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ABSTRACT

Conventional approaches for stability analysis of bilateral teleoper-
ation systems assume that the human operator does not inject en-
ergy into the system and behaves in a passive manner. Does this
assumption hold for various tasks the human operator may execute
in a teleoperation context? To answer this question, in this paper
we measure the endpoint impedance (inertia, viscosity, and stiff-
ness) of the human arm during two tasks: (1) relaxed grasping of a
haptic device while the device imposes position perturbations, and
(2) rigid grasping of a haptic device (posture maintenance) while
the device imposes force perturbations. The human arm impedance
is identified as a 2×2 transfer function matrix and assessed for pas-
sivity over the frequency range characteristic of human motion. Our
results agree with previous findings that the relaxed human arm be-
haves as a passive system. However, whether the rigid arm behaves
as an active or passive system is found to depend on the magni-
tude of the force perturbations. We discuss why the passivity of the
human operator is task dependent.

Index Terms: H.1.2 [Information Systems]: User/Machine
Systems—Human Factors; I.6.4 [Simulation and Modeling]:
Model Validation and Analysis

1 INTRODUCTION

A teleoperation system consists of a human operator, a remote en-
vironment, and a teleoperator. In this definition, the teleoperator
comprises a master and a slave robot, their controllers, and a com-
munication channel.

The stability of a bilateral haptic teleoperation system may be
investigated by applying the passivity (Raisbeck’s or scattering-
based) criterion or the absolute stability (Llewellyn’s) criterion to
the teleoperator [3, 8]. In both frameworks, passivity of the tele-
operator’s terminations, i.e., the human operator and the environ-
ment, is assumed. This is simply a convenient yet necessary as-
sumption for stability analysis of a teleoperation system indepen-
dent of the typically uncertain, time-varying and/or unknown dy-
namics of two of its subsystems—the human operator and the envi-
ronment. However, given that the human operator voluntarily ma-
nipulates the master robot and thereby has the capacity to inject
energy into the teleoperation system, is the assumption of human
operator passivity indeed valid for any task?

To address this question, the human arm’s mechanical
impedance (the dynamic relationship between force and motion)
can be empirically measured and assessed for passivity. Several
researchers have developed techniques to measure the endpoint
impedance of the human arm in a plane by analyzing the arm’s
response to force or position perturbations imposed on the hand
by a robot. A two-dimensional impedance measurement has been
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found sufficient to facilitate analysis of the relative contributions
of the shoulder, elbow, and biarticular muscles to the overall limb
impedance without necessitating the experimental complexity of a
full three-dimensional measurement [9]. So far, three main appli-
cations have motivated research in human arm impedance model-
ing: characterizing arm dynamics to design human-robot interac-
tion systems [5, 10], investigating how the central nervous system
(CNS) controls movement [7, 13], and assessing the motor func-
tion of impaired individuals undergoing neurorehabilitation therapy
[1, 14].

Mussa-Ivaldi et al. [13] used a planar robot to impose position
step perturbations on a human subject’s arm and measure the re-
sulting restoring forces. They used this data to calculate the static
stiffness of the arm in two Cartesian dimensions. Subjects were in-
structed to relax their arm and avoid voluntarily intervening as the
robot perturbed their hand. Hogan [10] extended this work by de-
composing the measured stiffness into an active and a passive com-
ponent. The active component was found to be negligibly small in
comparison to the passive component, demonstrating that the re-
laxed human arm behaves as a passive system. McIntyre et al. [12]
adapted the technique of Mussa-Ivaldi et al. to measure changes in
stiffness in response to external loading forces. Gomi et al. [7],
Dolan et al. [5], and Tsuji et al. [15] extended the same approach
to measure not only the arm’s stiffness, but also its inertia and vis-
cosity. Several researchers have since employed stochastic position
[1] or force perturbations [14] to identify non-parametric models
of arm impedance or admittance and to develop detailed models
of the arm’s neuromusculoskeletal structure [4]. This paper con-
tributes to previous work by: (1) measuring arm impedance as the
human performs both relaxed grasping and rigid grasping tasks, (2)
performing a detailed passivity analysis of the identified dynamic
impedance models, and (3) explicitly considering how the robot
impedance, robot controller, and CNS position control dynamics
influence the measured impedance of the human arm.

