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Abstract

Physical interaction with the environment and object manipulation play an

important role in the development of children’s cognitive and perceptual skills.

For children who have severe physical impairments, one of the biggest concerns

is the loss of opportunities for play. Robots can be used to build function

so children can independently engage in activities (e.g., rehabilitation robots),

or to compensate for function (e.g., assistive robots). The main focus of this

thesis is development, analysis and implementation of user-friendly Learning

from Demonstration frameworks that teach the robots the required task-specific

assistance by a few demonstrations from an expert helper (in rehabilitation

scenarios it could be a therapist helping a patient, at home it could be a

parent or sibling helping a child), and eliminate the requirement for manual

robot programming. The terms therapist and patient will be used throughout

this thesis but the robotic assistance can apply to both rehabilitation and

compensation robots.

The proposed learning from demonstration frameworks in this paper con-

sists of three phases: 1) Demonstration phase: The therapist interacts with the

patient and provides the required assistance to the robot to perform and com-

plete the task successfully for one or more trials; 2) Learning phase: Machine
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learning algorithms model the assistance provided by the therapist and pro-

gram the robot controllers accordingly to provide the same encoded assistance

to the patient in the therapist’s absence; and 3) Robotic assistance phase: The

robotic system independently provides the learned assistance to the patient,

with an interactive mechanism to regulate human-robot cooperation.

In this thesis, the task is considered as point-to-point motion (also called

reaching motion) primitives which are the building blocks for most of our

daily activities. Two class of learning from demonstration frameworks have

been proposed in this thesis that uses either time-indexed or position-indexed

approaches to learn and reproduce the assistance in a point-to-point motion

task. In the proposed Time-indexed learning from demonstration framework,

the demonstrated trajectories with their corresponding time-index in multiple

demonstrations are captured by a Gaussian mixture model, which is a proba-

bilistic model that represents the data with finite Gaussian probability density

functions. In the reproduction phase, in each time instance, the expected po-

sition is extracted from the learned Gaussian mixture model, using Gaussian

mixture regression. Then using the introduced tangential-normal impedance

controller the robotic system assists the patient to follow the trajectory at

the demonstrated velocity of the therapist. In the other case, by proposing a

Tangential-normal varying-impedance controller (TNVIC), the robotic manip-

ulator not only follows the demonstrated motion but also mimics the thera-

pist’s interaction impedance during the assistive intervention. The feasibility
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and efficacy of these frameworks are validated through experimens conducted

involving a 2D play environment.

In the proposed Position-indexed learning from demonstration framework,

by utilizing the modified non-parametric potential field function, the therapist’s

motion, impedance behavior, and interaction force (assistance/resistance) with

the patient are encapsulated in each position time-independently, tangent and

normal to the demonstrated trajectory. The potential field function is learned

via a convex optimization algorithm. In the reproduction phase, the robot

provides the patient with the same level of interaction force provided by the

therapist in each position. Also, a position-indexed velocity field controller

with a variable dissipative field actively regulates the level of patient’s devi-

ation from the velocity observed in the demonstration phase. The efficacy,

advantages, and stability of the proposed framework are evaluated in three

different experimental scenarios involving both position-based and impedance-

based point-to-point motion tasks in a 2D play environment.
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“The important thing is not to stop questioning. Curiosity has its own reason

for existing. One cannot help but be in awe when he contemplates the

mysteries of eternity, of life, of the marvelous structure of reality. It is

enough if one tries merely to comprehend a little of this mystery every day.”

- - Albert Einstein
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Chapter 1

Introduction

1.1 Motivation

Cerebral palsy (CP) is a group of non-progressive disorders in the central ner-

vous system (CNS) that causes permanent posture and movement impairments

in children within the first few years of their life [1, 2]. The most common symp-

toms of CP are stiffness of muscles, poor coordination in performing voluntary

movement, weakness, tremor, delay in acquiring motor skills and difficulty in

speaking or swallowing. CP is the dominant origin of motor disability in child-

hood, which affects 1.5 to more than 4 per 1,000 children around the world

[3].

Although the symptoms of CP are permanent, they may be improved or

compensated. Physical therapy and occupational therapy can help children

with CP to ameliorate their motor function and live more independently by

adjusting to their impairment [4]. However, based on a systematic review [5],

these therapeutic approaches are mildly effective to rehabilitate CP symptoms.

A more crucial concern for children with severe disability is missing the ability

and opportunity to interact with real physical environments for object manip-

ulation or general play [6]. This deprivation can hinder and adversely affect

their natural, social, cognitive, perceptual and linguistic development [7].
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Due to the cost and labor intensity of conventional hand-over-hand reha-

bilitative and assistive practices, there has been a growing interest in robotic

systems to take over some labor. Robotic systems are consistent, untiring and

robust in repetitive task executions. Also, with the sensory data and cutting-

edge reinforcement learning, these systems can evaluate the patient’s motor

performance and accordingly provide the required assistance. In the near fu-

ture, with the developments in machine learning assistive and rehabilitative

robotic systems can become fully autonomous, making the role of the thera-

pists supervisory in nature. However, machine learning algorithms need more

development to progress to be reliable for fully autonomous assistive robotic

systems considering the complexity of the tasks and the required safety guaran-

tees for interaction with patients. Therefore, in this work we were motivated to

develop semi-autonomous robotic-assistance frameworks that only require the

short-term involvement of a helper to learn the required task-specific assistance

and reproduce the same it in the therapist’s absence safely. In this thesis, we

propose and apply new learning from demonstration frameworks for robotic as-

sistive systems that intuitively learn the therapist assistance by their physical

intervention. So there is no need for manual programming of the robots which

requires engineering and computer programming knowledge.

