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ABSTRACT

This paper presents a criterion for absolute stability of a general
class of three-port networks. Trilateral haptic systems, which have
recently found many interesting applications, can be modeled as
three-port networks. Traditionally, existing criteria (Llewellyn’s
criterion) have facilitated the stability analysis of bilateral haptic
systems modeled as two-port networks. If the same criteria were
to be used for stability analysis of a three-port network, its third
port would need to be assumed known for it to reduce to a two-port
network. However, this is restrictive because, according to the def-
inition of absolute stability, all three terminations of the three-port
network must be allowed to be arbitrary (while passive).

In this paper, extending Llewellyn’s criterion, we present closed-
form necessary and sufficient conditions for absolute stability of a
general class of three-port networks – the three terminations need
to be passive but are otherwise arbitrary. To this end, we first
find a symmetrization condition under which a general asymmetric
impedance (or admittance) matrix Z3×3 has an equivalent symmet-
ric counterpart Zeq; this Zeq models a reciprocal three-port network
with the same stability characterization as the general nonreciprocal
three-port network modeled by Z. Then, based on the equivalence
of passivity and absolute stability for the equivalent reciprocal net-
work, an absolute stability condition for the original nonreciprocal
network is derived. To show how the resulting absolute stability cri-
terion can be utilized at the system design stage, we have applied it
to the problem of designing controllers for triple-user collaborative
haptic virtual environment systems. The validity of the resulting
absolute stability conditions have been verified via simulations.

Index Terms: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Haptic I/O; I.2.9 [Artificial Intelligence]: Prob-
lem Solving, Control Methods, and Search—Control theory

1 INTRODUCTION

For coupled stability analysis of bilateral teleoperation system, the
human operator’s and the environment’s dynamics and the teleop-
erator immitance (z, y, h, and g) parameters are needed. Here, the
teleoperator comprises the master, the slave, their controllers, and
the communication channel. In practice, the models of the human
operator and the environment can be unknown, uncertain, and/or
time-varying. Thus, absolute or unconditional stability of a bilateral
teleoperator assuming that the human operator and the environment
demonstrate passive behaviors is analyzed via Llewellyn’s stability
criterion for two-port networks [1, 2, 3]. For brevity, absolute or
unconditional stability is simply referred to as “stability” in the rest
of the paper. “Coupled stability” will refer to BIBO stability of a
network when it is coupled to terminations at all if its ports.

∗e-mail: jian1@ualberta.ca
†e-mail:mahdi.tavakoli@ualberta.ca
‡e-mail:huangqi@uestc.edu.cn

Recently, new application scenarios have emerged that involve
the collaboration of multiple users in teleoperation of a robot or in
performing a haptic virtual task. Examples of these new applica-
tions are tele-rehabilitation [4], surgical training, [5], and cooper-
ative multi-robot systems[6]. Specifically, dual-user teleoperation
of a robot and triple-user collaborative haptic virtual environments
have given rise to trilateral haptic systems. A difference between a
trilateral and a bilateral haptic system is that they are modeled as a
three-port and a two-port network, respectively. Thus, conventional
theories for stability analysis of bilateral haptic systems will not be
adequate for trilateral haptic systems.

In contrast to the stability criteria for two-port networks, which
have only involved conditions on the immitance parameters of the
two-port network and are independent of the port terminations, past
research has been struggling to find a similar stability condition for
three-port networks independent of the port terminations. Instead,
in past research [7, 8, 9], the third port was assumed to be coupled to
a known termination such that the three-port network reduced to a
two-port network, paving the way for the application of Llewellyn’s
criterion. The limiting factor of this approach is that the resulting
stability condition will inevitably depend on the immitance of the
third port’s termination. This is restrictive because not allowing all
three terminations of the three-port network to be arbitrary (while
passive) contradicts the very definition of stability (again, through-
out this paper, all references are to absolute or unconditional stabil-
ity).

Using the aforementioned approach, namely, reducing a given
three-port network to a two-port network by assuming a known ter-
mination for the third port, Boehm et al. in [10] established nine
conditions for determining the stability of a three-port network de-
scribed by its scattering (S) parameters. The approach in [8] re-
duced a three-port network to three two-port networks by terminat-
ing each of the three ports, and managed to reduce the number of
conditions from nine to three. Also, Kuo et al. [7] reduced a three-
port network to a two-port network by coupling the third port to
a known termination and then required the input reflection coeffi-
cients at the first and the second ports to be less than unity. Unfor-
tunately, in the above approaches, a degree of freedom is lost when
the third port is coupled to a known termination. Thus, there is a
need for a tool that can directly analyze the stability of trilateral
haptic systems modeled as three-port networks without reducing
them to two-port networks. Such a tool, which will guarantee the
coupled stability of the system under all passive but otherwise ar-
bitrary terminations for all three ports, is developed in this paper.