2 MATHEMATICAL PRELIMINARIES

For purposes of analyzing passivity, it is useful to employ a para-
metric impedance model such that the identified parameters have
direct physical meaning. In this paper, arm impedance in a Carte-
sian plane is modeled as follows:

M
d2

dt2 X(t)+B
d
dt

X(t)+K(X(t)−Xv) =−F(t), (1)

where X(t) = [x(t)y(t)]T is the hand position, F(t) = [ fx(t) fy(t)]T

is the force the hand exerts on the robot, and Xv = [xv yv]
T is the

hand equilibrium position commanded by the CNS. The matrices
M, B, and K, which represent the hand inertia, damping, and stiff-
ness, respectively, contain real-valued constants for the Cartesian
plane of measurement:

M .
=

[
mxx mxy
myx myy

]
, B .

=

[
bxx bxy
byx byy

]
, K .

=

[
kxx kxy
kyx kyy

]
. (2)

This impedance model is derived from a simplified model of the
human arm’s neuromusculoskeletal structure, as Dolan et al. detail
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in [5]. The equation can also be interpreted as second-order Taylor-
series linearization of an arbitrary nonlinear impedance model. Due
to the constant M, B, and K matrices, this model accurately de-
scribes the arm’s dynamics for small, brief perturbations about an
operating point.

At time t0 immediately before the onset of a position or force
perturbation imposed on the arm by the haptic device, (1) becomes:

M
d2

dt2 X(t0)+B
d
dt

X(t0)+K(X(t0)−Xv) =−F(t0). (3)

Eliminating Xv from (1) and (3) yields:

M
d2

dt2 δX(t)+B
d
dt

δX(t)+K(δX(t)) =−δF(t), (4)

where δX(t) .
= X(t)−X(t0) and δF(t) .

= F(t)−F(t0). Being inde-
pendent of the hand’s equilibrium position Xv, the impedance ma-
trices of the human arm are identified from (4).

For passivity analysis, we require the relation between the power
conjugate variables of force and velocity. Taking the Laplace trans-
form of (4) and defining F(s) .

= L {F(t)} and V (s) .
= L { ˙δX(t)},

the arm impedance can be represented as the transfer function ma-
trix

Z(s) =

mxxs2 +bxxs+ kxx

s
mxys2 +bxys+ kxy

s
myxs2 +byxs+ kyx

s
myys2 +byys+ kyy

s

 , (5)

with F(s) = Z(s)V (s).
For a transfer function matrix to represent a passive system, it

must be positive real [2] as defined below.

Definition 1. [2] An n×n rational transfer function matrix G(s) is
positive real if:

(i) the poles of all elements of G(s) are in Re[s]≤ 0,
(ii) for all real positive frequencies ω for which jω is not a pole of

any element of G(s), the matrix H( jω)
.
= G( jω)+GT (− jω)

is positive semidefinite, and
(iii) any pure imaginary pole jω of any element of G(s) is a simple

pole, and the residue matrix lims→ jω (s− jω)G(s) is positive
semidefinite Hermitian.

3 HUMAN ARM IMPEDANCE IDENTIFICATION

3.1 Experiment Setup
Impedance measurements were performed with a two degree-of-
freedom (DOF) planar robot and haptic device manufactured by
Quanser, Inc. (Markham, Ontario, Canada). Designed for neurore-
habilitation exercises, the robot’s capstan drive mechanism makes it
readily back-drivable with low friction and inertia. At its endpoint,
the robot can exert forces in excess of 50 N throughout the semicir-
cular workspace, and the motors’ optical encoders provide a Carte-
sian resolution of better than 0.002 mm in position measurement.
The robot may be position controlled by a feedback-linearized po-
sition controller or force controlled in open loop by translating a
commanded Cartesian force into required motor torques through
the robot’s Jacobian transpose matrix. A 2-DOF force sensor was
constructed by mounting strain gauges on an aluminum post con-
necting the robot’s distal link to the handle grasped by the human.
The sensor has a resolution of 0.04 N, maximum measurable force
of 75 N, and nearly linear input-output characteristic over its op-
erating range. All data logging and robot control actions occurred
with a 1 kHz sampling frequency.