1.2 Organization of the Thesis

Chapter 2: This chapter provides a brief overview of the main concepts and

backgrounds used in this thesis. First, the symptoms of CP and its negative

impact on children’s development is discussed. Then, assistive robotic con-

trollers are introduced. In the next section, the Learning from Demonstration

strategies which are developed for point-to-point motion tasks are reviewed.

Finally, the background on Impedance-controller for human-robot interaction

is presented in this chapter.
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Chapter 3: In this chapter, we introduce a time-indexed learning from demon-

stration framework utilizing Gaussian mixture model and Gaussian mixture

regression, together with a proposed tangential-normal impedance controller

which regulates the interaction dynamics between therapist and patient in the

robotic assistance phase. A teleoperation task-execution scenario for position-

following game such as pick and place is considered in this section to validate

the framework through experiments conducted involving a 2D play environ-

ment.

Chapter 4: This chapter extends the introduced framework in chapter 3

by proposing a tangential-normal varying-impedance controller (TNVIC). The

TNVIC not only learns and reproduces the therapist’s demonstrated motion

but also mimics his/her interaction impedance behavior during the assistive

intervention. The feasibility and efficacy of the proposed framework are eval-

uated by conducting an experiment in a 2D play environment, involving an

adult (the author), with the symptoms of cerebral palsy being induced using

transcutaneous electrical nerve stimulation.

Chapter 5: In this chapter we propose a position-indexed Learning from

demonstration framework by use of potential field function which models the

trajectory and interaction force observed in the therapist demonstration. Also,

an active velocity field controller is proposed to regulate the patient’s velocity

while performing the task in robotic assistance phase. Finally, the efficacy,

advantages, and stability of the proposed framework are evaluated in three dif-

ferent experimental scenarios involving both reaching motion and impedance-

based tasks. Electrical nerve stimulation of an adult (the author) together

with spring models are used to simulate the CP symptoms. Finally, Chap-

ter 6 summarizes the research work and experiments and discuss the future

direction of research.
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1.3 Publications

Chapter 3 is published in International Journal of Intelligent Robotics and

Applications, 2016. [8]

Chapter 4 is published in IEEE-RAS-EMBS International Conference on Re-

habilitation Robotics, London, UK, July 2017. [9]

1.4 Contribution

In the proposed frameworks, a cooperative demonstration was introduced with

both therapist and patient. In the cooperative demonstration, unlike [10, 11]

where the therapist independently demonstrated the task, he/she interacts with

the patient in task execution to sense and observe the patient’s performance

and accordingly provide the required assistance. In Chapter 3 a master-slave

teleoperation system is utilized with the master robot in the patient’s hand and

the slave robot performing the task in the environment. In the demonstration

phase, a therapist holds the slave robot in the task environment to provide the

required assistance for a few trials. However, in Chapter 4 and Chapter 5,

the therapist and patient both interact with the same robotic manipulator for

the cooperative task demonstration.

Proposing a time-indexed motion leaning framework. In this framework

unlike the previous Learning from demonstration frameworks for robotic as-

sistance [10, 11], where a PID controller was used to regulate the interaction

dynamics, in this thesis a time-varying impedance controller is employed which

has been widely used in collaborative robotics. In Chapter 3, a tangential-

normal impedance controller is proposed. This time-varying controller,

with its constant virtual impedance models, rotates towards the tangential di-

rection to independently control the interaction dynamic, tangent and normal

to a trajectory that is produced by Gaussian mixture regression. In Chapter

4, this controller is extended to the proposed tangential-normal varying
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impedance controller (TNVIC). Using the TNVIC, the virtual impedance

models not only rotate to tangential-normal coordinates but also, change in

magnitude about the desired trajectory (which dictates the level of assistance

provided to the patient) in inverse proportion to the trial-to-trial variation of

the demonstrated trajectories. Thus, the lower the variability in demonstra-

tions at a given time, the more assistance is required to be provided to the

patient, and the higher the impedance parameters (spring-damper) to restrict

deviation from the desired trajectory.

The potential field function learning from demonstration algorithm that was

developed in [12], with its optimization goal and controller are modified and

adapted to the context of robotic assistance in Chapter 5 to generate position-

indexed motion that not only follows the same trajectory but also follows the

same interaction force profile experienced during the demonstration. Then,

in the therapist’s absence, the robot not only provides the patient with the

same assistance he/she received during the task demonstration, but also with a

proposed performance-based and stable active velocity field controller that

assists/resists the patients, if they are following the trajectory slower/faster

than the demonstrated velocity. Additionally, a tank-based passivity controller

[13] is adopted to ensure the stability of the overall system, having the active

velocity controller.

In short the main contributions of this thesis are:

• Learning therapist’s assistance from cooperative therapist-patient demon-

stration.

• Mapping the trajectory following task into principal tangential-normal

coordinates in both learning and robotic assistance phases in the proposed

time-indexed and position-indexed frameworks.

• Proposing a tangential-normal varying impedance controller (TNVIC) to

regulate the interaction dynamic in the proposed time-indexed motion
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learning framework.

• Modifying the potential field function proposed in [12] to learn the trajec-

tory and interaction force from the therapist-patient cooperative demon-

stration and reproduce the same assistace time independently (i.e., position-

indexed).

• Augmenting a proposed demonstrated velocity field with a passive veloc-

ity field controller to the learned potential field function to regulate the

patient’s velocity along the trajectory.
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Chapter 2

Background & Related Work

2.1 Assistive Robotic Systems

In this section. First, the main symptoms of CP are introduced. Then neces-

sity of play and object manipulation, and how the robotic systems can assist

children with CP to perform the act of playing independently is presented.

Finally, the current algorithms for robotic assistance for point-to-point motion

tasks are investigated.