Unlike past work, we would like to have a stability condition di-
rectly in the immittance (e.g., impedance Z) domain and not in the
scattering (S) domain. While the S-parameters are most accurately
measured for higher-frequency systems such as microwave circuits,
Z-parameters can be accurately measured in lower-frequency sys-
tems including robotic systems. In fact, the measurement of Z-
parameters approaches zero in microwave circuits where the fre-
quencies are very high (over 1 GHz), making the use of reflec-
tion coefficients and scattering parameters justifiable for the stabil-
ity analysis. This explains the abundance of scattering parameters
based stability conditions in the microwave systems literature (see,
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for example, [11]). Conversely, in robotic systems, the measure-
ment of S-parameters is close to zero in any frequency range of
practical interest and, therefore, it is highly desirable to have sta-
bility conditions that directly depend on the Z-parameters or other
immittance parameters of the three-port network.

Inspired by Ku [12], who studied N-port network stability when
the impedance matrix of the network is of a tri-diagonal Jacobian
form [12], in this paper we present a criterion to analyze the sta-
bility of a general class of nonreciprocal three-port networks. As a
case study, we consider a triple-user collaborative haptic virtual en-
vironment system and use the proposed stability criterion to design
stabilizing controllers for the system.

The rest of the paper is organized as follows: The next section
reviews definitions of stability for general N-port networks and, for
the special case of reciprocal networks, relates them to passivity.
In Section 3, the proposed stability criterion for all nonreciprocal
three-port networks that satisfy our so-called symmetrization con-
dition is derived. Then, as a case study to show how the resulting
stability criterion can be utilized, in Section 4, a triple-user col-
laborative haptic virtual environment system is considered and the
stability conditions in terms of system parameters including con-
troller gains are found. Finally, simulations to verify the validity
of the calculated stability conditions for the triple-user collabora-
tive haptic virtual environment system are presented in Section 5.
Section 6 contains concluding remarks.

2 DEFINITIONS AND CRITERIA FOR N-PORT NETWORK
STABILITY

An n-port network is called stable if the port currents are zero un-
der all passive terminations for all ports [13]. Similarly, an n-port
network is called weakly stable if the port currents are zero under
all strictly passive terminations for all ports. We know that an LTI
termination is passive (strictly passive) if its impedance is nonneg-
ative (positive) real [14]. Suppose the n-port network is terminated
in arbitrary passive impedances z1,z2, · · · ,zn, and the port currents
at the respective ports are denoted by I1, I2, · · · , In. Thus, it is im-
mediately understood that a general n-port network with impedance
matrix Zn×n is stable (weakly stable) if and only if the equation

(Z +Z0)I = 0, Z0 = diag[z1,z2, · · · ,zn] (1)

where I = [I1, I2, · · · , In]
T has only the trivial solution I= 0 for every

choice of n terminations z1,z2, · · · ,zn that are nonnegative (positive)
real. In other words, the n-port network is stable (weakly stable) if
and only if

det(Z +Z0) 6= 0 (2)

for any choice of n terminations with nonnegative (positive) real
parts. We remember that a nonnegative (positive) real impedance
zi( jω) has a real part with a nonnegative (positive) value. A rational
function F(s) is positive real if and only if, in addition to being
real for real s, F(s) has no RHP poles, any poles of F(s) on the
imaginary axis are simple with real and non-negative residues, and
Re[F( jω)]≥ 0,∀ω .