For arm impedance identification, data was collected from a 23-
year-old right-handed male with no history of motor impairment.

In each trial, the subject sat in front of the robot and grasped the
device’s hemispherical handle with his right hand. The subject’s el-
bow was supported against gravity by a sling attached to a 2 m rope
connected to the ceiling. All data was collected at a test location
(x = 0 cm,y = 52 cm) in a coordinate frame aligned at the sub-
ject’s shoulder joint (Fig. 1). A belt restrained the subject’s torso to
the prevent translation of the upper body, which would have under-
mined the accuracy of the arm position measurements.

Figure 1: Experimental apparatus for human arm impedance mea-
surements. Red arrows indicate the measurement coordinate frame.
Blue arrows show the directions of applied perturbations. Measure-
ments are performed in a horizontal plane approximately 10 cm be-
low the shoulder joint.

3.2 Data Collection
Two types of motor control tasks were investigated in our study.
The relaxed grasping task required the subject to relax his arm while
the robot applied position perturbations, just as a human operator
in a teleoperation system might relax his arm to enhance perception
of haptic feedback from the slave and environment. In the rigid
grasping task, the subject sought to minimize the displacement of
his hand while the robot applied force perturbations, as might be
required to haptically teleoperate a vehicle in rough terrain or hap-
tically teleoperate a drill.

Relaxed grasping Inspired by the experiments in [5], the
robot applied step-like, rapidly-rising, underdamped position per-
turbations to the subject’s hand. The commanded steady-state am-
plitude of each perturbation was 5 mm, but hand displacements of
up to 11 mm were observed during the transient portion of the mo-
tion. Two perturbations were applied in each of 8 directions spaced
evenly at 45◦ intervals around a circle, for a total of 16 perturbations
per trial. The subject was instructed to relax while the robot applied
the perturbations. To reduce any subconscious intervention on the
part of the subject, the 16 perturbations were applied in random or-
der. For the same reason, each perturbation’s duration (1.5–2.0 s)
and onset time (2.0–7.0 s after the previous perturbation) were se-
lected randomly. Following each perturbation, the robot’s position
controller gently moved the subject’s hand back to the test location
such that each subsequent perturbation was delivered from exactly
the same initial position.

The force sensor measured the sum of forces exerted by the hu-
man arm and inertial contributions from the robot’s handle and the
sensor structure. Therefore, the experiment was repeated without
the subject grasping the robot (i.e., in free space) to quantify these
inertial contributions such that their effects could later be removed
when calculating the impedance.

Rigid grasping In the rigid grasping task, a computer monitor
displayed a circle representing the robot’s handle position (i.e., the
subject’s hand position) and a circle corresponding to the test loca-
tion. Using this visual feedback, the subject was instructed to keep
his hand centered at the test location while the robot exerted force
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perturbations. Step-like underdamped force perturbations were ap-
plied with their duration, onset, and direction selected randomly as
in the relaxed grasping experiment. The commanded steady-state
amplitude of the force perturbations was either 2 N or 5 N, with
the measured interaction forces during the transient phase being as
large as 6 N or 13 N, respectively.

The relaxed grasping, 2 N rigid grasping, and 5 N rigid grasping
experiments were each repeated five times for a total of 15 trials.
Typical force and position trajectories are shown in Fig. 2.
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Figure 2: Typical force and position signals for (a) relaxed grasping
and (b) rigid grasping with 2 N perturbations. Forces have been low-
pass filtered to reduce noise. Dashed lines indicate the command
signals to the robot’s position or force controller. As the force sensor
measures the force exerted by the human on the robot, the measured
force in (b) is the negative of the force the robot is commanded to
exert on the human.