2.1.1 Symptoms of CP

Cerebral palsy (CP) corresponds to a class of non-progressive impairments in

the central nervous system caused by brain and neurological damage in early

stages of children life [1, 2]. CP is mainly categorized into spastic, ataxic and

dyskinetic types based on the primary symptoms and part of the central ner-

vous system which is mainly damaged. The most common type of CP is spastic

CP which is caused by damage to the motor cortex. The motor cortex initi-

ates and controls voluntary movements, therefore any damage to the motor

cortex can inhibit the individuals with CP to start and control movements.

This results in stiffness, tightness (spasticity) and incoordination in muscles.
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Ataxic CP is caused by damage to the cerebellum in the brain. The cerebel-

lum receives information from the sensory systems and then regulates motor

movements accordingly. Therefore individuals with ataxic CP have problem

in balance and coordination motions and demonstrate tremor and shakiness in

their movements. Finally, the dyskinetic CP is due to the damage to basal gan-

glia, which is the balance control system in the brain. People with dyskinetic

CP demonstrate involuntary and repetitive muscle tone.

People with CP can have one or several of the symptoms associated with

the introduced CP categories. CP can seriously decrease one’s ability for active

motion control, object manipulation and environmental exploration.

2.1.2 Play and Object Manipulation in Children with

CP

Play and object manipulation contribute to children’s physical, cognitive and

social development[14]. The theory of cognitive development that was proposed

in [15], states that in the first two years of life, functional play contributes to the

development of motor reflexes, simple motor actions, imitation of behaviors,

exploration of the environment and object manipulation. Therefore, play is

associated with the development of complex cognitive and motor skills [16].

Children’s environmental exploration as an ongoing cycle of action, percep-

tion, and cognition was introduced by Gibson’s theory of development [6]. In

children with CP, this cycle is interrupted due to physical impairments that

can restrict children’s exploratory behavior in the environment and postpone

or halt their perceptual and cognitive skills [6]. Assistive technologies (AT)

have been used to compensate for these disabilities and assist children with CP

to do the act of playing, object manipulation and further exploration of their

environment [17, 18].
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2.1.3 Assist-as-Needed Robotic Systems

Robotic systems as an assistive technology have been advancing in the re-

cent years. Robots can utilized to either build function for children to in-

dependently engage in activities (e.g., rehabilitation robots), or compensate

for their function (e.g., assistive robots). In assistive robotic systems, one fo-

cus in the literature has been to provide assistance in an as needed paradigm

(also called assist-as-needed (AAN)). Robotic-assistance with AAN not only

motivates children’s active participation in the task but also provokes motor

action and contribution in task execution. By providing excessive assistance,

the users instinctively decrease their effort and let the robotic system complete

the task, on the other hand, by giving lower than the required assistance, the

users may not be able to complete the task, which decreases their confidence

and contribution in task execution [19].

Several control frameworks have been suggested for ANN including impedance

control [20]. Impedance control is most beneficial in applications with human-

robot interaction as the robot controller imposes a virtual mass-spring-damper

behavior in the interaction dynamic [21, 22]. This provides an adjustable flexi-

bility required for interactive tasks. A virtual impedance model connecting the

patient’s hand to a moving target along the predefined trajectory was defined in

[23, 24]. Thus, the patient does not feel any assistive force unless he/she devi-

ates from the target trajectory. A force tunnel produced by a virtual impedance

model that restricts the patient in directions orthogonal to his/her movement

direction was developed in [25]. In [26], a time limit was also proposed for

patients to finish a task by defining a moving virtual wall that would push and

assist the patient in case they were moving slower than expected. The authors

in [27] used position, force, and impedance control to provide a virtual-tunnel

model for guidance in the tangential and virtual-wall-like restriction in the

normal directions of the trajectory.

The major drawback of the stated assist-as-needed frameworks is the re-
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quirement for manual robot programming in order to plan the desired tra-

jectory which requires advanced coding and engineering skills that are not

necessarily available in settings such as clinics and patient’s homes. Even hav-

ing the required skills, it would be a non-intuitive and arduous struggle to

mathematically model these task-dependent assistance models every time the

task changes, especially in motions that involve high degrees of freedom (e.g.,

if the locations of object picking and placing changes). As a result, a robot

learning from demonstration (RLfD) technique was utilized for rehabilitation

applications in [10, 11].

2.2 Learning from Demonstration

Even though robotic technologies and artificial intelligence have developed sig-

nificantly, still they cannot plan the motions, as well as a human does. Most

of the advanced robotic systems are still programmed manually for most of

their functions. Specifically in assistive and therapeutic systems, due to the

complexity of the task and required safety considerations, it is not yet feasi-

ble to rely completely on artificial intelligence. Therefore, semi-autonomous

robot learning from demonstration (RLfD) is the focus in this paper. In this

framework, a short duration of therapist interaction with the patient (through

a robotic medium) is enough to learn the task-specific assistance provided by

the therapist to the patient and subsequently administer the same assistance

to the patient robotically in the therapist’s absence.

RLDF (also called robot imitation learning, robot programming by demon-

stration) is founded based on intuitive principles used by humans to learn new

tasks in their everyday lives. Before performing any task for the first time,

we observe it done by an expert, and then we try to imitate the same per-

formance in the task execution. RLfD started in the early 80s [28] and has

developed over the years as an intuitive, fast and user-friendly programming

10



procedure for various applications like helicopter control [29], grabbing flying

objects [30], teaching to play golf [31], etc. In this thesis, robotic point-to-point

motion learning has been considered as the main focus. Point-to-point motion

learning is the building block for complex trajectories used in assistive and ther-

apeutic systems. In the following section, time-indexed and position-indexed

approaches for learning from demonstration will be discussed briefly.

