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ABSTRACT

Trilateral haptic systems can be modeled as three-port networks.
Analysis of coupled stability of a three-port network can be accom-
plished in either the passivity or the absolute stability frameworks
assuming all three ports are connected to passive but otherwise un-
known terminations. This paper first reviews our recent results in
terms of passivity and absolute stability criteria for general three-
port networks – both criteria are founded on the properties of a
positive-real Hermitian matrix. Next, we show that the absolute sta-
bility criterion is less conservative than the passivity criterion and
that the two criteria become the same when the trilateral system is
represented by a reciprocal immitance matrix. Then, to show how
the two criteria may be utilized at the system design stage, we apply
them to the problem of designing controllers for a dual-user haptic
teleoperation system. Using the two criteria, controllers are then
designed and compared in terms of conservatism and performance
in simulations.

Index Terms: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Haptic I/O; I.2.9 [Artificial Intelligence]: Prob-
lem Solving, Control Methods, and Search—Control theory

1 INTRODUCTION

New application of multilateral teleoperation systems have recently
emerged including collaboration of multiple users to perform a hap-
tic virtual task and shared control of a robot in a remote envi-
ronment by multiple users. Practical uses of these include tele-
rehabilitation, surgical training, and cooperative multi-robot sys-
tems. An interesting class of multilateral haptic systems is the tri-
lateral one, which can be modeled as a three-port network.

In designing haptic teleoperation controllers, the main goals are
performance and stability. For a bilateral teleoperation system con-
sisting of a teleoperator (master, slave and controllers) coupled to
terminations (human operator and environment), performance is the
ability of a teleoperation system to present the undistorted dynam-
ics of the environment to the human operator. This requires that
the master and the slave positions and interactions match regardless
of the operator and environment dynamics. Taking precedence to
performance is stability, which is necessary for safe teleoperation.
Investigation of teleoperation system stability requires not only the
teleoperator’s immitance (z, y, h, g) parameters, but also the mod-
els of the human operator and the environment, which are usually
unknown, uncertain, and/or time-varying. Consequently, conven-
tional techniques cannot be used to study the stability of teleoper-
ation systems. Methods for analyzing the stability of teleoperation
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system can be categorized as teleoperator passivity and teleoperator
absolute stability criteria. By definition, a teleoperator is passive if
the total energy delivered to it by its terminations is non-negative.
Also, by definition, an teleoperator is absolutely stable if the teleop-
eration system remains stable for all possible passive terminations.
For bilateral teleoperation systems comprising one master and one
slave, teleoperator passivity and absolute stability can be analyzed
via Raisbeck’s criterion [1] and Llewellyn’s criterion [2], respec-
tively. In this paper, we discussed their counterparts for a trilateral
teleoperation system.

For absolute stability analysis of a trilateral teleoperator, in [3],
and [4] the authors proposed methods in which the three-port net-
work model of the teleoperator is reduced to a two-port network by
assuming a known termination for the third port, paving the way
for the application of Llewellyn’s criterion. Unfortunately, in the
above approaches a degree of freedom is lost when the third port is
coupled to a known termination. In [5], the stability of the nonre-
ciprocal n-port network was studied by finding a reciprocal n-port
network with the same stability characteristics as the nonrecipro-
cal n-port network in question. For the reciprocal n-port network,
absolute stability can be studied through its equivalence to passiv-
ity. This method can be lengthy for the general n-port networks;
however, the method is tractable for the case of n = 3 (three-port
networks).

For passivity analysis of a trilateral teleoperator, Wang et al. [6]
proposed three different passive four-channel architectures. The
passive control architectures can ensure stability even in the case of
large time delays. Shahbazi et al. [7] performed stability analysis
for dual-user teleoperation systems (three-port networks) by using
the passivity theory. In [8], Mendez et al. presented a criterion for
passivity of n-port networks with unknown terminations. The cri-
terion gives the necessary and sufficient conditions for passivity of
the n-port network assuming that the unknown terminations (human
operators and environments) are passive.