3.3 Identification Technique
The data used to identify human arm impedance is collected from
a closed-loop system. The force sensor measures the total force
the human exerts on the robot, Fh = F∗h −ZhX , where F∗h is the hu-
man’s voluntary force contribution, Zh the human’s impedance, and
X the displacement from the test location. During relaxed grasping
(Fig. 3a), the robot’s position controller Cr tracks a perturbation
signal X∗r , causing the robot to exert a force F∗r and move to posi-
tion X . Since the human does not consciously intervene in the pro-
cess, his voluntary force contribution F∗h is zero. Therefore, since
Fh = −ZhX and both Fh and X are measured, Zh can be identified
directly from the closed-loop data according to (4).

In the rigid grasping task (Fig. 3b), the human is instructed to
minimize displacements (X∗h = 0) in the face of robotic force per-
turbations F∗r . When these forces act on the admittance of the hu-
man arm to move the hand away from the test location to a po-
sition X , the CNS (modeled by position controller Ch in Fig. 3b)
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Figure 3: Dynamics of (a) a relaxed grasping task with position per-
turbations (robot is closed-loop position controlled) and (b) a rigid
grasping task with force perturbations (robot is open-loop force con-
trolled). Human and robot impedances are Zh and Zr, respectively.
The force sensor measures Fh, the force exerted by the human on
the robot. See text for definition of other variables.

responds by causing the human to consciously exert a force F∗h to
counteract this motion. A negative feedback loop from −Fh to X
thus exists, with Z−1

h in the feedforward path and Ch in the negative

feedback path, such that X
−Fh

=
Z−1

h
1+Z−1

h Ch
. This expression simplifies

to Fh = −(Ch +Zh)X . In other words, the identification results for
a rigid grasping task are influenced by both the physical properties
of the arm (Zh, which arises from the arm’s intrinsic mechanics and
involuntary reflex responses) and the dynamics introduced by the
human’s voluntary position control response (Ch). While the iden-
tified model can still be termed an “impedance” since it relates a
position input to a force output, the CNS dynamics are subsumed
into the identified impedance matrices.

The matrices M, B, and K in (4) were identified by linear regres-
sion. Prior to the least-squares identification, the force signals were
noise-filtered forward and backward (MATLAB function filtfilt) by
a 10th order Butterworth low-pass filter with a cutoff frequency of
20 Hz. To reduce effects of noise and gradual measurement drift
when calculating δX(t) and δF(t) in (4), the average values of
X(t) and F(t) for the last 100 ms immediately prior to each per-
turbation were subtracted from X(t) and F(t) recorded during the
perturbation. Time-derivatives of δX(t) were subsequently calcu-
lated through a state-variable filtering technique described in [5].

To quantify what portion of the measured force was due to the
inertial contributions from the handle and the force sensor structure,
the force-position data collected from the robot’s motion in free
space (see Section 3.2) was fit to the following equation:

Λ
d2

dt2 δX(t) =−δF(t), (6)

yielding the effective inertia of the handle and the force sensor
structure as Λ = 199.1±0.5 g.
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The human arm’s inertia, damping, and stiffness matrices were
subsequently identified by applying the least-squares procedure to

(M+ΛI)
d2

dt2 δX(t)+B
d
dt

δX(t0)+K(δX(t)) =−δF(t), (7)

where I is the 2× 2 identity matrix. Only the first 1.5 s of data
from each perturbation was included in the identification, which
was found to be more than sufficient for parameter estimates to con-
verge to steady values.

3.4 Validation of Identification Technique
The data collection and impedance measurement techniques were
validated against a mechanical spring array with known impedance.
Several linear springs were connected to the handle of the robot to
create a two-dimensional stiffness field comparable to that of the
human arm. The robot applied a series of position perturbations
as in the relaxed grasping task. The measured stiffness matrix K
was compared to the theoretical stiffness matrix calculated from an
independent measurement of the spring constants. Over multiple
trials with different spring configurations, the percent discrepancy
between the 2-norms of the measured and theoretical stiffness ma-
trices was consistently less than 8%.