2.2.1 Time-Indexed Motion Leaning

Time-indexing is a classical approach to trajectory planning and encoding. In

[32, 33, 34] spline smoothing techniques together with averaging of demon-

strated trajectories were used to deal with variability across demonstrated

trajectories. Although this method is fast and straightforward, it is highly

task-dependent as a heuristic is needed to segment the trajectories. Therefore

this approach is inefficient in capturing non-linear trajectories accurately.

An alternative probabilistic approach is using Hidden Markov Model (HMM)

to capture the temporal-spatial variability of the demonstrated trajectories with

a sequence of hidden states [35, 36]. The HMM model has been extensively

used in speech and gesture recognition systems as it can capture the sequential

behavior of a demonstrated signal with temporal dissimilarity [37]. One of the

disadvantages of the HMM is that it cannot reproduce a smooth trajectory

required for human-robot interactive tasks, but instead a discrete and stepwise

one. A candidate solution is averaging over many stochastic samples. This

solution can produce a smooth trajectory with the cost of under-fitting the

trajectory and missing the trajectory information, which can reduce the accu-

racy. To solve this problem, Calinon [38] integrated the HMM with Gaussian

Mixture Model (GMM) and Gaussian Mixture Regression (GMR) to model

and reproduce a smooth trajectory. However, it still required a lot of demon-

stration data to accurately capture the state transition model in HMM, which

makes it inappropriate for the application focused on this thesis.
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Using Gaussian Mixture Models (GMM) to model a number of trajectories

with its time index through a weighed average of several Gaussian probability

density functions and then Gaussian Mixture Regression (GMR) as a regression

technique to reproduce the generalized smooth trajectory in each time index

was first proposed in [39] and ever since has been extensively used [39, 40, 41].

The GMM fits the dataset via the Expectation-Maximization (EM) algorithm

[42]. Some of the advantages of the GMM/GMR approach are: 1) Few demon-

strations are required for effective learning of motion and smooth trajectory

reproduction; 2) Correlation between motion states and the variability of these

states along each dimension are captured statistically; and 3) The reproduction

phase is computationally cheap and efficient for real-time implementation [43].

However, similar to other time-indexed approaches, the explicit dependence on

time to reproduce the generalized trajectory makes this approach open-loop

and unable in facing temporal perturbations.

2.2.2 Position-Indexed Motion Leaning

In this thesis, a point-to-point motion is considered as the target application,

therefore we classify any RLfD technique which is not using time-index to

reproduce the motion as position-indexed motion learning algorithms. Move-

ment primitives are asymptotically stable differential equations that represent

a generalized trajectory. This approach for RLfD is closed-loop as the learned

differential equation represents the dynamics of the motion which can face

unforeseen spatial and temporal perturbations (this technique is also called

Dynamic system-based RLfD).

One of the non-probabilistic dynamic system-based approaches for motion

learning is dynamic motion primitives (DMP), in which a non-linear asymptot-

ically stable dynamic system is estimated for reaching to the equilibrium point,

through a single demonstration. However, this approach is nonprobabilistic and

a task-dependent heuristic is required as a phase variable to enforce the con-
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vergence [44]. The other approach is Stable Estimator of Dynamical Systems

(SEDS) which was proposed in [45], and has been used for various applications

since its introduction [29, 30, 31]. In SEDS the demonstrated position-velocity

trajectories are captured using the GMM with a modified EM algorithm to

ensure the asymptotic stability of the dynamic systems. Then using GMR, the

generalized trajectory is produced by position as an input and desired velocity

as an output of the SEDS, which should be followed by the robotic manipula-

tor. Most of the research in dynamic systems considered free space motions and

thus do not consider robot-environment interaction exists in assistive robotic

systems. Recently some work has been done to use SDES on robotic interaction

and providing stability of the interaction dynamics [46].

Potential field motion planning was introduced in [47]. In this approach,

a global potential function models the workspace and the robot is considered

as a particle which is influenced by the gradient (i.e., force) of this field. The

Global potential function is produced by the sum of several attracting points

(destination) and repelling points (obstacles). There are various algorithms to

place these attracting/repelling points in the task space to have reachable (not

asymptotically stable) destinations. Navigation function was first introduced

in [48], this technique was an approach to form a field which is free from local

minima along the trajectory. The harmonic potential is a navigation function

approach that replicates the dynamics of some physical processes such as heat

transfer or fluid flow. This approach proves the asymptotic stability of the

potential field, however, the navigation function is restricted to simple environ-

ments with specific obstacle shapes. Approximate methods based on discretized

space overcome this limitation but at the cost of being computationally more

expensive [49].

A novel technique for motion leaning from demonstration, based on the

Potential field approach was recently proposed in [12]. In this work, several

attracting points are assigned to the sampled demonstrated trajectory, then
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using a convex optimization algorithm, the bias potential parameter for the

sampled points are learned to dictate a tangential force along the trajectory

to have a reachable destination. Also, a damping parameter is assigned to

each attracting point via another convex optimization algorithm to replicate

the same velocity behavior as-demonstrated. Some of the advantages of this

technique are: 1) It is time-independent and robust to temporal and spatial

perturbation; 2) A single demonstration is sufficient to learn the trajectory;

3) The potential field strategy for trajectory planning is passive and stable in

interaction with passive environments; 4) The potential field function cannot

only encode the demonstrated trajectory, but also the force profile which makes

this approach suitable for robotic assistance tasks involving human-robot in-

teractions; 5) Multiple trajectories can be encoded into a single potential field

function in the task space.

2.3 Impedance Control

Impedance control [21] has been widely used in collaborative robotics to reg-

ulate the interaction between the human and the robotic manipulator. In

this controller, the position-force relationship is dictated by an interaction dy-

namics instead of solely tracking the position/force trajectories which can be

prone to failure in tasks with human-robot interaction. The virtual interaction

impedance model (usually a mass-spring-damper model) is either constant or

variable. Variable impedance controllers provide higher performance by adapt-

ing the interaction properties while cooperatively accomplishing a task such as

following a given path, for instance by making it less compliant where more

accuracy is required [50, 51].