In this paper, a comparison on the performance between our
newly-developed absolute stability criterion and Mendez’s [8] pas-
sivity criterion for three-port networks is provided. In a case study
involving a dual-user haptic system, each of these two criteria is
used for the design of stabilizing controllers and the results are
compared in terms of conservatism and performance. The rest of
the paper is organized as follows: The next section gives math-
ematical definitions and lemmas for analysis of the passivity and
absolute stability. In Section 3, the proposed passivity and absolute
stability criteria for three-port networks are derived. We show the
conservatism of the passivity conditions on compared to the abso-
lute stability conditions. Then, in Section 4, the passivity and abso-
lute stability criterion are used in designing a trilateral shared con-
trol architecture for a dual-user teleoperation system. The passivity
and absolute stability conditions in terms of system parameters in-
cluding controller gains are found. Finally, simulations to verify
the validity of the calculated passivity and absolute stability con-
ditions for a position-position dual-user teleoperation system and
a comparison of the performance between these two methods are
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Figure 1: (a) Three-port network, (b) Stability-activity diagram.

presented in Section 5. Section 6 contains concluding remarks.

2 MATHEMATICAL PRELIMINARIES

Definition 1. [9] A Hermitian matrix is a complex square matrix
that is equal to its conjugate transpose.

Property 1. [10] If M is a Hermitian matrix, it is positive definite
(positive semidefinite) if its leading principal minors are all positive
(nonnegative).

Lemma 1. [11] A linear time-invariant minimal realization model
with transfer matrix G(s) is passive (strictly passive) if G(s) is pos-
itive real (strictly positive real).

Lemma 2. [11] A n × n proper rational transfer matrix G(s) is
called positive real if

i) Poles of all elements of G(s) are in Re[s]≤ 0,

ii) Any pure imaginary pole jω of any element of G(s) is a simple
pole and the residue matrix lims→ jω (s− jω)G(s) is positive
semidefinite Hermitian,

iii) For all real ω for which jω is not a pole of any element of G(s),
the matrix G( jω)+GT (− jω) is positive semidefinite.

3 PASSIVITY AND ABSOLUTE STABILITY OF THREE-PORT
NETWORKS

For two-port networks, two well-known methods – Llewellyn’s ab-
solute stability criterion [2] and Raisbeck’s passivity criterion [1] –
have been developed to investigate the stability of the network when
connected to arbitrary passive terminations. As shown by Haykin
[12], these criteria are equivalent if and only if the two-port network
is symmetric. In the general case, all passive two-port network are
absolutely stable but not vice versa.

In this paper, we will discuss conditions for the passivity and
absolute stability of three-port networks. We will show that these
criteria are equivalent if and only if the three-port network is sym-
metric, and compare the two in the general cases in terms of con-
servativeness.

Consider a general nonreciprocal three-port network, as shown
in Figure 1-(a), with the impedance matrix

Z =

 Z11 Z12 Z13
Z21 Z22 Z23
Z31 Z32 Z33

 (1)

Let Zmn = rmn + jxmn, m,n = 1,2,3. We have the following theo-
rems for the passivity and absolute stability of the three-port net-
work modeled by Z.

3.1 Passivity theorem
Theorem 1. A three-port network with the impedance matrix Z in
(1) is passive if and only if

1. The Z matrix elements have no poles in the right-half plane
(RHP).

2. Any poles of the Z matrix elements on the imaginary axis are
simple, and the residues of the Z matrix elements at these
poles satisfy the following conditions:

kmm ≥ 0, m = 1,2,3
k11k22− k12k21

k11
≥ 0

k11k33− k13k31

k11
− k11k23− k21k13

k11k22− k12k21

k11k32− k31k12

k11
≥ 0

where kmn denotes the residue of Zmn.