4 RESULTS

4.1 Identified Human Arm Impedances
Identified impedance matrices for each trial are shown in Table 1.
The elements of the stiffness and damping matrices were generally
larger for rigid grasping compared to relaxed grasping, which was
expected as arm stiffness and damping increase with grip strength
[15]. The inertia values measured in the rigid grasping were typi-
cally smaller than those for relaxed grasping, especially when 5 N
force perturbations were applied. The rigid grasping impedance
measurements also show higher inter-trial variability. The complex
dynamics of the CNS position control response account for this in-
creased variability, as discussed later.

While it is conventional to measure arm impedance in the hori-
zontal plane at the elevation of the shoulder (e.g. [5, 13]), the equip-
ment used in this study necessitated performing measurements ap-
proximately 10 cm below the shoulder. However, this height differ-
ential has been shown to have only a minor impact on the measured
impedance [6]. Indeed, for the relaxed task, our results are com-
parable to those obtained by other researchers under similar condi-
tions [6, 15] and are fairly consistent between trials.

4.2 Passivity Analysis
The stiffness matrix in (2) can be separated into a symmetric and a
skew-symmetric component as

Ks =

[
kxx

kxy+kyx
2

kyx+kxy
2 kyy

]
, Ka =

[
0 kxy−kyx

2
kyx−kxy

2 0

]
, (8)

such that K = Ks +Ka.

Lemma 1. A non-zero skew-symmetric component contributes to
activity of the impedance matrix Z(s).

In fact, if one considers stiffness alone without the inclusion of
higher-order dynamics, it can be shown from Condition (ii) in Def-
inition 1 that a skew-symmetric component of stiffness will always
cause the impedance to be active.

Proof. Defining ks
.
=

kxy+kyx
2 and ka

.
=

kxy−kyx
2 , the velocity-to-force

transfer matrix of an arbitrary stiffness matrix may be written as

Z(s) =
1
s

[
kxx ks + ka

ks− ka kyy

]
,

yielding the following matrix H( jω)
.
= Z( jω)+ZT (− jω):

H( jω) =
1
jω

[
0 2ka
−2ka 0

]
.

Condition (ii) in Definition 1 requires that H( jω) be positive
semidefinite for Z(s) to be passive. Since H( jω) is Hermitian,
this means its leading principal minors must be non-negative. The
second principal minor of H( jω) is −4k2

a/ω2 which can never be
non-negative (at best, it can be zero if the skew-symmetric matrix
is zero), so the skew-symmetric stiffness is always active. Physi-
cally, as shown in [10], the skew-symmetric stiffness gives rise to a
force field with non-zero curl, suggesting that the hand could con-
tinuously generate power by following an appropriate closed-loop
trajectory.1

Random measurement and identification errors always cause
an identified stiffness to have a skew-symmetric component, even
when data is collected from an array of mechanical springs that is
known to be passive. Therefore, one must compare the relative
magnitudes of the forces arising from the symmetric and skew-
symmetric components of stiffness. If the skew-symmetric is suf-
ficiently small, it can be attributed to random error and neglected
in the passivity analysis. The relative contribution of the skew-
symmetric stiffness can be assessed from the ratio of the mag-
nitude of the skew-symmetric component of the stiffness matrix
ka =

|kxy−kyx|
2 to the maximum and minimum eigenvalues of the

symmetric stiffness (zmin
.
= ka/λmax and zmax

.
= ka/λmin). A sin-

gle skew-symmetry measure is then given by the geometric mean
of these values:

zmean =
√

zminzmax. (9)

Fig. 4 shows that zmean was typically 25% or smaller. In his analysis
of the data collected by Mussa-Ivaldi et al. in [13], Hogan found
that values of zmean of this size gave rise to force components that
were small in comparison to those originating from the symmetric
stiffness term [10]. Therefore, in the following passivity analysis,
only the symmetric component of stiffness is considered .

