |:D + C/ eTAdTB:| |:D + C/ eTAdTB] dt.
0 0 0

The matrix J can be computed again via matrix exponentials.
Define the square matrix

s [28)
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Then by Lemma 10.5.1

eté _ etA f()t e(tf'r)AB dr
0 I
e f(f ™4 drB
= 0 I .
It is straightforward to check that

h
J:/ ' [c D][C D]t
0

This type of integral was studied in the preceding section and can be
computed using Lemma 10.5.1.
Let us summarize the procedure as follows:

Step 1 Start with state parameters (A, B, C, D) of G, A stable.

Step 2 Compute the square matrices

], Q=[c D][C D]

Then J = P212P12.

Step 3 Compute Cy and D, satisfying

R

(Cholesky factorization).
Step 4 Define

~oyy _ | Aa | Ba _ _hA (" s
n()\) = [Td’Td] (Ad =€ ) Bd = . e’ *drB | .

Here A; and By could be read from Psy:

A; B
P22=[ d d]-

0 I
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Step 5 Then the induced norm of GH : V5(Z,E) — L2(R,E)
equals [|7] so-

Notice that

IGH| < [IGIIIIH]]
= gl Vh.

Example 10.6.1 Figure 10.3 shows the magnitude Bode plot of h~1/2#
for

. 1

g(s) = st 1

for h = 0.1 and h = 1. The peak magnitude equals 1 in each case, so

|GH|| = Vh.

100 e

104}

102 1 1 1 1 1 1
0 05 1 15 2 25 3 35

Figure 10.3: Magnitude Bode Plot of h='/27 for §(s) = —=: h = 0.1
solid line, A = 1 dash line.

Figure 10.4 is for

3(s) !
§) = —5——.
g 24+s+1
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10t ¢

104 . . . . . .
0 05 1 15 2 25 3 35

Figure 10.4: Magnitude Bode Plot of h~'/2# for §(s) =
0.1 solid line, h = 1 dash line.

1.
s24s+1°

The peak magnitudes give

1 1.1544, h=0.1
EHGH“ - { 1.1315, h=1.

10.7 Analysis of Sensor Noise Effect

This section applies the formulas in the preceding section to the analy-
sis of the effect of sensor noise on the controlled output in a SD system.
The system to be studied is shown in Figure 10.5. The sensor noise,
or a combination of sensor noise and quantization error, is additive at
the output of the sampler and is modelled as Wyw, where Wy is a fixed
discrete-time weighting system and is assumed to be FDLTT and stable
and w has bounded #5(Z)-norm but is otherwise unknown. Typically,
a priori frequency-domain information of the noise, e.g., bandwith, is
incorporated into the model Wy. Assuming the command input r is
zero, we would like to analyze the worst-case effect of w on the plant
output y via the induced norm:
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Figure 10.5: A SD system with sensor noise.

Given P, K4, Wy, and h, compute the ¢5(Z) to L2(R) norm of
the map w — y.

Let Ty, be the map w ~ y in Figure 10.5. It can be derived that
Tyw = PH(I + K Py) 'K Wy,

where Py := SPH. As usual, we assume that the continuous P and
discrete K4 are both FDLTI and causal and K internally stabilizes
P,;. Then the discrete-time system

Ty = (I + KqPg)" ' KqWy

is stable and Ty, = PHT,;. Assume, for simplicity, that P is stable
and bring in a FDLTT discrete-time system Ny such that

(PH)*PH = NjNg.

Explicit formulas for N; in terms of P were derived in the preceding
section. For any w € f3(Z), we compute the Lo(R)-norm of Ty,w as
follows:

PHTyw, PHTw)

T;(PH)* PHTyw,w)

TyNjNTqw,w)

= (NgTyw, NyTyw)

= |[NaTuwl3

ITyowlls =

{
{
{
{

This means that for the same input, the SD system T, and the
discrete-time system NgTy have equal output norm. Thus ||Ty,|| =
INgTyl||, the latter being the £2(Z)-induced norm.
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We conclude that ||Ty,|| can be computed via evaluating the H ., (ID)-
norm of a known transfer function:

I Tysll = llf2diallo-

Example 10.7.1 In this example, we look at the noise attenuation
properties of the familiar SD tracking system studied in Examples 6.6.1
and 8.4.2. Focusing on the sensor noise effect, we arrive at the block
diagram in Figure 10.5. The plant transfer function is

o 1
) = o5 + (255 1 1)

and the sampling period is h = 1. The sensor noise effect in the SD
system will be analyzed for two different controllers: the controller
designed in Example 6.6.1 via naive discretization,

]%d(A) _ —477.1019(X — 1.1052) (A — 1.0408)

(A+1.0478)(A — 1) ’
and the controller designed in Example 8.4.2 via fast discretization,

iy — —488.85(A — 1.1052) (A — 1.0408)

1) = (A + 1.3955)(A — 1)

We saw before that the first controller gives severe intersample ripple
in the step response but the second does not. What about their sensor
noise attenuation properties?

To get noise attenuation properties for the whole frequency range,
we take the noise weighting function w4(A) = 1. For the two controlled
SD systems, we compute the two associated discrete-time systems 74ty
and plot their magnitudes versus frequency in Figure 10.6. From the
maximum values on these plots, we get that ||y, || = 15.6311 for the
controller designed via naive discretization and ||Ty,|| = 1.0329 for the
controller designed via fast discretization. This shows that the design
via fast discretization is superior not only for step response but also for
sensor noise attenuation. Additional information can also be obtained
from these plots: The two controlled systems have roughly the same
capability for rejecting noise at low frequencies, but the second outper-
forms the first for noise at high frequencies; in fact, the magnitude plot
of gty for the second controller is almost flat, indicating the noise at-
tenuation capability is quite uniform across the whole frequency range.
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16

14}

12+

101

Figure 10.6: Magnitude plots versus frequency of 74ty for the con-
troller designed by naive discretization (solid) and by fast discretiza-
tion (dash).
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Exercises

10.1 Let mZ denote the set of all integer multiples of m, that is,
{mk;k € Z}; let ¢(mZ) denote the set of all sequences mZ — R;
and let Z5(mZ) denote the Hilbert space of all square-summable such
sequences. The decimator is the linear operator

D : EQ(Z) — EQ(mZ)

that maps v to 1, where ¢¥(mk) = v(mk). Find the adjoint operator
D*.

10.2 Let G be the continuous-time system with transfer function
g(s) =1/(s+5). Consider G as an operator L2(R) — Lo(R).

1. Find the adjoint operator G*, that is, the relationship between
u and y when u = G*y.

2. Let H be the usual hold, considered as an operator ¢o(Z) —
L2(R), and let

0, t<0
v ={ 0 150

€ 9’
Find (GH)*y for h = 1.
10.3 As in Section 10.2, define the operators

B: K—=¢&, Bu= foh eh=")ABu(r)dr
C: £ K, (Cx)t)=Ces.

Compute the following formulas:

B*: £ =K, (B*z)(t)=Blelh-04;
C*: €K, Cro=[le?Clu(t)dt

h
Eﬁ* — / etABB/etA, dt
0

h
c*C = / et ' cetA dt.
0
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10.4 Let

1 s—1
X 2 25 + 1 1
(s) = ﬁil (2s + %(8+ )

3s24+2s+1 s24+25+3
Compute ||SG|| and ||GH]|| for a range of h.

10.5 Let G be a continuous-time, FDLTI, SISO, stable system with
strictly proper transfer function g(s). Also, let 7(s) denote the function

. 1 —esh
) = =

1. Using the results in Section 3.3 and the Cauchy-Schwarz inequal-
ity, derive the following bound on the L3(R)-induced norm of
HSG:

IHSG| <

2. Prove that

> I#(jw + jhw) P =1 V.
k

Thus
1/2
|HSG|| < sup (E 19(jw + jhws)| )
w

(Actually, equality holds.)

10.6 With reference to Figure 10.5, study the noise attenuation prop-
erties of the SD system with

10
7] = —_— = 1
h(s) Tl h=1,
and
N 0.1392X(X\ — 2.6567) (A — 1.5511 R
kd()\) = ( )( ) wd()\) =1.

(A =1)(A+0.6327) (X + 1.2699) ’
Note that the plant P here is unstable.
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Notes and References

Pioneering work on the Ls-induced norm of a sampled-data system
was done by Thompson, Stein, and Athans [138] and by Thompson,
Dailey, and Doyle [137]. Perry [119] and Leung, Perry, and Francis
[101] treated the same problem, but for bandlimited inputs.

The continuous lifting idea in Section 10.1, which follows naturally
from the discrete-time one, was used in the control context indepen-
dently by Bamieh and Pearson [16], Bamieh et al. [18], Tadmor [136],
Toivonen [140], and Yamamoto [151], [154]. Formulas for the norms of
SG and GH were derived by Chen and Francis in [26], though not by
lifting as here. The first general solution of the problem of comput-
ing and optimizing the L9 induced norm of a SD system was due to
Hara and Kabamba [82], [83] and Toivonen [140]. A related reference
is [132], which does not assume ab initio that the A/D device is a
zero-order hold. Induced norms can also be addressed via differential
game theory [14]. A more general approach to the L9-induced norm
of a hybrid system is in [126].

The idea of using matrix exponentials to compute integrals involv-
ing matrix exponentials, e.g., Lemma 10.5.1, was due to Van Loan
[108].

For an extension of the £; analog design approach to the SD frame-
work, the £ -induced norm is important. This is treated in [42], [124],
[105], and [15].



Chapter 11

Stability and Tracking in
SD Systems

In Chapters 9 and 10 we studied several open-loop SD systems consid-
ering intersample behaviour; a useful lifting technique was developed
in Chapter 10. This chapter continues our study of SD systems, focus-
ing on closed-loop stability and the ability to track command inputs.

11.1 Internal Stability

Section 9.4 showed that input-output stability of a digital implementa-
tion is recovered as the sampling period h tends to zero. But what if A
is not infinitesimally small? How can we test stability for an arbitrary
sampling period?

The system to be studied is shown in Figure 11.1. State models
for G and K are denoted as follows:

A| Bl B
. A A B
g(s)=1| C1 | Din D2 |, k(N = [ CK DK ] .
Cy| Dy 0 K 7K

It is assumed that (A, Bg) is stabilizable and (C9, A) is detectable;
otherwise, G cannot be stabilized by any controller. Let z:¢(t) denote
the state of G and {k (k) that of K. What should be an appropriate
definition of internal stability for the SD feedback system?

Note that the SD system in Figure 11.1 is h-periodic in continuous

275
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Figure 11.1: Standard SD system.

time. Define the continuous-time vector

— | =a(®)
Tsq(t) = [ ex (k) ] , kh<t<(k+1)h.
The autonomous system in Figure 11.1 is internally stable if for every
initial time g, 0 < ¢y < h, and initial state zs4(t9) we have z44(t) — 0
as t — oo. This definition is natural; it means that driven by initial
conditions only, the states of the continuous G and discrete K both
approach zero asymptotically.

Now we shall relate this notion of stability to the familiar one in
discrete time. Look at Figure 11.1 with w = 0, that is, Figure 11.2.
The realization of Go9 is

G2

Figure 11.2: SD controller with Gas.

g22(s) = [512 %2]

Note that its state is still zg(t).



11.1. INTERNAL STABILITY 277

. Gogg [+ :

N

Figure 11.3: Discretization of preceding system.

Now bring § and H around the loop to get Figure 11.3. Here
Gooq := SGo2H, having the realization

A A; | B
922d()\) = [ C;i gd ] )

where (Ag, Byg) is obtained from (A, By) via ¢2d. The state of Gagq is
€a(k) :== zg(kh). The state in Figure 11.3, namely,

=] &0 |

evolves according to the equation 5 = A&, where

— | Aa+ B2aDkC> BCk
BrCy Ax )

B

So stability in Figure 11.3 is exactly equivalent to the condition that
A is stable, that is, p(4) < 1.
Let us observe that for A to be stable, it must be true that

(Ag, Bag) is stabilizable and (C2, Ay) is detectable. (11.1)

Proof If A is stable, then A — X is invertible for every A ¢ ID. Then
we get in turn

Ag+ ByyDCy — X ByyCk .. .
By Cy Ap — A is invertible for all A ¢ D

= [ Ag+ ByyDgCy — A BoyCrk ] has full row-rank for all A ¢ D

= [ Ag+ BoyyDgCy — X Boyy ] has full row-rank for all A ¢ D

= [ A;— )\ By ] has full row-rank for all A € D.
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This gives stabilizability of (Ag4, Bag). Similarly for detectability. B

We saw in Chapter 3 that non-pathological sampling is a sufficient
condition for (11.1).

It is readily seen from the definition that for the SD system in
Figure 11.1 to be internally stable, it is necessary that the matrix
A be stable. Perhaps it is not surprising that this condition is also
sufficient.

Theorem 11.1.1 The SD system in Figure 11.1 4s internally stable
iff the matriz A is stable.

Proof Suppose that A is stable. For any initial value z44(to), it follows
that in Figure 11.3 éq(k),€x (k) — 0 as k — oo. Thus v(k) — 0 as
k — oo in Figure 11.3 and hence u(t) — 0 as ¢ — oo in Figure 11.2.
Now since for kh <t < (k+ 1)h,

t

zq(t) = e(t_kh)Afg(k) +/ e(t_T)ABzu(T) dr,
kh

it follows that 2 (t) — 0 as ¢ — oo; hence internal stability. [ |

In summary, internal stability of the SD system in Figure 11.1 is
equivalent to stability of the A-matrix of the discretized system. This
provides a convenient way of determining the range of sampling periods
for which stability is maintained: Plot p(A) versus h and see where
p(A) < 1. For numerical reasons, it is actually better to plot

AA) = 1p(4) - 1]

versus h and see where d(A) < 0. The reason can be explained as
follows.

Let A be a square, real matrix, representing the dynamics of a
continuous-time system, and suppose all the eigenvalues of A are in
the open left half-plane. The corresponding matrix obtained via ¢2d
is Ag = M. The eigenvalues of A, are inside the open unit disk I
for every h > 0, but as h — 0, Ay — I, so the eigenvalues of Ay
all converge to the point 1, which lies on the boundary of . One
might infer from this that the discretized plant is converging towards
an unstable one, which of course is not true. On the other hand, as
h — 0, h~'(Ay —I) = A and d(A,) converges to the real part of the
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rightmost eigenvalue of A, a number that is strictly negative. The
following example illustrates this point.

Example 11.1.1 Consider the simple SISO feedback system in Fig-
ure 11.4, where

r )
ﬁ) K P

Figure 11.4: Unity feedback loop.

1
P = oot

The controller

l%( ) 10.8215s — 7.3699
S) =
s% +4.5430s + 9.8194

stabilizes the feedback system, putting the closed loop poles at —0.8409+
0.84094, —0.9306 4 0.9306;5. Using MATLAB, we get state models for
P and K:

Ap | Bp Ak | Bk
Cp| 0 |7 [Ck]| 0O |°

Then the closed-loop A-matrix of the continuous-time system is

A = Ap BpCk
=" | =BxkCp Ar |’

Suppose this analog controller is implemented digitally as in Fig-
ure 11.5, where K is obtained from K via ¢2d. Thus

r 4

4?_3 ........ W Ky | o H P

Figure 11.5: Digital implementation of the controller.
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~ [ A K, Bg 4
| Ck 0 '
The discretized plant is then

R [ Ap, | B
) = [ |

and the closed-loop A-matrix of the discretized system is

A, = [ Ap, Bp,Ck, :|
=d - _BKdCPd AKd )

It can be checked that

A;—Tash—0,
whereas
hl(A;— 1) — A, as h — 0,
Figure 11.6 shows plots of d(A4,) and p(4,) for h from 0.01 to 1. Tt

15

Figure 11.6: d(4,) (solid) and p(A,) (dash) versus h for the controller
discretized via c2d.

can be seen that d(4,;) < 0 for h € [0,0.26]. So the SD system in
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Figure 11.5 is stable for h up to 0.26. Notice in Figure 11.6 that it is
much easier to determine where d(A4,) < 0 than where p(4,) < 1.
For interest, let us also discretize the analog controller via bilinear
transformation; the formulas for this are given in Section 3.4 in terms
of state-space data. Figure 11.7 shows plots of d(A,) versus h when
the controller is discretized via both c2d and bilinear transformation.
For bilinear transformation the SD system in Figure 11.5 is stable for

0.6

-08 L L L Lo L L L Lo
102 101 100

Figure 11.7: d(A,) versus h for discretization via ¢2d (solid) and bi-
linear transformation (dash).

h up to 0.47. Thus we may conclude in this example that bilinear
transformation gives a larger range of h for stability than does c2d.

11.2 Input-Output Stability

Continuing with our discussion and notation in the preceding section,
now we want to see what sort of input-output stability in Figure 11.1
follows from its internal stability. Nothing very surprising happens.
The first result concerns bounded-input, bounded-output stability in
terms of the L,,-norm.



282CHAPTER 11. STABILITY AND TRACKING IN SD SYSTEMS

Theorem 11.2.1 If the SD system in Figure 11.1 is internally stable,
then the map w — z is bounded Loo(Ry) — Loo(Ry).

The second result is in terms of the Lo-norm. The only modification
required is the assumption that Dy; = 0 so that w is lowpass filtered
before it enters the sampler.

Theorem 11.2.2 Assume Doy = 0. If the SD system in Figure 11.1
is internally stable, then the map w — z is bounded Lo(Ry) — Lo(Ry).

The proofs of these theorems are similar; we shall prove the second
using continuous lifting.

Let T, denote the map w — z in Figure 11.1. As in Section 10.3,
we lift this continuous-time, h-periodic operator to get LT, L~ '. It
follows that T, is bounded Lo(Ry) — Lo(Ry) iff the lifted opera-
tor LT,,L~" is bounded ¢5(Z,K) — ¢5(Zy,K). From Section 10.3,
LT,,L~ " is the map w — z in the lifted system of Figure 11.8, where
the lifted plant G is given by

e 1 3Je[ 4 5]

gge(Z,IC) D 526(2,5) — Ege(Z, ’C) D 526(2,5)

and has the state model

I

Figure 11.8: The lifted system.

