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ABSTRACT

A bilateral teleoperation system includes a human operator and an
environment, which make the system stability analysis complicated
due to their unknown, time-varying and nonlinear nature. Unable to
have exact models for the human operator and the environment, it
is typically assumed that they are passive but otherwise arbitrary. In
this paper, through a set of experiments, first we show that a human
operator’s relaxed arm is strictly passive while voluntary motions
of the human operator’s arm involve non-passive characteristics.
Then, we adjust the passivity assumption of the human operator’s
arm (by tightening it for an input-strictly-passive arm and relaxing
it for a non-passive arm) in order to enable a more precise stability
analysis of the teleoperation system. Inspired by Llewellyn’s ab-
solute stability criterion, a powerful stability analysis approach is
developed to investigate the stability of a two-port network when it
is coupled to an input-strictly-passive or a non-passive termination.
Although this new stability criterion is applicable to any two-port
network system, we apply it to a position-error-based bilateral tele-
operation system as a case study.

Index Terms: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Haptic I/O; I.2.9 [Artificial Intelligence]: Prob-
lem Solving, Control Methods, and Search—Control theory

1 INTRODUCTION

A bilateral teleoperation system comprises a human operator ma-
nipulating a master robot, a communication channel, and a slave
robot working on an environment [1]. We define a teleoperator to
be the combination of the master and the slave, their controllers,
and the communication channel. Stability of a teleoperation sys-
tem is investigated in passivity-based frameworks in order to ac-
commodate the fact the teleoperator’s terminations (i.e., the human
operator and the environment) are uncertain, nonlinear and/or time-
varying. In the passivity-based stability analysis, the teleoperator is
modelled as a two-port network and made passive through appro-
priate control. The human operator and the environment as the two
terminations for this two-port network are assumed to be passive.
The interconnection of a passive two-port network with two passive
terminations is passive and therefore stable [1], thus the passivity
of the two-port network teleoperator is sufficient for stability of the
teleoperation system.

In a less conservative approach to stability analysis of teleoper-
ation systems, a well-known absolute stability criterion has been
proposed by Llewellyn [2]. Absolute stability of a two-port net-
work is equivalent to passivity of the driving-point impedance seen
from one of the ports when the other port is terminated to a passive
one-port network [3] (Fig. 1). Equivalently, a two-port network is
absolutely stable if it results in a stable teleoperation system when
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coupled to two passive termination. By not requiring the teleop-
erator to be passive, absolute stability reduces the conservatism in
the stability analysis and makes it possible to design controllers that
lead to improved teleoperation transparency.

 

Two-port 
Network 

Passive  
One-port 
Network 

Passive 

Figure 1: Absolute stability of a two-port network is equivalent to
passivity of the driving-point impedance at a port when the other port
is terminated to a passive one-port network.

Investigating stability of teleoperation systems through both
passivity-based and absolute stability approaches involve the com-
mon assumption that the teleoperator’s terminations are passive.
We claim that in many practical systems, the human operator (or the
environment) may be either input-strictly-passive (i.e., overly pas-
sive) or non-passive. While coupling an input-strictly-passive ter-
mination to an absolutely stable two-port network does not impose
more stability issues than when the termination is passive, using the
Llewellyn’s absolute stability criterion for the teleoperator will re-
sult it overly conservative stability conditions. In fact, the excess of
passivity (EOP) of the input-strictly passive termination may allow
the two-port network to be non-passive, which provides an oppor-
tunity to improve the transparency of the teleoperation system. On
the other hand, a non-passive termination coupled to a two-port net-
work that satisfies the Llewellyn’s absolute stability criterion may
lead to an unstable coupled system.

When minimum and maximum bounds on the impedance of a
termination in a teleoperation system are known, the termination
can be modelled by series and shunt impedances combined with an
arbitrary impedance [4, 5]. In another work, the stability condition
has been found as a function of the impedance parameter of the
termination after using reflective coefficient parameters in the scat-
tering domain [6]. In a recent work, Llewellyn’s criterion has been
revisited to accommodate investigating stability of a two-port net-
work coupled with a non-passive termination [7]. Specifically, the
largest region in the complex impedance plane was found such that
any termination with an impedance in that region – regardless of
being passive or non-passive – when coupled to a two-port network
would result in a passive driving-point impedance at the other port
of the two-port network. In this paper, this work has been extended
to when the termination is overly passive which allows the relax-
ation of stability conditions on the two-port network and improved
transparency of the overall teleoperation system.