3. The real and imaginary part of the Z matrix elements satisfy
the following inequalities

r11 ≥ 0 (2a)
r22 ≥ 0 (2b)
r33 ≥ 0 (2c)

4r11r22− (r12 + r21)
2− (x12− x21)

2 ≥ 0 (2d)

4r11r22r33− r33[(r12 + r21)
2 +(x12− x21)

2]

− r22[(r13 + r31)
2 +(x13− x31)

2]

− r11[(r23 + r32)
2 +(x23− x32)

2]

+ (r23 + r32)(r13 + r31)(r12 + r21)

+(r12 + r21)(x13− x31)(x23− x32)

− (r13 + r31)(x12− x21)(x23− x32)

+(r23 + r32)(x13− x31)(x12− x21)≥ 0 (2e)

Proof. According to Lemma 1, the three-port network is passive if
and only if its transfer matrix (i.e., the matrix Z in (1)) is positive
real, which can be verified through Lemma 2. It is obvious that
Condition 1 in the theorem is the same as Condition (i) in Lemma
2. Let

K =

 k11 k12 k13
k21 k22 k23
k31 k32 k33

 (3)

denote the residue matrix of the Z matrix elements. According to
Condition (ii) in Lemma 2, K must be positive semidefinite Hermi-
tian. Based on Property 1, K is positive semidefinite if its leading
principal minors are all nonnegative, i.e.,

kmm ≥ 0, m = 1,2,3 (4)
k11k22− k12k21 ≥ 0 (5)
k11k22k33− k11k23k32− k22k13k31− k33k12k21

+ k12k23k31− k13k21k32 ≥ 0 (6)

The above inequalities are equivalent to those in Condition 2 of
Theorem 1.

According to Condition (iii) of Lemma 2, the Hermitian matrix

Z( jω)+ZT (− jω) =

 2r11 r12 + r21 r13 + r31
r12 + r21 2r22 r23 + r32
r13 + r31 r23 + r32 2r33


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+ j

 0 x12− x21 x13− x31
x21− x12 0 x23− x32
x31− x13 x32− x23 0

 (7)

needs to be positive semidefinite. Using Property 1, this leads us to
Conditions (2a)-(2e).

3.2 Absolute stability theorem
Theorem 2. A three-port network with impedance matrix Z in (1)
satisfying the symmetrization condition

Z13Z21Z32−Z12Z23Z31 = 0 (8)

is absolutely stable if and only if Conditions 1 and 2 in Theorem 1
hold and, for all real values of frequencies ω , we have

r11 ≥ 0 (9a)
r22 ≥ 0 (9b)
r33 ≥ 0 (9c)

r11r22−
|Z12Z21|+Re(Z12Z21)

2
≥ 0 (9d)

r11r22r33− r11
|Z23Z32|+Re(Z23Z32)

2

− r22
|Z13Z31|+Re(Z13Z31)

2

− r33
|Z12Z21|+Re(Z12Z21)

2
+2Re(

√
Z12Z21)Re(

√
Z13Z31)Re(

√
Z23Z32)≥ 0 (9e)

Proof. [13] If and only if the symmetrization condition (8) holds,
the general asymmetric matrix Z in (1) has the same stability char-
acteristics as the following equivalent symmetric matrix:

Zeq =

 Z11 γ1
√

Z12Z21 γ2
√

Z13Z31
γ1
√

Z12Z21 Z22 γ3
√

Z23Z32
γ2
√

Z13Z31 γ3
√

Z23Z32 Z33

 (10)

where γi = ±1 for i = 1,2,3. This happens because Z and Zeq
have identical principal minors of all orders and therefore, accord-
ing to [14], we get det(Z + Z0) = det(Zeq + Z0) for all passive
Z0 = diag[z1,z2,z3].