Ad ‘ §1 Bag
Cy|Dyy Dy, |,
Cy| O 0
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where the operator-valued entries are

h
B,: K—=¢, Elw:/ eh=MAB w(T)dr
0

C,: E—=K, (Cz)t)=Cee
t
D, : K=K, (Dyw)t)=C / o IAB wy(7) dr
0
t
Dy: E—=K, (Dpv)(t)=Dpv+C / e=""4 dr Byw.
0
These four linear transformations are bounded, because K = L2[0, h)

and h < co. A state model for the closed-loop map w — z is therefore

B Aq+ B2aDrCs  ByaCk | By
Ca | Y11 C,+DsDrCy D5Ck ‘ Dy,

the corresponding state vector being
_ [ (k) ] _
Ex (k)
Note that the A-matrix of this state model is again A, the A-matrix of

the discretized closed-loop system; this important observation is used
below to infer input-output stability.

¢(k

~—

Proof of Theorem 11.2.2 To show that the map w — 2z in Fig-
ure 11.8 is bounded ¢3(Z4, K) — l2(Z4, K), we first look at the lifted
state model:

Ek+1) = AL(k)+ Byw, (11.2)
zp = Cué(k) + Dyqwy. (11.3)

Note that B, is a bounded operator mapping K to £ and so if we de-
fine p(k) = B wy, we get that the map w — p is bounded ¢5(Z 4, K) —
¢5(Z+) and then (11.2) becomes an equation involving finite-dimensional

vectors:

£ = At +p.

Since internal stability implies that A is stable, we see from this dis-
crete system that the map p — £ is bounded on /2(Z,). Hence the
map w +— & (from input to state) is bounded lo(Z,K) — l2(Z).
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This and boundedness of C; and D;; in (11.3) imply immediately
that w — z is bounded. |

In summary, to obtain BIBO stability in the sampled-data setup
of Figure 11.1 it suffices that the A-matrix of the discretized system
be stable. Thus BIBO stability can also be checked easily.

Example 11.2.1 Consider the analog control system in Figure 11.9,
where

Figure 11.9: Analog control system.

r 1 7 ~ 1 —Ts

f(s) = 05/ +17 k(s) =1, p(s)=_e ™.

The filter F' represents an antialiasing filter for later digital implemen-
tation of the controller K at the sampling period h = 0.5 (7/0.5 is
then the Nyquist frequency). The plant, P, has a time delay of 7 s.
The feedback system is internally stable for 7 = 0.

Let us compute the time-delay margin, Tmax, the minimum value
of 7 for which the feedback system is unstable. The feedback system
becomes unstable when the Nyquist plot of ﬁfc f passes through the
critical point, —1, that is, when

(Fw > 0) (pkf)(jw) = —1.
This latter equation can be written as
e”™% = 0.1592w? — jw.

The unique values of w > 0 and 7 > 0 satisfying this equation are
w = 0.9879 and 7 = 1.4322. Thus Tax = 1.4322.

Consider now a digital implementation of K = I via ¢2d, as shown
in Figure 11.10. Let us find 7yax for this system. The preceding two
theorems were developed for a finite-dimensional generalized plant,
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? F S| Y H P

Figure 11.10: Digital implementation of K = 1.

whereas P in this example has a time delay and is therefore infinite-
dimensional. Nevertheless, the theorems can be generalized for such
plants. Time-delay systems have the interesting and useful property
that their discretizations are finite-dimensional.

Define G = F'P, that is,

A — 1 —TS

96) = Som93 7 )°
The system in Figure 11.10 is modelled at the sampling instants by
Figure 11.11, where G4 := SGH. The discretization of G depends on

Figure 11.11: Discretized system.

which sampling period 7 lies in. Suppose (I —1)h < 7 < [h. Since g(s)
has the form

it is not hard to derive (Exercise 3.2) that

ga(n) = X' [%Z%] :

where Ay, By are as usual and

lh—7
Cy=Celh=D4 D, =C / e!dtB.
0



286 CHAPTER 11. STABILITY AND TRACKING IN SD SYSTEMS

For [ =1 (i.e.,, 0 < 7 < h) the closed-loop A-matrix is

_| A« Ba |,

for i =2 (i.e., h <71 < 2h)

Ay B; 0
A= 0 0 11;
—-Cqy —Dg O
and so on.

To be specific, let us take h = 0.5. Figure 11.12 shows a plot of
p(A) versus T over the range 0 < 7 < 1.5.  The spectral radius of A

11

16

Figure 11.12: p(A) versus 7 over the range 0 < 7 < 1.5.

reaches 1 when 7 = 1.2029. This therefore equals Tax.

In conclusion, with a sampling period of 0.5 the time-delay margin
drops from 1.4322 to 1.2029.
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11.3 Robust Stability

In this section we shall see how to compute a stability margin for
the representative SD system in Figure 11.13 using the induced norms
concept from Chapter 10. The plant P and the filter F' are both

g
TTe F S _______ ’Kd ....... »H uu P

Figure 11.13: Unity-feedback digital control loop.

assumed to be FDLTI, with P causal and F strictly causal—P is the
nominal plant model. Assume that the A-matrix of the discretized
system is stable. It follows that the mapping

ol [2]

is a bounded operator from L3(R) to L2([R).
Now introduce the following uncertainty model for the plant, de-
fined by an additive perturbation of the nominal plant:

P, ={P+ AW : Al <~}

The fixed weighting system W is assumed to be FDLTI, causal, and
stable; the variable perturbation A can be any bounded operator from
L5(R) to Lo(R), time-invariant or not. Typically, W models an uncer-
tainty envelope in the magnitude of the plant, and A models uncer-
tainty in the phase. Thus, P, is a weighted ball centered at P, with
the size of the ball being characterized by the scalar +.

The question we ask is, how large can v be and yet for all plants
in P, the mapping

ol [e]

is a bounded operator from L5(R) to L2(R)? The maximum such v is

the stability margin. The answer involves a SD norm computation.
Replace P in Figure 11.13 by a representative P + AW from P,

to get the block diagram shown in Figure 11.14. It is convenient to
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d ’_~
ﬁ_F S ....... ’Kd ....... >H4>éu P

Figure 11.14: Additive plant perturbation.

Figure 11.15: Perturbation of nominal system.
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reconfigure this as shown in Figure 11.15. This figure highlights the
input and output of interest, namely,

MR

and in addition isolates the variable perturbation A. The fixed system
G is bounded as an operator from L2(R) to L2(R) (by stability for the
nominal plant, P). It can be partitioned as a 2 x 2 matrix:

G G2
G = .
|: Go1 Goo ]

In particular, Goo equals the system in Figure 11.14 from the output
of A around to the input of A, which can be computed to be

Goy = -WHK,SF(I + PHK;SF)™". (11.4)

The mapping T in Figure 11.15 from

KNI

equals
G11 + Gi2(I — AGy) 1AG,;.

As each G;; and A are bounded, T" will be a bounded operator provided
the small-gain condition ||AGa|| < 1 holds. A sufficient condition for
this is ||A||-||G22]] < 1. Actually, this is necessary if A is time-varying.
We conclude that if the uncertainty radius « satisfies v < 1/||Gaz]|,
then robust stability will result. So, we can think of 1/||Ga2| as an
upper bound on the stability margin. It remains to see how to compute
[Ga2]|-
From (11.4) we get

Goy = -WH(I + K4SFPH) ' K,SF.
Defining
Ry:=—(I+ K ;SFPH) 'Ky,

an LTI discrete-time system (SFPH is the step-invariant transforma-
tion of F'P), we have that

G = WHR,SF.
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In terms of lifted operators, we have that
[Ga2ll = |[WH Rg SE||.

Bring in FDLTT discrete-time systems M and N such that
SF SF*=MM*, WH"WH = N*N.

Explicit formulas for M and N in terms of F' and W were derived in
Sections 10.5 and 10.6. Then we compute as follows:

|Goall = |WHR.SE|

|SF* Ry(WH* WH)RySF|'?
= |SE*Ry(N*N)R,SF|'/?

= |INR,SF|

= |NR4(SF SF*)R;N*||"/?

= |NRy(MM*)RyN*||'/2

= |NR4M]|.

The three systems N, Ry, M are all FDLTI. We conclude that ||Gas]|
can be computed via a simple H,(ID)-norm computation:

G2zl = |77 77| oo

Let us summarize the computations.

Step 1 Start with F', P, W, and a controller K; that stabilizes
P.

Step 2 Discretize F'P and compute

Ry:=—(I + K;,SFPH) 'K,.

Step 3 As in Section 10.5, compute M such that

SF SF*=MM".

Step 4 As in Section 10.6, compute N such that

WH* WH = N*N.
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Step 5 An upper bound on the stability margin is 1/||n7gm||co-

Example 11.3.1 Let us reconsider Example 11.2.1, which had

. 1 - 1
=—— kN =1, p(s)=-e7"5

f(S) (05/7’(’)8 + 1’ d( ) ) p(S) Se
The sampling period was h = 0.5. We computed the time-delay mar-
gin, Tmax (the minimum value of 7 such that the SD feedback system
is unstable), to be exactly 1.2029 s. Let us apply the techniques of
this section to this problem.

The plant can be modelled as a perturbation of the nominal plant
1/s:

1 1 1

_efTS =4 (ef'rs _ 1) .

s s 8
Following the notation of this section, let P now denote the nominal
plant, with transfer function 1/s. The perturbation, denoted Pa with

1

Pa(s) = B (e*” — 1) ,

is covered by the weighted ball
{AW : ||Al| < 1}

provided the weighting function W is chosen to cover the frequency
response of Pa, that is,

Pa(iw)] <ld(jw)l, V.

A suitable function that works for all 7 (chosen by modifying a Padé
approximation) is

2
3\ 2 T\ 1/2 3 72 T
=2 ()" a1 (0) P To]
w(s) [(12()) s+ 15 /[1203 tf a5t

Figure 11.16 shows graphs of the two frequency responses for 7 = 0.4,
for example.

The feedback system is stable for all perturbations satisfying ||A|| <
1 provided ||Ga2]| < 1, or equivalently, |n7¢7|| < 1. Notice that w(s)
depends on 7 and 7(s) depends on w(s). In this way, ||ifgm|le de-
pends on 7. The value of 7 where ||7gm||oc = 1 is a lower bound on
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Figure 11.16: Magnitude Bode Plots of pa (solid) and w (dash) for
T =04
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020

0.4

Figure 11.17: Magnitude Bode Plots of nrgm for 7 = 0.4 (solid) and
7 = 0.6095 (dash).
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Tmax (since the condition ||n7gm||oc < 1 is only sufficient). This lower
bound can be computed by bisection search to be 0.6095. Figure 11.17
shows Bode plots of nrgm for 7 = 0.4 and 7 = 0.6095.

In summary, the exact time-delay margin for the SD feedback sys-
tem equals 1.2029, while robust stability theory gives the lower bound
0.6095. This conservativeness is because covering the perturbation by
a weighted ball is a coarse approximation.

11.4 Step Tracking

In this section we look at the multi-input, multi-output setup in Fig-
ure 11.18 and we would like, in addition to internal stability, that the

r e € v Y

4?_5 ........ W Ky | o H P

Figure 11.18: Unity-feedback digital control loop.

system be step-tracking, that is, e(t) — 0 as t — oo for every step
input r(¢). This section will focus on the following question:

If we design K in discrete time to achieve step-tracking for the
discretized system, will step-tracking be achieved in continuous
time, or will there be residual intersample ripple?

Before we answer the question, let us introduce a handy function.

For a positive ¢, define the function

e — 1

)
fs(s) = /0 e dr = .

S

This is useful for the following reasons. Let (A, B) be continuous-time
state-space data. Then

fu(A)A =€ —1,

so if (Ag, Bg) = ¢2d(A, B, h), then
By = fu(A4)B, (11.5)
Ag— I = fr(A)A. (11.6)
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Lemma 11.4.1 The matriz fr(A) is invertible if 1 is not an uncon-
trollable eigenvalue of (A4, By) (a fortiori, if (Agq, Bg) is stabilizable).

Proof We have from (11.5) and (11.6)
[Aa—1 By] = [ fu(AA fu(A)B ]
= A A B,
S
rank [ Ag—1 By ] < rank f(A).
Thus, if 1 is not an uncontrollable eigenvalue of (A4, By), then
rank[ Ag—1 By ] =n,
so rank f(A) = n. [ |
Now we return to our tracking problem. We assume in Figure 11.18

that P is strictly causal and K is causal. Start with stabilizable and
detectable state models for P and K :

Here the corresponding state vectors for P and K, are zp and &g
respectively. The discretized system is shown in Figure 11.19, where
P;, the step-invariant discretization of P, has the associated state
model

pa(A) = [ Iéfl ]?)d]

with the state vector {p defined by &{p(k) = zp(kh).

Figure 11.19: Discretized unity-feedback system.

The following theorem answers the question we asked earlier in the
section.
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Theorem 11.4.1 Assume that the SD system in Figure 11.18 is in-
ternally stable and the input r is a step signal, say, r(t) = rol(t),
where ro is an arbitrary but fized vector. Then the continuous-time
tracking error e(t) is convergent as t — oo and e(o0) = £(00).

Under the assumption of the theorem, the discretized system in
Figure 11.19 is also internally stable (Theorem 11.1.1). Thus the
discrete-time steady-state tracking error (oco) is finite. Theorem 11.4.1
says that no steady-state intersample ripple exists if the signal to be
tracked is a step.

Proof of Theorem 11.4.1 For a step input, internal stability implies
that all discrete signals are convergent, that is, {p(00), &k (00), v(00),
etc., all exist. As k — oo, the state equation for P; becomes

{p(o0) = Ag&p(o0) + Byu(o0),
(Ag — I)&p(00) + Bqu(oo) = 0.
From (11.5) and (11.6), this is the same as
Fi(4) Abp(00) + fa(A)Buoo) = 0. (11.7)

Now as in Section 11.1, internal stability of the discretized system
implies that (A4, By) is stabilizable and hence that f;(A) is invertible
by Lemma 11.4.1. Thus from (11.7) we have

Aép(00) + Bu(oco) = 0. (11.8)

In view of Figure 11.18, it suffices to show that y(¢) is convergent
as t — 00, since r(00) is finite. To do this, we look at the lifted model
for PH : v+~ y, namely, LPH : v — y, which has the following state
model B

{p(k) = Aa€p(k) + Bqu(k)

y, = Céplk) + Do(k), (11.9)

where the operators C and D are as follows:

C: €K, (CE) = Cre e

t
D: £—K, (Qv)(t):C/ e™ dr Bu.
0
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Letting £ — oo in (11.9) gives
Y, = C&p(o0) + Dv(0).

After lifting, y_ is a function on [0, h). Substituting the definitions of

C and D into (11.9) gives

t
y () = C’etAfp(oo)+C/ e™ dr Bu(oo)
0

= ClI+ fi(A)AJEp(o0) + Cfi(A)Bu(oo)
= C&p(oo) + Cf(A)[AEp(o0) + Bu(oo)]
= C¢p(oo) from (11.8).

Since C¢p(00) is constant, so is y_ . Therefore, y(t) converges. [ |

The answer to the question at the start of this section follows
readily from the theorem by forcing £(oc0) = 0 for every step input

r(t):

Corollary 11.4.1 Assume the SD system in Figure 11.18 is inter-
nally stable. Then the SD system is step-tracking iff the discretized
system is step-tracking.

Recall that in Examples 6.6.1 and 8.4.2 the controllers were de-
signed for discrete-time (optimal) step-tracking and our simulations
showed that SD step-tracking was also achieved. This is one way for
digital design, which is guaranteed to work for step-tracking problems.
Another way is to design an analog controller and then do a digital
implementation, the subject of the next section.

11.5 Digital Implementation and Step Track-
ing

In this section we are interested in the following type of question:
If we design an analog controller to achieve step-tracking and

then discretize the controller, will step-tracking be achieved in
the SD system?
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? K P

Figure 11.20: Unity-feedback analog system.

We shall look at two ways to discretize an analog controller: step-
invariant and bilinear transformation. First, consider digital imple-
mentation using step-invariant transformation.

We begin with the internally stabilized analog system in Figure 11.20
and the following assumptions:

e p(s) is strictly proper
e i(s) is proper.

The analog controller is implemented by a SD controller as in Fig-
ure 11.21 with K5 = SKH. Bring S around to get Figure 11.22.

s (& €

4?_5 ........ W Ky | o H P

Figure 11.21: SD system: Digital implementation.

Figure 11.22: Discretized system.

Intuitively, since P, is the step-invariant transformation of P, the
DC gains of P and Py, if they exist, are equal (Exercise 11.7). Similarly
about K; and K. Thus one can hope that the two closed-loop DC
gains, r — e in Figure 11.20 and p + ¢ in Figure 11.22, are equal
as well. So the two systems have the same steady-state error for the
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same input r. Even though open-loop DC gains may not exist, the
closed-loop DC gains always exist under the assumption of internal
stability. In what follows we shall give a formal derivation that the
two closed-loop DC gains are equal.

Bring in stabilizable and detectable realizations of P and K:

They induce a realization from r to e in Figure 11.20:

Al B Ap — BpDgCp BpCk | BpDg
—Cp o | I
Therefore
DC gain from r toe = D+ C(sI — A) ' Bls—o
= D-CA'B.

On the other hand,

) Ap, | B : Ak, | B
pd(A)z[C’;j (fd] kd(A)z[Cf;d gd]

The realization from p to ¢ in Figure 11.22 is

Al B Ap, — Bp,DxCp Bp,Ck ‘ Bp,Dg
[?%] = -Bk,Cp Ag, Bk, . (11.11)
- —CP 0 ‘ I
Therefore
DC gain from ptoe = D+ AC(I —AA)"'Blx=y

= D+C(I-A)7'B.

Note that the two DC gains exist if we assume that the two as-
sociated systems are internally stable, i.e., the matrices A and A are
stable in continuous and discrete time respectively. To prove that they
are in fact equal, let us see the relation between the continuous-time
closed-loop data (A, B, C, D) and the discrete-time closed-loop data
(A, B, C, D). Define

_ | f(4p) 0
7= 0 fu(AKk)
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Comparing (11.10) and (11.11) and using (11.5) and (11.6), we get

AT — [Apd—deDKC’p—I Bp,Ck ]
= _By,Cp Ag, — T
_ [fh(AP)AP_fh(AP)BPDKCP fh(AP)BPCK]
—fn(Ag)BgCp fn(Ag)Ag
— TA (11.12)
B = TB
c = C
D = D.

If A is stable (all eigenvalues inside D), then 7T is invertible [from
(11.12)] and the discrete-time DC gain equals the continuous-time DC
gain:

D+C(I-A)"'B = D-C(TA™'TB
D—-CA'B.

