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ABSTRACT 

In this paper, a novel control scheme is proposed to guarantee 
global asymptotic stability of bilateral teleoperation systems that 
are subject to time-varying time delays in their communication 
channel and “sandwich linearity” in their actuators. This extends 
prior art concerning control of nonlinear bilateral teleoperation 
systems under time-varying time delays to the case where the local 
and the remote robots’ control signals pass through saturation or 
similar nonlinearities that belong to a class of systems we name 
sandwich linear systems. We call the proposed method nonlinear 
proportional plus damping (nP+D). The asymptotic stability of the 
closed-loop system is established using a Lyapunov-Krasovskii 
functional under conditions on the controller parameters, the 
actuator saturation characteristics, and the maximum values of the 
time-varying time delays. The controller is experimentally 
validated on a pair of 3-DOF PHANToM Premium 1.5A robots, 
which have limited actuation capacity, that form a teleoperation 
system with a varying-delay communication channel.  

Keywords - Nonlinear teleoperation, varying time delay, sandwich 
linearity, actuator saturation, asymptotic stability. 

1 INTRODUCTION 

In telerobotic applications with a distance between the local and 
the remote robots, there will be a time delay in the communication 
channel of the system, which can destabilize it [1]. In practice, the 
communication delay can be time-varying and asymmetric in the 
forward and backward paths between the operator and the remote 
environment. On the other hand, in any practical teleoperation 
system, the actuator output (i.e., control signal) has a limited 
amplitude, i.e., is subject to saturation. Controllers that ignore 
actuator saturation may cause undesirable responses and even 
closed-loop instability [2]. Although it may be possible to avoid 
actuator saturation by using sufficiently high-torque actuators in 
robots, the large size of the actuators will cause further problems in 
robot design and control. Therefore, it is desirable to develop 
control methods that take any actuator saturation into account at 
the design outset and, therefore, allow for efficient and stable 
control with small-size actuators that inevitably possess a limited 
output capacity. In order to address the stability of position control 
for a single robotic manipulator subjected to bounded actuator 
output, several approaches have been proposed in the literature. An 
anti-windup approach is presented to guarantee global asymptotic 
stability of Euler-Lagrange systems in [3]. In [4], a controller is 
proposed involving a gravity compensation term plus a saturating 
function through which the position errors pass. A velocity and 
position feedback method with adaptive gravity compensation is 
reported in [5] in which the velocity and position errors separately 
pass through two nonlinear saturating functions and the outputs are 
then added to an adaptive gravity compensation term. In [6], a 
brief review of PD plus gravity compensation controllers are 
provided. None of the above has been done in the context of 
teleoperation systems.  

Recently, there has been some attention paid to actuator 
saturation in bilateral teleoperation systems. Combining wave 
variables with a nonlinear proportional controller, an architecture 
to handle actuator saturation is discussed in [7] assuming the delay 

in the communication channel is constant. In [8], an anti-windup 
approach combined with wave variables is used for constant-delay 
teleoperation subjected to bounded control signals. 

In this paper, a control scheme is introduced to cope with 
actuator saturation in nonlinear bilateral teleoperation systems that 
are subjected to time-varying delays. Asymptotic stability of the 
position error in the teleoperation system is studied, resulting in 
conditions on the controller parameters, the actuator saturation 
characteristics and the maximum values of varying delays. This 
paper is organized as follows. Section II states the preliminaries 
while the proposed control and main results are presented in 
Sections III and IV respectively. In Section V, experimental results 
are provided followed by conclusions in Section VI. 

Notation. We denote the set of real numbers by � = �−∞,∞�, 

the set of positive real numbers by ��	 = �0,∞�, and the set of 

nonnegative real numbers by ��	 = �0,∞�. Also, ‖�‖� and ‖�‖� 

stand for the Euclidian ∞-norm and 2-norm of a vector ����×�, 

and |�| denotes element-wise absolute value of the vector �. The ℒ� and ℒ� norms of a time function �:	��	 → ��×� are shown as ‖�‖ℒ� = ������	,��‖�� �‖� and ‖�‖ℒ� = !" ‖�� �‖��# �	 $�/� , 

respectively. The ℒ�  and ℒ�  spaces are defined as the sets &�:	��	 → ��×� , ‖�‖ℒ� < +∞) and &�:	��	 → ��×� , ‖�‖ℒ� <+∞), respectively. For simplicity, we refer to ‖�‖ℒ� as ‖�‖� and 

to ‖�‖ℒ� as ‖�‖�. We also simplify the notation *+,�→� �� � = 0 

to �� � → 0. 