Now, the three-port network with symmetric transfer matrix Zeq
is absolutely stable if and only if it is passive [15]. According to
Lemma 1, Zeq is passive if and only if it is nonnegative real, which
can be verified through Lemma 2. Thus, it is found that Conditions
1 and 2 in Theorem 1 need to hold. Additionally, according to
Condition (iii) of Lemma 2, the Hermitian matrix

Zeq( jω)+ZT
eq(− jω) = 2r11 2γ1Re

√
Z12Z21 2γ2Re

√
Z13Z31

2γ1Re
√

Z12Z21 2r22 2γ3Re
√

Z23Z32
2γ2Re

√
Z13Z31 2γ3Re

√
Z23Z32 2r33

 (11)

needs to be positive semidefinite. Using Property 1 and

(Re(
√

ZmnZnm)) =

√
|ZmnZnm|+Re(ZmnZnm)

2
(12)

where m,n = 1,2,3 lead us to Conditions (9a)-(9e).

Remark 1. Theorem 1 and Theorem 2 hold not only for the
impedance matrix (1) of a general network but also for its other
immitance matrices (y, h, g). The reason for this is that a gyra-
tion operator, which can transform on immitance matrix to another,
preserves passivity [16].

3.3 Comparison of passivity and absolute stability the-
orem

Conditions 1 and 2 of the passivity theorem are in common with the
absolute stability theorem, and any difference lies in Conditions 3.
Also, as part of Condition 3 in Theorem 1, (2a)-(2c) in the passivity
theorem are the same as (9a)-(9c) in the absolute stability theorem.
Now, Condition (9d) for absolute stability can be re-written as

(Re(
√

Z12Z21))
2

r11r22
≤ 1 (13)

while Condition (2d) for passivity can be manipulated into the form

(Re(
√

Z12Z21))
2

r11r22
+

(|Z12|− |Z21|)2

4r11r22
≤ 1 (14)

Obviously, the passivity condition (14) or the equivalent (2d) is
more conservative than the absolute stability condition (13) or the
equivalent (9d). These two conditions are equivalent if and only if
Z12 = Z21.

Furthermore, Condition (9e) for absolute stability can be re-
written as

P1 =

(Re(
√

Z23Z32))
2

r22r33
+

(Re(
√

Z13Z31))
2

r11r33
+

(Re(
√

Z12Z21))
2

r11r22

− 2Re(
√

Z12Z21)Re(
√

Z13Z31)Re(
√

Z23Z32)

r11r22r33
≤ 1. (15)

On the other hand, noting that

(rmn + rnm)
2 +(xmn− xnm)

2

= 4(Re(
√

ZmnZnm))
2 +(|Zmn|− |Znm|)2 (16)

where m,n = 1,2,3, Condition (2e) for passivity can be manipu-
lated into the form

P1 +P2 ≤ 1 (17)

In the following, we will show that P2 ≥ 0, establishing the fact that
the passivity condition (17) or the equivalent (2e) is more conserva-
tive than the absolute stability condition (15) or the equivalent (9e).
These two are equivalent if and only if Z12 = Z21, Z13 = Z31, and
Z23 = Z32.

In (17), we have P2 = Q1 +Q2−Q3 where

Q1 =
r11(|Z23|− |Z32|)2

4r11r22r33
+

r22(|Z13|− |Z31|)2

4r11r22r33

+
r33(|Z12|− |Z21|)2

4r11r22r33
,

Q2 =
2Re
√

Z12Z21Re
√

Z13Z31Re
√

Z23Z32

r11r22r33
,

Q3 =
(r12 + r21)(r13 + r31)(r23 + r32)

4r11r22r33

+
(r12 + r21)(x13− x31)(x23− x32)

4r11r22r33

− (r13 + r31)(x12− x21)(x23− x32)

4r11r22r33

+
(r23 + r32)(x13− x31)(x12− x21)

4r11r22r33

Obviously, Q1 ≥ 0. Because of (12), Q2 ≥ 0. Therefore, if Q3 < 0,
then P2 > 0. When Q3 > 0, then P2 ≥ 0 if and only if (Q1 +Q2)

2−
Q2

3 ≥ 0, which amounts to
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(|Z12|− |Z21|)2[16r33r123 +4r11r33(|Z23|− |Z32|)2