This means that for the same step input r in Figures 11.20 and
11.22 (K, the step-invariant transformation of K), we have e(oo) =
g(00), if the two systems are internally stable. Using Theorem 11.4.1
we can relate the tracking error to that of the SD system in Fig-
ure 11.21.

Theorem 11.5.1 Assume that the analog system in Figure 11.20 and
the SD system in Figure 11.21 with Kqg = SKH are internally stable.
Then for the same step input r, the steady-state tracking error in the
analog system equals that in the SD system.

In general, due to approximation in digital implementation, the
SD performance will be worse than the analog one. However, this
theorem says that what is deteriorating in step-input systems is not
the steady-state performance but, possibly, the transient performance
and this is so for all sampling periods for which the SD systems are
internally stable.

Specializing the theorem to the step-tracking case, we get an an-
swer to the question asked at the start of this section:

Corollary 11.5.1 Under the same assumptions as in Theorem 11.5.1,
the SD system 1is step-tracking iff the analog system is step-tracking.
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Next we turn to the second way to do digital implementation,
namely, via bilinear transformation. The setup is the same as in Fig-
ures 11.20 through 11.22, but now the discrete-time controller Ky is
obtained via bilinear transformation of the analog K. So given the re-
alization for k(s) as before, a corresponding realization for kg(\) now
is (Section 3.4)

7 _ AKbt BKbt
kd()\) B [ CKbt DKbt ’
where
h -t h
AKbt = (I — §AK> (I + §AK>
h h -1
Br,, = 9 <I— §AK> Bk
Cr,, = Ck(I+Ak,)
‘DKbt =S DK+CKBKbt-

(Assume 2/h is not an eigenvalue of Ax.) Thus the state matrices for
the closed-loop map p + € in Figure 11.22 must be modified too:

Al B APd - BPdDKthP BPdCKbt BPdDKbt
Lﬁ%ﬁ?}z —Bk,, Cp Ak By
- —-C P 0 ‘ I
The other matrices stay the same.
Recall that the bilinear transformation is

_21-2)
AT

S

It takes s = 0 to A = 1 and so preserves the DC gain: k(s)|s—o =
I;;d()\)| A=1- Therefore as before, we should expect intuitively the two
closed-loop DC gains to be the same. A proof of this fact is summarized
as follows: Assume internal stability in Figures 11.20 and 11.22. Let

h h -1
M:=—(I—Z=A
2( 2 K)

and define the matrices

_ [ fulAp)  fa(Ap)BpCxM (I o
T1_|:h0P h PMPK :|, T2_|:02I:|
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Then it can be verified (Exercise 11.9) that

A—-T1 = T\AT,
B = T\B
¢ = (0
D = D,
and hence

D+C(I-A)'B=D-CA'B.

This allows us to state the following results on digital implemen-
tation via bilinear transformation.

Theorem 11.5.2 Assume the analog system in Figure 11.20 and the
SD system in Figure 11.21 with

- ~ (21 =X
kq(N) =k ———
a3 <h 1+ >\>
are internally stable. Then for the same step input r, the steady-state
tracking error in the analog system equals that in the SD system.

Corollary 11.5.2 Under the same assumptions as in Theorem 11.5.2,
the SD system 1is step-tracking iff the analog system is step-tracking.

In conclusion, another way to design a step-tracking SD system is
as follows: Design an analog step-tracking controller and do a digital
implementation via step-invariant or bilinear transformation.

Example 11.5.1 A certain flexible beam is modeled by the transfer
function (from torque input to tip deflection output)

3(s) = 1.6188s2 — 0.1575s — 43.9425
P\ = +0.1736s% + 27.900152 + 0.01865
The following analog controller has been designed for step-tracking:
h(s) = — 0.0460s° + 1.5402s" 4 1.5498s> 4 42.75s% 4 0.0285s + 0.000158s
864+ 3.76655 + 34.950954 4 106.253 + 179.252 + 166.43s + 0.0033

We now implement the analog controller digitally via step-invariant
and bilinear transformations and compare the responses of the two
implementations.
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Note that the analog plant has a pole at 0, so for step-tracking in
the digital implementations, by the preceding corollaries we need inter-
nal stability only. Let us take h = 0.5, for which the two SD systems
are internally stable. Next we simulate the unit step responses for the
two SD systems as in Figure 11.23; shown also is the unit step response
of the analog system for comparison. All three responses approach 1,

12

-0.2
0

Figure 11.23: Beam example: step responses for analog controller
(solid) and its discretization via step-invariant transformation (dash)
and bilinear transformation (dot).

indicating step-tracking in all three cases. Clearly, the response via
bilinear transformation is better than that via step-invariant transfor-
mation: It responds faster and has less overshoot. Both are inferior
to the analog response due to the approximation introduced in digital
implementation.

11.6 Tracking Other Signals

In Section 11.4 we saw that if the discretized system is step-tracking,
the SD system is also step-tracking. What about tracking other sig-
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nals? Can we generalize the step-tracking result to, say, the ramp-
tracking case? These questions will be addressed briefly in this section.
For simplicity, we look at the SISO setup only.

Consider the SD tracking setup in Figure 11.18, where now the
reference input r is the unit ramp signal, r(¢) = ¢, ¢ > 0. Discretize
the system as before and define p = Sr (a discrete ramp) to get Fig-
ure 11.19. It is apparent that for the SD system to track r, it is
necessary that the discretized system track p. Thus suppose we design
K, in discrete time so that the discretized system is stable and tracks
p. The question is: Is this sufficient for intersample tracking? The
answer is in general no. This is illustrated by the following example.

Example 11.6.1 In Figure 11.18, take

1

7) - —_— h:l
p(s) oy

First, let us design a ramp-tracking controller for the discretized sys-
tem. Discretize P via step-invariant transformation:

0.6321)\

paN) = T 036700

For asymptotic tracking in discrete time, k4 must have a double pole
at 1; so kg4 is of the form

~ 1

kq(\) = ki (V).

- 1)
Now absorb the double pole into the plant and define

! 5Da(A)-

Par(A) = e

Then we need to design Ky to stabilize Py; in the setup:

This can be done via the observer-based controller design of Sec-
tion 5.2:
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Step 1 Obtain a minimal realization for pg:

Step 2 Compute F' and H such that the two matrices A + BF
and A + HC are stable; we assign the eigenvalues of the two
matrices all to be at 0. This will guarantee that € settles to 0 in
a finite time (deadbeat control).

Step 3 Then the controller is

A+BF+HC | H
F | 0

kqi(\) =

The computation gives kqi (A) and hence kg(\):

B = 0.5820A(A — 1.7358) (A — 2.5601)
ay (A — 1)2(X + 0.4223)

The continuous-time tracking error e is simulated in Figure 11.24.
It is clear that the discretized system tracks; in fact, ¢ settles to 0
in 4 sampling periods (4 seconds), reflecting the deadbeat response.
But observe that there is a steady-state intersample ripple; so the SD
system does not track.

This example indicated that the theorems in the preceding two
sections do not generalize naively to the ramp-tracking case. Some
modification is necessary.

To obtain SD ramp tracking, or to eliminate the steady-state in-
tersample ripple, two methods can be considered. The first is to use
a first-order hold instead of a zero-order hold; then we expect a sim-
ilar statement as in Theorem 11.4.1 to hold. However, we shall not
pursue this direction. The second method is to introduce analog pre-
compensation so that the compensated plant includes an integrator.
This again is illustrated by the example.

Example 11.6.2 For the same plant as in Example 11.6.1, pre-compensate
to get:
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Figure 11.24: Tracking error.

Take this as P, discretize to get

o TI828(\ + 1.3922)
PN = )= ais3)

Since pq has one pole at 1, to get discrete tracking, we need just one
additional pole at 1 in k4. So kg is of the form

. 1 .
kq(A) = ka1 (X).
o) = T ()

Again absorb this pole into pg(A) to get

1
A—1

Par(A) =

pa(A).
As in Example 11.6.1, design kg for Pq1 as an observer-based controller

so that the closed-loop poles are all at 0; this gives ifd1 and thus l%d:

_ 0.13920 (A — 2.6567) (A — 1.5511)
(A= 1)(A + 0.6327) (A + 1.2699) "

ka(X) =
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The tracking error is simulated in Figure 11.25. This confirms that
there is no intersample ripple and in fact both € and e are deadbeat
in 5 periods.

25

Figure 11.25: Tracking error.

In summary, if the analog plant p(s) does not have a pole at 0, the
SD setup (with zero-order hold) is inherently incapable of tracking a
ramp signal. This can be resolved by using either the first-order hold or
analog pre-compensation to introduce a pole at 0; then a discrete-time
tracking design also yields SD tracking.

This observation can be generalized to tracking other types of sig-
nals such as e® (o > 0) and sinwt. If zero-order hold is to be used,
then to get SD tracking, one has to pre-compensate the analog plant so
that the compensated plant contains an internal model of the signal;
for example, if sinwt is to be tracked, the compensated plant must
have a pair of poles at s = £jw.
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Exercises

11.1 This problem concerns control of the double integrator

The usual analog controller for this is a PD (proportional-derivative)
controller:

u = Kp(r - y) - Kuy.

Then the feedback system is internally stable for all positive K, K,.
For digital implementation of this controller, a common approximation
of the derivative is the backward difference

i(kn) ~ 3 {y(kh) — y[(k — D]}

This leads to the SD system

S | ’Kp ....... .H4<‘L P
H o] Mg e S

. 1 . K

P) = 50 al) = S0 - N,
Take K, = 2, K, = 1 and compute the range of h for which the SD
system is stable.

11.2 Consider the flexible beam in Example 11.5.1.

1. Design an analog controller k(s) to achieve the step-response
specs of less than 10% overshoot and less than 8 s settling time.

2. Discretize the controller using the step-invariant transformation.
Compute hg, the maximum sampling period for which the feed-
back system is stable.

3. Simulate the sampled-data system for a step input and plot over-
shoot and settling time versus h over the range 0 < h < hg.
What is the maximum sampling period for which the specs are
met?
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11.3 Prove Theorem 11.2.1.

11.4 This exercise relates internal stability to input-output stability.
For simplicity, consider the discrete-time setup:

Here P and K both have stabilizable and detectable realizations:

Show that internal stability is equivalent to input-output stability:
The closed-loop A-matrix

A_ [ A+BDkC BCx
= BKC AK

is stable iff the transfer matrix

|: s ] |: : :|
U2 €2
is stable.

11.5 Consider Figure 11.14 with

. | s—1 s+1
h=0.1 B8 = i(s) = 0.2 .
IRAC R v vor R A e o y R s+ 10

Design an analog controller K to stabilize the feedback system consist-
ing of P, K, and F; then implement K; = SKH to get Figure 11.14.
Compute an upper bound on the stability margin.

11.6 This problem concerns deadbeat regulation. Look at the sampled-
data state feedback setup:
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G

Here G is described by a state model with an initial condition
i(t) = Az(t) + Bu(t),  (0) = o,

and F' is a constant matrix. Discretize via c2d to obtain the usual
matrices Ay and By. Let £(k) := xz(kh) and let the dimension of z be
n. Suppose F' is designed such that Az + BgF has all eigenvalues at 0.

1. Prove that Vg, £(k) =0 for k > n.
2. Prove that Vzo, z(t) =0 for t > nh.

Thus both £ and = are deadbeat in n sampling periods.

11.7 Consider

with A stable. Show that the DC gains of the two systems are equal:
P(8)|s=0 = Pa(A)r=1-

11.8 For the same system as in Example 6.6.1, design a deadbeat
controller K, for step-tracking. How many steps does it take for the
continuous-time error to settle to 07

11.9 Assume the systems in Figure 11.20 and Figure 11.22 are in-
ternally stable and K, is obtained via bilinear transformation of K.
Provide the details in the proof in Section 11.5 that the two closed-loop
maps r — e and p — ¢ have the same DC gain.

11.10 Another way to get kq(\) from k(s) in digital implementation
is the backward rule: l%d()\) =k (%) Suppose the analog system is
internally stable and step-tracking. With the implementation of the
controller via the backward rule, is the SD system step-tracking?
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11.11 In Figure 11.18, take
p(s)=-, r(t)=t(t>0), h=1L1

Design a K4 so that the discretized system tracks p := Sr. Simulate
the continuous-time error e. Is SD tracking achieved? With your
design, show analytically that e(t) — 0 as t — oc.

11.12 In Figure 11.18, take

p(s) = , rt)y=¢ (t>0), h=1.

1. Design K4 for P; := SPH to achieve tracking at the sampling
instants. Simulate e. Is SD tracking achieved?

2. Pre-compensate P to get

. 1
P GG

Repeat the first part for Py := SP;; H.

Notes and References

Sections 11.1 and 11.2 are based on [52], which treats boundedness
on L, and [28] and [23], which treat boundedness on £, in general.
For stability of SD systems with time-varying components, see [76]. A
detailed discussion of the flexible beam example is in Section 10.3 of
[39].

The robust stability result in Section 11.3 is from [30]. The same re-
sult is in [69]. It is an interesting fact that the stability bound obtained
by the Ls-induced norm is conservative when the perturbation is LTT,
but nonconservative when the perturbation is linear, time-varying; see
[44] and [125]. Other work on robust stability of sampled-data systems
can be found in [88].

Tracking steps in purely continuous time is a special case of alge-
braic regulator theory, for example, [150]. The sampled-data case was
treated by Dullerud [41]; Corollary 11.4.1 is from [41]. For more on
ripple-free SD tracking systems, see [37], [53], [143], [151], and [71].



Chapter 12

Ho-Optimal SD Control

In Chapter 6 we looked at how to design Hs-optimal controllers for
discrete-time FDLTI systems via the state-space approach; there in
Example 6.6.1 we also saw that performance specs based on discretized
systems could result in a severe intersample ripple. Our goal in this
chapter is to incorporate intersample behaviour into design; specifi-
cally, we consider how to pose and solve Hs-optimal control problems
for SD systems.

12.1 A Simple H, SD Problem

There are several ways to pose a SD Hs problem. As an introduction,
we first look at a simple formulation which admits a solution using
continuous lifting.

We begin with the continuous-time #s-optimal control problem
for the standard setup in Figure 12.1, where the generalized plant G

4 w

G

Figure 12.1: The continuous system.

311
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and the controller K are both assumed to be LTI and causal. Let
T, denote the closed-loop system from w to z. We can contemplate
minimizing the H, norm of the (matrix-valued) transfer function #,,,,
that is,

A 1 [ ) A 1/2
Itowll2 := {—/ trace [tzw(jw)*tzw(jw)] dw} ,

2m J_

over all internally stabilizing K. For example, if w is standard white
noise, then ||Z,, (|2 equals the root-mean-square value of z.

Another way to think of the same criterion is as follows. Let m de-
note the dimension of w and denote by {e;}i—1,...,» the standard basis
in R™. An impulse at the ith component of the exogenous signal is
achieved by setting w(t) = (t)e;, the resulting output z being T,,0€;.
Then it is easy to derive (Theorem 2.1.1) that

1/2
[Eowll2 = (Z IITzwéeiH%) ; (12.1)

the right-hand norm being the usual one on La(Ry).
In this chapter, we are concerned instead with SD controllers, so
the appropriate setup is in Figure 12.2. For a chosen sampling period
z w

G

S § Ky

Figure 12.2: The SD system.

h, the designable element is now the discrete LTI controller K;. Of
course, 1%, is now time-varying, or more precisely, periodic with period
h, so there is no transfer function in the normal sense whose H9 norm
could be minimized. However, the right-hand side of (12.1) still makes
sense. The problem of this section is to minimize the quantity

1/2
Jo = (Z ||Tzw6ei||%>
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over all FDLTI, causal Kys which provide internal stability. [By con-

trast, in Example 8.4.1 we minimized (3, ||Sszw56iH%)1/2 for the
telerobot. |

Note that the performance measure is defined in terms of the con-
tinuous signals for impulsive inputs; thus intersample behaviour of
signals of interest is taken into account in the design. This should
be the natural way of looking at SD systems since they operate in a
continuous-time environment.

We remark that this problem formulation relates closely to the
continuous-time linear quadratic regulation (LQR) problem using SD
control. Consider a continuous-time system P, driven by its initial
condition and controlled by a SD controller as in Figure 12.3, where

P

S | Ky |~ H

Figure 12.3: A SD system for the LQR problem.

P is described by the state model:

#(t) = Ax(t)+ Bou(t), z(0) = xo,
y(t) = Caa(t).

The LQR problem is to design K; to minimize
o
Teon = / [2(8) Q(t) + u(t) Ru(t)] dt,
0

where () and R are both positive semi-definite. Perform a Cholesky
factorization

0

R

SRW

(& D]l Dul=|

and define

Z(t) = leL‘(t) + D12’u,(t)
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to get that Jpor equals the square of the Lo(Ry )-norm of z. The
problem can be put into the standard framework in Figure 12.2 if we
introduce an exogenous input w and set w(t) = xyd(t), the correspond-
ing G being

z(t) = Az(t) +w(t) + Bau(t), z(0)=0,

Z(t) = Clx(t) + Dlgu(t),

y(t) = Cox(d).
Thus the problem reduces to minimizing

||Tzw$05“27

which is quite like the proposed optimization problem.
Returning to Figure 12.2, assume G is FDLTI and causal. Bring
in a state model

A|B B
g(s)=1 C1| 0 Ds
Co| O 0

Note that we have taken Di; and Dy to be zero; this is due to the
facts that Jy must be finite and that S is not defined on impulsive
functions. For simplicity, we have also assumed that Doy = 0.

Now bring in the associated discrete-time LTI system as in Fig-
ure 12.4. The state matrices in the plant are defined as follows: First,

TR Ay ‘Bl Bog e
Cia| 0 Diyq
— Cy | 0 0 leeennn. E

Figure 12.4: The associated discrete system.
as usual

h
Ag:=e" By ::/ e diB,.
0
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Next, define the square matrix

A B
a=[4 %)

and then C14 and Di94 by the equation

[ C14 D1z ],[ Cia Diaa |

h
:/ eté, [ Cl D12 ]I[ Cl D12 ]etédt. (122)
0

[The matrix C14 may have more rows than Cj due to the fact that the
rank of the matrix on the right-hand side of (12.2) may be greater than
the number of rows in C;.] Note that the (2,2)-block in the discrete
plant is exactly the same as the discretized Go2. Thus the SD system
is internally stable iff the discrete system in Figure 12.4 is internally
stable (the two systems share the same K,). Recall from Section 11.1
that a necessary and sufficient condition for internal stability to be
achievable is

(Ag, Bog) is stabilizable and (Cs, Ay) is detectable.