Llewellyn’s absolute stability criterion determines bounds on the
teleoperator assuming the human operator and the environment are
passive [4, 8]. When a human operator is holding a robot through
a relaxed grasp, he/she is passive [9]. However, in general, the hu-
man operator may be a source of energy in a teleoperation system.
In this paper, coinciding with Hogan’s results, a relaxed human arm
is identified as a passive system. On the other hand, during oper-
ator’s voluntary motion, the human operator is found to act as an
active system. Instead of labeling a termination as passive or non-
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passive, how much a termination is passive or non-passive – excess
of passivity (EOP) and shortage of passivity (SOP) – is considered
for stability of the teleoperation systems.

For a linear time-invariant (LTI) system, passivity is equivalent
to positive realness of its transfer function. In other words, a passive
one-port network’s complex impedance will be in the right half of
the complex plane. For a non-passive one-port network, the com-
plex impedance has a real part greater than a negative number. In
contrast, for an input-strictly-passive (ISP) system, the real part of
the complex impedance is greater than a positive number. The shift
of the right half plane to the right (or the left) corresponds to the,
EOP (or SOP).

This paper applies conformal mapping or Mobius transformation
to propose a new powerful stability analysis tool for two-port net-
works when the terminations have excess of passivity or shortage
of passivity. Llewellyn’s absolute stability criterion for passive ter-
minations has been extended to non-passive and ISP terminations.
The resulting absolute stability conditions have a closed form.

The rest of this paper is organized as follow. In Section 2, the
fundamental notions such as excess of passivity and shortage of
passivity are introduced. In Section 3, experiments involving a hu-
man operator are performed to identify when the operator is passive
or non-passive. The absolute stability condition for passive termi-
nation is derived in Section 4 and its extension to non-passive and
input-strictly-passive terminations are developed in Sections 5 and
Section 6, respectively. Although the developed stability criteria
are valid for any two-port network, they are applied to a position-
error-based teleoperation system in Section 7.

2 MATHEMATICAL PRELIMINARIES

This section includes the definitions and prerequisite theorems that
are used in the subsequent sections. Notions of passivity, absolute
stability, positive realness, and strict passivity are defined.

Definition 1. A system with input u(t) and output y(t) is passive if
there is a constant β such that∫ t

0

y(τ)u(τ)dτ ≥ β (1)

for all t ≥ 0.

The constant β is the energy storage at time t = 0. If the input
and output of a mechanical system are chosen to be the force and the
velocity, the physical meaning of passivity will be that the system
dissipates energy.

Definition 2. [10] A two-port network is called absolutely stable
if for any passive but otherwise arbitrary terminations, the overall
two-port network is stable. A two-port network is called potentially
unstable if it is not absolutely stable.

Theorem 1. [3] A two-port network is absolutely stable if and only
if for any passive but otherwise arbitrary termination at each of the
ports, the driving-point impedance from the other port is passive.

The absolute stability according to Definition 2 requires that the
terminations are assumed passive. Our paper will consider non-
passive and strictly passive terminations defined in the following.

Definition 3. Consider a system with input u(t) and output y(t).
If there is constants β such that for all t ≥ 0,∫ t

0

y(τ)u(τ)dτ ≥ β + δ

∫ t

0

u(τ)u(τ)dτ (2)

for δ > 0, the system is ISP with EOP of δ [11, 12]. For δ < 0, the
system is non-passive with SOP of −δ.

For an LTI system, passivity is equivalent to having the system’s
Nyquist diagram entirely in the right half plane (Fig. 2-a). The
Nyquist diagram of an ISP system with transfer function G(s) and
EOP of δ > 0 is in the right hand side of the vertical line at δ,
i.e. Re{G(s)} ≥ δ (Fig. 2-b). Similarly, for a non-passive trans-
fer function G(s) with SOP of λ > 0 the Nyquist diagram is in
Re{G(s)} ≥ −λ (Fig. 2-c). Theorems 2 and 3 make the connec-
tion between the passivity of LTI system and their corresponding
regions in the Nyquist plane.