−4(Re
√

Z13Z31)
2((r23 + r32)

2 +(x23− x32)
2)]

+(|Z13|− |Z31|)2[16r22r123 +4r22r33(|Z12|− |Z21|)2

−4(Re
√

Z23Z32)
2((r12 + r21)

2 +(x12− x21)
2)]

+(|Z23|− |Z32|)2[16r11r123 +4r11r22(|Z13|− |Z31|)2

−4(Re
√

Z12Z21)
2((r13 + r31)

2 +(x13− x31)
2)]≥ 0 (18)

where r123 =Re
√

Z12Z21Re
√

Z13Z31Re
√

Z23Z32. It is easy to show
that (18) holds in general.

In the stability-activity diagram of Figure 1(b), we have graph-
ically represented (15) and (17) in a two-dimensional space by
choosing P1 and P2 as the two coordinates. Evidently, all passive
three-port networks are absolutely stable, but not all absolutely sta-
ble three-port networks are passive.

Remark 2. The passivity criterion of three-port network in The-
orem 1 is equivalent to the absolute stability criterion in Theorem 2
if and only if the impedance matrix Z in (1) is symmetric, i.e.,

Z12 = Z21, Z13 = Z31, Z23 = Z32. (19)

This holds not only for the impedance parameters of a general net-
work but also for its others immitance parameters.

Remark 3. For teleoperation control systems, using the absolute
stability criterion will allow for higher transparency compared to
using the passivity theorem. The reason for this is that passivity
criterion is more restrictive than the absolute stability criterion. In
the case studies that will follow higher teleoperation transparency
under absolute stability conditions compared to passivity conditions
will be shown.

4 CASE STUDY: APPLICATION OF THE COMPARISON OF
TRILATERAL HAPTIC SYSTEMS

In this section, the aim is to apply the proposed comparative be-
tween passivity and absolute stability for trilateral haptic systems.
A trilateral haptic system may be a collaborative haptic virtual envi-
ronment with three users, or a dual-user haptic teleoperation system
with one slave robot. In the following, for brevity, we only consider
the latter and a similar procedure case may be followed for the for-
mer. We begin by reviewing a four-channel, dual-user teleoperation
system and specifically investigate the stability of position-position
control scheme.

In a dual-user teleoperation control system, the goal is that two
users collaboratively control a robot. Such a system consists of two
master robots as haptic interfaces for the two users and one slave
robot to perform a desired task on an environment. This finds ap-
plication in many real-world scenarios such as when the aim is to
train a novice trainee (user 1) to do a task under haptic guidance
from a mentor (user 2). As elaborated by [17, 4], the reference po-
sition and force for each robot are sums of positions and forces of
the other two robots weighted by a parameter α ∈ [0,1] that speci-
fies their relative control authorities. Therefore, α affects how the
trainee and the mentor collaborate and contribute to the reference
position for the slave and what share of force feedback each of them
receives. For instance, if α = 0, the slave robot will be completely
controlled by the mentor and the trainee will receive large force
feedback urging him/her to follow the mentor’s motions. On the
other hand, if α = 1, the slave robot is completely controlled by the
trainee, allowing the mentor to assess the skill level of the trainee
by feeling the reflected forces. If 0 < α < 1, the trainee and the
mentor collaborate and each contribute to the slave robot position
while receiving some force feedback.

Consider the dual-user teleoperation system shown in Figure 2.
The dynamics of the two masters and the slave in contact with the

Fh1
+-

Fh1*

++

m1Z
1

Vh1

Controllers
+

Communication
Channel

Fe

+ -

Fe*

++
sZ
1

Ve
Fh2 +-

Fh2*

m2Z
1

Vh2

++Fcm1 Fcm2

Fcs

User 1 Master 1 User 2Master 2

Environment

Slave

eZ

h1Z h2Z

Figure 2: A dual-user haptic teleoperation system under four-channel
control.

two users and the environment, respectively, are{
ZmiVhi = Fhi +Fcmi

ZsVe = Fe +Fcs
(20)

where i = 1,2, and Zmi and Zs are the impedances of the two mas-
ters and the slave, respectively. Also, Fhi denotes the interaction
force between the two users and the two masters and Fe denotes the
interaction force between the slave and the environment. Lastly,
Vhi, and Ve are the users’ and the environment’s velocities.