This condition will be assumed hereafter; it would be sufficient to
assume non-pathological sampling, (A, Bs) stabilizable, and (Cs, A)
detectable.

Let T¢,, denote the closed-loop system from w to ¢ in Figure 12.4.
We are set to state the main result of this section.

Theorem 12.1.1 The SD spec Jy for Figure 12.2 equals the Ho(ID)-
norm of the transfer function wa in Figure 12.4.

This theorem provides a way to solve the SD problem of minimizing
Jo: It is equivalent to the discrete-time s problem of minimizing
|£cwll2 over all the internally stabilizing Kg4s in Figure 12.4, that is,

in Jo = min ||£¢y|[2-
min Jo = min |ty |2
The latter problem was studied in Chapter 6.

Proof of Theorem 12.1.1 The proof is a nice application of con-
tinuous lifting. Fix a basis vector e;, apply the input w(t) = d(t)e;,
and lift the output z to get Figure 12.5. Bringing L, S, and H into G
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Z z w = de;
e L P
G
PO I WKy | g

Figure 12.5: Lifting z.

z w = de;
i, LGy LGLH [
..... SGyr SGpH |,
o A

Figure 12.6: Lifted system with continuous-time input w.
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gives the system in Figure 12.6. We would like to convert the system
in Figure 12.6 to one with a discrete-time input instead of de;. We
could convert the input to d4e;, but it turns out to simplify things if
the input is U*d4e; instead: Recall that U* is time advance, so U*dy
is the impulse applied at time £k = —1. To do the conversion, consider
first the (1,1)-block: Set v = LG11de;. Recalling from Section 10.2 the
definition

Ci: E=K, (GO = Crete,

we have
v o= {1)0,1)1,...}
vo(t) = (CBie;)(t)
vi(t) = (C1Aq4B1e;)(t)

etc.

Thus v equals the response of the system

A

to the input U*dge;. Proceeding in a similar fashion with the other
three blocks, we get that the output in Figure 12.6 equals the output
in Figure 12.7. Here, the definition of Dy, ., (the restriction of D ,)

PR Ay ‘ By By feeeeeeeioie
Ql 0 Ql?,res
o Cy | 0 0 DA E

A AR N

Figure 12.7: Equivalent discrete-time system.

18

212,7‘65 &= ’C? (QIZ,TesU)(t) = |:D12 + f[]t CleTAdTB2] v.
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Two steps remain before we get Figure 12.4. The output equation
in Figure 12.7 is

2 = Qlﬁ(k) + Ql2,resv(k)' (123)
From Lemma 10.5.1,
A U 1A
oA _ et [T e dT By ,
0 1

which implies from (12.3) that
zp(t)=[ C1 Dy |4 [ (E) ] : (12.4)

Defining
((k) = Cra€(k) + Dizgv(k),

we get from (12.2) and (12.4) that the K-norm of z;, equals the £-norm
of (k). Thus the ¢3(Z, K)-norm of the output z in Figure 12.7 equals
the ¢9(Z 4, E)-norm of the output ¢ in Figure 12.8.

¢ U*5 e
SRR PR Ay ‘Bl Bog |eeereeten. R
Cia| 0 Diyq
o Cy | 0 0 e,

Y v

Figure 12.8: Equivalent discrete-time system.

Finally, since T¢,, is time-invariant,
[ Tew U daeillz = (| Tewdaeills-

The right-hand side pertains to Figure 12.4. |
The matrix integral involved in computing C14 and Disq can be

easily determined using a matrix exponential function; the formulas
were given at the end of Section 10.6.
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Note that the Dsi-term in the discrete-time plant is zero; thus the
discrete Ho problem is inherently singular and the formulas in Sec-
tion 6.5 do not apply directly. Often this can be fixed by introducing
some time advance in the exogenous input channel (see Exercise 6.12),
or by applying the frequency-domain solution of Section 6.6. This will
be further illustrated by the following example.

Example 12.1.1 Consider again the SD step-tracking system studied
in Examples 6.6.1 and 8.4.2; it is redrawn in Figure 12.9. Here we

) T e € Yy
w M) S | o Ky | Y H P

Figure 12.9: The SD tracking system.

have introduced a reference model W with w(s) = 1/s. The fictitious
input to W is the unit impulse §. The plant transfer function and the
sampling period are as before:

1

PO =A@ ry b

We shall design K, to provide internal stability and minimize the
L2(R; )-norm of the tracking error e. This can be put into the frame-
work in Theorem 12.1.1 by defining w = J, z = y = e; the correspond-
ing standard setup (Figure 12.2) has the generalized plant

o[ 1]

w —P

A realization is

where the matrices are

0 0 0 1 0
A=10 0 1 , Bi= 0], Ba=1]0
0 —-0.004 -0.14 0 1
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Ci=Co=[1 —0.004 0].

Note that since W is unstable, (A, B) is not stabilizable (though
there exists K to internally stabilize P). Nevertheless, Theorem 12.1.1
is still applicable to reduce the SD problem to a discrete problem.
So the equivalent discrete Ho problem pertains to the setup in Fig-
ure 12.10, where

S AT T

Figure 12.10: The equivalent discrete system.

9dn  9d As | By B
30 = | 900 02 ] () — | C [0 D
9ds1r  YGdso Oy 0 0

The matrices Ay and By can be obtained from (A, Bs) via ¢2d. Now
let us look closely at computing C14 and Disgq. Define the square

matrices
A B
0 O
(o o)[a o]

N

h i

M = /etANetAdt.
0

[+S
|

The integral M can be computed via the matrix exponential discussed
in Section 10.6:

Py Prip ~ exodn —A
0 Py P 0

M = PP,

I~ =
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The matrix M computed has three nonzero eigenvalues: 1.0000, 1.4676 x
1075, and 1.7561 x 10~8; regarding the latter two eigenvalues as zero,
we get an approximate Cholesky factorization,

M~=[ Cig Diag ][ Cia Di2a ],
with
Cia=[1 —0.004 —0.001901 ], Djsq=—6.4384 x 107%.

Because (Ag, Byg) is not stabilizable, it is hard to proceed further
in the time domain. Turning to the frequency domain, we note first
that Goog = —SPH, which is stable since P is. So the set of stabilizing
controllers for P can be parametrized by

A

~ q R
ki=-——"——, € RH(D).
1+ §dy,4d (D)

Thus the closed-loop transfer function in Figure 12.10 is
ECUJ(A) = Gd, (>‘) + Gdy» (A)Q(A)gdm (>‘)
. . A
= [1 + gdlz()\)CI(A)] 1\
since §Gg,, (A) = §a,, (A) = A/(1 = X). Note that the function
0 (V) = —6.9052 x 10™4(\ + 3.8657)(\ + 0.2774)
Girn(A) = (A — 1.1052) (A — 1.0408)

is stable and §g,,(1) = —1. Thus for ||[f¢yll2 < oo, we must have
G(1) = 1. The s in RH oo (D) satisfying this condition are parametrized
by

qgA) =1+ (1 =N)aq(), @A) € RHoo(D).
Therefore

tew =t + t2d1,
where #5()\) = Ajq,, (A) and 7} is in RH(D):

B\ = AL+ Gapn (V)] —0.9993X\(A — 1.1503)
Y= T o T (= 1.1052) (A — 1.0408)

In this way we arrive at the Ho model-matching problem:

min t1 + toG1]]o.
R (D) || 1 2Q1||2
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This latter problem can be solved as in Section 6.7:

—5218.8(A — 1.1478)
(X + 3.8657)(\ + 3.6044) "

@A) =

Now substitute back to get ¢ and then l%d:

() — ZPZ09T001 — 11052)() — 1.0408)
A (A — D)(A + L.4017)

The step response y (solid) with this controller was simulated and is
displayed in Figure 12.11. Shown also in the figure, for comparison,

16

Figure 12.11: Step-response of example: SD design (solid), design by
fast discretization (dash), design by slow discretization (dot).

are the step response (dashed) in Example 8.4.2 where the controller
was designed via fast discretization and that of Example 6.6.1 via
slow discretization. For this example, the fast-discretization method
is nearly optimal.
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12.2 Generalized Hy; Measure for Periodic Sys-
tems

Generalized #H, Measure

Let us start by reconsidering the performance spec used in Section 12.1,
namely,

1/2
Jo = (Z “Tzwéei“%> .
i

The impulsive functions are applied at ¢ = 0. But since T, is time-
varying, applying an input only at ¢ = 0 may seem inappropriate.
Letting 0, (t) = 0(t — 7), we arrive at an alternative spec,

1/2
Jr = (Z “Tzw‘STeiH%) :
3

The fact that T}, is a periodic system with period h implies that J;
is an h-periodic function, that is, J,yp = J-,¥7. Thus it suffices to
consider J; for 0 < 7 < h. The generalized Ho measure is defined to
be

J = (/OhJEdT>

Notice that .J/ Vh can be interpreted as the root-mean-square of J,,
where “mean” means “time average.” If T}, is LTI, then J, = Jy, V7,
and J/ Vh reduces to the Hs norm of the transfer function ,,,.

The quantity J can be expressed in terms of impulse responses.
For this we turn to a more general discussion.

1/2

Hilbert-Schmidt Operators

Let F' be a continuous-time linear transformation mapping Lo (R, R™)
to Lo(Ry,RP) and described by the integral equation

(Fu)(t) = /0 bt (). (12.5)

Here f, a p x m matrix function defined on Ry x Ry, is the impulse
response of F, for if u(t) = §(oc — 7)e;, an impulse at time o > 0, then
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(Fu)(t) = f(t,0)e;. We shall assume that every element of the matrix
f is square-integrable on R, x Ry, or equivalently

/OOO /000 trace [f (¢, 7) f(t, 7)]dtdT < co. (12.6)

It turns out that such an F' is a bounded operator from Lo(Ry,R™)
to Lo(Ry,RP); moreover, the induced norm of F' satisfies

i< { [ [ woee s T)]dtdr}l/ 2

This latter quantity defines a different norm on the operator F', the
Hilbert-Schmidt norm, denoted || F||ms:

1F g = {/Ooo /Oootrace [f(t,T)'f(t,T)]dth}l/Q.

An operator F of the form (12.5) satisfying condition (12.6) is called a
Hilbert-Schmidt operator. The class of all Hilbert-Schmidt operators,
denoted by HS, forms a Hilbert space with the inner product

(F,G) = /0 h /0 " trace [f(t 1) g(t, 7)]dtdr.

Example 12.2.1 The usual state-space system

&t = Az + Bu, z(0)=0
y = Cx+ Du,

with A stable, defines a linear transformation y = Fu with impulse
response

f(t,7) = Dé(t — 1) + Cel'AB1(t — 7).

Observe that F' € HS iff D = 0.

The above Hilbert-Schmidt operator is in terms of inputs and out-
puts defined on all of Ry, but the concept applies in a similar way to
signals defined on intervals of R,. For example, we would say that
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a continuous-time linear transformation /' mapping L2((a,b), R™) to
Ls((c,d),RP) and described by the integral equation

b
(Fu)(t) = / f@,Nu(r)dr, e<t<d

is a Hilbert-Schmidt operator if

b d
/ / trace [f(t, 7Y f(t, )]dtdr < oo.

Example 12.2.2 Continuing Example 12.2.1, consider the compres-
sion F' to K:

t
D: K— K, (Du)(t) = Du(t) + / Cel'= A Bu(7)dr.
0
This arises when we lift the system; see Section 10.2. Here the time

interval for input and output is [0,h). It is clear that D is Hilbert-
Schmidt iff D = 0. If this is true, the impulse response for D is

d(t,7) = Cet=DAB1(t — 1)

and the Hilbert-Schmidt norm for D can be found via
h ph .
D2 = / / trace [B'e(t_T)A C'ce=AB1(t — 7'):| drdt
o Jo
h pt ,
= / / trace [B'e(t_T)A C"Ce(t_T)AB} dr dt
o Jo

bt
= trace (B'/ / eTA,C'CeTAdetB>.
o Jo

Since the time interval is finite, the matrix A need not be stable for D
to be well-defined.

Let us return to F in (12.5). It is causal iff f(¢,7) = 0 whenever
t < 7 and is h-periodic iff f(¢t+h,7+h) = f(¢,7) (Exercise 12.3). Let
us assume that F' is causal and h-periodic. Then

t
(Fu)(t) = /0 F(tYu(r)dr
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and F' is completely characterized by f(¢,7) for 0 < ¢ < 0o and 0 <
7 < h. Tt is not hard to check that the generalized Hs measure for F,
denoted J(F), equals

J(F) = { /0 ' /0 " trace [f(t, ) F(t, T)]dtdf}m (12.7)

(Exercise 12.4). The right-hand side is the Hilbert-Schmidt norm when
F' is considered as mapping L2([0,h),R™) to Lo(Ry, RP).

Lifting Periodic Operators
Let F be a linear, h-periodic, causal system mapping Lo(Ry ) to Lo(R,):

t
y=Fu<<=y(t) = /0 f(t, T)u(r)dr, t>0.

Assume that

/Oh /000 trace [f(t, 7) f(t, 7)]dtdT < cc. (12.8)

Lift the input and output: w = Lu,y = Ly. Then the lifted operator
F := LFL ! maps (5(Z,K) to l2(Z,K). Tt is not difficult to derive
as in Section 10.2 that the matrix for F' is

fo 00

F)=1|f, f, O

where f, : K — K (k > 0) is given by

h
(f,u)(t) = /0 F(t + kh, T)u(r)dr.

Thus we have the convolution equation

k

Ye = Zikfzﬂl’ k2 0.

=0

It follows from (12.8) that every f, € HS, that is,

h h
/ / trace [f(t + kh, 7) f(t + kh, 7)|dtdr < co.
0 0
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Thus F' can be represented by the Hilbert-Schmidt operator sequence
f=Afy £} The norm of f, denoted ||fl[2, is defined as

o 1/2
Il = (z !Iikllﬁs> |
k=0

To recap, associated with F' is a sequence f of Hilbert-Schmidt
operators. This association is important because of the next result.

Lemma 12.2.1 J(F) = ||f||2.

Proof

713 = DI/l
k=0

o0 h h
= kz_o/o /0 trace [f(t + kh,7) f(t + kh, T)]dtdr
h | h ,
- /0 LZ:O/O trace [f(t+ kh, 7) f(t + kh, 7)|dt| dr
- /0 " /0 " trace [f(t, 1) F(t, 7)]dtdr
J(F)?
[ |

It is a fact that the set of all Hilbert-Schmidt operator sequences
f with || f|l2 < oo forms a Hilbert space, denoted ¢2(Z4,HS), with the
inner product

the right-hand inner product being on HS.

Operator-Valued Transfer Functions

If F' is h-periodic, the lifted F is apparently LTI in discrete time. Thus
we can associate an operator-valued transfer function with F:

fO) =) f A
k=0
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Defining the A-transform for the input
o.¢]
an) = Ak
k=0

and similarly for the output g(\), we get

9N = f)a).

Here, for every A in their respective regions of convergence, u(\) € K,
a function on [0, h), and f()\) € HS, a Hilbert-Schmidt operator.

The Hardy space Ha(ID, HIS) consists of all operator-valued func-
tions f (M) which are analytic in D (with power series expansion in the
neighborhood of every Ay € D), have boundary functions on 9, and
satisfy

1 2 0 1/2
o [ eI <.

The left-hand side is defined to be the norm on Hsy (D, HS), denoted
|.fll2. Moreover, Hz(ID,H) is a Hilbert space with the inner product

1

2T ) )
(f,@ = %/0 <£(63‘9),g(e”)>d9_

The right-hand inner product is on HS.
Recall in the matrix case that the Ho(ID)-norm is

1/2

17k = { o [ trnce 1706y " 1ao )

The integrand is the square of the trace norm for matrices, which can
be denoted by ||f(e?%)||%s. Thus we get

) o 1/2
S o A TCEIE

Therefore the norm on Ho (D, HS) is a generalization of the norm on
Ho2(D) by replacing the trace norm by the Hilbert-Schmidt norm.

As one may expect, the A-transformation should preserve the norm
from ¢5(Z,HS) to Ho(D,H). This can be verified as follows. For
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f € Ha(D, HS),

R 1 [2c . ..
1113 = 5= [ G, feha
1
o

2 90 . oo
= 7T/O <§ikeﬂk9,§feﬂ9>d9
o0 00 2
= MU L [
k=0 1=0 0
= D L
k=0

the last equality following from the fact that

1 [ 1 k=1
- j(k—0)0 709 _ )
o J, © d0 {0, k1.

So | fllz = Il £]le-

A stronger result, which is quite similar to the matrix case in Sec-
tion 4.5, can be stated:

Theorem 12.2.1 The \-transformation is an isomorphism from fo(Z 4, HS)
onto Ho(D, HS).

In summary, the following quantities are all equal:

b 1/2
I(F) = (/ Zumein%m)

{/ / trace [f(t,7) f(t, T)]dth}l/Z
1flle = (Z!lf Hms)

R 1 27T 2 igniD 1/2
— i J
Il =[5 [N Isa0]

1]l =
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12.3 Generalized Hs; SD Problem

With reference to Figure 12.2, we pose the Ho-optimal SD control
problem: Design a K, to provide internal stability and minimize the
generalized H9 measure discussed in the preceding section.

Defining the lifted plant

Q21 QQQ SG21Li1 G22d

we arrive at the lifted configuration in Figure 12.12. Note that the

G

A A

Figure 12.12: The lifted system.

(2,2) block in G is exactly the discretized Gag. The lifted system is
now LTI and therefore has an operator-valued transfer function. To
simplify notation, let T' be T}, : w — z in Figure 12.2. Then the
closed-loop map w — z in Figure 12.12 is LTL™', denoted T.

In this way, we can recast the SD Ho problem in the lifted system
of Figure 12.12: Design K, to give internal stability and minimize the
norm of  in Ho (D, HS).

This latter problem cannot be solved directly via our known tech-
niques because it involves infinite-dimensional input and output spaces.
Our goal in this section is to reduce it to the standard discrete-time
problem whose solution was treated in Chapter 6.