Theorem 2. [11, 13, 14] Consider a system with transfer func-
tion G(s), input U(s) and output Y (s). Assume that all poles of
G(s) have negative real parts. The system is passive if and only if
ReG(jω) ≥ 0 for all frequencies ω 1.

Theorem 3. [11] Consider a system with transfer function G(s),
input U(s) and output Y (s). Assume that all poles of G(s) have
negative real parts. The system is ISP with EOP of δ if and only if
ReG(jω) ≥ δ for all frequencies ω. Also, the system is non-passive
with SOP of λ if and only if ReG(jω) ≥ −λ for all frequencies ω.

Figure 2: Nyquist diagrams of (a) a passive system, (b) an ISP sys-
tem with excess of passivity of δ, (c) a non-passive system with short-
age of passivity of λ.

Next, the passivity of a human operator is experimentally tested
for two tasks involving relaxed arm and voluntary motions.

3 PASSIVITY OF HUMAN ARM

The passivity of a human operator can be analyzed from records of
the force and velocity obtained while the operator interacts with a
haptic device. For this purpose, experiments were performed with
a two degree-of-freedom (DOF) robot manufactured by Quanser,
Inc. (Markham, ON, Canada). The robot, which operates in a hori-
zontal plane, is readily backdrivable and features a two-motor cap-
stan drive mechanism capable of exerting forces in excess of 50 N
throughout its workspace. Optical encoders on the motor shafts pro-
vide a Cartesian resolution of better than 0.002 mm at the end ef-
fector. End effector velocities are calculated through differentiation
and low-pass filtering of position signals. A 2-DOF strain gauge
force sensor measures the forces the operator exerts on the device.
The robot is controlled by a closed-loop feedback linearized posi-
tion control algorithm. All data logging and robot control activities
occur at a 1 kHz sampling frequency.

Data was collected from a 29-year-old right-handed male with no
history of motor impairment. In each trial, the subject sat in front
of the robot and rested his right hand on the robot’s end-effector
(handle). The subject’s elbow was supported against gravity by a
sling attached to a rope connected to the ceiling. The subject’s hand
was centered at a home position 52 cm anterior to the body in the
sagittal plane intersecting the shoulder joint.

1In fact, for an LTI system, passivity is equivalent to positive realness.

Positive realness is (a) having no pole in the right half plane, (b) poles on

the jω-axis are not repeated and have positive residues, (c) ReG(jω) ≥ 0.

Conditions (a) and (b) are for stability and condition (c) ensures passivity.
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The subject was instructed to perform a relaxed arm task and a
voluntary motion task. In the first task, the subject relaxed his arm
while the robot applied a series of 5 mm step-like underdamped po-
sition perturbations to the subject’s hand. Following each perturba-
tion, the robot’s position controller gently repositioned the hand at
the home position such that each subsequent perturbation was deliv-
ered from the same location. To prevent the subject from voluntar-
ily intervening as the measurements were performed, each pertur-
bation had a random direction (selected from 8 possible directions
at 45◦ intervals around the home position), duration(1.5–2.0 s), and
onset time (2.5–7.0 s after the conclusion of the previous perturba-
tion). A total of 16 perturbations were delivered in each of the five
trials.

In the second task, the robot’s position controller was turned off
and the subject was instructed to move his arm. Two dots were dis-
played on a computer screen, representing the robot’s end-effector
position and a target position for the subject to track as closely and
quickly as possible. In each of the four trials, the target moved
5 mm away from the home position a total of 16 times, returning
to the home position after each motion. As in the relaxed arm task,
the direction, duration, and onset of each movement were selected
randomly.
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Figure 3: The integral of force times velocity is an indication of pas-
sivity. Staying non-negative for all times corresponds to passivity of
the system. The operator is asked to have his arm on the robot but
does not apply any deliberate force to the robot.
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Figure 4: The integral of force times velocity is an indication of pas-
sivity. Becoming negative implies that the system is non-passive.
The operator is asked to voluntarily apply perturbations to the robot.