2 PRELIMINARIES 

2. A. Model of Teleoperation System 

Consider the master (local) and slave (remote) robots with 
saturated inputs as follows: 

Here, -. , -/.  and -0.���×�  for +�&,, �)  are the joint positions, 
velocities and accelerations of the master and slave robots, 
respectively. Also, 1.�-.� ��	�	��×�, 2.�-.� �, -/ .� ��	�	��×�, and 3�-.� ���	��×� are the inertia matrix, the Coriolis/centrifugal 
matrix, and the gravitational vector, respectively. Moreover, 45 
and 46�	��×� are torques applied by the human operator and the 
environment, respectively. Lastly, 47 and 48�	��×� are the control 
torques for the master and the slave robots. Note that the control 
torques are skewed by the vector function	9: ��×� → ��×�, which 
can be nonlinear. 

Important properties of the nonlinear dynamic model (1)-(2) are 
([9, 10]) 
P-1. For a manipulator with revolute joints, the inertia matrix 1�-� is symmetric positive-definite and has the following 

upper and lower bounds: 0 < :7.�!1�-� ��$; ≤ 1�-� �� ≤ :=>?!1�-� ��$; ≤ ∞ 

where ;���×� is the identity matrix. 
P-2. For a manipulator, the relation between the 

Coriolis/centrifugal and the inertia matrices is as follows: 1/ �-� �� = 	2�-� �, -/ � �� +	2@�-� �, -� �� 

17!-7� �$-07� � + 27!-7� �, -/7� �$-/7 + A7!-7� �$ =45� � − 9!47� �$	  (1) 

18!-8� �$-08� � + 28!-8� �, -/8� �$-/8� � + A8!-8� �$ =9!48� �$ − 46� �		 (2) 
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P-3. For a manipulator with revolute joints, there exists a positive 
η bounding the Coriolis/centrifugal term as  ‖2�-� �, B� ��C� �‖� 	≤ 	D‖B� �‖�‖C� �‖� 

P-4. The time derivative of 2�-� �, -/ � �� is bounded if -/ � � and -0 � � are bounded. 
P-5. For a manipulators with revolute joints, the gravity vector A!-� �$ is bounded (i.e., there exist positive constants EF 

such that every element of the gravity vector, 3F!-� �$ , G = 1,⋯ , J, satisfies K3F!-� �$K ≤ EF). 

2. B. Model of Actuator with Sandwich Linearity 

In the following, sandwich linearity of the actuator as a vector 
function 9�∙� is introduced. It is assumed that n is the number of 
joints in the master and slave robots and the elements of	9���, 
where � ≜ �B� ⋯B�N@, are �F!BF$:� → �,G = 1,⋯ , J, defined by  

With this definition of	9���, it is possible to define different 
sandwich linearity characterizations for different joints of the 
manipulator. Note that the function �F!BF$ is only required to be 
linear for−1F ≤ BF ≤ 1F , and can be nonlinear (unbounded or 
bounded) for KBFK > 1F. A well-known example of such a function 
is saturation. 

It is imperative to have EF < 1F , G = 1,⋯ , J, where EF  is the 
upper bound of K3F!-� �$K . This condition implies that the 
actuators of each of the master and the slave manipulators have the 
capacity to overcome the corresponding robot’s gravity within 
their workspaces. 

1. Proposed Control Law 

In this paper, a nonlinear Proportional plus Damping (nP+D) 
controller that incorporates gravity compensation is proposed for 
the master and the slave robots: 47� � = −A7!-7� �$ + P Q-7� � − -8! − R�� �$S + T7-/7� � (4) 48� � = A8!-8� �$ − P!-8� � − -7� − R�� ��$ − T8-/8� � (5) 
Here, P���:	��×� → ��×�  is a vector with elements �F!BF$:� →� . The function �F!BF$  is required to be strictly increasing, 
bounded, continuous, passing through the origin, concave for 
positive B  and convex for negative 	B , with continuous first 
derivative around the origin, such that K�F!BF$K ≤ KBFK  and �F!−BF$ = −�F!BF$. 
Under the above assumptions, we will have the following 
properties for �F!BF$: 

P-I. For any B, Cϵ�, K�F�B� − �F�C�K ≤ 2�F�|B − C|� 
P-II. For any B, C��, if B < C then �F�B� < �F�C� 

P-III. For any B, C���	,�F�B + C� ≤ �F�B� + �F�C� 
P-IV. For any B��,  *+,W→	 �F�XB� = *+,W→	 X�F�B� 
P-V. For any B, C��, B�F�C� ≤ B�F�B� + C�F�C� 

P-VI. For any B�� , K�F�B�K ≤ ,+JY|B|,ZF[  where ZF ≜���?�\ �F�B� 
P-VII. For any	B� ���, time derivative of �F�B� ��is bounded. 

P-VIII. For any B��, B�F�B� ≥ 0 

2. Main Results 

Let us start by a few preliminary lemmas that will be needed in 
the proof of our first main result in Theorem I. For simplicity, we 

useA7�∙�,A8�∙�, P7�∙� and P8�∙� instead of  A7!-7� �$, A8!-8� �$, P!-7� � − -8� − R�� ��$  and P!-8� � − -7� − R�� ��$ , 

respectively. Similarly, we denote by37^�∙� ,38^�∙� , �7^�∙�  and �8^�∙�  the j-th element of A7�∙� , A8�∙� , P7�∙�  and P8�∙� , 

respectively. 