The human operator was considered passive if the impedance
Z(s) in (5), comprising the identified M, B, and Ks, satisfied the
three conditions in Definition 1. Although Condition (ii) is defined
over all frequencies, it was considered satisfied if H( jω) was posi-
tive semidefinite from 0–10 Hz, the range of frequencies of motion
observed in this study.

The results of this passivity analysis are also recorded in Ta-
ble 1. All of the relaxed grasping sets were found to be passive.
This agrees with Hogan’s analysis, and extends his results in [10]
by establishing that a relaxed grasping task is passive when a full
dynamic model of impedance is employed in lieu of static stiffness
alone. More importantly, while three of the 5 N rigid grasping tasks
were passive, the remainder of the rigid grasping tasks were active.
This clearly demonstrates that the passivity of the human arm is
task-dependent. This means that, when analyzing the stability of a
teleoperation system, one should not assume that the human oper-
ator behaves in a completely passive manner without analyzing the
specific tasks the operator is required to perform using an approach
similar to the one described in this paper.

1A similar analysis shows that an inertia matrix must be symmetric for
passivity, while a damping matrix can be passive regardless of whether it
is symmetric or not. However, when the passivity of the total system (5)
comprising inertia, damping, and stiffness is considered, a small amount
of skew-symmetry in the inertia can be tolerated without H( jω) becoming
negative definite over the range of frequencies relevant for human motion
(0–10 Hz). Contrarily, skew-symmetry in the stiffness matrix of the total
system (5) always causes H( jω) to be negative definite in this frequency
range.
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Table 1: Identified human arm impedance matrices and passivity analysis results.

Task Trial Inertia [kg] Damping [N·s/m] Stiffness [N/m] Passive/
Activemxx mxy myx myy bxx bxy byx byy kxx kxy kyx kyy

R
el

ax
ed

G
ra

sp
in

g 1 1.33 -1.04 -1.06 1.64 5.43 -0.60 2.10 25.51 63.59 -34.47 -57.19 324.08 P
2 1.44 -1.09 -0.94 1.72 4.77 -2.11 -0.58 25.38 80.47 -48.07 -30.45 346.27 P
3 1.51 -1.08 -1.13 1.92 6.47 -2.24 0.27 23.24 71.66 -39.83 -44.96 280.03 P
4 1.71 -0.68 -1.01 1.93 6.04 -2.49 1.20 23.27 96.87 27.57 -27.74 237.24 P
5 1.59 -1.10 -0.94 2.18 6.43 -3.61 -0.34 23.68 43.65 -35.02 7.56 252.76 P

R
ig

id
G

ra
sp

in
g

(5
N

Pe
rt

ur
ba

tio
ns

)

1 0.45 -1.24 -0.92 -0.54 5.15 -11.65 -2.31 20.96 187.91 -7.31 -63.25 431.08 A
2 0.93 0.24 -1.30 2.65 10.94 -17.03 -1.56 29.97 280.26 312.80 -81.32 964.48 A
3 0.95 -0.86 -0.50 2.15 9.42 -5.76 -7.54 34.22 308.04 -5.65 32.75 920.26 P
4 1.23 -0.64 -1.03 1.27 7.81 -11.19 -3.97 34.74 295.23 105.73 -45.00 689.92 P
5 0.99 -0.65 -0.69 2.04 9.77 -9.49 -3.62 23.28 301.21 193.43 1.35 888.08 P

R
ig

id
G

ra
sp

in
g

(2
N

Pe
rt

ur
ba

tio
ns

)