Fig. 3 and Fig. 4 display the result of the integral (1) for the
relaxed arm and the voluntary motions, respectively. The measured
forces were filtered by a 10th-order Butterworth low-pass filter with
a cutoff frequency of 20 Hz. Staying non-negative at all times for
the relaxed arm, in Fig. 3, indicates that the relaxed arm is passive.
In fact, the relaxed arm experiment resulted in an ISP system which
provides some level of flexibility in the control design. According
to (2), the EOP is found to be 10.81 ± 0.78 for Fig. 3. On the other

hand, the negative result of the integral in Fig. 4 demonstrates that
voluntary motion implies non-passivity of the human operator with
SOP of 27.19 ± 3.46. We have shown passivity and non-passivity
of human arm in a related work using impedance identification [15].
Before addressing stability conditions of the non-passive and ISP
terminations, we will consider absolute stability for a passive ter-
mination in the following.

4 ABSOLUTE STABILITY CRITERION UNDER PASSIVE TER-
MINATIONS

A two-port network (Fig. 5-a) is modelled by its impedance (Z)
parameters as [

V1

V2

]
=

[
Z11 Z12

Z21 Z22

] [
I1
I2

]
(3)

Theorem 4. [3] A two-port network is absolutely stable if and only
if

(i) Z11 and Z22 have no poles in the right half of the complex
plane (RHP),

(ii) Pure imaginary poles of Z11 and Z22 are simple and have
positive residues, and

(iii) For all real positive frequencies ω,

ReZ11(jω) ≥ 0

ReZ22(jω) ≥ 0

2ReZ11(jω)ReZ22(jω)− Re{Z12(jω)Z21(jω)}
−|Z12(jω)Z21(jω)| ≥ 0 (4)

The two-port network impedance parameters may be replaced by
any immitance parameters.

Proof. [7, 16] Conditions (i) and (ii) are necessary for ensuring
positive realness of Z11 and Z22 in zero-impedance conditions for
ports 2 and 1, respectively [3]. Let us consider Condition (iii). As
shown in Fig. 5-b, the two-port network is connected to a pas-
sive impedance z2 and the driving-point impedance is called Za1.
The two-port network will be absolutely stable if Za1 is passive as
well. It is easy to show that Za1 can be expressed based on the
two-port network impedance parameters Zij’s and the termination
impedance z2 as

Za1 = Z11 − Z12Z21

Z22 + z2
(5)

This relationship between the impedances z2 and Za1 can be ex-
pressed as a Mobius transformation as

Za1 =
z2(Z11) + (Z11Z22 − Z12Z21)

z2 + (Z22)
(6)

Mobius transformation maps circles and lines from one complex
plane to lines and circles in another complex plane [17, 18]. The
borderline of passivity in the z2 complex plane is a vertical line
coincident with the jω-axis; any impedance to the right of this line
(i.e., with a positive real value) is passive. If ReZ22 ≥ 0, then the
Mobius transformation of the jω-axis is a circle with a radius ro
and a centre located at ωo where

ro =
|Z12Z21|
2R22

(7)

ωo = Z11 − Z12Z21

2R22
(8)

where R22 = ReZ22. This means that the right half plane in the
z2-plane (i.e., class of positive-real impedances) is mapped to a disc
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as depicted in Fig. 6. Now, the condition for passivity of the result-
ing mapped impedance, i.e. Za1, is that it entirely lies in the right
half plane. In other words,

Reωo − ro ≥ 0 (9)

Substituting (7) and (8) in the above leads to

2ReZ11 ReZ22 − Re(Z12Z21)− |Z12Z21|
2R22

≥ 0 (10)

Here, Rij = ReZij . This completes the proof.
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Figure 5: (a) Two-port network and (b) driving-point impedance
Za1 = V1/I1 when port 2 is terminated to a passive impedance
z2.
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Figure 6: Mobius transformation maps the right half of the z2-plane
(a) to a disc in the Za1-plane (b).

Having Llewellyn’s absolute stability criterion derived in the
above, our two extensions for stability analysis of a two-port net-
work systems with non-passive and strictly passive terminations are
elaborated in Section 5 and Section 6.