Various strategies have been introduced for varying impedance control in

recent years. [52] optimized the interaction performance with reinforcement

learning, using the human motor control and equilibrium point models. [53]
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employed Game Theory in the human-robot Two-Agent system. The developed

an adaptation law to adjust the impedance controller parameters based on

the human’s intention to lead or follow. [54] introduced an optimal control

approach to regulate the time-varying stiffness profiles.

A learning from demonstration approach was employed in [55] to alter the

stiffness parameters in task space inversely proportional to the observed co-

variance in the demonstrated trajectories. Therefore, less variability in the

demonstration will result in a larger impedance parameter (i.e., more accu-

racy) in the reproduction phase. In [56] an adaptive controller was proposed to

regulate the interaction dynamic for human-like reproduction of a cooperative

task which is learned through demonstration.

Although variable impedance control has been extensively used in interac-

tive robotic systems, few works have considered the stability of the interaction

dynamics. In [13], an energy-tank passivity controller was proposed which

stores the passive (i.e., damped) interaction energy in a virtual state (called

energy tank), and uses this energy to implement impedance variations. In

[57], they introduced a state-independent energy-tank passivity controller with

increased performance and reliability. The same energy-tank approach was

used in [46] for tracking the velocity field produced by Dynamic Systems. [50]

developed an adaptive approach to guarantee the stability of their variable

impedance controller.
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Chapter 3

Learning from Telecooperative

Demonstration Using

Time-indexed Motion Learning

In this chapter, the goal is to propose a AAN framework for a two-dimensional

(2D) position-following pick-and-place task via a teleoperation system. In this

framework, for the first time, a tangential-normal (T − N) impedance con-

troller is utilized together with a GMM/GMR learning from demonstration

(LfD) technique. The tangential-normal impedance controller acts as an at-

tractor around the learned trajectory and provides robustness to spatial per-

turbation. The proposed scheme with its demonstration and robotic assistance

phases is sketched in Fig.3.1. In the first phase, the therapist provides assis-

tance as needed and cooperates with the child to perform the task a few times.

In this phase, the therapist assistance is modeled by a GMM and the average

trajectory demonstrated by the therapist is approximated using GMR. In the

second phase, tangential-normal impedance controller is proposed, so that the

master robot handled by the child assists the child to follow the average demon-

strated trajectory in the tangential direction and resists the child’s motion in

the normal direction. In both the tangential and normal directions, the level of
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Figure 3.1: The schematic of proposed robotic assistance framework including
demonstration and assistive phases.

assistance/resistance can be adjusted by tuning the time-invariant parameters

of the impedance models.

3.1 Dynamics of Master-Slave Teleoperation Sys-

tem

The nonlinear dynamics of the multi-DoF master and slave robots side in the

Cartesian coordinates are

Mx,m(qm)ẍm + Cx,m(qm, q̇m)ẋm +G(qm) + Fx,m(q̇m) = Fm + Fext,m (3.1)

Mx,s(qs)ẍs + Cx,s(qs, q̇s)ẋs +G(qs) + Fx,s(q̇s) = Fs + Fext,s (3.2)

where qm and qs ∈ Rn×1 are joint angles. xm and xs ∈ Rn×1 are, re-

spectively, the positions of the master and slave end-effectors in the Cartesian

coordinates. Mx,m(qm) and Mx,s(qs) ∈ Rn×n are inertia matrices, Cx,m(qm, q̇m)

and Cx,s(qs, q̇s) ∈ Rn×n contain Coriolis and Centrifugal terms, G(qm) and
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G(qs) ∈ Rn×1 vectors represent position-dependent forces such as gravity,

Fx,m(q̇m) and Fx,s(q̇s) ∈ Rn×1 are the friction forces, Fm and Fs ∈ Rn×1 are

the control signals for the robot’s actuators and Fext,m and Fext,s ∈ Rn×1 are

the external forces exerting on robot’s end-effector. In this chapter, the master

and slave robots are respectively in contact with child and the therapist. Thus,

the external forces are

Fext,m = Fch (3.3)

Fext,s = −Fth − Fe (3.4)

where Fch ∈ Rn×1 is the child’s force exerted on the master robot, and Fth ∈

Rn×1 and Fe ∈ Rn×1 are, respectively, the therapist’s and the task environ-

ment’s forces applied to the slave robot. Note that as the slave interacts with

the task environment, the therapist pulls/pushes the slave in order to assist

the child in terms of completing the task. It is assumed that the slave robot

is either inherently back-drivable or is properly impedance controlled to follow

externally-imposed motions.

3.2 Demonstration Phase

In this work, a pick and place game is chosen as the position-following task for

the child. The child interacting with the master robot manipulates the slave

robot to perform a task in the remote environment through a teleoperation

system. Meanwhile, the therapist interacts with the slave robot in order to

assist and modify the child’s movements, considering the child’s unique motion

and posture characteristics. The position trajectory data from multiple task

trials is then saved to be encoded using GMM and GMR.

Transparency in the teleoperation system is provided when the perfect posi-

tion and force tracking are simultaneously achieved in the master-slave robotic

setup. In order to provide transparency, the Direct force reflection (DFR) archi-
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Figure 3.2: Direct force reflection (DFR) strategy for the cooperation of the
child and therapist in the demonstration phase.

tecture is employed [8]. In this control method, the master position trajectory

is transmitted to and tracked by the slave robot. Also, the slave-therapist in-

teraction force is reflected back to the master robot to be fed back to the child,

as schematically shown in Fig.3.2.