1 1.42 -0.22 -1.38 2.88 2.11 -3.73 -0.68 19.57 337.33 184.77 -86.17 879.72 A
2 1.07 -2.22 0.09 0.57 2.94 4.51 -10.71 20.68 254.94 -202.09 74.50 583.40 A
3 1.05 -0.10 -0.82 3.34 4.95 -13.66 -4.32 27.27 235.33 165.28 -28.67 972.27 A
4 1.55 -1.22 -0.77 4.39 2.56 0.25 -4.36 13.79 336.72 12.84 -30.22 1038.42 A
5 1.40 -1.54 -0.44 1.69 5.15 -6.25 -7.50 19.80 340.30 -112.70 17.66 676.15 A
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Figure 4: Percent skew-symmetry in the identified stiffness for (a) the
five relaxed grasping trials, (b) the five rigid grasping trials with 5 N
perturbations, and (c) the five rigid grasping trials with 2 N pertur-
bations. For comparison, (d) shows sample skew-symmetry magni-
tudes from the data of Mussa-Ivaldi et al. (Table II in [13]), which were
considered sufficiently small to be neglected in the passivity analysis
of [10].

5 DISCUSSION

The rigid grasping task in this paper consisted of merely resisting
disturbance forces to maintain the hand at a particular position. Yet
even for this simple task, the human operator was found to inject en-
ergy into the system. In many practical teleoperation applications,
the human operator is required to complete much more complex
movements. The assumption of human operator passivity needs to
be carefully re-examined in these contexts.

It is important to emphasize that the human operator was
found to behave actively for certain tasks even though a conser-
vative analysis approach was employed that favored the conclu-
sion of passivity. For instance, we intentionally excluded all skew-
symmetric stiffness components, even for the two datasets with
skew-symmetries in excess of 25%. However, the stiffness matrices
measured for the two-dimensional arrays of springs used to vali-
date the identification technique consistently had skew-symmetries
of under 5%. Since a mechanical spring array is known to be pas-
sive in the force-velocity domain, one can reasonably argue that
stiffness skew-symmetries on the order of 5% can be attributed to
noise and thus neglected in passivity analysis, but skew-symmetries
in excess of this threshold must be included. If the data collected
in this study is reanalyzed on this basis, all but two of the data sets
are found to be active, further emphasizing that the human operator

cannot be assumed a priori to be passive without additional inves-
tigation. Similarly, the impedance was only analyzed for passivity
over a limited frequency range, but including higher frequencies in
the analysis results in more of the data sets being active.

Considering the human operator’s time-history of energy absorp-
tion provides further insight into the task-dependent nature of pas-
sivity. When the arm is modeled as an impedance with velocity
input V = [ẋ ẏ]T and force output F = [ fx fy]T (where F is the force
the robot exerts on the human), the energy absorbed by the human
arm up to time t is given by

∫ t
0F ·vdt. Fig. 5a shows a typical plot of

this integral over the duration of a single perturbation in a relaxed
grasping task along with the distance of the hand from the test lo-
cation. We observe that, when the arm is relaxed, its impedance
causes it to resist motion away from equilibrium, absorbing energy
when the position perturbation displaces it from the test location.
However, when the perturbation’s oscillations cause the hand to
move back towards the test location, there is a small decrease in the
arm’s energy. This is the result of the spring-like component of the
arm’s stiffness releasing potential energy that was stored when the
arm was initially perturbed away from the test location. Nonethe-
less, the total energy clearly increases over the duration of the per-
turbation, confirming that relaxed grasping is a passive task.

For the rigid grasping tasks (Figs. 5b and 5c), the arm rapidly
absorbs energy immediately after the onset of a force perturbation.
As the subject cannot anticipate when the force perturbation will
be applied, his reaction time (approximately 150 ms [16]) prevents
him from voluntarily resisting motion during this period. There-
fore, his arm absorbs energy as it is involuntarily displaced away
from the test location. Once the subject realizes that his hand has
been perturbed from its target position, he consciously exerts force
to overcome the robot’s resistance and move his hand back to the
test location as quickly as possible. (Recall that the subject was in-
structed to prevent his hand from deviating from the test location,
and not merely to slow down any motion imposed upon his hand
without regard for where his hand came to rest.) This movement
requires the subject to generate energy, causing the stored energy
to decrease substantially. For the remainder of the perturbation, the
arm’s energy undergoes smaller fluctuations while the subject con-
sciously exerts the force required to maintain his hand at the test
location.