There is an alternate definition for n-port network stability. As-
sume the input impedance (i.e., the driving-point impedances) at
port κ of an n-port network is Zinκ

when all other n− 1 ports are
coupled to passive (strictly passive) terminations. Then, the n-port
network is stable (weakly stable) if and only if

Re(Zinκ
)> 0 (≥ 0), κ = 1,2, · · · ,n (3)

for all passive (strictly passive) z1, z2, · · · , zn. Equivalently, the
n-port network is stable (weakly stable) if and only if∫ t

0
Vκ (τ)Iκ (τ)dτ > (≥ 0), κ = 1,2, · · · ,n (4)

Z

I1
V1 +-

I2
V2 +-

I3
V3 +-

 

Figure 1: Three-port network

for all passive (strictly passive) z1, z2, · · · , zn [15]. Conditions (3)
or (4) represent an alternate way to examine the stability of n-port
networks. In the following, the equivalence of (3) and (4) with
the stability condition (2) is shown for n = 3, i.e., a general nonre-
ciprocal three-port network shown in Figure 1 with the impedance
matrix

Z =

 Z11 Z12 Z13
Z21 Z22 Z23
Z31 Z32 Z33

 (5)

For the three-port network (5), the input impedances at port 1
when ports 2 and 3 are terminated to z2 and z3, at port 2 when ports
1 and 3 are terminated to z1 and z3, and at port 3 when ports 1 and
2 are terminated to z1 and z2 are, respectively,

Zin1 = Z11−
Z12Z21(Z33 + z3)+Z13Z31(Z22 + z2)−D

(Z22 + z2)(Z33 + z3)−Z23Z32
(6)

Zin2 = Z22−
Z12Z21(Z33 + z3)+Z23Z32(Z11 + z1)−D

(Z11 + z1)(Z33 + z3)−Z13Z31
(7)

Zin3 = Z33−
Z13Z31(Z22 + z2)+Z23Z32(Z11 + z1)−D

(Z11 + z1)(Z22 + z2)−Z12Z21
(8)

where D = Z13Z21Z32−Z12Z23Z31. According to (2), for the non-
reciprocal three-port network (5) to be stable (weakly stable), we
must have

det(Z +Z0) 6= 0, Z0 = diag[z1,z2,z3] (9)

for any choice of passive (strictly passive) impedances z1, z2 and
z3. The stability condition (9) can be rewritten as

(Z11 + z1)(Z22 + z2)(Z33 + z3)−Z13Z21Z32−Z12Z23Z31

6= Z23Z32(Z11 + z1)+Z12Z21(Z33 + z3)+Z13Z31(Z22 + z2) (10)

Now, if (Z22 + z2)(Z33 + z3)−Z23Z32 6= 0, (10) implies that

−z1 6= Z11−
Z12Z21(Z33 + z3)+Z13Z31(Z22 + z2)−D

(Z22 + z2)(Z33 + z3)−Z23Z32
(11)

Likewise, we get similar inequality conditions for−z2 and−z3. So,
the stability condition (9) is satisfied if and only if

−zκ 6= Zinκ
, κ = 1,2,3 (12)

Now, recall that the real part of zκ covers the closed right half plane
(open right half plane) if it is passive (strictly passive). Thus, the
three-port network is stable (weakly stable) if and only if

Re(Zinκ
)> 0 (≥ 0), κ = 1,2,3 (13)

for all passive (strictly passive) z1, z2 and z3.
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3 MAIN RESULT: A STABILITY CRITERION FOR A CLASS
OF NONRECIPROCAL THREE-PORT NETWORKS

The previous stability definitions can hardly be used as closed-form
stability criteria for general nonreciprocal networks. Instead, we
will introduce an approach in this section that utilizes the Lemma 1
below for checking the stability of a reciprocal network, which has
a symmetric impedance matrix. Also, Lemma 2 will be used for
finding the symmetric equivalent of an asymmetric impedance ma-
trix from a network stability perspective. Lastly, Lemma 3 and
Lemma 4 will be required in the proof of Theorem 1.

Lemma 1. [13] Let Z = ZT be the impedance matrix of a reciprocal
n-port network. Then, the network is passive (strictly passive), i.e.,
ReZ ≥ 0 (ReZ > 0), if and only if it is weakly stable (stable). �

Lemma 2. [16] Let Z1 and Z2 be the impedance matrices of two
n-port networks. Then, if Z1 and Z2 possess identical principal
minors of all orders, the two n-port networks are stable (weakly
stable) together. �

In fact, [16] showed that if Z1 and Z2 have identical principal
minors of all orders, then

det(Z1 +Z0) = det(Z2 +Z0) (14)

Therefore, the stability (weak stability) of the two networks with
impedance matrices Z1 and Z2 will happen at the same time be-
cause of (2), which is to hold for all passive (strictly passive)
Z0 = diag[z1,z2, · · · ,zn].