The four-channel shared control laws in Figure 2 are [4, 8]:{
Fcmi =−CmiVhi−C4miVhid +C6miFhi−C2miFhid

Fcs =−CsVe +C1Ved +C5Fe +C3Fed
(21)

where Cmi and Cs are local position controllers, C6mi and C5 are
local force controllers, and C1, C2mi, C3, and C4mi are feedforward
and feedback compensators. Also, Vhid and Ved are the reference
velocities and Fhid and Fed are the references forces for the two
masters and the slave, where

Vh1d = αVe +(1−α)Vh2, Vh2d = (1−α)Ve +αVh1

Ved = αVh1 +(1−α)Vh2, Fh1d = αFe +(1−α)Fh2

Fh2d = (1−α)Fe +αFh1, Fed = αFh1 +(1−α)Fh2 (22)

It is easy to verify that the reference velocities (positions) and ref-
erences forces in (22) are consistent with the trainee/mentor collab-
oration scenario discussed above.

Position-position control is a special case of dual-user shared
control in which there is no need for any force sensor measure-
ments [18]. In this control architecture, we have C2m1 = C2m2 =
C3 =C5 =C6m1 =C6m2 = 0. For good position tracking, the com-
mon choice is C1 =Cs, C4m1 =−Cm1, and C4m2 =−Cm2. Assume
Zm1 = Mm1s, Zm2 = Mm2s, Zs = Mss, and let us make the following
choices for the controllers:

Cm1 =
Kpm1 +Kvm1s

s
, Cm2 =

Kpm2 +Kvm2s
s

,

Cs =
Kps +Kvss

s
(23)

The impedance matrix of position-position control dual-user tele-
operator can be found from (20), (21), and (22) as Fh1

Fh2
Fe

=

 Z11 Z12 Z13
Z21 Z22 Z23
Z31 Z32 Z33

 Vh1
Vh2
Ve

 (24)

In the next subsections, we will consider this position-position
shared control architectures and analyze its stability based on both
Theorem 1 and Theorem 2.
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4.1 Stability analysis via passivity criterion (Theorem 1)
One can see that all the elements of the impedance matrix (24) have
only a simple pole on the imaginary axis, thus, Conditions 1 and 2
of Theorem 1 are fulfilled. Analysis of the residues in Condition 2
of Theorem 1 leads to the following conditions

k11 = Kpm1 ≥ 0, k22 = Kpm2 ≥ 0, k33 = Kps ≥ 0 (25)
k11k22− k12k21

k11
= (1−α +α

2)Kpm1Kpm2 ≥ 0 (26)

k11k33− k13k31

k11
− k11k23− k21k13

k11k22− k12k21

k11k32− k31k12

k11
= 0 (27)

The inequality (26) always holds for all α ∈ [0,1].
Analysis of the impedance matrix (24) according to passivity

conditions (2a)-(2d) lead to

Kvm1 ≥ 0, Kvm2 ≥ 0, Kvs ≥ 0 (28)

4Kvm1Kvm2− (Kvm1−αKvm1 +αKvm2)
2

−
(Kpm1−αKpm1 +αKpm2)

2

ω2 ≥ 0 (29)

It is easy to see that (29) will be fulfilled for all frequencies ω if the
gains of the PD controllers in (23) satisfy

(1−α)Kpm1 = αKpm2 (30)

4Kvm1Kvm2− (Kvm1−αKvm1 +αKvm2)
2 ≥ 0 (31)

On the other hand, under (30), Condition (2e) becomes

− 1
2αω2 (Kpm1−Kps)