Lemma I. Given 37^�∙� ≤ EF < 1F , 38^�∙� ≤ EF < 1F , �7^�∙� ≤ZF ≤ 1F − E.  and �8^�∙� ≤ ZF ≤ 1F − E. , for positive-definite 

diagonal matrices T7 and T8the following inequalities hold: 

Lemma II. For any R� �ϵ��	, B� �ϵ��	, we have 

Lemma III. For any vector functions -7� � ≜ _-7�� �⋯-7�� �`@  and -8� � ≜ _-8�� �⋯-8�� �`@ 

and for any positive time-varying scalars R�� � and R�� � , the 

following inequality holds: 

where -/7� �  and -/8� �  are the time derivatives of -7� �  and -8� �, respectively.  
Lemma IV. For any vectors a� � ≜ �b�� �⋯b�� �N@  and c� � ≜ �d�� �⋯d�� �N@ and for any bounded time-varying scalar 0 ≤ R� � ≤ R7, the following inequality holds: 

a@� �e P!c�4�$#4�
�f@��� − e c@�4�P!c�4�$#4�

�f@��� ≤ R7a@� �P!a� �$ 

                                                                                                         (9) 
Proofs of the above four lemmas are provided in Appendix. 
Theorem I. Assuming the human operator and the environment are 
passive, in the bilateral teleoperation system (1)-(2) with 
controllers (4)-(5), the velocities -/7 and -/8 and the position error -7 − -8  are bounded for any bounded time-varying time delays R�� �  and R�� �provided that R�7>? + R�7>? ≤ fgh=ijk�limn  , 2�R�7>? +R�7>?� < T8  , 2�R�7>? + R�7>?� < T7  and EF + ZF ≤ 1F. 

In the above 17.� ≜ ,+JY1F[  and Z7>? ≜ ,bBYZF[ for G = 1⋯J . Also, #7 ≜ ����?,o��\k×p×\k×p‖A7�B� − P�C�‖� , #8 ≜ ����?,o��\k×p×\k×p‖A8�B� − P�C�‖� ,and # ≜ ,bB&#7, #8). 

Lastly, R�7>? ≜ �����\ R�� �andR�7>? ≜ �����\ R�� �. 
 

Proof of Theorem I: Applying controller (4)-(5) to the system (1)-
(2), we have following closed loop dynamics: 17!-7� �$-07� � + 27!-7� �, -/7� �$-/7� � + A7!-7� �$ =	 

−9 q−A7!-7� �$ + P Q-7� � − -8! − R�� �$S + T7-/7� �r + 4ℎ� �   (10) 

18!-8� �$-08� � + 28!-8� �, -/8� �$-/8� � + A8!-8� �$ = 

+9 qA8!-8� �$ − P Q-8� � − -7! − R�� �$S − T8-/8� �r − 46� � (11) 

To show the stability of the system (10)-(11), take  t� � = t�� � + t�� � + tu� � + tv� � (12) t�� � = 12 -/7@ � �17!-7� �$-/7� � 
(13) +12 -/8@� �18!-8� �$-/8� � 

t�� � = e �−-/7�4�45�4� + -/8�4�46�4���
	 #4 (14) 

tu� � = we �F!EF$xi^���fxy^���
	 #EF�

Fz�
 (15) 

tv� � = 2e e -/7@ �D�P!-/7�D�$#D�
�h{ #E	

f@pimn
 

(16) 

+2e e -/8@�D�P!-/8�D�$#D�
�h{ #E	

f@|imn
 

Note that, based on the assumption of passivity of the operator and 
the environment, t�� � is a lower-bonded function. In other words, 
there exist positive constants }7 and }8 such that 

e !−-/7�4�45�4�$�
	 #4 + }7 ≥ 0 and  e !-/8�4�46�4�$�

	 #4 + }8 ≥ 0 

Considering property P-2, the time derivative of t�� � becomes  

�F!BF$ ~ > 1F ,				if BF > 1F= BF ,			if −1F ≤ BF ≤ 1F< −1F ,				if BF < −1F
1F > 0 (3) 

-/7@ !9�A7�∙� − P7�∙� − T7-/7� − �A7�∙� − P7�∙��$ ≤ 0 
(6) -/8@!9�A8�∙� − P8�∙� − T8-/8� − �A8�∙� − P8�∙��$ ≤ 0 

�. �e B�4�#4�
�f@��� � ≤ e �.!B�4�$#4�

�f@���  (7) 