Classifying the rigid grasping task as “active” or “passive” de-
pends on whether the energy generated in the return to the test lo-
cation outweighs the energy absorbed when the hand was initially
displaced away from the test location. In the 5 N force perturbation
case, the robot applies a large perturbation which moves the hand

687



0 0.5 1 1.5 2 2.5
0

5

10

15

20

25

Time [s]

A
b
s
o
rb

e
d
 E

n
e
rg

y
 [
m

J
]

 

 

0 0.5 1 1.5 2 2.5
0

2

4

6

8

D
is

p
la

c
e
m

e
n
t 
[m

m
]

0 0.5 1 1.5 2
−40

−20

0

20

40

60

80

100

Time [s]

A
b
s
o
rb

e
d
 E

n
e
rg

y
 [
m

J
]

 

 

Energy

Displacement

0 0.5 1 1.5 2
0

2

4

6

8

10

12

14

D
is

p
la

c
e
m

e
n
t 
[m

m
]

0 0.5 1 1.5 2 2.5
0

200

400

600

800

1000

Time [s]

A
b
s
o
rb

e
d
 E

n
e
rg

y
 [
m

J
]

 

 

0 0.5 1 1.5 2 2.5
0

20

40

60

80

100

D
is

p
la

c
e
m

e
n
t 
[m

m
]

(a) (b) (c)

Figure 5: Typical plots of absorbed energy (solid line) and hand displacement from the test location (dashed line) for a single perturbation applied
at 0.2 s in (a) relaxed grasping, (b) rigid grasping (5 N perturbation), and (c) rigid grasping (2 N perturbations). Plots show the magnitude of the
two-dimensional displacement vector. The arm is assumed to have zero stored energy prior to the onset of the perturbation.

away from equilibrium at a high velocity. This causes the energy
initially absorbed by the hand to be larger than the energy generated
when the subject returns his hand to the target position. This task is
therefore passive. For the 2 N force perturbation case, however, the
robot perturbs the hand away with less force, resulting in a slower
movement velocity than the 5 N case. The energy absorbed by this
process is insufficient to balance the energy generated during the
return movement, and the task is found to be active. This explains
why the rigid grasping impedances were active for 2 N perturba-
tions and, in a majority of cases, passive for 5 N perturbations.

Two of the 5 N rigid grasping trials were nonetheless found to be
active, which emphasizes the unpredictable variations introduced to
the data when the human executes a conscious position control task.
The analysis approach employed in this work inherently assumed
that the position control response of the CNS could be subsumed
into a linear, time-invariant, second-order model (i.e., we assumed
Ch +Zh can be modeled by a 2× 2 inertia, damping, and stiffness
transfer matrix model). While the CNS has been modeled as a linear
controller in previous arm impedance studies [5], the validity of
this assumption is open to question. If a more accurate parametric
model of the CNS position control dynamics were developed, it
could be identified in tandem with the second order model of the
physical properties of the human arm.

5.1 Conclusions and Future Work
Conventional approaches to analyzing the stability of a teleopera-
tion system using passivity-based criteria or Llewellyn’s criterion
necessarily assume that the human operator behaves passively. As
demonstrated in this paper, this assumption does not hold for all
tasks the human operator may execute and should be explicitly
evaluated for the specific task in question using a method similar
to the one presented here. Thus, future work in this area includes
evaluating passivity with additional subjects for a broader variety
of tasks to identify those for which the passivity assumption does
indeed hold. In this process, more advanced models of CNS posi-
tion control dynamics could be incorporated into the identification
procedure to reduce inter-trial variability in the results. Finally,
this work demonstrates a need for research into novel approaches
to teleoperation system design and stability analysis that are capa-
ble of relaxing the requirement of human operator passivity. One
possible technique is to introduce passivity observers and passivity
controllers into the teleoperation system. Furthermore, in a related
paper [11] we show it is possible to extend Llewellyn’s criterion to
the case where the human operator is active.
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