2[Kvm1(1−α)2(2−α)

+Kvm2α
2(1+α

3)]− 1
α2ω2 (1−2α)2Kvm1

− 1
2αω2 (1−2α)(1−α)(K2

pm1−K2
ps)[α

2Kvm2

+(α +2)Kvm1]+ (1+α)(2−α)Kvm1Kvm2Kvs

−α
2(2−α)Kvm2Kvs(Kvm2 +Kvs)

− (1−α +α
2)Kvm1Kvm2[(1−α)Kvm1 +αKvm2]

− (1−α)2(1+α)Kvm1Kvs(Kvm1 +Kvs)≥ 0 (32)

It is easy to see that both (30) and (32) will be fulfilled for all fre-
quencies ω if the parameters satisfy

α =
1
2
, Kpm1 = Kpm2 = Kps, Kvm1 = Kvm2 = Kvs (33)

So, a sufficient, frequency-independent, and compact condition for
passivity of the above-described position-position dual-user teleop-
erator is given by (33).

4.2 Stability analysis via absolute stability criterion
(Theorem 2)

In this case, it can be shown that the symmetrization condition (8)
will hold only if α = 1

2 . It is easy to see that the absolute stability
conditions (9a)-(9d) become

Kvm1 ≥ 0, Kvm2 ≥ 0, Kvs ≥ 0 (34)
7
8

Kvm1Kvm2 +
1

8ω2 Kpm1Kpm2−
Qm1Qm2

8ω2 ≥ 0 (35)

where Qm1 =
√

K2
vm1ω2 +K2

pm1, Qm2 =
√

K2
vm2ω2 +K2

pm2, and

Qs =
√

K2
vsω

2 +K2
ps. Now, under (34), condition (35) will be ful-

filled for all frequencies ω if the gains of the PD controllers Cm1

Table 1: The controllers gains of the position-position system used in
simulations. (A) Passive and absolutely stable, (B) Absolutely stable
but non-passive, (C) Potentially unstable (i.e., not absolutely stable)
and non-passive.

Master #1 Master #2 Slave
(A) Kpm1 30 Kpm2 30 Kps 30

Kvm1 5 Kvm2 5 Kvs 5
(B) Kpm1 3 Kpm2 30 Kps 150

Kvm1 5 Kvm2 50 Kvs 150
(C) Kpm1 3 Kpm2 80 Kps 15

Kvm1 5 Kvm2 20 Kvs 60

and Cm2 satisfy

7−4
√

3≤
Kpm1

Kvm1

Kvm2

Kpm2
≤ 7+4

√
3. (36)

On the other hand, condition (9e) will be fulfilled for all frequencies
ω if the gains of the PD controllers Cm1, Cm2, and Cs satisfy

Kpm1

Kvm1
=

Kpm2

Kvm2
, 5−2

√
6≤

Kpm1

Kvm1

Kvs

Kps
≤ 5+2

√
6 (37)

Clearly, (36) holds if (37) holds. So, a sufficient, frequency-
independent, and compact condition for absolute stability of the
above-described position-position dual-user teleoperator is given
by (37) where all control gains are nonnegative. Note that the ra-
tios in (37) are merely artifacts of our presentation of the stability
conditions meaning that division by zero is avoidable.

5 SIMULATIONS

In this section, the passivity and absolute stability conditions for the
dual-user teleoperator found in the previous section will be verified
via simulations. For checking the passivity of the trilateral haptic
system, a passivity observer that calculates the dissipated energy in
the system has been incorporated into the simulations. The dissi-
pated energy is given by the input-output energy integral

Ep(t) =
∫ t

0
Fh1(τ)Vh1(τ)dτ +

∫ t

0
Fh2(τ)Vh2(τ)dτ

+
∫ t

0
Fe(τ)Ve(τ)dτ ≥ 0 (38)

The system is passive if the energy integral is non-negative at all
time [19].