Bring in a state model for G:

A|B B
g(s)=1 C1| 0 Ds
Co| O 0
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Based on this, a state model for G was given in Section 10.3. Using
transfer functions, we can write

Aq ‘ §1 Bag
Q(A) = Q1 211 212 )
Cy 0 0

where Ay and Byy are as usual; the operator-valued entries are:

h
B,: K=&, Elw:/ e IAB w(r)dr
0

C,: E—=K, (Cux)(t)=Cretz
t

D, : K=K, (Dw)(t)=C / et=NAB w(T)dr
0

t
Dyy: =K, (D)(t) =Dpv+C / =144 Byw.
0

With this setup we associate the standard discrete-time system shown
in Figure 12.13, where the matrices in the plant G4 ¢ are defined as
follows: First, B4 is obtained by the equation

TR Ay ‘ Big Bag e
Cia| 0 Dy
— Cy | 0 0 leeonnn. E

Figure 12.13: The associated discrete-time system.

h
BB, = / e B, Ble!! dt.
0

And second, C4 and D;94 are found in the same way as in Section 12.1,
that is,

[ Cia Disa |'[ Cia Dioa | =
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h
/ eté, [ 01 D12 ]I[ Cl D12 ]etédt,
0

where A is the square matrix
A By
a=[5 7]
Note the following relations:

Bi4Bi4 = B, B}
[ Cia Diag |'[ Cia Dia]=[Ci Dy ]"[C1 Diy .

Letting Ty, be the closed-loop system w +— ( in Figure 12.13, we are
ready to state the main result.

Theorem 12.3.1 The Hy-norms of the two systems in Figures 12.12
and 12.13 satisfy

1213 = ||Q11||12HIS + HijH%-

Note that the plants G and G share the same (2, 2) block; thus the
two closed-loop systems share internal stability. The theorem implies
that the lifted problem of minimizing the (DD, HS)-norm of £ over the
class of stabilizing controllers is equivalent to the discrete problem of
minimizing the Hs(D)-norm of £, over the same class of controllers,
that is,

in||£]|2 = ||1D;4 |7 in ||£]12.
H[l(ldn“_HQ D11 [l s +H;(1;1|| cwll2

Proof of Theorem 12.3.1 The closed-loop transfer function in Fig-
ure 12.12 is

i = gu + 912(1 - kdgdzz)ilkdgma
where 911> 9y9 9y AT all operator-valued:

. [ A4] By . _
9, = |73, Qu]’gw(”_ [Ql D

Define the three matrix-valued transfer functions

- Ad Bgd
2 A I 2 N A I
g () = S , g12(A) = I 0 v gar(A) = d

| I |0 0 7 Cy |0

Ag | By . | Aq| By
:|? _21()\) - |: 02 0

|

|
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t=Dy+[ C; Dy, | {[ gél ] + G12(1 — I%d§22d)_ll%d§21}§1-(12-9)

Let ¢ be the quantity in the curly braces; ¢(\) is a matrix-valued
function. Since ¢(0) = 0 (g;; and §,; have this property), it follows
that the two functions on the right-hand side of (12.9) are orthogonal,
S

12013 = 1Dy |l + |l [ C) Dy, | QB4 3.

The second norm on the right is an Ho(ID, HS )-norm; by definition this
is

1 2
o I[ C1 Dy ]d(e”)B|fdo. (12.10)
Fix 6. Then

= [ Cy Dy ] (eJ )B;.
is a Hilbert-Schmidt operator; its impulse response is given by
flt,7) =[ C1 Dy ] ettg(e??)e 4B, (12.11)

(Exercise 12.6). Thus

h rh
I1F|3s = trace/ ft, )" f(t,7)dtdr
0 Jo
h /
= trace/ Ble "g(e’?)* [glld ]x
0 12d

[ Cia Dizg ] d(e?)e® D4Bdr
h
= trace (/ e(h=mARB, Bleth—m)4 d7'> G(e7%)* x
0

C/
[ Dlld ] [ Cia Diza ]d(e7)
12d

f o
= trace B1gB]4(e’?)* [ D,ld ] [ Cia Di2a | q(e”’)
12d
!
= trace B! dd(eja) [ DC,M

] [ Cia Diza | G(e’?) By
12d
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So the quantity in (12.10) is the Ho(ID)-norm of the function
[ Cia Dizq | 4(e’%)Bya,
which simplifies to fgw. |
Comparing the equivalent discrete plant G.,q with that in Sec-
tion 12.1, we see that the matrices are the same except for one: In
Section 12.1 we had By, but here we have By4. Thus the two problems

are strongly related.
Let us now recap and summarize the design steps:

Step 1 Start with a state model for G:

A | B B
g(s)=| C1| 0 Di
Cy| 0 0

Step 2 Compute A; and Bsyg via
(Ad7 B2d) = C2d(A7 B27 h)

Step 3 Compute
Pi1 Pis —-A ByB]
0 e e )
Then compute By (via Cholesky factorization) satisfying
B14Bi,; = Py, Ps.
Step 4 Define the square matrices
A:[’é E;Q], Q=[C DIQ],[CI Dy |

and compute

My M A" Q
e[S

Then compute C14 and Dyog (via Cholesky factorization) satis-
fying

[ Cla Diga ][ Cia Diag | = My M.
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Step 5 Form the equivalent discrete-time system Gg,q4:

Aq | Bila By
geq,d(A) = Cla 0 D12g
Cy 0 0

and compute for G4 the Ho-optimal controller Ky ,,; and the
optimal performance min ||£¢,||2.

Step 6 The Hj-optimal Ky for the SD system is K4 oy and the
optimal performance is

T, R, 1/2
min [|fl|2 = (|| D1y s + min [l [13)

where the Hilbert-Schmidt norm of D, is (Example 12.2.2)
h pt ,
1Dy, |13 = trace (B; / / e C’{C’leTAdetBl> .
o Jo

12.4 Examples

This section presents a few examples to compare the two techniques
presented in this chapter.

Example 12.4.1 Consider again the SD step-tracking system studied
in Example 12.1.1; it is redrawn in Figure 12.14. Here we assume

d r e € Y
%74 M S| ’Kd ...... o H P

Figure 12.14: The SD tracking system.

no a priori knowledge of when the step input is applied, that is, the
step input r is not assumed to be synchronized with the sampling
operation. This means that the fictitious input d to the reference
model W [w(s) = 1/s] is a shifted impulsive function d,(¢) := §(t —7),
where 7 € [0,h) is unknown. Let T4 be the linear system d — e in
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Figure 12.14. It makes sense now to minimize the time average of the
quantity ||Teqd- “%a namely,

h
/ | Teqdr||3d.
0

(Recall that in Example 12.1.1 we minimized [|T,qdp|[3.) This is the
generalized Hy measure introduced in Section 12.2. Putting things in
the standard framework as in Example 12.1.1, we get the generalized
plant

where the matrices are given in Example 12.1.1. By Theorem 12.3.1
the equivalent discrete-time system G, 4 is

Ag | Bia By
Geqda = | Cia| 0 Diyg
Cy 0 0

All matrices are the same as in Example 12.1.1 except Bjg4, which we
compute via Step 3 of the procedure in the preceding section:

1 00
BuBl,=|0 0 0
0 0 O
Thus
1
Big=B1=| 0
0

This means that the equivalent discrete-time system here is exactly
the same as that in Example 12.1.1 and hence the optimal controller
is the same too. It turns out that this is the case in general for the SD
step-tracking setup; in other words, this observation is true regardless
of what P and h we have (Exercise 12.7). So in the step-tracking
case, the generalized H2 measure is essentially the same as the simpler
measure introduced in Section 12.1.
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W, fn Um
RN Gh M)

H e Ky [ S

Figure 12.15: Master manipulator.

Example 12.4.2 Figure 12.15 shows half the telerobot of Example 2.3.1,
namely, the master side (see Figure 2.3). A human provides a force
command, fp, to a manipulator, G,,; the sampled-data controller,
HK,,4S, measures the velocity, v,,. Ideally, we want a desired compli-
ance, say vy, = fp for simplicity. As in Example 6.5.1, the manipulator
dynamics are taken as simple as possible, §,(s) = 1/s, and f}, is taken
to be the triangular pulse

2,  0<t<1
)= —2t+4, 1<t<2
0, t>2,

to mimic a ramp-up, ramp-down command. This can be approximated
as the output of the model

gh(s):2/(1+§+f—;>2

with input wy, the unit impulse.

Let us first design K,,q by the simple method of Section 12.1, that
is, K;pq should minimize || f3, — vy, ||2 for wy, = 6. The first step is to
put the system into the standard form of Figure 12.2. Taking state
models

(o) = [EH ] o) = 22 B

we get the following state model for G:

Ay, 0 ‘Bh 0
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Let us take h = 1, a value large enough to highlight the distinction
between the two methods. The equivalent discrete-time generalized
plant of Figure 12.4 is

A4 | Bi By
Cia| 0 Digqg
Cy | O 0

The corresponding discrete-time Hy problem is not regular because
Dy = 0. It cannot be regularized by advancing the input w by one
time step because CoB; = 0 too. Instead, we shall regularize by
perturbing to

Ag |B1 0 Bog
Cia| 0 O D124
02 0 £ 0

The design turns out to be relatively insensitive to small enough ¢; we
can take ¢ = 0.01. The problem can now be routinely solved by the
formulas in Theorem 6.5.3.

Second, let us design K,,,4 by the generalized method of Section 12.3;
the criterion is || f, — v || averaged over T for wy, = §,. The equivalent
discrete-time system is

Ay | Big Bog
Cia| 0 Digq |,
Cy 0 0

which can be regularized to

Ay | AgBig  Bog
Cia | C1aBia Digq
Cy | CyByy 0

This satisfies all the required assumptions for Theorem 6.5.3.

Figure 12.16 shows simulated responses for the two designs: The
solid line is vy, (t) for the simple method, the dashed line is vy, (¢) for the
generalized method, and the dotted line is fj (%) used in the simulation
(this is the exact f;, not the approximation used in the design). The
two vp,-reponses are quite close. By contrast, Figure 12.17 shows
simulated responses when the force input is applied some time during
the first sampling period. The response of the generalized design is
much better.
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15F

-0.5
0

Figure 12.16: Manipulator velocity, vy, for the simple design (solid)
and the generalized design (dash); force input, f3, (dot).

15¢

-0.5
0

Figure 12.17: Manipulator velocity, vy, for the simple design (solid)
and the generalized design (dash); force input, f3, (dot).
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Exercises

12.1 Show that D94 has full column-rank if the system with state
matrices (A, By, C1, D12) is left-invertible, that is, only the trivial input
produces the trivial output. A sufficient condition for this is that Dqs
has full column-rank.

12.2 Repeat the design in Example 12.1.1 for h = 3 and simulate the
step response.

12.3 Let F be described by (12.5). Show that F is causal iff f(¢,7) =
0 whenever ¢ < 7 and is h-periodic iff f(¢t+ h,7 + h) = f(t, 7).

12.4 Show (12.7).
12.5 Prove Lemma 12.2.1.
12.6 Derive the impulse response in (12.11) for the operator F'.

12.7 For the step-tracking setup in Figure 12.14, let

Show that regardless of what P we have, the following relation is
always true:

h
/ e BBl dt = hB, B).
0

Thus the problem of minimizing the generalized Ho measure of d — €
in Figure 12.14 is essentially the same as that of minimizing ||e[|2 in
Figure 12.9.

Notes and References

The idea of using continuous-time performance specs in SD design
was first reflected in the work of Levis, Schlueter, and Athans [102]
and Dorato and Levis [38] on LQR design with sampled state feed-
back; their technique of converting a SD problem into an equivalent
discrete-time problem was later generalized in [27] to Hg design with
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SD dynamic feedback. Section 12.1 is based on [27]; however, the proof
of Theorem 12.1.1 is rewritten using continuous lifting. Based on this
performance criterion, it is interesting to note that linear time-varying
control sometimes has advantage over LTI control [29].

The generalized Hs control problem was independently posed and
solved by Khargonekar and Sivashankar [91] and Bamieh and Pearson
[17]. The proof of Theorem 12.3.1 is adapted from [17]; an elementary
proof, without resorting to the lifting technique, is given in [24]. There
is also a sensible stochastic interpretation for the generalized Ho mea-
sure; for this see [17]. For more general setup to handle discrete-time
exogenous inputs, see [91].

The materials on Hilbert-Schmidt operators in Section 12.2 can be
found in many books on operator theory, e.g., [59]. Theorem 12.2.1 is
from [135].
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Chapter 13

Hoo-Optimal SD Control

In Chapter 7 we dealt with H,.-optimal control for discrete-time FDLTI
systems, where intersample behaviour was ignored in design. To con-
tinue our study of SD systems from a continuous-time viewpoint, we
shall devote this chapter to H-optimal control of SD systems.

The Hyo-norm of a continuous-time transfer function equals the
Lo(R; )-induced norm of the corresponding linear system. For SD
systems, there exist no transfer functions in the normal sense in con-
tinuous time; thus we define the Ho,-norm of a SD system as the
Lo(R; )-induced norm. Using continuous signals, this definition cap-
tures the behaviour between samples.

Throughout the chapter we are concerned with the standard SD
system in Figure 13.1. For simplicity, we write T' for T},,,, the system
from w to z in Figure 13.1. Two questions which are of primary interest
to us are as follows:

Figure 13.1: The standard SD system.

343
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(1) Given G and K, which provides internal stability, how to com-
pute the L£o(Ry )-induced norm of the system 7'7

(2) Given G, how to design K, to minimize the Lo(R;)-induced
norm of T'7

The first question is for H, analysis and the second for synthesis.
The questions are complicated because the systems in consideration
are not LTI; however, by periodicity, they are still tractable using the
continuous lifting technique.

The solutions to the analysis and synthesis problems are based
on a process called Ho, discretization: For v > 0, construct an LTI
discrete-time system G4 4 connected to Ky as in Figure 13.2; the two

Geq,d

o DKy

Figure 13.2: The equivalent discrete-time system.

systems T" and T,q 4 : w — ¢ in Figure 13.2, are equivalent in that
|T|| <~ iff | Teqall < 7y, where the latter norm is ¢2(Z.)-induced and,
since T 4 is LTI in discrete time, it equals the H.o(D)-norm of the
corresponding transfer function tAeqyd. Thus the techniques in Chapter 7
are immediately applicable.

As will be seen, the H, discretization process is not quite ezact in
the sense that G, 4 depends on . Recall that in Chapter 12 we got
an exact equivalence between the SD Ho problem and the associated
discrete-time Ho problem. The difference can perhaps be explained by
the fact that Ho, problems are in general considerably harder—even
the simplest problem of computing the H . (ID)-norm of a discrete-time
transfer function requires a search on y—see Corollary 7.1.1.
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13.1 Frequency Response

We begin this chapter by extending the notion of frequency response
to SD systems; it will then turn out that the natural notion for the
Hoo-norm of a SD system is the maximum magnitude (norm) of the
frequency response.

To motivate the SD case, consider a SISO, continuous-time, stable,
LTI system F, with transfer function f (s). The frequency response,

f(jw), can be generated experimentally as shown in the following di-
agram:

elwt P f(jw)erwt

That is, the sinusoidal input e/“! (applied over —oo < ¢ < 0o) produces
the sinusoidal output f(jw)e’. More generally, if we define the vector
space of all sinusoids of frequency w,

Vo = {v:0(t) = /“lu,u € C}

then this space is invariant under F' (that is, v € V,, implies Fv € V)
and moreover the following eigenvalue equation holds:

Fv=f(jw)v, veEV,.

Let us extend the preceding to the MIMO case. Suppose f(jw) is
pxm. If u € C™, then the sinusoidal input v(t) = e/“*u produces the
sinusoidal output y(t) = f(jw)e’“*u. Defining

V, = {v :v(t) = /'y, u a complex vector} ,

we get again that V), is invariant under F' and that

~

Fv= f(jw)v, v€e,.

What happens if we put a sinusoid into a SD system?

Example 13.1.1 Consider the simplest SD system, namely, sample-
and-hold HS. Let u(t) = ¢/*' and y = HSu. As in (3.6), define

[ 1/h, 0<t<h
r(t) = { 0, elsewhere.
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y(t) = hY et —kh)
k
— lutp Z efjw(tfkh)r(t — kh).
k

The function

w(t) :=hY eIk (g — kh)
k

is periodic, of period h, and y(t) = e/“*w(t). Thus the response of HS
to a sinusoid is the product of the sinusoid times a periodic signal of
period h. Perhaps a more concrete way to represent y(t) is in terms of
the Fourier series of w(t):

w(t) = Zejk“’stak.
k

Then y(t) has the representation

y(t) = Y Sy
k

that is, y(¢) contains harmonics at all frequencies w+kws, k = 0, £1,£2,. ...

The extension to the general case goes like this: Suppose F' is a
continuous-time, h-periodic, stable system—such as a SD system. Let
ug € K = L£5[0,h) and let u denote the periodic extension of wug; that
is, uo(t) is defined on [0, h), u(t) is defined on all of (—o0, 00), u(t) is
periodic of period h, and u(t) = ug(t) for ¢ € [0,h). Let P denote the
class of all such signals u; P is the periodic extension of K. Conversely,
from w in P we can recover ug in K as the projection of v onto K, simply
the restriction of u to the time interval [0, k). Define the linear space

Vo ={v:o(t) = (), u € P}.

In the lemma to follow, i (A) denotes the transfer function of the lifted
system F = LFL .
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Lemma 13.1.1 Assume F is a continuous-time, h-periodic, stable
system. Then V,, is invariant under F. Moreover, if v € V,,, y = Fuv,
and vy and yo denote the projections of v and y onto IC, then

yo=1 (e_‘jwh> vp.
Proof Let u € P, v(t) = e/“'u(t), and y = Fv. Let us lift v:

v_q

Vo
U1
V2

|
Il

The zeroth component is
vo(t) = v(t) = “'u(t), t€0,h).
Since u is h-periodic, the next component is
vi(t) = w(t+h), te€][0,h)
Iyt +h), te0,h)
= elWhed@ly(t), te[0,h)
= ryy(t), te(0,h).