5 STABILITY OF TWO-PORT NETWORKS COMPRISING A
NON-PASSIVE RECTANGULAR IMPEDANCE TERMINATION

Assume that impedance z2 that terminates port 2 of a two-port net-
work has a negative real part with magnitude of SOP equal to a,
i.e. Rez2 ≥ −a. Also, to cover a more general case of impedance
shapes in the z2-plane, assume that there is an upper bound for the
real part of the impedance, i.e., Rez2 ≤ b, b > 0, and that the
imaginary part of the impedance in the complex plane is bounded
between c > 0 and −d < 0. The impedance is boxed in the rect-
angle −a ≤ Rez2 ≤ b,−d ≤ Imz2 ≤ c as shown in Fig. 7-a. By
setting a = 0, b = ∞, c = ∞ and d = ∞ the impedance will span
the right half plane (passive).

Theorem 5. Consider a two-port network system (3). Assume that
port 2 of the two-port network is terminated to an impedance z2
and the driving-point impedance seen from port 1 is Za1. Assume
that z2 satisfies −a ≤ Rez2 ≤ b and −d ≤ Imz2 ≤ c, where
a, b, c, d > 0. Also, assume port 1 of the two-port network is ter-
minated to a passive impedance. Then, the necessary and sufficient
condition for stability of the coupled system is

(i) Z11 and Z22 have no poles in the right half of the complex
plane,

(ii) Pure imaginary poles of Z11 and Z22 are simple and have
positive residues, and

(iii) For all real positive frequencies ω,

R11 ≥ 0

R22 ≥ a

2R11R22 − Re{Z12Z21} − |Z12Z21| − 2R11a ≥ 0(11)

In (11), the jω arguments of the impedances are not displayed
for the sake of brevity.

Proof. Similar to the proof of Theorem 4, Conditions (i) and (ii) are
necessary condition for stability of the two-port network. Condition
(iii) is derived below.

• Step 1: When z2 is connected to port 2 of the two-port net-
work, for stability of the overall system we require that Za1 is
passive. The transformation from z2 into Za1 is

Za1 = Z11 − Z12Z21

Z22 + z2
(12)

which can be expressed as a Mobius transformation from z2
into Za1 consistent with (6).

• Step 2: The rectangle −a ≤ Re z2 ≤ b,−d ≤ Imz2 ≤ c
is mapped to a portion of a crescent in Za1-plane (hatched
region in Fig. 7-b). Proof is omitted for brevity.

• Step 3: The portion of the crescent found in Step 2 needs to be
entirely in the right half the complex Za1-plane for passivity
of the driving-point impedance at port 1. Because the outer
edge of the crescent (mapping of Rez2 = −a) contains the
inner edge of the crescent (mapping of Re z2 = b) and the two
circles overlap each other in a region farthest possible from
the origin, the necessary and sufficient condition for passivity
of the driving-point impedance at port 1 is

Re aωo − aro ≥ 0 (13)

The transformation of the line Re = −a into the Za1-plane is
a circle with radius and centre of

aro =
|Z12Z21|

2(R22 − a)
(14)

aωo = Z11 − Z12Z21

2(R22 − a)
(15)

After substituting for aro and aωo from (14) and (15), (13)
becomes

Re{Z11 − Z12Z21

2(R22 − a)
} − |Z12Z21|

2(R22 − a)
≥ 0 (16)

which can be rearranged as (11). This completes the proof.
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Figure 7: A rectangle in the z2-plane is transformed into the hatched
region in the Za1-plane.

Remarks:
• The value of the upper limit of the z2 impedance b does not

appear in the stability condition (11) due to the fact that the
inner circle of the crescent in Fig. 7-b is not the source of any
constraint when ensuring the passivity of Za1. Also, c and d
do not enter (11). In other words, stability only is affected by
the lower limit of the real part of the impedance connected to
port 2 of the two-port network.

• The difference between the new stability condition (11) for
rectangular termination impedances and Llewellyn’s absolute
stability criterion is in the last term of (11).

• Unlike Llewellyn’s absolute stability criterion, the new stabil-
ity conditions in Theorem 5 are not symmetric with respect to
the network parameters. In other words, swapping the termi-
nations at ports 1 and 2 of a two-port network does not change
Llewellyn’s absolute stability conditions but it may affect the
new conditions in Theorem 5. This is due to the fact that in
this paper we assume that a port of the two-port network is
connected to a potentially non-passive terminations and then
require the driving-point impedance seen from the other port
to be passive in order to ensure the stability of the overall sys-
tem once the open port is terminated to a passive impedance.