For checking the absolute stability of the trilateral haptic sys-
tems, the ports #2 and #3 were connected to passive terminations
while the input energy at the port #1 (i.e., the energy dissipation in
the three-port network terminated in ports 2 and 3) was measured.
The system is absolutely stable if and only if, at all times t > 0, we
have [19]:

Es(t) =
∫ t

0
fh1(τ)Vh1(τ)dτ ≥ 0. (39)

The position-position dual-user teleoperation system has been
simulated in MATLAB/Simulink. There is no time delay in the
communication channel between the masters and the slave. Three
1-DOF robots as the two masters and the slave are modeled by
masses Mm1 = 0.7, Mm2 = 0.9, and Ms = 0.5, respectively. In sim-
ulations for both passivity and absolute stability, the master #2 and
the slave are connected to LTI terminations with transfer functions

1
s+1 , which are passive as, for s= jω , we have Re( 1

s+1 )=
1

ω2+1 > 0
when ω > 0. In passivity simulations, the master #1 is connected
to another passive LTI termination with transfer functions 1

s+1 , and
a sine-wave input F∗h1 is applied. In absolute stability simulations,
port 1 is open and a sine-wave input Fh1 is applied to the master #1.
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Figure 3: (a) Input energy Es at the master #1’s port used for absolute
stability analysis, and (b) passivity observer output Ep for used for
passivity analysis. Both plots pertain to a position-position dual-user
teleoperator. Simulation parameters are listed in Table I: Parameters
(A) for the absolutely stable and passive case, parameters (B) for the
absolutely stable and non-passive case, and parameters (C) for the
potentially unstable and non-passive case.
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Figure 4: The master robots are shaken intentionally and the slave
robot follows the motion of the masters arms. (a) Based on the con-
trollers in Table I (A), (b) Based on the controllers in Table I (B).

According to (33) and (37), the stability of the position-position
dual-user teleoperation system should depend on the controllers
gains. In the simulations, the controllers gains Kpm1, Kvm1, Kpm2,
Kvm2, Kps, and Kvs were chosen according to Table 1. Also, α = 1

2 .
The input energy (39) profiles Es are plotted in Figure 3(a). As it

can be seen, if the controllers gains are selected according to (37),
i.e., as listed in Table 1(A) and (B), then the input energy at port 1 is
positive at all times, indicating the absolute stability of the trilateral
haptic system. However, when the controllers gains violate (37),
i.e., as listed in Table 1(C), then the input energy Es will become
negative at least for a period of time, indicating potential instability
of the trilateral haptic system.

The dissipated energy (38) profiles are plotted in Figure 3(b). As
it can be seen, if the controllers gains are selected according to (33),
i.e., as listed in Table 1(A), then the passivity observer output Ep
is positive at all times. However, when the controllers gains violate
(33), i.e., as listed in Table 1(B) and (C), then the passivity observer
output Ep is not always positive, indicating the loss of passivity of
the haptic teleoperator.

Figure 4 depicts the average positions of the two masters versus
the slave position. Figure 4(a) shown the performance for dual-user
teleoperation system based on the controllers gains in Table 1(A),

and in the first 20 seconds, the integrated squared error of positions
is 3.78× 10−3. Figure 4(b) shows the performance based on the
controllers gains in Table 1(B), and in the first 20 seconds, the in-
tegrated squared error of positions is 3.32× 10−4. Evidently, for
designing stabilizing controllers for a trilateral haptic system, we
have reached better performance using the absolute stability crite-
rion than using the passivity criterion.

6 CONCLUSIONS

In this paper, we showed that the absolute stability criterion is less
conservative than the passivity criterion and that the two criteria
become the same when a trilateral haptic system is modeled by a
symmetric immitance matrix. Both analytically and through simu-
lations involving dual-user haptic teleoperation of one slave robot,
the two criteria were compared. It was concluded that the absolute
stability criterion is less conservative and allows for better perfor-
mance compared to the passivity criterion for teleoperators.
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