And so on. Thus v, = efiwh
out in full as

vo. The equation y = Fv can be written

from which it follows that Y has the form

<
I

e I9hy,

Yo
ey,
erwhyO

v o fO] 0 0 o0 oMy
2ol= IO 0 o ity |
v i(?) i(‘l) i(.O) 0 o2ihy,

(13.1)



348 CHAPTER 13. Hoo-OPTIMAL SD CONTROL

i [ —kjwhvo}

k=0

()

Equation 13.1 implies that y € V,,, thus showing that V), is invariant
under F'. |

[*=,

The lemma justifies the definition that i (e*j“’h) is the frequency
response of F'; it is an operator on K. Since f(e_j“’h) is a periodic
function of w of period wg, it makes sense to define it on the interval
[—wN,wN].

13.2 H.-Norm in the Frequency Domain

Recall from Section 7.1 that computing the H-norm of an LTI discrete-
time system is related to the eigenproblem of a symplectic pair. The
goal of this and the next sections is to derive a similar result for the
Hoo-norm of SD systems. In this section we focus on an alternative,
frequency-domain expression of the Hyo-norm of SD systems.

For the standard SD setup in Figure 13.1, assume the generalized
plant G and the discrete controller K; are both FDLTI with stabiliz-
able and detectable realizations:

A | B B
g(s) = | Ci| 0 Di (13.2)
Ca| O 0

ha() = [g—ﬂ%] . (13.3)

Here, we have taken Ds; = 0 because the sampler must be lowpass
filtered for ||T'|| to be finite. We have also assumed that D;; = 0; this
is for a technical simplification—in the lifted system the operator D,
is compact iff D11 = 0.

Using continuous lifting, we lift 7' to get T := LTL™'; this is
exactly the map w — z in the lifted system of Figure 13.3, where G
has the state model

Ad ‘ §1 Bag
Ci| Dy Dy
Co| O 0
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I

S DKy

Figure 13.3: The lifted system.

and the operators are given in Section 10.3. The corresponding closed-
loop state model for T is

Ag+ BygDgCy  ByeCr | By

Ay | B
[ Cd 5 ] = BrCy A | 0 . (13.4)
e = Cy+Dy3DkCy Dy5Ck | Dy
Note that A, is a matrix, while B, C,;, and D,; are operators on

appropriate spaces.

Since L and L~! are isometries, we have that ||T|| = |||, that is,
the L£o(R; )-induced norm of T' equals the ¢5(Z ., K)-induced norm of
T. The advantage of this lifting construction lies in that T is now LTI
(albeit with infinite-dimensional input and output spaces) and thus, as
in Section 12.2, we can associate an operator-valued transfer function
with T':

i(A) = 211 + )‘ch(I - AACZ)_IB

cl*

If the SD system is internally stable, or equivalently, A is stable, then
for every A € D, £(\) is a bounded operator from K to K.

Let B denote the set of all bounded operators from K to K with the
K-induced norm. The Hardy space Hqo (D, B) consists of all operator-
valued functions f : D +— B that are analytic in D (with power series
expansion in the neighborhood of every X\g € D), have boundary func-
tions on O, and satisfy

sup [|£(7”)]] < oo.
0<f<2m

The left-hand side is defined to be the norm on Hoo(ID,B), denoted
[ flloo- Tt is a fact that Heo (D, B) is a Banach space. Note that since
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i(eja) € B, ||£(ej9)|| is the K-induced norm:

I/l = sup —=——.
- 0£wekK [Jwl|

The space Hoo (D, B) can be regarded as a generalization of H oo (D)
from matrix-valued functions to operator-valued functions. Recall that
the norm on H (D) is defined by

1o = sp_ouas | £(e)] .

0<6<2r

The largest singular value of f (e7%) is the induced norm on Euclidean
spaces; so if we regard f(e/?) as an operator on Euclidean spaces, we
have

Ifle = sup_ 17|

0<h<2m
just like the norm on H (D, B).

Now let us return to the lifted SD system. It follows that if Ay
is stable, then the transfer function  belongs to H.(ID,B) and thus
l£lloo is well-defined. Does this frequency-domain norm relate to the
time-domain norm of T'?7

Theorem 13.2.1 Assume the SD system is internally stable. Then
IZ] = [I£l]oc-

Thus the L2(Ry)-induced norm of the SD system 7' equals the
Hoo(D, B)-norm of the transfer function of the lifted system. This
justifies our terminology of using H., in the SD context.

Finally, we remark that SD systems form a subclass of periodic
systems and the discussion in this section could be extended to the
more general class of h-periodic systems.

13.3 H.-Norm Characterization

From the preceding section we saw that the £o(Ry )-induced norm of
T is equal to the H o (DD, B)-norm of #:

~ ~ 9
[tlloo = sup [l£(e””)].
0<f<2m
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However, this does not immediately provide a way for computing the
‘H~o-norm since given a 6, it is not clear yet how to evaluate the norm
of the operator £(e/?) in B. The goal of this section is to move one step
forward, namely, to relate the H (D, B)-norm of £ to some symplectic
pair of matrices.

Fix 0 < 0 < 2w. The first question we address is the following:
Is the norm of (e’?) equal to its largest singular value? The answer
turns out to be yes. First, let us see that ||£(e’?)|| is no less than the
largest singular value of £(e/?).

Let v > 0 be a singular value of £(e’?). Then +? is an eigenvalue
of £(e7?)*#(e7?), so there exists a nonzero u in K such that

ey #(e7)u = 2.
It follows that
I1£(e”)ull> =

=

e/")u, i(e’”)u)
N (1Y, u)
v, u)
72l
This implies that ||£(e??)]| > 7.
Recall that

i’ =Dy +e’C (I —e"Ay) !B

£
£

—_

cl*

Since D;; is compact (D;; = 0) and A is a matrix, the operator
f(ejg) is compact too. It is a fact that for any compact operator, its
norm equals its largest singular value. Thus the norm of £(e’?) equals
indeed its largest singular value. This fact gives a potential way to
compute the norm via computing the singular values.

Notice that by the maximum modulus theorem,

Itlloe > IE(0)I] = 121, I

Thus to compute ||£||so, we just need to search over those singular
values of £(e/?) which are greater than ||Dy]|.
For « a positive number, introduce the symplectic pair (S;, S;)

[ Ay +§c12121(72 - 211_T%)71Qc1 0 ]
—Cu(y* =Dy DY)~ Cy I

S, = [ I B (v? —ZQEQH)_I_% ] _
0 [Ay+B,Dy(v* — Dy DY) Cyl*

S =
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The pair (S, S,) is associated with the transfer function ¢ in (13.4).
The operators 42 — D, D3, and 2 — D%, Dy, are invertible over B if
v > ||D;;|l- Examining the domains and co-domains of the operator
compositions, we see that S; and S, are in fact matrices, not operators.

Theorem 13.3.1 Assume v > ||Dy|| and 0 < 6 < 2w. Then vy is a
singular value of t(e7?) iff e779 is an eigenvalue of (S, S,).

The proof of the theorem is exactly the same as that of Theo-
rem 7.1.1, with the simple modification of replacing matrix transposes
by operator adjoints where appropriate.

Similar to Corollary 7.1.1, the following is a consequence of Theo-
rem 13.3.1.

Corollary 13.3.1 Let Y4y be the mazimum v such that (S;, Sy) has
an eigenvalue on the unit circle. Then

[£lloo = max{|| Dy, Ymaa }-

Starting from the computation of ||D;,|| (Section 13.5) and the
matrices in (S;, S,), we could give a procedure to compute ||£||o, based
on this corollary. However, we shall not pursue this direction because
in the next section we shall associate to the SD system a discrete-time
system with finite-dimensional input and output spaces from which we
can compute ||£]|so-

13.4 H., Discretization of SD Systems

Continuing with our discussion and notation of the preceding sections,
in this section we describe a process, called H, discretization, which
associates a usual discrete-time system to the SD system in Figure 13.1;
both systems satisfy the same H,,-norm bound.

Fix v > ||D;;||. From Corollary 13.3.1, the Hoo (D, B)-norm condi-
tion ||£]|eo < 7 can be characterized by the eigenvalues of the symplec-
tic pair (S;,S;). Since (S;,S,) is a matrix pair, it is conceivable that
there exists a matrix-valued discrete-time transfer function tAeqyd such
that the condition ||feq.qllso < v gives rise to the same symplectic pair
(S1,Sr). We will show later that the linear system T,, 4 is the map
w + ¢ in Figure 13.4, where the FDLTT discrete-time system G, 4 is



13.4. Hoo DISCRETIZATION OF SD SYSTEMS 353

Geq,d

S DKy

Figure 13.4: The Ho-discretized system.

defined by

Aga | Bug B
geq,d()‘) = Cld 0 D12d s
Cy 0 0

with the matrices Agzg and Bygq given by

A4 = Aq4+BD} (v —-DDj)"'Cy
Bsiq = Bag+ B Di\(y* — Dy, D}))"' Dyy,

and B4, C14, and Dyyq via

Bi4Biy =’B,(v* — D}, Dy,) "' B}

C Ci . \—
[DH][qdDm]z%[ﬁ}h%—ggh)ﬁglQuy
12d =12

The realizations of geq 4 and kg in (13.3) induce a realization for
the closed-loop transfer function tAeq,d :w — ( in Figure 13.4:

[ Acd | Bea

Agq + BogaDCo  BoyyCk ‘ By
Cea| O ] -

BrCs Ak 0 |. (13.5)
Chd + D12aDkCy D134Ck | 0

It is clear that the SD system in Figure 13.1 is internally stable iff the
matrix A, defined in (13.4) is stable and the discrete-time system in
Figure 13.4 is internally stable iff the matrix A4 is stable.

Now we can state the main result of this chapter.
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Theorem 13.4.1 Assume y > ||D;,||. Then the following statements
are equivalent:

1. Ay is stable and ||t]|oo < 7;

2. Agq is stable and ||tAeq,d||oo <.

Notice that by Theorem 13.2.1, ||£||cc = ||T||. Thus this theorem
establishes an equivalence between the SD H ., problem, that K, inter-
nally stabilize G and achieve ||T'|| < -y, and the associated discrete H,
problem, that K, internally stabilize G¢q 4 and achieve ||tAeq’d||oo < ;
the latter problem is solvable using techniques discussed in Chapter 7
once the matrices in G4 ¢ are computed.

Proof of Theorem 13.4.1 First, we show that the first statement
implies stability of A.4. Putting definitions (13.4) and (13.5) together,
we have

dd = Adt| Dy (v — Dy, D1y)

[ Q1 +Q12DK02 21201( ]
= Ag+ BuDi (v’ — Dy D7) "' Cy
= Ag+By(y’* - Di\D,,)"' D}, C,.

In addition, the following state model can be derived for the operator-
valued transfer function (y? — D3,%)~!:

Aa +B,(v* - Di,Dy,)"' D}, C, ‘ B.,(v* =D Dy,)!
(v* - D}, Dy,)"' D}, C, ‘ (v — D}, D)

(13.6)
Thus A.q equals the A-matrix of (y? — D3,#)~!. Since ||| < 7 and
|ID11]l < 7, it follows that

(v* = D11f) ™! € Hoo(D, B),
and hence that

CiDy1(v* — D11 Dy1)(v* = Di1t) ' (v* = Di;D11) By € Hoo(D).

The latter is a matrix-valued, not operator-valued, transfer function.
From (13.6) a state model for the latter transfer function is

Ay + B,(v* - Di,Dy,) 'D}C, ‘ gczﬁﬁz
QleHQTIch ‘ Qz1211(7 - QﬁQu)Ezl
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These latter state parameters are matrices, not operators. To conclude
that A4 is stable, it remains to show that the pair

ACl + Ecl('yZ - QTIQH)ilQTIchv Eclﬁzl
is stabilizable and the pair

CHD D} Cy, Ag+By(y’ — Di\Dyy) ' D} Cy

cl»

is detectable. These follow from stability of A;.

Next, we need to show that the second statement implies stability
of A,. This requires introducing an intermediate system and is left as
an exercise (Exercise 13.3).

Finally, since feq,d is a usual discrete-time system with the real-
ization in (13.5), we form the associated symplectic pair for feq,d (see
Section 7.1):

B Aggy 0 I —2BaaBly
(SldaSrd) - <|: _%Céldccld I ] ’ |: 0 A,cld .

Then the proof is completed by observing that (S;, S;) = (Si4, Sra):
For example, for the (2,1) blocks in the left matrices, we need to show

* £ \— 1
—’Ych(’Yz — Dy, D7) IQCZ = —;Cézdccld- (13.7)
Indeed, since
I 0
ch:[gl 212]|:DK02 CK:|,
we get that the left-hand side of (13.7) is
I 0 , Q){ 2 * \—1
- [ DxCy Cx ] [Qﬁ ] (v =Dy Dj;)
I 0
[ G Dy ] |:DKCZ Ck ]

1 1 ol]7[cy ] [ I 0 ]
= —= Ciwa D
v [ Dk Cs C’K] [D’m [ Cua Diaa | DkCy Ci

1
= —;Cézdcczd-
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Notice that Gqq depends on 7. Thus until a satisfactory v is
found, iteration on < is necessary. Remember that v has to be chosen
such that v > ||D;,||. Hence it is desirable to compute || D, |; this is
a non-trivial task and will be treated in the next section. Once 7 is
chosen, the computation of G4 4 requires evaluating several operator
compositions which are summarized below:

2 -1
B, DY, (v* = D, DY) Cy
B Dj;(y* = Dy, Dj;) 'Dyy
2 2 -1
v By(y" = D1 Dyy) By

Cy o o\
’72 [ 5*1 ] (’72 — Dy, D7) ! [ Cy Dy ]
Lo

These matrices are computed in Section 13.6 using matrix exponen-
tials.

13.5 Computing the £5[0, h)-Induced Norm

This section presents two methods for computing the £5[0, h)-induced
norm of D;;: The first is based on computing the singular values of
D, D7, the second on fast discretization.

Recall that D;; is the compression of G1; to K = L2[0, h). For the
state model of G in (13.2), G1; has the state model

. A | B

() = ||

To simplify notation, let us drop the subscript 1 in this section. Thus,
G is a continuous-time system with

- [442]

and the goal is to compute the norm of its compression D to K.
The operator D : KL — K is defined via

t
y=Du<ey(t) = / ce'"4ABu(r) dr.
0

This can also be described via the state equations

1 = Az + Bu, 271(0) =0 (138)
y = Cr, 0<t<h. (13.9)
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Since D is a compact operator (since D = 0), it follows that ||D]|
equals the largest singular value of D, or the square root of the largest
eigenvalue of DD*. Therefore ||D|| can be computed by characterizing
the (nonzero) eigenvalues of DD*.

It is left as an exercise (Exercise 13.5) to verify that D* : u — y is
described by the following state equations:

g = —A'zg—C'u, xo(h) =0, (13.10)
y = Bz, 0<t<h. (13.11)

For «v > 0, define the matrix-valued function

0= G0 Gt | =ty 5 o

where the partitioning is conformable with that of the right-hand ma-
trix.

Theorem 13.5.1 Assume v > 0. Then v? is an eigenvalue of DD*
iff

det[QH (h)] =0.

Thus ||D|| can be computed as follows: Compute Q11 (k) as a func-
tion of v > 0; then ||D|| equals the largest v such that Q11(h) has an
eigenvalue at 0.

Proof of Theorem 13.5.1 We shall prove the theorem under the
assumption that (A, B) is controllable and (C, A) is observable; then
we shall discuss the proof in the general case.

(=) Let v2 be an eigenvalue of DD*. Then there exists a nonzero
f € K such that

DD*f =~*f.
Define g = y~2D*f to get the pair of equations
Dg=f, D'f=7%. (13.13)
In terms of state equations we have
1 = Azi+Bg, z1(0)=0
f = Cr, 0<t<h
iy = —A'zg—C'f, m3(h) =0

g = 7 ?Bzy, 0<t<h
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Eliminate f and g to get

][ CN0E] [ ]-o

Thus for 0 <t < h,

2(t) ] — QW) [ 2(0) ] _ [ Q11(t)z2(0) ]
|z (t) 0 Q21(£)z2(0) |
To satisfy the boundary condition zo(h) = 0, we must have Q11 (h)z2(0) =
0. Since f # 0, it follows that z2(0) # 0, and so det[Q11(h)] = 0.

(<=) Assume det[Q1;(h)] = 0. Then we can choose a nonzero s
satisfying Q11(h)z29 = 0. By reversing the steps above we see that f
and g satisfying (13.13) are given by

2] - e S0E] o]

o] e )]

Thus the proof is completed if we can show f # 0, or equivalently,

[ ‘2 ] # 0. Since 90 # 0, this follows from observability of the pair

0 C —A -C'C
([ Y7?B 0 ] ’ [ Y?BB' A D ’ (514
which is a consequence of the minimality assumption of (A, B, C,0)
(Exercise 13.6). [

Now let us look at the proof without the controllability and ob-
servability assumptions. We look at the case that (C, A) is observable
but (A, B) is not controllable; the general case follows similarly. By a
suitable similarity transformation, we can take

[ An Ap _ [ Bm
=[] e

C = [Cn ],

where A,,, contains all the controllable modes and Ass all the uncon-
trollable modes. Thus a minimal realization for § is

o= [
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For v > 0, define

| Qmii(2)

Qul) = Qun (1)

Qmi2(t)
Qm22 (t)

-]

_A’m
'Y_zBmB;n

359

—C" Crm
Am

I}

Thus by the above proof of Theorem 13.5.1, 2 is an eigenvalue of
DD* iff det[@Qm11(h)] = 0. We shall show that det[Qi1(h)] = 0 iff

det[QmH (h)] = 0

Define
—A -C'C
B o= | v ?BB'" A ]
[ Al 0 —C! Cn,
_ —Aly,  —Ay —CiCy
v 2B,B!, 0 Am
| 0 0 0
and
I 0 0 O
0 0 I O
Ti=1 0 10 0
00 0 I

—C! Cy
—ChCy

Arz

conformably. It can be verified that J{; = Joz and Ji))lEJQ:} amounts
to switching the second and third block rows and the second and third

block columns in E:

—A —C'Cp 0
—2B,,B! A 0
J—IEJ — 'Y m m m
S —Aly  —CiCm —Ab
0 0 0

—CnCy
A
oTer
Ao

The special structure of the right-hand matrix yields

Qmii(h) Qmiz(h) 0 ?