-/7@ � � qP!-7� � − -8� �$ − P Q-7� � − -8! − R�� �$Sr ≤
2|-/7� �|@ " P�|-/8�4�|�#4��f@|��� 		-/8@� � QP!-8� � − -7� �$ − P!-8� � − -7� − R�� ��$S ≤2|-/8� �|@ " P�|-/7�4�|�#4��f@p���                                                         (8) 

378



t/�� � = -/7@ � � �−9 qP Q-7� � − -8! − R�� �$S − A7!-7� �$ +
T7-/7� �r� + -/7@ � � Q45� � − A7!-7� �$S  

+-/8@� � q9 QA8!-8� �$ − P!-8� � − -7� − R�� ��$ −
T8-/8� �Sr+-/8@� � Q−46� � − A8!-8� �$S 

(17) 

The time derivatives of t�� �and tu� � are t/�� � = -/7� �45� � − -/8� �46� � (18) t/u� � = !-/7� � − -/8� �$P!-7� � − -8� �$ (19) 
By adding and subtracting each of -/7� �P!-7� � −-8� − R�� ��$  and -/8� �P!-8� � − -7� − R�� ��$  to and from V/� and noting that �−�� = −P��� , it is possible to see that t/�� � + t/�� � + t/u� � = -/7@ � � �9 qA7!-7� �$ − P Q-7� � − -8! − R�� �$S − T7-/7� �r 

−qA7!-7� �$ − P Q-7� � − -8! − R�� �$Sr� 

+-/7@ � � �P!-7� � − -8� �$ − P Q-7� � − -8! − R�� �$S� +-/8@� � �9 QA8!-8� �$ − P!-8� � − -7� − R�� ��$ − T8-/8� �S −QA8!-8� �$ − P!-8� � − -7� − R�� ��$S� +-/8@� �YP!-8� � − -7� �$ − P!-8� � − -7� − R�� ��$[                     (20) 

Considering Lemma I, it is easy to see that there exist positive �7 and �8 such that t/�� � + t/�� � + t/u� � ≤ −�7T7-/7@ � �-/7� � − �8T8-/8@� �-/8� � +-/7@ � � �P!-7� � − -8� �$ − P Q-7� � − -8! − R�� �$S� +-/8@� �YP!-8� � − -7� �$−P!-8� � − -7� − R�� ��$[                       (21) 

where �7 and �8 are defined as �7 ≜ −1T7‖-/7� �‖�� -/7@ � �Y9!A7!-7� �$ − P Q-7� � − -8! − R�� �$S 

−T7-/7� �$− qA7!-7� �$ − P Q-7� � − -8! − R�� �$Sr�,‖-/7� �‖� ≠ 0 

�8 ≜ −1T8‖-/8� �‖�� -/8@� �Y9!A8!-8� �$ − P!-8� � − -7� − R�� ��$ 

−T8-/8� �$−qA8!-8� �$ − P Q-8� � − -7! − R�� �$Sr�   ,   ‖-/8� �‖� ≠ 0 

                                                                                                                             (22) 

Applying the result of Lemma III to the last two terms in the 
right hand side of (21), we get t/�� � + t/�� � + t/u� � ≤ −�7T7-/7@ � �-/7� � − �8T8-/8@� �-/8� � +2|-/7� �|@ e P�|-/8�4�|�#4�

�f@|���  

+2|-/8� �|@ e P�|-/7�4�|�#4�
�f@p���  

(23) 

On the other hand, the time derivative of tv� � is 
 t/v� � = 2R�7>?-/7@ � �P!-/7� �$ − 2" -/7@ �4�P!-/7�4�$#4��f@p���  +2R���� -/8@� � P!-/8� �$ − 2e -/8@�4�P!-/8�4�$#4�

�f@|���  
(24) 

Considering (23) and (24) together, we have t/ � � ≤ −�7T7-/7@ � �-/7� � + 2|-/7� �|@ e P�|-/8�4�|�#4�
�f@|���  

−�8T8-/8@� �-/8� � + 2|-/8� �|@ e P�|-/7�4�|�#4�
�f@p���  

+2R�7>?-/7@ � �P!-/7� �$ − 2e -/7�4�P!-/7�4�$#4�
�f@p���  

+2R�7>?-/8@� �P!-/8� �$ − 2e -/8@�4�P!-/8� �$#4�
�f@|���  

(25) 

Applying Lemma IV to (25), we get t/ � � ≤ −�7T7-/7@ � �-/7� � − �8T8-/8@� �-/8� � + 2�R�7>? +R�7>?�-/7@ � �P!-/7� �$ + 2�R�7>? + R�7>?�-/8@� �P!-/8� �$   (26) 

Defining D7 and D8 as  

D7 = -/7@ � �P!-/7� �$‖-/7� �‖�� 	,																					‖-/7� �‖� ≠ 0 
(27) 