Lemma 3. [17] A symmetric matrix is positive definite (positive
semi-definite) if and only if the determinants of every principal mi-
nor is positive (nonnegative). �

Lemma 4. [18] If detZ(s) 6= 0, then Z(s) is positive real if and only
if Z(s)−1 is positive real. �

Now, we propose the following theorem as a compact, straight-
forward, and easy to check condition for the stability of a general
nonreciprocal three-port network.

Theorem 1. The nonreciprocal three-port network with the
impedance matrix Z in (5) satisfying the symmetrization condition

Z13Z21Z32−Z12Z23Z31 = 0 (15)

is stable (weakly stable) if and only if

Re(Z11)> 0 (≥ 0), (16a)
Re(Z22)> 0 (≥ 0), (16b)
Re(Z33)> 0 (≥ 0), (16c)

Re(Z11)Re(Z22)−
|Z12Z21|+Re(Z12Z21)

2
> 0 (≥ 0), (16d)

and
Re(Z11)Re(Z22)Re(Z33)

−Re(Z11)
|Z23Z32|+Re(Z23Z32)

2

−Re(Z22)
|Z13Z31|+Re(Z13Z31)

2

−Re(Z33)
|Z12Z21|+Re(Z12Z21)

2
+2Re(

√
Z12Z21)Re(

√
Z13Z31)Re(

√
Z23Z32)> 0 (≥ 0) (16e)

�

Proof. According to Lemma 2, if there exists a reciprocal three-
port network with impedance matrix Zeq that has the same stabil-
ity (weak stability) characterization as the nonreciprocal three-port
network with impedance matrix Z, then

det(Zeq +Z0) = det(Z +Z0) (17)

for any passive (strictly passive) Z0 = diag[z1,z2,z3]. According to
(17) in the paper, we have

det

 Za + z1 Zb Zd
Zb Zc + z2 Z f
Zd Z f Zh + z3


= det

 Z11 + z1 Z12 Z13
Z21 Z22 + z2 Z23
Z31 Z32 Z33 + z3


Calculating the two determinants and equating the coefficients of
z1, z2, and z3 (because the above is to hold for any passive (or
strictly passive) Z0 = diag[z1,z2,z3]), if and only if the symmetriza-
tion condition (15) holds, we get

Zeq =

 Z11 γ1
√

Z12Z21 γ2
√

Z13Z31
γ1
√

Z12Z21 Z22 γ3
√

Z23Z32
γ2
√

Z13Z31 γ3
√

Z23Z32 Z33

 (18)

where γi =±1 for i = 1,2,3. We will discuss later why the stability
condition will be the same for any of these 8 solutions.

According to Lemma 1, the symmetric three-port network with
the impedance matrix Zeq given in (18) is stable (weakly stable) if
and only if it is strictly passive (passive), i.e.,

Re(Zeq)> 0 (≥ 0) (19)

Consequently, if (15) holds, then the nonreciprocal three-port net-
work with the impedance matrix Z given in (5) is stable (weakly
stable) if and only if the matrix Re(Zeq), with Zeq given in (18),
is positive definite (positive semi-definite). After simplifying the
matrix Re(Zeq) by

(Re(
√

Zi jZ ji)) =

√
|Zi jZ ji|+Re(Zi jZ ji)

2
, i, j = 1,2,3 (20)

and using Lemma 3, we arrive at conditions (16a)-(16e) for positive
definiteness (positive semi-definiteness) of Re(Zeq). Note that any
of the 8 choices caused by taking γi = ±1, i = 1,2,3, in (18) will
result in the same stability conditions (16a)-(16e) due to the fact
that we are calculating the determinants of the principal minors of
Zeq. This concludes the proof.

Remark 1. Note that Theorem 1 holds not only for the
impedance matrix (5) of a general nonreciprocal network but also
for its admittance matrix. The reason for this is Lemma 3 and
Lemma 4. Therefore, if we can show that similar conditions hold
for the hybrid matrix (H) representation of a three-port network,
the same will hold for its inverse, which is the G representation.
This means the positive definiteness (positive semi-definiteness)
of the equivalent reciprocal network is independent of whether an
impedance representation or an immitance representation is used
for it. In the following, we demonstrate that similar conditions hold
for hybrid parameters of a trilateral haptic system. For a nonrecip-
rocal three-port network given by the hybrid matrix

H =

 H11 H12 H13
H21 H22 H23
H31 H32 H33

 (21)
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the hybrid parameters are related to the impedance parameters via