The obtained data from a cooperative demonstration of the pick-and-place

task through a transparent teleoperation system is constructed by 2-dimensional

position vector (Sp ∈ R2) and a 1-dimensional time variable (St ∈ R). The

size of the total demonstration dataset is determined by the number of sampled

data in each trial (N), multiplied by the total number of demonstration trials

(M). So the resulting M.N samples form the total database of

D =

Sp1,1 Sp1,2 . . . Spm,n . . . SpM,N

St1,1 St1,2 . . . Stm,n . . . StM,N

 (3.5)

In (3.5), m and n subscripts indicate the nth sample of a signal in the mth

demonstration. The Gaussian mixture model (GMM) will be used to statis-

tically model the demonstration database (D ∈ R3×M.N). The GMM is a

probabilistic model that represents the data by a mixture of finite Gaussian
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probability density functions (PDF) [55] as

f(Sp, St; θi) =
K∑
i=1

hiN (Sp, St;µi,Σi) (3.6)

N (Sp, St;µi,Σi) =
1√

2π3|Σi|
e
− 1

2

(
([SP ;St]−µi)TΣ−1

i ([SP ;St]−µi)
)

(3.7)

µi =

µpi
µti

 ,Σi =

 Σp
i Σp,t

i

Σt,p
i Σt

i

 (3.8)

where N represents the joint 3-dimensional normal probability density func-

tion (PDF). K is the number of Gaussian mixture models. θi = {hi ∈

R3, µi ∈ R3,Σi ∈ R3×3} , denotes the prior weight, the mean value and the

covariance matrix for each of Gaussian mixture components, respectively. The

Expectation-Maximization (EM) algorithm [42] is used to iteratively train the

GMM model (θi) on total dataset (D), which is subject to the following con-

straint:
K∑
i=1

hi = 1, 0 < hi < 1. (3.9)

The obtained GMM should be customized to be utilized for the trajectory fol-

lowing task of pick and place considered in this chapter. The average demon-

strated position in a given time is needed for feeding the controller later in

robotic-assistance phase. This conditional probability is achieved using Gaus-

sian mixture regression (GMR) [10] as

f(Sp|St; θi) =
K∑
i=1

ωiN (Sp; µ̂Pi , Σ̂
P
i ) (3.10)

N (Sp; µ̂Pi , Σ̂
P
i ) =

1√
2π2|Σ̂P

i |
e
− 1

2

(
([SP ;St]−µ̂Pi )T Σ̂Pi

−1
([SP ;St]−µ̂Pi )

)
(3.11)

where µ̂i ,Σ̂i are the expected mean and covariance matrix of the ith condi-
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tional probability as

µ̂Pi = µPi + ΣP,t
i (Σt

i)
−1(St − µti) ∈ R2 (3.12)

Σ̂P
i = Σt

i + ΣP,t
i (Σt

i)
−1Σt,P

i ∈ R2×2 (3.13)

The probability that St is in the ith Gaussian distribution component (ωi) is

ωi = P (i|St = t; θi) =
hiN (St;µti,Σ

t
i)∑K

i=1 hiN (St;µti,Σ
t
i)

(3.14)

now, the single Gaussian distribution of the conditional expectation of Sp, given

St = t, can be approximated as

f(Sp|St; θi) ≈ N (Sp; µ̂P , Σ̂P ) (3.15)

µ̂P =
K∑
i=1

ωiµ̂Pi , Σ̂P =
K∑
i=1

ω2
i Σ̂

P
i (3.16)

µ̂P is the average position demonstrated during the cooperation of the child

and the therapist at each time. Considering the orthonormal 2-dimensional

Cartesian X1 −X2 coordinate, these vectors can be rewritten as

µ̂P =

µ̂X1
t

µ̂X2
t

 (3.17)

where the subscript t, represents the time in which the µ̂P is achieved. µ̂X1
t ∈ R

and µ̂X2
t ∈ R denote the projection of µ̂P along the X1 and X2 Cartesian

coordinates, respectively. In summary, the demonstrated trajectory is modeled

in the X1−X2−t space via the GMM/GMR algorithms. For a given time, the

expected 2-dimensional X1−X2 statistical model for the demonstrated position

is approximated via (3.15)-(3.16). Then, the expected average position in that

time is calculated in each of X1 and X2 using (3.17), which will be later utilized
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(a)

(b)

Figure 3.3: LfD process: (a) The 3-dimensional Gaussian Mixture Models
(GMM) capture the 3-dimensional X1 − X2 − t dataset (D), and (b) The 2-
dimentional X1 − X2 Gaussian probability density function (pdf) in a given
time (t = 8s) resulting from GMR. Variability is shown as area inside 3 at each
direction.( σ is the Gaussian variance).

in our proposed controller (Fig.3.3). In Fig.3.3, an example of the GMM/GMR

process is shown. Fig. 3.3(a), displays five 3-dimensional Gaussian models

that captured the demonstrated trajectories in X1 −X2 − t space. Fig.3.3(b),

depicts a 2-dimensional Gaussian probability density function (PDF) resulting

from GMR in a given time (t = 8s). Using GMR, the average and variability of

position in X1−X2 subspace can be approximated by a 2-dimentional Gaussian

PDF at any time instance. The time (t = 8s) in Fig.3.3(b) was chosen randomly

to provide an example of GMR output.
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3.3 Robotic Assistance Phase

In this section, the aim is to propose a framework which utilizes the learned

average demonstrated position from the previous section so that the robot can

take over the therapist’s role and autonomously assist the child to follow the

desired point-to-point trajectory in the pick and place task. In this framework,

two desired virtual impedance models are defined in the master robot. These

impedance models control the interaction dynamics of the master robot around

the average demonstrated trajectory (µ̂P ) in tangential and normal directions.