6 STABILITY OF TWO-PORT NETWORKS COMPRISING AN
INPUT STRICTLY PASSIVE IMPEDANCE TERMINATION

Theorem 6. For a two-port network, assume that the termination
impedance of z2 is ISP with δ ≥ 0. Also, assume that R22 ≥
−δ. Then, the necessary and sufficient condition for stability of the
coupled system is

(i) Z11 and Z22 have no poles in the right half of the complex
plane,

(ii) Pure imaginary poles of Z11 and Z22 are simple and have
positive residues, and

(iii) For all real positive frequencies ω,
R11 ≥ 0

R22 ≥ −δ

2R11R22 − Re{Z12Z21} − |Z12Z21|+ 2R11δ ≥ 0(17)

Proof. As depicted in Fig. 5, port 2 of a two-port network is termi-
nated to an impedance of z2 which has the Nyquist plot of Fig. 2-b
and the objective of the rest of the proof is to find the transformed
region in the Za1-plane. Then, this region in the Za1-plane requires
to be entirely placed in the right half plane.

With the assumption of R22 ≥ −δ, the region of Fig. 2-b in the
z2-plane is transformed to a disc in the Za1-plane with a radius of

ro =
|Z12Z21|

2(R22 + δ)
(18)

and a centre at

ωo = Z11 − Z12Z21

2(R22 + δ)
(19)

This region in the Za1-plane should be entirely in the right half
plane, leading to (17).

Remark:

• The last condition in (17) for stability under an ISP termina-
tion should be compared to its non-passive counterpart in (11).
Given that a, δ > 0, it is clear that the latter is more restric-
tive. Indeed, a two-port network with a non-passive termina-
tion should be overly passive to compensate for non-passivity
of the termination. On the other hand, a passive termination
requires less energy absorption by the two-port network for
ensuring stability of the coupled system.

7 APPLICATION TO BILATERAL TELEOPERATION

While the stability conditions in Section 5 and Section 6 are valid
for any two-port network, an important application is in stability
analysis of a bilateral teleoperation system. Assume the LTI dy-
namic models of the master and the slave are

sXm = Z−1
m (Fh + Fm) (20)

sXs = Z−1
s (Fe + Fs) (21)

where subscript m and s correspond to the master and the slave,
X denotes the position, Z is the robot impedance, F is the robot
controller output, Fh and Fe are the operator’s hand and the envi-
ronment forces, and s is the Laplace variable. Position-error-based
controllers for the master and the slave are

Fm = Cm(s)(Xs −Xm) (22)

Fs = Cs(s)(Xm −Xs) (23)

The impedance matrix representing the teleoperator is

Z =

[
Ztm Cm

Cs Zts

]
(24)

Here, Zts = Zs + Cs and Ztm = Zm + Cm, where the master
and the slave robots are modelled as Zm = sMm +Bm and Zs =
sMs+Bs and the local position controllers are proportional deriva-
tive controllers: Cm = Kvm +Kpm/s and Cs = Kvs +Kps/s.

7.1 Passive termination

If the teleoperator terminations are passive and controller gains are
non-negative, i.e., Kvm ,Kvs ,Kpm ,Kps ≥ 0, the teleoperation
system is stable if and only if

Bms ≥ (KvmKps −KpmKvs)
2

4KpmKps

(25)

where Bms = BmBs + BmKvs + BsKvm . This is found by ap-
plying the Llewellyn’s criterion (4), which results in the inequality
condition

4BtsBtmBmsω
2

+4KpmKpsBms − (KvmKps −KpmKvs)
2 ≥ 0 (26)

where Bts = Bs +Kvs and Btm = Bm +Kvm , and then setting
ω = 0 as the worst case. Condition (25) implies that stability is
guaranteed for any value of robot damping if the controller gains
are selected to satisfy

Kps

Kvs

=
Kpm

Kvm

(27)

This is consistent with the result reported in [8]. When (27) does
not hold, a lower bound on Bms is found, which resulting in lower
bounds on the master and the slave damping terms Bm and Bs and
bounds on their derivative control gains Kvm and Kvs .