D8 = -/8@� �P!-/8� �$‖-/8� �‖�� 	,																									‖-/8� �‖� ≠ 0 
(28) 

we have t/ � � ≤ −��7T7 − 2�R�7>? + R�7>?�D7�-/7@ � �-/7� � −��8T8 − 2�R�7>? + R�7>?�D8�-/8@� �-/8� � (29) 

Now, let us find conditions on �7 and �8 such that t/ � � ≤ 0. It is 

possible to see from (29) that a sufficient condition for t/ � � ≤ 0 is �7T7 ≥ 2�R�7>? + R�7>?�D7  (30) �8T8 ≥ 2�R�7>? + R�7>?�D8 (31) 
Next, we will investigate conditions under which the inequalities 

(30) and (31) are satisfied. Given the definitions ofD7 and D8  in 
(27) and (28) and using property P-VI, we have 

D7 ≤ ,+J ~1, ∑ �-/7^� ��ZF�Fz�‖-/7� �‖�� � 

 (32) 

D8 ≤ ,+J ~1,∑ �-/8^� ��ZF�Fz�‖-/8� �‖�� � 

To study the lower bounds of �7 and �8 for replacement in (30)-
(31), let us consider two regions �� and �� as 

�� ≜ �-/7� �:	�-/7^� �� ≤ 1F − #FT7 		G = 1⋯J� (33) 

�� ≜ �-/7� �:	�-/7^� �� > 1F − #FT7 		G = 1⋯J� (34) 

where #F ≜ ����?,o��\×\K3F�B� − �F�C�K . We distinguish the 

following two cases: 
• Case 1: -/7� �ϵ�� 

Based on 37^�. � − �F�. � − T7-/7^� � ≤ 37^�. � − �F�. � +T7 �-/7^� �� ≤ 37^�. � − �F�. � + 1F − #F ≤ 1F  and the definition 

of �7 in (22), we have �7 = 1. Also, from (32), we know that D7 ≤ 1. 
Applying �7 = 1 andD7 ≤ 1 to (30), the following inequality 

is found as a sufficient condition for (30): 

Therefore, (35) is a sufficient condition to have −��7T7 −2�R�7>? + R�7>?�D7�-/7@ � �-/7� � ≤ 0. 
• Case 2: -/7� ���� 

Then, �37^�. � − �F�. � − T7-/7^� �� could be greater than 1F  or 

less than 1F. So, 

1. If �37^�. � − �F�. � − T7-/7^� �� ≤ 1F , based on the definition 

of �7 in (22), �7 = 1. 

2. If �37^�. � − �F�. � − T7-/7^� �� > 1F , then �. q37^�. � −
�F�. � − T7-/7^� �r > 1F and using reverse triangular 

inequality, we will have the following inequality: 

�q37^�. � − �F�. �r − ��. q37^�. � − �F�. � − T7-/7^� �r�� 
> �1F − �37^�. � − �F�. ��� > 1F − #F 

Using Lemma I, we have 

Given that 1F − #F ≥ 17.� − # and based on the definition of �7 
in (22), we get 

Knowing from (32) that D7 ≤ Q∑ �-/7^� �� ZF�Fz� S /�‖-/7� �‖��� and 

using (37), it is possible to see that �7T7Z7>? ≥ �17.� − #�D7. 
Using this, we can find the following condition to satisfy the 

inequality (30): 

T7 > 2�R�7>? + R�7>?� (35) 

-/7^� � �q37^�. � − �F�. �r − ��F q37^�. � − �F�. � − T7-/7^� �r�� =
�-/7^� �� �q37^�. � − �F�. �r − ��F q37^�. � − �F�. � − T7-/7^� �r��  (36) 

�7 > ∑ �-/7^� �� �17.� − #��.z� T7‖-/7� �‖��  (37) 

379



Therefore, if (35) and (38) are satisfied, then −��7T7 −2�R�7>? + R�7>?�D7�-/7@ � �-/7� � ≤ 0 . Finally, conducting a 
similar analysis to find a condition for (31) to hold will result in 
(38) and the following inequality: 

Using the above analysis, it is possible to see that if 17>? 
satisfies (38) and T7  and T8 fulfill inequalities (35) and (39), 
thent/ � � ≤ 0 meaning that all terms in t� � are bounded. Thus, -/7, -/8  and -7 − -8�ℒ� and the poof is complete.                        □ 

Note that the parameter #  defined in Theorem I is equal to Z7>? + E7>?where E7>? ≜ ,bBYEF[. Using the inequalities (35), 
(38) and (39), a schematic representation of the stability condition 
in terms of R�7>? and R�7>? is shown in Figure. 1. 

 

Figure 1a. The stability region determined by 

inequalities (35), (38) and (39). 
 

 
Figure 1b. The stability region provided by (38) in 17.�versusZ7>? plane givenR�7>?  and R�7>?. 