0

I35 Q(h) Jos = Qm%_,l(h) Qm%’, () e—i?A’22 7
0 0 0 etz

where 7 denotes an irrelevant block, and so

_ | Quuu(h) 0

Quh) = | !

oA,
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hA

Since e~"422 is nonsingular, this proves that det[Q;(h)] = 0 iff

det[QmH (h)] = 0

The second method to compute ||D|| is via fast discretization. Re-
call from Section 8.2 that the fast-rate discretization of G is SyGHy,
where the fast sampler Sy and hold H; have period h/n. The transfer
function for S;GHy is

Af | By
clo |’

where
(A7, By) = c2d(A, B,h/n).

Now we lift the system in discrete time so that the lifted system corre-
sponds to the base period h. A realization of the lifted system is given
in Section 8.2:

]

Here we need only D,,:

0 0 0 e 0
CBy 0 0 e 0
D, = | CAsBy CBy 0 e 0
| CAY 2By CAY By CAY "By -+ 0 |

This D,, captures the behaviour of SyGHy in the first sampling inter-
val, [0, /). Since we would expect SyGH to emulate G for sufficiently
large n, so also we would expect D,, to emulate D, the compression of
G to the first sampling interval. It can be shown that this is indeed so
and

HQ“ = nlggo Umax(Dn)-

Example 13.5.1 In Section 13.8 we shall perform a SD H., design
for the system in Example 7.2.1. Here, let us compute the norm of the
associated D;;. Note that h = 0.5 and

o] 5]
w9 Z9
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is given by
1
[(2.5/7)s + 12"

We shall compute ||D;, || by the two methods presented in this section.

First, we plot in Figure 13.5 the minimum magnitude of the eigen-
values of Q11(h) versus 7. The value det[Q11(h)] = 0 occurs when
v = 0.016,0.0775. These two values of vy are singular values of D
by Theorem 13.5.1 and therefore ||D, || equals the maximum singular
value, namely, ||D,;]| = 0.0775. This equals the norm of the com-

(= “ 0| -

1

09r

08

0.7+

0.6-

05r

041

0.3-

02r

01r

0

0 002 004 006 008 01 012 014 016 018 02

Figure 13.5: Minimum magnitude of the eigenvalues of Q11(h) versus
7.

pression of G1; to K. [In contrast, the norm of G1; on all of L9(R)
equals ||| = 1.]

Next, via fast discretization we form the matrix Dy, (the D-
matrix of SyGy1H  lifted) and compute omax(D11n) for n from 1 to
50; this is shown in Figure 13.6. We see that opax(D11,) converges
quite slowly. For n = 50, omax(D11,) = 0.0762, which is not yet very
close to ||D;;||. An additional disadvantage of this method is that D,
grows in size as n increases. For these two reasons the first method
seems better.
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Figure 13.6: omax(D11n) versus n.

13.6 Computing the Matrices in G4

Under the assumption 4 > || Dy ||, Theorem 13.4.1 says that the SD
M~ control problem, ||T']| < v, is equivalent to the discrete-time Ho
control problem, ||tAeq’d||oo < v, where T, 4 is the closed-loop system
composed of a discrete-time generalized plant G4 4 and the same dis-
crete controller K;. For a realization of the analog plant

A|B B
g(s)=1C1| 0 Do |,
Co| O 0

the Hoo discretization Geq g4 is given by

Adq | Bua Boad

geq,d(k) = Cld 0 D12d )
Cy 0 0

with
Aga = Aq+B,Di(v* - Dy, Djy) 0,
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Baga = Bag+ BD}i(v* — Dy D}y) " Do,
and B4, C14, D124 obtained via the factorizations

Bi4Biy =’B,(v* — D}, Dy,) ' B}

C C .y
[ Dlld ] [ Cia Diza | =7 [ 5*1 ] (v*=DuDiy) ' [ C1 Dy .
12d Yo

The goal in this section is to compute the matrices in the realization
of §eq,a using matrix exponentials. The standing assumption is y >
IID;]|, which is easily checked since computing ||D;,| was already
treated in the preceding section.

Computing Ci; and Dy

We start with computing the matrix

cx _ O\ —
= [ _le ] (I =77*Dy, D7) ' [Ci Dy, ].

Once J is computed, Ci4 and Disg are obtained by performing a
Cholesky factorization of J, or simply by computing the square root
of J.

Recall from Section 10.3 that C'; and D;, are defined by

Ci: E=K, (Cz)(t) =Cres

t
Dyy: E—=K, (Dyv)(t) = Diov+Cy / =14 dr Byw.
0

Introduce the square matrix

A:[AB2].

0 0

Then it follows from Lemma 10.5.1 that

oA _ et f(f et=1AB, dr
=% I .

Thus the matrix operator [ Cy Do ] € > Kis

([Ql Ql?][i])(t):[cl Dlz]em[ﬂ. (13.15)
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Based on this, it is easily derived that the adjoint operator mapping
K to € is

* h !
[ Q,} ]u:/ oA [ g,l ]u(t)dt. (13.16)
=12 0 12

Now in order to evaluate the matrix .J, we need to compute the
action of the operator (I —~y 2D;;D%;) ' : K — K, which is well-
defined by the assumption v > ||D;,||. Let v € K and define

y=(I—-~"?Dy;Dj;) "u.
Then
w=y—v °Dy,Djy,
or
u=Yy- ’771Q11wa w = 77IQT1ZJ-

Using the state equations for D;; and Dj; in (13.8-13.11), we have
that

j?l = AJ?l +7_1B1w, 271(0) =0
u = y—Cizy, 0<t<h
and
iy = —A'zy—Cly, z2(h)=0
w = 'y*lBixg, 0<t<h.
Thus
11.32 o —AI 0 T2 —C{ :I?g(h) .
] L ] (2] [ [20)] -0
_ _ L2
u = [0 Cl][$1]+y, 0<t<h.
Rewrite the equations from u to y:
:i‘g . —A —C{Cl ) —Ci
[561 ] - [ vBB, A n || o |w (317)
za(h) | _
o | =0

1
y = [0 Cl][ii]+u, 0<t<h. (13.18)
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This system has two boundary conditions z;(0) = 0 and z2(h) =
0 and is therefore a two-point boundary value problem. Since (I —
v~2Dy,;D%,)! exists, we expect to be able to solve the equations for
y in terms of u.

Define Q(t) as in Theorem 13.5.1, that is,

—A -CiC
. tE L 1v1
Q(t) =, E = |: ")/72BlBi A :| )

and partition Q(¢) conformably. Integrate equation (13.17) from 0 to
t, 0 <t<h:

] = [5G ]+ [ee-n] T funar
Since 21(0) = 0, we get

2o(h) = Qr(h)z2(0) + [ T 0] /Q s [_()C{]U(T)dr.

Since v > ||Dy;]l, by Theorem 13.5.1, @11(h) is nonsingular. Hence
the condition z2(h) = 0 yields

22(0) = — [ Qui(h) / Qh—7 [ —OC{ ]U(T)dT.
Thus
28] - w47 3] Lo e

—/OtQ(t—T) [ 4 ]U(T)df.

We conclude by (13.18) that
v = [0 alfow| @ ]/ Q- | G utnar

_/OtQ(t_T) [ C(;l ]U(T) dT} +u(t). (13.19)

This determines the action of (I —+ 2Dy, D%,) ! : u — y. With this,
we can proceed to computing J.
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Define a new operator F : £ — K by

1 N\
F= (I— ?QuQu) [ C, Dy, .

It follows from (13.15) and (13.19) that (Fw)(t) = f(t)w, where f(¢)

is the matrix
=10 ¢ ]{Q(t) [ Q”E)h)_l 8]/OhQ(h—T) [ Coi ] x

t !
[01 D12]6Téd7' —/ Q(t—T)[C(Y)I][Cl Dlg]eTédT}-i-
0

[ C1 Do ]eté.
To evaluate the two integrals in f(t), define
we|? [T Dw].
0 A
Then by Lemma 10.5.1
otH — [ Q(t) N(t) ]

0 etd |7
where
t B Cl
N (t) ::/ Q(t—1) 01 ] [ Ci1 Dy ]eTédT.
0 L
Thus

s = (o a){em | @ D v - v}
[ Ci1 Dy ]eté.
With f(¢) computed, we can now compute J using (13.16):

h !
_ tA' Ch
1= [ g [
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The first integral involved, namely

h , C!
I ::/0 otA |: D’112 :| [ 0 C; ]Q(t)dt,

can be computed as follows: Define the matrix M (and P) as in
!
P M —A' 0,1 [0 C1 ]
=expi h D1, ;
0 @
0 E
then by Lemma 10.5.1,
I = e M. (13.20)

For the second integral, note that

N(it)y=[1 o]etH[?].

So the second integral in J, namely

L e 0
12::/0 eté[D,;][o a1 O]etHdt[I],

can be computed in the same way: Define V via

C/
P Vv —A [ ! ] 0 Cp O
[0 ehH]:eXp h o Diy [ . ]

0 H
Conformably with the blocks in H, partition
V=[M L].

(Note that the first block is the same M defined earlier.) Thus

I, = ehA,V[?]

= ML
The last integral in J, defined as

h , Cl
Joo ::/ eté |: D,l :| [ 01 D12 ]eté dt,
0 12
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is in fact equal to lim,_, J and was computed in Chapter 12. There-
fore

_ Qu 0] y_
J = Il|: 0 0 N I2+Joo

-1

_ ehdpr| @ 0 N — e g,
0 0

0

-1
= R'M [ Qél 0 ] N —-RL+ Jy.
In the following summary, the argument & is dropped [for example,

in @Q11(h)]. First compute the following matrix exponential

P M L
0 Q N
0 0 R
Cl
A g Jrear
— !
=exp{ h 0 B [001][6«1 Du]
0 0 A

where, conformably with the further partitions on the right-hand ma-
trix, each block matrix on the left is further partitioned into a 2 x 2
block matrix in the obvious way, for example,

R11 R12 _ Ad BZd
Ro1 Roo 0 I ’

the right-hand matrix being e"4. Then

0

-1
J=RM [ Qél 0 ] N —-RL+ Jy.
Computing B4

The matrix Byg can be found by a Cholesky factorization, or square
root computation, of the matrix

V=B, (I~ ’77229161211)_159{-
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Thus we shall focus on computing V. Recall that

h
B, : K=&, Elu:/ e=AB u(r) dr
0

Bf: €K, (Biz)(t) = Bleh=04g

Our first task is to compute the action of (I — 'y* 2D} Dyy) L Asin
(13.18), it can be derived that (I —y~2D},D,;)~! maps u to y, where

y(t)=[~"'By 0]

Saw[ e V] [an-n[ 2 Juewa

t

+ [ Q- [ 1B, ]U(T) dT} +u(t).

0

Define the operator

F=(I-y7DiDy)” Bj : £=K.
Then (Fx)(t) = f(t)z, where

f&)y=[B1 0]

x {Q( ) [ Qn ]/ Q(h [ *ZBlB’ ]e(h_r)A, "

The two integrals in f(¢) can be evaluated using the identity

Lo 4]} =-an[ |

and after some algebra we obtain

s =18 o]ew| @0, (13.21)
Thus
vV = r

0

I
NLUU
>

MDA BB, 0]Q(t) [ Qu(h)™ ] dt.
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The integral here can be computed by the identity

%{726_“‘ [0 T]QM}=e"[ BBl 0]Q(), (13.22)

which leads to

Vo= [0 I]Q(h)[Q”(Oh)_l]

= Y*Qu(h)Qui(h) "

The details of the derivation are left as an exercise (Exercise 13.7).

Computing Ay and By

Since the matrices Ay and Byg are readily computed, for example, they
are contained in the matrix R computed earlier, to compute A4q and
Bsyq we need to compute the matrix

F=[F F|:=BD;(»-D,Di)"'[C D].

Then Ayy = Ag+ F1 and Bygg = Bog+ Fs. It turns out that it is easier
to compute the matrix

Cs 1

F' = [ _»{12 ] (72 _QIIQTI) B
_ _ -1

= 7 2Qn (I—W’ 2QTlQn) ET-

From (13.21), [(I — v 2D}, Dyy) ' Biz](t) = f(t)z, where
=12 ojen] %]
Thus [Dy, (I — y~2Dj;Dyy) "' Biz](t) = g(t)z, where
olt) = /0 1ol B f(r) dr
= Cpet /Ote—”‘ [ BiB; 0]Q(r)dr [ Quih)™ ]
h

= PGt e 0 1]QM) [0 1]}[%( )1]
by (13.22)]
= [0 ¢ QM) [ Qll(oh)‘1 ]
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Therefore

NV Ie
F' = —/eté[ 1]gtdt
72 0 DI12 ()

_ /Ohe“" [ 5,112 ] [0 ]Q(t)dt[ Q”(Oh)_l ]

The integral involved is exactly the integral I; which was computed in
(13.20), so

F = ehA'M[ Qll(oh)_1 ] ’

where M was computed before and e"4" = R. Thus
F= [ (Qu(r)™) 0 } M'R.

Computational Procedure

Let us recap the steps to compute the matrices in G 4:

Step 1 Start with G:

A | B B
g(s)=| C1| 0 Dig
Cy| 0 0

and v > ||D;;]l. (||[Dy;]] can be computed using results in the
preceding section.)

Step 2 Define the square matrix

[4 B
a5 ]

and compute as in Chapter 12

h
Joo :/ eté’ [ 01 D12 ],[ Cl D12 ]etédt.
0
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Step 3 Define

A 00
BlBi/’yQ A
X = [0 Dp][0 ¢ ]
Y = [ 0] [¢ D],

and compute

P M L -A X 0
0 Q@ N | =exp{h 0 FEF Y
0 0 R 0 0 A

Partition each block on the left-hand side into a 2 x 2 block
matrix, for example,

- Qll Q12
@ = [Qm Q22]

Ry R
S

and hence Ay = Ry1, Bog = Rqo.
Step 4 Compute
F =R F]= [ Crok O}M’R
Ay = Ag+ B
Bagq = Bgq+ Fo.

Step 5 Compute By, (via Cholesky factorization, or square root
computation) satisfying

BBy =7Qn Q71
Step 6 Compute

-1
J:R’M[Qél g]N—R’LJrJOO
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and C4 and Diog (via Cholesky factorization, or square root
computation) satisfying

[ Ci¢ Diaa ]I[ Cia Diog | = .
Step 7 Then
Agq | Bua  Boad

geq,d(A) = Cia 0 D1aq
Cy 0 0

Several examples using this procedure will be given in the next two
sections.

13.7 H. SD Analysis

With the results derived so far, we can now answer the first question—
the analysis question—asked at the beginning of this chapter: Given
G and Kj in the standard SD setup, how to compute the Lo(Ry)-
induced norm of T,,,7 This can be resolved by the following analysis
procedure:

Step 1 Start with G, Ky, h:

A | B By
g(s) = | C1| 0 D2 |,
Cy| O 0

Assume internal stability.
Step 2 Compute ||D;;]| (Section 13.5).

Step 3 For v > ||Dy ||, compute the H., discretization

Agq | Bua Boad

geq,d(A) = Cla 0 D12g
Cy 0 0
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Step 4 Form
Agq + B2¢gaDrCy  BogqCrk | Big
[ Ada | Beia ] _ BrCy Ax 0
Cea| O

Ciq + D12¢DCy Di2qCi | 0

(if necessary, take a minimal realization) and the symplectic pair

Acd 0 ] [ I —BuyBl,/Y ])
S, S,) = , c .
( l ) ([ _Cézdccld/ﬁ’ I 0 Alcld

Compute
Ymaz = max{y : (S;,S;) has an eigenvalue on 0D}.

Step 5 || Towll = max{[| D[], Ymac } -

A bisection search can be used in Steps 3 and 4 to compute Ypaz;
but attention must be paid to the selection of upper and lower bounds
for Ymaz; see Example 13.7.2 below. In most cases, Ymaz > || D] and
then in Step 5 we have simply: ||T.u| = Ymaz-

Let us illustrate with a few examples.

Example 13.7.1 As a check of the formulas, let us recompute the
norm of HSP, where p(s) = 1/(s + 1); this operator is the system
from w to z in the open-loop system in Figure 13.7. The norm of

w z
—— P+ S |y I | H ———

Figure 13.7: The system HSP.
HSP was computed in Example 10.5.1:

h(1 —i—e_h)]l/Q‘

sl = |5

In particular, for h = 2, ||HSP|| = 1.1459.
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It can be verified that the map w — z in Figure 13.7 is exactly the
map T, of the standard SD system with

0 I
G_[P 0], Ky=1.

Thus we can also compute ||[HSP)|| via the general procedure above.
Note that for this example, ||D;;|| = 0. To find ymaz, define 5(7y) to
be the minimum distance from the eigenvalues of (S;,S;) to the unit
circle. For h = 2, we compute () for a range of v and plot the
function in Figure 13.8, from which we see that 7y, agrees with the
norm of HSP given before, namely, the maximum + such that 5 =0
equals 1.1459.

08

0.9 1 11 12 13 14

Figure 13.8: [ versus 7.

Let us look at another simple example but with a SD feedback.

Example 13.7.2 The SD system is depicted in Figure 13.9 with p(s) =
1/s and k4(A) = 1. This can be put into the standard setup with
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H k| Ky | §

Figure 13.9: A SD system.

i(s) = [ p(s) - —P(s) ] = (1) (1) o1

P 1[0 0

It is easily checked that the SD system is internally stable iff 0 < h < 2.
We would like to compute the Hyo-norm of T,y : w +— 2.

First, we take, for example, h = 1.5, and compute || D] = 0.955
using either of the methods in Section 13.5. To find ez, again we
let 3(-y) denote the minimum distance from the eigenvalues of (S;, S;)
to the unit circle. The function S(v) for 4 varying from 0.995 to 2.2
is graphed in Figure 13.10. We see that ym,q,; = 1.74 and this is also
1Tl

Next, we want to compute ||T,,]| for a range of h and see the
performance degradation when h becomes large. The method we used
before for computing 7,4z, namely, computing 3(vy) for a fine grid of
v, gives good illustration but requires considerable computation even
for a single value of h. A more efficient method is bisection search.
Since Ymaq is the maximum v such that 5(y) = 0, a bisection search
for Ymaz goes as follows:

Step 1 Start with a lower bound, 7;, and an upper bound, 7,,
with the following properties: v; < Ymaz < Yu, B(y) = 0, and
B(vy) # 0. Then we know that ¥4, is the only point at which
the curve 3(vy) breaks away from the horizontal axis. (v; and 7,
may be obtained by trial and error.)

Step 2 Let the middle point between +; and v, be v, and test
B(ym): If B(ym) = 0, improve 7y, to ym; if B(ym) # 0, improve
Yu t0 Ym. In this way we narrow the possible interval for v,qs
by a half.
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Figure 13.10: 8 versus v for h = 1.5.