Then, the slave robot, which is in contact with task environment, follows the

master position through a unilateral teleportation system so that the child can

perform the task on his/her own.

3.3.1 Master Robot’s Tangential-Normal Impedance Con-

troller

The objective is to design a framework so that the master robot imitates the

therapist’s demonstrated performance and provides assistance to the child to

follow the average demonstrated position trajectory from point A to point B.

Depending on the task and the child, it may be desirable for the therapist to

provide different levels of assistance/resistance in directions that are tangen-

tial/normal to the trajectory’s direction. For this purpose, a tangential-normal

coordinate T −N in each time is defined by setting the average demonstrated

position at the current time (µ̂P ) as the origin of the new T − N coordinate.

The rotation of the T−N frame can be computed via differentiating the average

position trajectory (µ̂P ) as

θT,t = Arctan
((
µ̂X2
t − µ̂X2

t−∆t

)/(
µ̂X1
t − µ̂X1

t−∆t

))
(3.18)
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Rt =

 cos(θT,t) sin(θT,t)

−sin(θT,t) cos(θT,t)

 (3.19)

Ĥt =


Rt −µ̂X1

t

−µ̂X2
t

0 0 1

 (3.20)

where θT,t ∈ [−π π] denotes the angle between the T − N and X1 − X2

Cartesian coordinates in a given time (St = t), calculated by four-quadrant

inverse tangent. ∆t represents the sampling period. Rt and Ht express the

rotation and homogeneous transformation matrix [58], which maps each inter-

action force and position vector from X1 −X2 to T −N coordinate at a given

time (t) as

FT
FN

 = Rt

FX1

FX2

 (3.21)


xT

xN

1

 = Ht


xX1

xX2

1

 (3.22)

In the next step, at a given time, two virtual impedance model are defined in

directions tangential and normal to the average demonstrated trajectory. This

models indicates the desired linear interaction dynamic between the master

robot and the target trajectory in T −N Cartesian space (Fig.3.4) as

mT
¨̃xT + cT ˙̃xT + kT x̃T = −Fch,T (3.23)

mN
¨̃xN + cN ˙̃xN + kN x̃N = −Fch,N (3.24)

where {mT , cT , kT} ∈ R+ and {mN , cN , kN} ∈ R+ refer to the desired virtual

mass, damping and stiffness parameters in the tangential and normal directions,
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respectively. x̃T = xdes,T − xdem,T and x̃N = xdes,N − xdem,N indicate the

difference between the desired robot position {xdes,T , xdes,N } ∈ R and the

demonstrated trajectory at a given time {xdem,T , xdem,N } ∈ R as transformed

to the T − N frame, respectively. Fch,T and Fch,N ∈ R denote the interaction

force between the child and the master robot in T −N coordinates, which are

found as

Fch,T
Fch,N

 = Rt

Fch,X1

Fch,X2

 (3.25)


xdem,T

xdem,N

1

 = Ht


µ̂X1
t

µ̂X2
t

1

 =


0

0

1

 ∈ R2 (3.26)

Equivalently, ˙̃xT , ¨̃xT , ˙̃xN , ¨̃xN are

 ˙̃xT

˙̃xN

 = Rt

ẋdes,T
ẋdes,N

 ∈ R2 (3.27)

 ¨̃xT

¨̃xN

 = Rt

ẍdes,T
ẍdes,N

 ∈ R2 (3.28)

In Fig.3.4, the red and green orthogonal axes represent the T − N and

X1−X2 Cartesian coordinates respectively. The T −N origin is on the average

demonstrated trajectory at a given time which acts as a moving target in this

controller (µ̂P ). In the first step, the child’s applied force on the master (Fch)

is projected along T −N coordinates by (Rt) and then exerted to their corre-

sponding virtual mass-damper-spring models that are connected to the virtual

moving target (µ̂P ). These forces cause a deviation with respect to the moving

target and find the desired master robot position in each of tangential/normal

directions (xdes,T ,xdes,N), so that the master robot get connected to the desired

virtual moving target via virtual impedance models. These desired positions
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Figure 3.4: The proposed virtual tangential-normal impedance controller.

are then map back to X1 − X2 coordinate (3.29) for the master robot to be

followed. Accordingly, the child feels as if connected to a moving target (µ̂P )

via virtual mass-damper-spring impedance models in each of tangential and

normal directions Fig.3.4. Therefore, the master robot not only follows the av-

erage demonstrated position, but also provides an adjustable level of freedom

for the child to deviate from this trajectory in each direction. The larger the

desired impedance parameters, the less the child’s freedom to deviate from the

expected trajectory.


xdes,X1

xdes,X2

1

 = H−1
t


xdes,xT

xdes,xN

1

 (3.29)

3.3.2 Unilateral Teleoperation Control

A unilateral teleoperation system Fig.3.5 is used, where the master position is

transmitted to the slave side to be used as the desired position for slave:

xdes,s = xm (3.30)
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Figure 3.5: Unilateral teleoperation system. The slave robot (in play envi-
ronment) follows the position of master robot (child) that is connected to the
virtual T −N impedance models.

Here, xdes,s ∈ R2 denotes the desired position for slave robot. And, xm ∈ R2

expresses the master robot position transmitted from master side. A PID

controller is utilized, so that the master and slave robots follow their desired

positions.