 

Theorem II. In the bilateral teleoperation system (1)-(2) with the 

controller (4)-(5), the absolute values of the velocities |-/7� �| and |-/8� �|  and the position error |-7� � − -8� �|  tend to zero 

asymptotically in free motion (i.e., 45� �, 46� � → 0 ) if all 

conditions in Theorem I are satisfied and both R/�� � and R/�� � are 

bounded. 
Proof of Theorem II:  

Integrating both sides of (29), it is possible to see that -/7� � 
and -/8� ��ℒ�. Based on the result of Theorem I, t� � is a lower 

bounded decreasing function. Therefore,-/7� �, -/8� �, and -7� � −-8� �	�ℒ� . Using the fact that -7� � − -8! − R�� �$ = -7� � −-8� � + " -/8� �# ��f@|���  and " -/8� �# ��f@|��� �ℒ� , we have -7� � −-8! − R�� �$�ℒ�. Since the gravity terms 37 and 38 are bounded, 

using property P-1 and P-2 of system dynamics and given the 
boundedness of 9�47� �� and	9�48� ��, it can be seen that -07� � 

and-08� ��ℒ�. Because -/7� ��ℒ� and -07� ��ℒ�, using Barbalat’s 

lemma we have that -/7� � → 0. Similarly, it can be reasoned that -/8� � → 0. 
Now, if -07 and -08are continuous in time, or equivalently-�7� � 

and -�8� ��ℒ� , then -/7� �  and -/8� � → 0  ensures that -07� � 
and-08� � → 0 (due to Barbalat’s lemma). Let us investigate the 
boundedness of -�.� �  for 	+�&,, �) . The closed-loop dynamics 
found from combining the open-loop system (1) and (2) with the 
controllers (4) and (5) is -07� � = Q17!-7� �$Sf� Y−27!-7� �, -/7� �$-/7� � − A7!-7� �$ −9 Q−A7!-7� �$ + P Q-7� � − -8! − R�� �$S+T7-/7� �$[ -08� � = Q18!-8� �$Sf� Y−28!-8� �, -/8� �$-/8� � − A8!-8� �$ −9 Q−A8!-8� �$ + P Q-8� � − -7! − R�� �$S+T8-/8� �$[                 (40) 

Differentiating both sides with respect to time and given ## Q1.!-.� �$Sf� = −Q1.!-.� �$Sf� Y2.!-.� �, -/.� �$ +2.@!-.� �, -/.� �$[1.!-.� �$												+ϵ&,, �) (41) 

and based on properties P-1 and P-3 and given the boundedness of -/8  and -/7 , it is easy to see that 
gg� Q17!-7� �$Sf�

and 

gg� Q18!-8� �$Sf�
are bounded. Given that P/ �·�  is bounded and 

using properties P-1, P-3 and P-4 of the system dynamics and the 

boundedness of -8� � − -7! − R�� �$ , -7� � − -8! − R�� �$ 
,-/7 ,-/8 ,-07 ,-08 , R/�  and R/� , it can be seen that -�7  and -�8  are 

bounded. Given that -/7� �  and -/8� � → 0  and -�7� �  and -�8� ��ℒ� , using Barbalat’s lemma we have that -07� �  and -08� � → 0.  
Considering the dynamic equations of the master and slave 

robots in (10) and (11), having shown that -0.� � → 0and -/ .� � →0, +�&,, �), it is easy to see that A7!-7� �$ → 9 QA7!-7� �$ − P!-7� � − -8� − R�� ��$S (42) A8!-8� �$ → 9 QA8!-8� �$ − P!-8� � − -7� − R�� ��$S  (43) 

Given S QG�!q��t�$S = G�!q��t�$, we find that P!-7� � − -8� − R�� ��$ → 0 (44) P!-8� � − -7� − R�� ��$ → 0 (45) 
and using assumptions on P�·�,  |-7� � − -8� − R�� ��| → 0 (46) |-8� � − -7� − R�� ��| → 0 (47) 
It is possible to see the asymptotic zero convergence of velocities 
and the position tracking error and proof is completed.                  □ 

Remark I. Based on the assumption R�7>? + R�7>? ≤ !17.� −�Z7>? + E7>?�$/�2Z7>?� in Theorem I, it is possible to see a trade-

off between the robustness to the maximum values of time delays 

and the tracking performance in controller design. For instance, if Z7>? is lowered, then the position difference between the master 

and the slave robots contributes less to the control signal, resulting 

in an increase in the settling time for the position tracking 

response. At the same time, as Z7>?  is lowered, the maximum 

admissible values of time delays increase; i.e., the robustness of 

the system stability to larger time delays improves. The above 

trends in performance and stability are understandable once one 

pays attention to the control laws (4)-(5). When Z7>? has a small 

value, the nonlinear proportional terms in (4)-(5) are suppressed, 

leaving more “room” for the derivative signals -/ � � to contribute 

to the control signal, i.e., the velocity gains T7 and T8 are allowed 

to be larger. It is clear from the stability conditions (35) and (39) 

that larger T7  and T8  allow for larger values for the maximum 

time delays. At the same time, with a small Z7>?, settling time of 

position tracking increases, degrading the performance of the 

teleoperation system. Therefore, it can be concluded that, for a 

17.� − #Z7>? ≥ 2�R�7>? + R�7>?� (38) 

T8 > 2�R�7>? + R�7>?�	 (39) 
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fixed 17.�, there is a trade-off between stability and performance 

of the system and this trade-off can be tuned by changing Z7>?.  