H11 =
1

Z33
, H12 =−

Z31

Z33
, H13 =−

Z32

Z33
,

H21 =
Z13

Z33
, H22 = Z11−

Z13Z31

Z33
, H23 = Z12−

Z13Z32

Z33
,

H31 =
Z23

Z33
, H32 = Z21−

Z23Z31

Z33
, H33 = Z22−

Z23Z32

Z33

Replacing these in various conditions in Theorem 1, we get the fol-
lowing:

H13H21H32−H12H23H31 = 0 (22)

and

Re(H11)> 0 (≥ 0), (23a)
Re(H22)> 0 (≥ 0), (23b)
Re(H33)> 0 (≥ 0), (23c)

Re(H11)Re(H22)−
|H12H21|+Re(H12Z21)

2
> 0 (≥ 0), (23d)

and
Re(H11)Re(H22)Re(H33)

−Re(H11)
|H23H32|+Re(H23Z32)

2

−Re(H22)
|H13H31|+Re(H13Z31)

2

−Re(H33)
|H12H21|+Re(H12Z21)

2
+2Re(

√
H12H21)Re(

√
H13H31)Re(

√
H23H32)> 0 (≥ 0)

(23e)

Obviously, conditions (22) and (23) are the same as those in The-
orem 1 with the difference that hybrid parameters have replaced
impedance parameters.

Remark 2. For the special case of Z13 = Z23 = Z31 = Z32 =
Z33 = 0, Theorem 1 simplifies to the stability criterion for non-
reciprocal two-port networks best known as Llewellyn’s criterion
[1, 2, 3]. Also, for the special case of Z13 = Z31 = 0, Theorem 1
simplifies to the stability criterion in [12]. Our Theorem 1 is more
general as it lifts those constraints and is applicable to any non-
reciprocal three-port network whose impedance matrix Z satisfies
the symmetrization condition (15). As we will demonstrate in the
next section, the symmetrization condition (15) is mild and can be
fulfilled by appropriate choice of free parameters in the three-port
network (e.g., controller structure and gains in the case of trilateral
haptic systems).

4 CASE STUDY: APPLICATION OF THE PROPOSED CRITE-
RION TO A TRILATERAL HAPTIC SYSTEM

In this section, the aim is to apply the proposed stability criterion,
which is general and can be used for three-port networks in various
applications, to a trilateral haptic system. A trilateral haptic system
may be a collaborative haptic virtual environment with three users,
or a dual-user haptic teleoperation system with one slave robot. In
the following, for brevity, we only consider the former and a similar
procedure case may be followed for the latter.

4.1 A triple-user collaborative haptic virtual environ-
ment system

In one degree of freedom triple-user collaborative haptic virtual en-
vironment systems, the goal is that three users cooperate with one
another in a virtual environment to perform a task while receiving
haptic feedback. This corresponds to multi-point-of-contact inter-
action with a virtual environment [19]. The system consists of three

Mm1 M01

bm1

Km1 b01

K01

fh1

xh1 x01

Mm2 M02

bm2

Km2 b02

K02

fh2

xh2 x02

Mm3 M03

bm3

Km3 b03

K03

fh3

xh3 x03

b12

K12

b23

K23

b13

K13

Master 3

Master 2

Master 1 Virtual environment

User 1

User 2

User 3

 

Figure 2: A triple-user collaborative haptic virtual environment sys-
tem.

master robots, each of which operating on a specific point on the
virtual object as shown in Figure 2. The virtual object computes
the dynamic response (in terms of force feedback) at each of these
points by using the positions of the three master user interfaces.
One application of such a trilateral system is in tele-rehabilitation,
in which two master robots are operated by two patients and the
third master robot is operated by a therapist. The therapist interacts
with the patients in a virtual environment designed for rehabilita-
tion exercises and monitoring their progress through the received
force (and visual) feedback.

Virtual object’s mechanical properties such as mass, stiffness,
and damping can be adjusted to correspond to real life objects. Dy-
namic modeling of the virtual environment based on a mass-spring-
damper mesh follows. Consider the triple-user collaborative haptic
virtual environment system shown in Figure 2. In this figure, Mmi,
Kmi and bmi, i = 1,2,3, are mass, stiffness, and damping terms of
the three masters. Also, M0i represents the mass of a node of the
virtual object mesh that is in contact with master i. We assume M0i
is connected to a stationary ground via spring K0i and damper b0i.
We also assume K12, K13, K23 are the stiffness of springs connect-
ing the three nodes of the mesh of the virtual object. Similarly, b12,
b13, b23 are the dampers connecting the same three nodes. Lastly,
fhi denotes the interaction force between each user and the corre-
sponding master.