Step 3 Repeat Step 2 until a satisfactory accuracy is achieved.

Using this method we can compute v, to any desired accuracy.

Now we compute ||T,,]| for h € [1,1.9] via bisection search and
plot the result in Figure 13.11. It is clear that || T}yl is an increasing
function of h: The larger h, the worse the performance. Theoretically,
limy, 9 ||T,w|| = 00, because the system becomes unstable when h — 2;
this trend is seen in Figure 13.11. To study the performance when
h — 0, we first regard the SD system as a digital implementation of
the analog system with the controller l;:(s) = 1; for this analog system,
|T%w|| equals the Hoo-norm of 1/(s + 1), namely, 1. With this in
mind, Figure 13.11 also shows that the SD system recovers the analog
performance as h — 0.

Example 13.7.3 We now return to the scenario of analog H, design
and digital implementation in Example 2.3.1. The analog controller
was designed to get good tracking for a range of frequencies and this
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1

101

Figure 13.11: || T,y || versus h.

was achieved via minimizing the H.-norm of the system

][5
w9 zZ2
in Figure 2.9, redrawn here as Figure 13.12, with ¢; = e = 0.01 and

R 20 — s A 1 " 1
) = oo+ 20 T = 0ams v 1 Y T (ams 1

05/m)s+17 "
The analog controller designed using the MATLAB function hinfsyn
is

i(s) = 1.4261 x 107 (s 4+ 20)(s + 6.2832)(s + 3.9436) (s + 0.01)
(54 631.69) (s + 159.56) (s + 39.230) (s + 1.3212)(s + 1.1876)

and achieves ||T%,|| = 0.0813. When K is implemented digitally, how
does ||T,y|| change with the sampling period A? (In Example 2.3.1,
the performance of the digital implementation using the step-invariant
transformation was analyzed approximately, since we could not com-
pute || Ty || for the SD system then.)

Notice that the small number €5 (and €;) was introduced to reg-
ularized the analog problem; its effect on ||T},]|| of the analog system
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21 w2 22
w €2 €1
w1y e Yy U
O F O K P

Figure 13.12: Analog feedback system.

is negligible. However, for the SD systems, €2 must be 0 for otherwise
||Tw|| would be infinite. Thus in the following computation we take
€2 = 0.

Digital implementations of K via step-invariant transformation and
bilinear transformation will be considered. First, step-invariant trans-
formation. As in Example 11.1.1, we can determine that the resulting
SD system is internally stable for 0 < h < 0.04 (quite a small range).
Using the procedures in this chapter we can compute ||}, || for a given
h. Figure 13.13 shows ||T% || as a function of h, 0 < h < 0.02 (solid
curve). It is clear that the #H,, performance degrades very quickly
when 5 increases.

Next, bilinear transformation. In this case, the SD system is inter-
nally stable for 0 < h < 0.46. Figure 13.13 gives ||T,y]| for 0 < h < 0.4
(dash curve). Note that now the performance degrades much more
slowly. Note also that ||| is not a monotonic function of h.

This example shows again that bilinear transformation is superior
to the step-invariant transformation in digital implementation.

13.8 H. SD Synthesis

The second problem posed at the beginning of this chapter is Hqo-
optimal SD synthesis: Design a Ky to give internal stability and mini-
mize ||T,y,||. This again can be achieved using H o, discretization. The
design procedure is summarized below:
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Figure 13.13:

|Twwl|| versus h: Digital implementation via step-

invariant transformation (solid) and via bilinear transformation

(dash).
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Step 1 Start with G and h:

A | B B
g(s)=| C1| 0 D1
Cy| 0 0

Step 2 Compute || D] (Section 13.5).

Step 3 For v > ||Dy,||, compute the Ho, discretization Gq 4:

Add | Bia  Badd

geq,d(A) = Cla 0 D12q
Cy 0 0

Step 4 Let T,,4 be the closed-loop map with discrete-time
plant G4 4 and controller K4. Test the solvability condition for
the standard discrete-time H,, problem: There exists a K4 q
to achieve internal stability and ||feqdllc < 7. If the test fails,
increase «y; otherwise, decrease 7; and go back to Step 3.

Step 5 When a satisfatory v is found, solve the discrete-time
Hoo problem ||teg allc < 7y for a stabilizing K4 This K, also
achieves || Ty | < 7.

Steps 3 and 4 can be combined together to give a bisection search
for the optimal <y, vop;. Therefore, the procedure can generate a con-
troller which gives a Ho, performance which is arbitrarily close to
optimality.

Several examples will be given below.

Example 13.8.1 In Example 13.7.3, we looked at discretizing an
‘H~o-optimal analog controller and saw that the performance degrades
rapidly as the sampling period increases. Now we consider direct Ho
SD design of the same system. The setup is depicted in Figure 13.14.

Note that we have to set e = 0 for the same reason stated earlier,
namely, that the sampler S must be lowpass filtered.

Let T, be the SD system from w to z = [ jl ] in Figure 13.14.
2
Fix h > 0. Let y,pt(h) be the optimal performance, that is,

Yopt (k) = inf{[| T}y | : Kg stabilizing }.
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ta 2

w €1

Figure 13.14: SD feedback system.

This can be computed using the preceding procedure. In order to
check the discrete-time solvability condition in Step 4, we transform
the problem into an analog one via bilinear transformation (see Sec-
tion 7.2) and then use the MATLAB function hinfsyn. For h = 0.1, 0.5,
we obtain 7,,; = 0.178,0.646, respectively. The corresponding opti-
mal controllers are also given by hinfsyn; transforming them back to
discrete time, we get the optimal K. For example, for h = 0.1,

]%d,opt()‘)

~ 7.9354(A — 7.3891) (A — 1.8745)(A — 1.3554) (A — 1.001) (X + 1.0007)

(A + 6.666) (A2 — 0.3467A + 3.096) (A — 1.1793)(A — 1.0233)

This process is repeated in order to generate the plot of 7, versus
h, as is given in Figure 13.15 (solid curve). Also shown are the plots
from Figure 13.13 for the designs by discretizing the optimal analog
controller. We see the obvious advantage of the direct SD design over
the discretized analog designs: For the same sampling period, the SD
design achieves much better performance than the discretized design
by step-invariant transformation, and much better performance than
the discretized design by bilinear transformation for ~ > 0.3. Further-
more, the SD design method always produces a stabilizing controller,
whereas the discretization methods produce stabilizing controllers only
for h small enough.

Another way to use the curves of performance versus h is to an-
swer the following question: Given a pre-specified performance level
v, determine the largest sampling period, A4z, required to achieve
that performance. From the performance-versus-h plots, we can find
hmae for a given value of « for the three methods: discretizing the
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Figure 13.15: vy, versus h (solid); [|T%y || versus h for digital imple-
mentation via step-invariant transformation (dash); ||T%,|| versus h for
digital implementation via bilinear transformation (dot).
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analog design via step-invariant transformation and via bilinear trans-
formation, and direct SD design. This is summarized in the following
table:

‘ step-invariant trans. Dbilinear trans. direct SD
v=0.1 hmaz = 0.005 hmaz = 0.015 Ay = 0.05
v=0.2 hmaz = 0.0112 hmaz = 0.04  Aypee = 0.113
v=0.5 hmaz = 0.0164 hmaz = 0.3 hmaz = 0.33

Recall that the optimal analog performance is 0.0813. So, for example,
a performance of 7 = 0.1 in the table means allowing about 23%
performance degradation from the optimal analog system; in this case,
direct SD design requires a sampling rate which is 10 times slower than
digital implementation via step-invariant transformation and 3.3 times
slower than via bilinar transformation.

Exercises

13.1 Consider the setup

41'/) S’ Yy G H e

Assume G is causal, LTI, SISO, and stable. Suppose v belongs to the
vector space of all discrete-time sinusoids of frequency 6, that is,

v E {gzﬁ:gzﬁ(k) =", a E]R}.

Then so does 1 (because SGH is LTT). To what vector space does y
belong?

13.2 If a continuous-time signal is sampled and the resulting discrete-
time signal is a sinusoid, of course this doesn’t imply that the continuous-
time signal is a sinusoid. What about if the continuous-time signal is
first shifted by an arbitrary amount, and then sampled?

Consider the setup
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DT SN S e—TS

Suppose that for some input u(t), (k) is a discrete-time sinusoid of
frequency 6 for every time delay 0 < 7 < h. Show that wu(t) is not
necessarily a continuous-time sinusoid. Hint: Try u(t) = e/%/hw(t),
with w h-periodic.

13.3 This exercise completes the proof of Theorem 13.4.1. Assume
Agq is stable, v > ||Dyyl, and [|egalloo < 7. Show that A, is stable
by the following steps:

1. Introduce an intermediate system

G,

e | K
with
Agi | YB1Ri  Baua
gm()\) = 7E2Q1 0 YRyDq4
Cy 0 0
R, = (¥*-DjDyy)"?
R, = (’72—2112%)71/2,

and denote the closed-loop map by

() = [ Zetd{ Belm ] .

~clm

Show that ||t,,[le0 < -

2. Show that A, is the A-matrix of (y2 4+ D%,#,,)"; conclude that
A, stable.
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13.4 Let G denote the SISO LTI system with transfer function 1/(s+
1). Compute the induced norm of the compression of G to L2[0,1].

13.5 Show that D7, is described by the state equations in (13.10)
and (13.11) with the boundary condition z2(h) = 0.

13.6 Assume (A, B;) is controllable and (C1, A) is observable. Show
that the pair in (13.14) is observable.

13.7 Verify in detail the derivation of the formulas for By in Sec-
tion 13.6.

13.8 The methods developed in this chapter provide another way to
compute the Ho-norm of an analog system via the eigenproblem of
some symplectic pair of matrices. For the analog system given by

o [42]

with A stable, list the steps in computing |||/~ via this approach.
Test your formulas by computing the H,.-norm of

5(s) !
§) = 5.
p $24+2s+2

Notes and References

Frequency-response functions for SD systems were introduced by Bamieh
and Pearson [16], who defined them as transfer functions of lifted sys-
tems. Araki, Yamamoto, and co-workers [152], [153], [6], and [5] inde-
pendently developed frequency-response functions in terms of Fourier
series. This concept was also used by Dullerud and Glover [44].

The problem of computing and optimizing the Lo-induced norm of
general SD systems was treated by Hayakawa, Hara, and Yamamoto
[73], Kabamba and Hara [82], [83], Toivonen [140], Bamieh and Pear-
son [16], Tadmor [136], Sivashankar and Khargonekar [126], and Sun
et al. [132], [133].

Theorem 13.2.1 is from [135]. Theorem 13.4.1 is from [16], though
not by symplectic pairs as here. The computations in Sections 13.5
and 13.6 are based on [16]. Computing ||D;; ]| is related to H, control
of time-delay systems [50], [157]; Theorem 13.5.1 is due to Zhou and
Khargonekar [157], where the minimality condition is assumed. The
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formula for By, is from [16]; the other formulas are different from and
more general than those in [16] because here Do # 0. It is possible
to generalized the formulas to the case of Di; # 0; but this would
considerably complicate the matter.

Bisection search was used for computing Ho-norms of FDLTI sys-
tems in [20].
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Appendix A

State Models

This appendix reviews state models for continuous and discrete time,
and the basic notions of controllability, observability, stabilizability,
and detectability.

Continuous Time

A finite-dimensional, linear, time-invariant (FDLTI), causal system
has a state model of the form

& = Az + Bu

y = Cx+ Du,
where A € R**" B € R*™*™_ (C € RP*" and D € RP*™. (As usual,
% denotes the time derivative of z.) If m = p = 1, this is a single-
input, single-output (SISO) system; if m = 1, p > 1, it is single-input,
multi-output (SIMO); and so on.

Frequently one wants to go back and forth between transfer func-
tions and state models. Let us look first at going from a state model to
a transfer function. In the above state model take Laplace transforms
with zero initial condition:

si(s) = Az(s)+ Bu(s)
9(s) = Cz(s)+ Du(s).

Thus the transfer function is
G(s)=D+C(s— A)'B.

It is a p X m matrix of rational functions.

389
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Now the other way, from a transfer function to a state model. First,
the SISO case: A state realization of

bn_lsnfl +...+ b

S(s) — d
9(s) + S+ ap_1s" L4+ +ais+a

18

0 1 0
0 0 1 0
A= . B=|°
: 0 (1)
0 1
L @0 —ai Tt —Qp—2 —0p-—1 |
C=[by - buy], D=d

If g(s) is a matrix, a realization can be obtained from realizations for
the individual entries of g(s). For example, suppose

wo-[30]. so-[442]

(g1, g2 could be submatrices). The block diagram is

A Y1
a1
[ N
Y [ v ]
. Y2
g2

The state equations are

j?l = A1$1 + Blu
To = A9z + Bou
y1. = Cir1+ Diu

yo = Chzo + Dou.
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Il-

If we take z = , we get
i) 1
A1 0 | B
v | 0 Ay By
g(S) - Cl 0 D1
0 Cs| Dy

On the other hand, if

0= [ 26 1. a6 =2

(again, g1, g2 could be submatrices), then the block diagram is

O—r e |

U2 R

— 92

whose state equations are

fEl = Alxl + B1U1
.’,‘UQ = AQZBQ + BQUQ
Yy = Cix1 + Diuy + Coxo + Daous.

Al 0 |B 0
f](s) = 0 A2 0 BQ
Ci Co| Dy D,

From these two examples one can do a general matrix §(s). For
example, if

§= g 12
g21 922
one can get four realizations for the four entries, then realize the two
rows,

~ ~

gi=1[du g2, ge=1gn G2 ],
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and finally realize g via

S _ | %
? [ 2 ] |
The MATLAB function tf2ss will take as input a SIMO transfer func-

tion, that is, a column vector; so to do a matrix one applies #f2ss
column-wise.

Discrete Time

Now we turn to state models for discrete-time systems. We use “dot”
in discrete time to denote time advance, for example, £(k) := &(k+1).
The general form of a FDLTI discrete-time state model is

£ = Af+ Bu
Y = C&+ Do,

where as before A € R**", B € R**™, (C € RP*", and D € RP*™,
The corresponding transfer function is

g(\) =D +XC(I - A)~'B.

Controllability: Continuous Time

The system
&= Az + Bu, z(0)=0 (A.1)

is controllable [or the pair of matrices (A, B) is controllable] if for every
target time t; > 0 and every target vector v, there is a control signal
u(t), 0 < t < tq, such that z(¢1) = v. Controllability is a property just
of the two matrices A and B. There is a simple algebraic test:

(A, B) is controllable <=
rank [ B AB A’B ... A"!'B|=n. (A.2)

The latter matrix, called the controllability matriz, is n X nm. (See
the MATLAB function ctrb.)

The rank test (A.2) is numerically ill-conditioned. It is convenient
to say that an eigenvalue A of A is controllable if

rank[A—A B]:n.
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Then a more useful test is as follows: (A, B) is controllable iff each
eigenvalue of A is controllable.

The most important fact about controllable systems is that their
eigenvalues can be reassigned by state feedback. That is, consider
applying the control signal

u = Fz+wv, v an external input

to the given state model, (A.1). That is, (A, B) is transformed to
(A+ BF,B). Then (A, B) is controllable iff for every set of desired
eigenvalues, there exists a matrix F' such that A+ BF has exactly that
set of eigenvalues. Of course, the desired set of eigenvalues must have
conjugate symmetry; that is, if A is a desired eigenvalue, so too must
A be.

Now we move to the related notion of stabilizability: (A, B) is
stabilizable if there exists a matrix F' such that A+ BF is stable, that
is, all its eigenvalues are in the open left half-plane. Not surprisingly,
(A, B) is stabilizable iff the (unstable) eigenvalues of A in Re s > 0
are controllable.

Controllability: Discrete Time

The relevant system is
£ = A¢ + Bu. (A.3)

The story here is almost the same as before; the only difference is
that we can’t expect to hit a target vector in an arbitrarily small time
because time is discrete. The results are summarized as follows:

1. System (A.3), or the pair (A, B), is defined to be controllable
if every target vector is reachable at some time by some input
sequence, starting from &(0) = 0.

2. (A, B) is controllable iff

rank[B AB ... An_lB]:n.

3. (4, B) is controllable iff

rank [ A-)\ B ] =n for each eigenvalue \ of A.
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4. (A, B) is defined to be stabilizable if there exists a matrix F' such
that the eigenvalues of A+ BF are all inside the open unit disk.

5. (A, B) is stabilizable iff

rank [ A—X B | =n for each eigenvalue X of A with || > 1.

Observability: Continuous Time

The system
T=Az, y=Cx

[or more commonly the pair of (C, A) | is observable if for every z(0)
and t; > 0, z(0) can be computed from the data {y(¢) : 0 < ¢ < ¢;}.
The main result is that the following five conditions are equivalent:

1. (C,A) is observable.
2. (A',C") is controllable.
3.

C
CA

rank . =n.
Cant

(This matrix is called the observability matrix.)

A— A

rank [ c

] =n for each eigenvalue A of A.

5. The eigenvalues of A+HC can be arbitrarily assigned by suitable
choice of H.

By analogy with controllable eigenvalues and in view of the fourth
condition above, we say that an eigenvalue A of A is observable if

‘o]

C

If an H exists to make A+ HC stable, (C, A) is said to be detectable.
The following three conditions are equivalent:

rank [



1.
2.

3.
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(C,A) is detectable.
(A’,C") is stabilizable.

Every eigenvalue of A in Re s > 0 is observable.

Observability: Discrete Time

The relevant system is

£ =A¢, o =C¢

Again, the results parallel the continuous-time case, the major differ-
ence being that the observation interval cannot be arbitrarily small.
The results are as follows:

1.

The pair (C, A) is observable if the initial state can be computed
from the output sequence

{4(0),9(1), ..., 9 (K1)}

for some sufficiently large k.

(C, A) is observable iff
C
CA
rank . =n.
CAnfl

(C, A) is observable iff

rank [ Ag A ] =n for each eigenvalue A of A.

(C, A) is defined to be detectable if there exists a matrix H such
that all the eigenvalues of A+ HC are inside the open unit disk.

(C, A) is detectable iff

rank [ Ag A ] =n for each eigenvalue A of A with || > 1.
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Notes and References

The material in this appendix is entirely standard; see for example
[22].
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