3 EXPERIMENTAL RESULTS 

To verify the theoretical results of this paper, the master and the 
slave manipulators are considered to be a pair of 3-DOF 
PHANToM Premium 1.5A robots that are connected via a 
communication channel with varying time delays with a uniform 
distribution between 81 and 100 ms. In the proposed nP+D 
method, the following controllers are used:  47� � = −A7!-7� �$ + 0.1 � q5 Q-7� � − -8! − R�� �$Sr + -/7� � 

48� � = A8!-8� �$ − 0.1 � q5 Q-8� � − -7! − R�� �$Sr − -/8� �    (48) 

 

  
Figure. 2. The experimental teleoperation setup consisting of two 

PHANToM Premium 1.5A robots and the schematic of the PHANToM 

robot with its corresponding joint angles. 
In the above, we choose the nonlinear function in the 

controllers to be ��B� ≜ �3J�B�,+J&|B|, 1)with �3J�·�being the 
signum function. As a result, when the position errors -7� � −-8! − R�� �$ (the same holds for the position error -8� � −-7! − R�� �$) is between -0.2 and 0.2 radian, it appears linearly 
through a gain of 0.5 in the control signal. Otherwise, its 
contribution to the control signal is maxed out at -0.1 or 0.1. Note 
that the function 0.1��5B� meets all the required properties listed 
in Section III. Also note that the approximate levels of the actuator 
saturation for the first, second and third joint of the PHANToM 
robot in generalized coordinate are 1� = 0.29 , 1� = 0.29	 and 1u = 0.23  Nm, respectively. Also E7>? = 0.07 , 17.� = 0.28 , R�7>? = R�7>? = 0.1, Z7>? = 0.1 and it is easy to see that for 
these values the sufficient condition (38) for stability is satisfied. 
Experimental results of the proposed nP+D controller in terms of 
joint position tracking between the master and the slave robots are 
shown in Figure. 3. 

 

 

 
Figure. 3. Joint position tracking between the master and the slave using 

the proposed nP+D control method. 

Let us study the effect of Z7>?, which is the maximum value of 

the nonlinear function P�·� in (4)-(5), on the performance of the 

teleoperation system in experiments. To show the slave’s joint 

position trajectory in response to a step set-point (corresponding to 

a fixed position for the master), the control signal (49) is applied to 

the slave robot for different values of Z7>?. 48� � = A8!-8� �$ − Z7>? � q5 Q-8� � − -7! − R�� �$Sr (49) 

where ��. �  is the same as that used in (48), i.e., ��B� ≜�3J�B�,+J&|B|, 1). In Figure. 4, the step responses of the slave 
robot’s joint positions are shown for three different values of Z7>?. Evidently, a smaller Z7>?, which corresponds to a reduced 

contribution of the tracking error -8� � − -7! − R�� �$  to the 

slave robot’s control signal, leads to a slower step response (i.e., 
larger settling time). This is a result that is consistent with Remark 

I. 

 

 

 
Figure. 4. Step response of slave robot’s joint positions for different 

values of N���. 

4 CONCLUSION  

In this paper, we developed a novel method to cope with 

actuator saturation in bilateral teleoperation systems that are 

subjected to time-varying time delays in their communication 

channels. The proposed controller, which we call nP+D method, is 

similar to the conventional P+D controller except for the fact that 

we have replaced the proportional term by a nonlinear function 

through which the position errors pass. This makes the proposed 

nP+D method capable of handling actuator saturation and 

guaranteeing position tracking even in the presence of time-

varying time delays in the communication channel. We analyzed 

the stability of the system using a Lyapunov-Krasovskii functional 

and showed asymptotic position tracking between the master and 

the slave robots. The derived stability conditions involve 

relationships between the nP+D controller parameters, the actuator 

saturation characteristics, and the maximum values of the time-
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varying delays. We experimentally tested the proposed controller 

on a teleoperated pair of 3-DOF PHANToM Premium robots, 

which are naturally subject to actuator saturation. Simulation and 

experimental results of the proposed nP+D control method have 

demonstrated its efficiency. 
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Appendix 

Here, proofs of Lemmas I, II, III and IV are provided. 