The dynamics of the three masters are


Mm1ẍh1 = fh1 +Km1(x01− xh1)+bm1(ẋ01− ẋh1)

Mm2ẍh2 = fh2 +Km2(x02− xh2)+bm2(ẋ02− ẋh2)

Mm3ẍh3 = fh3 +Km3(x03− xh3)+bm3(ẋ03− ẋh3)

(24)

Also, the dynamics of the three nodes on the mesh of the virtual

614



object are

M01ẍ01 = Km1(xh1− x01)+bm1(ẋh1− ẋ01)

+K12(x02− x01)+b12(ẋ02− ẋ01)

+K13(x03− x01)+b13(ẋ03− ẋ01)

+K01(0− x01)+b01(0− ẋ01)

M02ẍ02 = Km2(xh2− x02)+bm2(ẋh2− ẋ02)

+K12(x01− x02)+b12(ẋ01− ẋ02)

+K23(x03− x02)+b23(ẋ03− ẋ02)

+K02(0− x02)+b02(0− ẋ02)

M03ẍ03 = Km3(xh3− x03)+bm3(ẋh3− ẋ03)

+K13(x01− x03)+b13(ẋ01− ẋ03)

+K23(x02− x03)+b23(ẋ02− ẋ03)

+K03(0− x03)+b03(0− ẋ03)

(25)

For simplicity, let us choose bm1 = bm2 = bm3 = b01 = b02 = b03 =
b12 = b13 = b23 = 0. Thus, the impedance matrix representation of
the closed-loop triple-user haptic virtual environment system is fh1

fh2
fh3

=

 Z11 Z12 Z13
Z21 Z22 Z23
Z31 Z32 Z33

 ẋh1
ẋh2
ẋh3

 (26)

where Z = A−1B with

A =

 a1s − K12
Km2

− K13
Km3

− K12
Km1

a2s − K23
Km3

− K13
Km1

− K23
Km2

a3s



B =

 a1q1s−Km1
s − q2K12

s − q3K13
s

− q1K12
s

a2q2s−Km2
s − q3K23

s
− q1K13

s − q2K23
s

a3q3s−Km3
s


In the above, a1 = M01s + Km1+K12+K13+K01

s , a2 = M02s +
Km2+K12+k23+K02

s , a3 = M03s + Km3+K13+K23+K03
s , q1 = Mm1s2+Km1

Km1
,

q2 =
Mm2s2+Km2

Km2
, and q3 =

Mm3s2+Km3
Km3

.

4.2 Stability analysis
It can be shown that the symmetrization condition (15) will always
hold once we find the elements of the three-port network impedance
matrix (26). It is easy to see that the left side of stability conditions
(16a)-(16c) will always equal zero. Condition (16d) turns out to be

1
2

Q2
1Q2Q3(−1+ sign(Q2)sign(Q3))sign(Q2)sign(Q3)≥ 0 (27)

where

Q1 = K12Km3M03ω
2−K12Km3K23−K12Km3K13−K12Km3K03

−K23K13−K12K2
m3

Q2 = ω
4Mm1M01(Km1−1)−ω

2(Km1−1)(Mm1Km1 +Km1K01

+Km1Mm1 +K12Mm1 +K13Mm1)+Km1(Km1−1)(K12 +K13 +K01)

+K3
m1

Q3 = ω
4Mm2M02(Km2−1)−ω

2(Km2−1)(Mm2Km2 +Km2K02

+Km2Mm2 +K12Mm2 +K23Mm2)+Km2(Km2−1)(K12 +K23 +K02)

+K3
m2

Q

0

Q

0

Q

0

Q

0

Q2

Q3 Q2 Q3

Q2
Q3

Q2 Q3

(a) (b)

(c) (d)
 

Figure 3: The four cases when Q2 and Q3 have the same sign.

Obviously, (27) will be fulfilled for all frequencies ω if Km1 =
Km2 = 1. Also, if Q2 and Q3 have the same sign, (27) will be ful-
filled.