699



7.2 Non-passive termination
If the terminating one-port network has an impedance of a rectangu-
lar shape as in Fig. 7-a, i.e., −a ≤ Rez2 ≤ b and −d ≤ Imz2 ≤ c
where a, b, c, d ≥ 0 and Kvm ,Kvs ,Kpm ,Kps ≥ 0, the stability
condition (11) yields

4(Bts − a)BtmB′
msω

2

+4KpmKpsB
′
ms − (KvmKps −KpmKvs)

2 ≥ 0 (28)

Bts ≥ a (29)

where B′
ms = (Kvm+Bm)(Bs−a)+BmKvs = Bms−(Kvm+

Bm)a and results in a similar condition as (26) where Bs is re-
placed by Bs − a. With ω = 0, the worst case for (28) is found as

B′
ms ≥ (KvmKps −KpmKvs)

2

4KpmKps

(30)

which is similar to (25) with the difference that Bms has been re-
placed by B′

ms in the left-hand side. Noting that B′
ms = Bms −

(Kvm + Bm)a, we arrive at the conclusion that (30) is more re-
strictive than (25), which is expected because of the nature of the
termination for each case. Note that (29) has to be fulfilled, too.

If the master and slave damping terms Bm and Bs are zero, the
stability conditions (29) and (30) are satisfied only if the controller
gains are proportional as in (27) and also a = 0, which means that
there is no non-passive termination for which stability is ensured.

The condition (29) implies a lower bound on the termination
non-passivity. In other words, to be able to accommodate more non-
passive terminations, the damping terms of the master and the slave
robots should be higher or otherwise the derivative term of the con-
troller should be selected high enough to overcome non-passivity
of the termination Bts = Bs +Kvs .

7.3 Input-strictly-passive termination
Assume that the termination is input-strictly-passive with EOP of δ.
The impedance of the termination is a half plane shifted to the right
expressed as Rez2 ≥ δ > 0. The stability condition (17) becomes

4(Bts + δ)BtmB′′
msω

2

+4KpmKpsB
′′
ms − (KvmKps −KpmKvs)

2 ≥ 0 (31)

where B′′
ms = (Kvm+Bm)(Bs+δ)+BmKvs = Bms+(Kvm+

Bm)δ. Since (31) must hold for all frequencies 0 ≤ ω < ∞, the
stability condition under the ISP termination becomes

B′′
ms ≥ (KvmKps −KpmKvs)

2

4KpmKps

(32)

which is similar to the first condition for a non-passive termina-
tion (30) with an exception that −a is now replaced by δ. In fact,
the stability condition for an ISP termination (32) is less restrictive
than the stability conditions for passive and non-passive termina-
tions, i.e., (25) and (29)-(30), respectively. For instance, when (27)
is violated, and the robot damping terms Bm and Bs are zero, the
excess of passivity δ is able to make the stability condition (32)
satisfied; this was not the case for the stability condition (25) for a
passive termination. This means that flexibility in controller design
may result from the any excess of passivity in a teleoperator’s termi-
nation. The more passive the termination is (larger EOP), the more
flexibility we will have in the design of a stabilizing controller.

Table 1 summarizes the stability conditions for different cases of
terminations for this PEB teleoperator.

8 CONCLUSIONS

Llewellyn’s absolute stability criterion assumes that the termina-
tions of a teleoperator are passive systems. Through experiments
involving a relaxed arm task and a voluntary motion task, we
showed that the relaxed arm as a passive system while the arm
executing voluntary motion acts as a non-passive system. Using
Mobuis transformation, the Llewellyn’s absolute stability criterion

Table 1: Teleoperation system stability condition

Termination Stability condition

Passive Bms ≥ (KvmKps −KpmKvs)
2

4KpmKps

Non-passive B′
ms ≥ (KvmKps −KpmKvs)

2

4KpmKps

, Bts ≥ a

ISP B′′
ms ≥ (KvmKps −KpmKvs)

2

4KpmKps

is modified to accommodate cases where a termination of a teleop-
erator has excess of passivity (i.e., is strictly passive) or shortage of
passivity (is non-passive). The new stability criterion is applied to
a position-error-based teleoperator and the resulting stability con-
ditions are compared.
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