Proof of Lemma I: The assumption in the lemma can be summed up as �37^�∙� − �7^�∙�� < 1F  and �38^�∙� − �8^�∙�� < 1F . Regarding the 

increasing monotone property of function �F�∙�, if -/7^ ≥ 0 then �F Q37^�∙� − �7^�∙� − ¦F-/7^S ≤ �F Q37^�∙� − �7^�∙�S and if  -/7^ < 0 then �F Q37^�∙� − �7^�∙� − ¦F-/7^S > �F Q37^�∙� − �7^�∙�S . Based on the fact that 37^�∙� − �7^�∙�  belongs to the linear part of �F , �F Q37^�∙� − �7^�∙�S =37^�∙� − �7^�∙�, therefore for all -/7^ -/7@ Q9�A7�∙� − P7�∙� − T7-/7� − !A7�∙� − P7�∙�$S ≤ 0 (B1) 

Similarly   -/8@!9�A8�∙� − P8�∙� − T8-/8� − �A8�∙� − P8�∙��$ ≤ 0 (B3) 

Proof of Lemma II: Based on the definition of integral, we know that 

e B�4�#4�
�f@��� = lim�→� w R� �J B � − R� � + ¦ R� �J ��f�

©z	
 (B4) 

e �.!B�4�$#4�
�f@��� = lim�→� wR� �J �. �B � − R� � + ¦ R� �J ���f�

©z	
 (B5) 

Using the properties P-III and P-IV of �.�. � and knowing that B�4� and R� � are positive, 

�. �e B�4�#4�
�f@��� � = �. � lim�→� w R� �J B � − R� � + ¦ R� �J ��f�

©z	
� 

≤ lim�→�w �. �R� �J B � − R� � + ¦ R� �J ���f�
©z	

 

= lim�→�w R� �J �. �B � − R� � + ¦ R� �J ���f�
©z	

= e �.!B�4�$#4�
�f@���  

(B6) 

Proof of lemma III: Considering property P-I of �F�. �, 

��F q-7^� � − -8^� �r − �F q-7^� � − -8^! − R�� �$r� 
≤ 2�F Q�-8^� � − -8^! − R�� �$�S = 2�F ��e -/8^�4�#4�

�f@|��� �� 
(B7) 

and similarly 

Using property P-II of �F�. � and knowing that for any -/ϵ�  and for any 

positiveR� �,�" -/�4�#4��f@��� � ≤ " |-/�4�|#4��f@��� , then 

Considering Lemma II, 

�F �e |-/�4�|#4�
�f@��� � ≤ e �F�|-/�4�|�#4�

�f@���  
(B10) 

Considering (B7), (B9) and (B10), 

and therefore 

Similarly 

Proof of Lemma IV: given property P-V of function �F�. �, 

Therefore,  

Integrating both sides based on #4 from  − R� � to  , 

This can be simplified to 

a@� �e P!c�4�$#4�
�f@��� − e c@�4�P!c�4�$#4�

�f@��� ≤ R� �a@� �P!a� �$ 

(B16) 

Given property P-VIII of function �F�∙�, a@� �P!a� �$ > 0 and so 

a@� �e P!c�4�$#4�
�f@��� − e c@�4�P!c�4�$#4�

�f@��� ≤ R7a@� �P!a� �$ 

(B17) 
 

��F q-8^� � − -7^� �r − �F q-8^� � − -7^! − R�� �$r� 
≤ 2�F ��e -/7^�4�#4�

�f@p��� �� 
(B8) 

�F ��e -/�4�#4�
�f@��� �� ≤ �F �e |-/�4�|#4�

�f@��� � 
(B9) 

��F q-7^� � − -8^� �r − �F q-7^� � − -8^! − R�� �$r�
≤ 2e �F�|-/�4�|�#4�

�f@���  

-/7@ � � qP!-7� � − -8� �$ − P Q-7� � − -8! − R�� �$Sr 

= w�-/7^� � ��F q-7^� � − -8^� �r − �F q-7^� � − -8^! − R�� �$r���
Fz�

 

≤ wQ�-/7^� �� ��F q-7^� � − -8^� �r − �F q-7^� � − -8^! − R�� �$r�S�
Fz�

 

= 2wª�-/7^� ���e �F Q�-/8^�4��S #4�
�f@��� �«�

Fz�
 

= 2|-/7� �|@ e P�|-/8�4�|�#4�
�f@|���  

(B11) 

-/8@� � qP!-8� � − -7� �$ − P Q-8� � − -7! − R�� �$Sr 

≤ 2|-/8� �|@ e P�|-/7�4�|�#4�
�f@p���  

(B12) 

wqbF� ��F QdF�4�S − dF�4��F QdF�4�Sr�
Fz�

≤ wqbF� ��F QbF� �Sr�
Fz�

 (B13) 

a@� �P!c�4�$ − c@�4�P!c�4�$ ≤ a@� �P!a� �$ 
(B14) 

e a@� �P!c�4�$#4�
�f@��� − e c@�4�P!c�4�$#4�

�f@���  

≤ e a@� �P!a� �$#4�
�f@���  

(B15) 
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