Given that Q2 and Q3 are quadratic polynomials in ω , there is a
total of 4 possibilities as shown in Figure 3 for the signs of Q2 and
Q3. Here, we only consider the case (b). In this case, a sufficient
condition for stability is

Km1 > 1, Km2 > 1, Mm1 > Mo1, Mm2 > M02

4K3
m1 > (Km1−1)(K12 +K13 +K01)

2

4K3
m2 > (Km2−1)(K12 +K23 +K02)

2 (28)

These conditions will make the left hand side of (27) equal to zero.
Since the left side of conditions (16a)-(16d) have become identical
to zero, so, the left side of condition (16e) will also equal zero, and
stability is ensured.

Given the symmetry between the three ports in a trilateral sys-
tem, a sufficient, frequency-independent, and compact condition for
stability of the above-described triple-user collaborative haptic vir-
tual environment system is either

Km1 = Km2 = Km3 = 1 (29)

or 

Km1 > 1, Mm1 > M01,

Km2 > 1, Mm2 > M02,

Km3 > 1, Mm3 > M03,

4K3
m1 > (Km1−1)(K12 +K13 +K01)

2,

4K3
m2 > (Km2−1)(K12 +K23 +K02)

2,

4K3
m3 > (Km3−1)(K13 +K23 +K03)

2.

(30)

5 SIMULATIONS

In this section, the stability condition for the triple-user collabora-
tive haptic virtual environment system found in the previous sec-
tion will be verified via simulations. For checking the stability of
the triple-user collaborative haptic virtual environment system, the
ports #2 and #3 were connected to passive terminations while the

615



Table 1: The controller gains of the triple-user collaborative haptic
virtual environment system used in simulations. (A) Stable, (B) Po-
tentially unstable.

Parameters
(A) M01 0.4 Km1 260 K01 15 K12 6

M02 0.4 Km2 260 K02 15 K23 6
M03 0.4 Km3 260 K03 15 K13 6

(B) M01 0.4 Km1 2 K01 6 K12 3
M02 0.4 Km2 1 K02 6 K23 3
M03 0.4 Km3 3 K03 6 K13 3
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Figure 4: (a) Input energy at the #1’s port of a triple-user collabo-
rative haptic virtual environment system. Simulation parameters are
listed in Table I: parameters (A) for the stable, parameters (B) for the
potentially unstable.

input energy at the port #1 (i.e., the energy dissipation in the three-
port network terminated in ports 2 and 3) was measured. The sys-
tem is absolutely stable if and only if, at all times t > 0, we have
[15]:

E(t) =
∫ t

0
fh1(τ)ẋh1(τ)dτ > 0 (≥ 0) (31)

The triple-user collaborative haptic virtual environment system
has been simulated in MATLAB/Simulink. There is no time de-
lay in the communication channel between the masters and the vir-
tual objects. Three 1-DOF robots as the three masters are mod-
eled by masses Mm1 = Mm2 = Mm3 = 1.6, respectively. The master
#2 and #3 are connected to LTI terminations with transfer func-
tions 1

s+1 , which are strictly passive as, for s = jω , we have
Re( 1

s+1 ) =
1

ω2+1 > 0 when ω > 0. A sine-wave input fh1 is ap-
plied to the master #1’s open port.

According to (29) and (30), the stability of the triple-user haptic
system should depend on the controller gains and robots parame-
ters. In the simulations, the parameters Mmi, M0i, Kmi, K01, K12,
K13, and K23, where i = 1,2,3, were chosen according to Table 1.
The input energy (31) profiles are plotted in Figure 4(a). As it can
be seen, if the controller gains are selected according to (30), e.g.,
as listed in Table 1(A), then the input energy at port 1 is positive
at all times, indicating the stability of the trilateral haptic system.
However, when the controller gains violate (29) or (30), e.g., as
listed in Table 1(B), the input energy may become negative at least
for a period of time, indicating potential instability of the trilateral
system. We get similar results if we repeat the above simulations
after replacing the strictly passive terminations 1

s+1 by the passive
terminations 1

s , and do not report its results for brevity. These re-
sults validate the previously-found stability conditions.

6 CONCLUSIONS

We presented a closed-form stability criterion for a three-port net-
work based on its immitance matrix. While the proposed criterion
(Theorem 1) can be used for stability analysis of a general class
of three-port networks in a variety of applications, we elaborated
on its application in stability analysis of trilateral haptic systems.
Through simulations involving a triple-user collaborative haptic vir-
tual environment system, the proposed analytical stability criterion
was validated.
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