3.4 Experiments and Discussion

The proposed AAN framework using LfD was experimentally tested using a

Quanser Rehab robot (Quanser Consulting Inc., Markham, Canada) as the

master (Fig.3.6(a)) and a Phantom Premium robot (Geomagic Inc., Wilm-

ington, USA) as the slave (Fig.3.6(a)). Both of the therapist demonstration
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Figure 3.6: The experimental set up: (a) Quanser Rehab robot (Master) and
Phantom Premium robot (Slave) in the teleoperation system, (b) the game
environment, where the task was to pick tokens from box A and place them in
box B, and (c) the spring array (K1,K2), modeled the child with disability in
the master robot side.

and robotic assistance phases were implemented with a sampling time of 1

msec, using the QUARC real-time control software (Quanser Consulting Inc.,

Markham, Canada).

A game was designed for the child to move the slave robot through a teleop-

eration system, in order to pick a token from box A in a 2D play environment

and put it in box B (see Fig.3.6). A coil was mounted on the slave end-effector

and charged with electrical current when the robot reached the box A for

picking the metal token. This coil was discharged when the slave end-effector

reached the box B for placing the token in this box. In this experiment, the

child was simulated as a spring array which was pulled to the box A location

at the beginning of the experiment (Fig.3.6(c)). One of the common symptoms
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Figure 3.7: The simulated CP child (spring array) trajectory without thera-
pist/robotic assistance.

of children with CP is their poor coordination and motor function [2]. So, it

was expected that after releasing the spring array from Box A it produces 2D

forces which are not toward the desired destination. Therefore, the spring ar-

ray reached its equilibrium point, which was not the box B’s location (Fig.3.7).

Thus, the simulated child could not move the master, and consequently the

slave, to the box B location and accomplish the pick and place task if unas-

sisted. In [59] human hand dynamic is modeled as a spring array, which acts as

muscle groups connected to joints. So, considering the muscle stiffness of chil-

dren with CP [2], and passivity of interaction dynamics in robotic assistance, it

is safe to simulate the movement of children with CP as a passive spring array.

The same approach was considered in [10, 11] to simulate movements of people

who had a stroke.

3.4.1 Demonstration Phase

The child (spring array in the reminder of this section) was unable to reach

box B, therefore, it was required that in the demonstration phase that the

therapist (author in the reminder of this section) assist the child to correct

the movements by applying assistive/resistive forces to the slave end-effector
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in the tangential/normal directions. The therapist intervention and assistance

was minimal and on an as-needed basis. Also, the unique motion characteristic

of the child was considered by the therapist to prevent any possible pain or dis-

comfort. The motion characteristic was expected to be curve-like as observed

in [18]. Accordingly, the therapist assisted the child through the teleoperation

system to accomplish the task successfully. The obtained trajectories of the

”child” and the therapist across 5 trials are shown in Fig. 3.8(a) The GMM

of these trajectories are shown in Fig.3.8(b). The average demonstrated tra-

jectory and the corresponding variation manifold obtained from GMR are also

illustrated in Fig.3.8(c) . As seen in Fig.3.8, the GMM and GMR models ef-

ficiently captured the average and variability of cooperative task execution.

The therapist interaction force in tangential and normal directions for the trial

number 4 is sketched in Fig.3.9.

Based on the structure of the utilized spring array, the child was exerting a

force in the normal direction along the trajectory. Thus, the therapist applied

force in the opposite direction (Fig.3.9(b)) to increase resistance in normal

direction and bend the mutual trajectory toward box B, while preserving the

curve-like motion characteristic of child. In tangential direction, at first, the

therapist applied force in negative direction to reduce the abrupt acceleration

of the robots produced by the spring array at the Box A location (Fig.3.9(a)).

Then, the therapist has provided the positive force to assist the child to reach

the destination.

3.4.2 Robotic Assistance Phase

The demonstrated average trajectory of the child-therapist cooperation in the

previous phase were employed in this phase to perform the task in the ab-

sence of the therapist. The child deviation (in this phase) with respect to the

demonstrated average trajectory (from the previous phase) was determined as

a response to his/her interaction forces, using the proposed tangential-normal
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(a)

(b)

(c)

Figure 3.8: The cooperative task demonstration: (a) Therapist-child mutual
position, executing the pick and place task for 5 trials, (b) the projection of 3D
GMM on the X1−X2 Cartesian coordinates, (c) the average and variability of
the demonstrated trajectories, resulting from GMR.

impedance models (3.23), (3.24). In order to evaluate the performance of the

impedance model in terms of adjustment of the child’s freedom to deviate,

different sets of impedance models were defined that are listed in Table. 3.1.

Impedance parameters were chosen to provide the robot with appropriate tran-

sient response to child’s input forces and cancel the high frequency response,

which corresponds to tremor in children with CP:
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(a)

(b)

Figure 3.9: Therapist-applied force in the task demonstration: (a) in tangential
direction, and (b) in normal direction.

ξ = c/2
√
m.k = 0.7 (3.31)

ωn =
√
m.k = 2 (3.32)

Using these parameters in the virtual impedance models and applying the

proposed impedance control strategy to follow the average demonstrated tra-

jectory, the X1 − X2 trajectory of the slave robot (in the task environment)

was shown in Fig.3.10.

Impedance parameters adjust the trade-off between accuracy (more assis-

tance/resistance) and flexibility (less assistance/resistance) in each of tangen-

tial/normal directions. Movement in the tangential direction highly contributes

to the task accomplishment as the child is moving along the average demon-

strated trajectory to reach the destination (box B). So, it is desirable to provide

the child with more flexibility (less assistance) in the tangential direction to
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(a)

(b)

Figure 3.10: Robotic assistance phase. Child’s trajectory: (a) more flexibility
(less resistance) in the normal direction, and (b) more flexibility (less assis-
tance) in the tangential direction.

T < N M C K ST
Tangential (T) 50× ST 140× ST 200× ST {1, 2, 4}

Normal (N) 100× ST 280× ST 400× ST
N < T M C K SN

Tangential (T) 100× SN 280× SN 400× SN {1, 2, 4}
Normal (N) 50× SN 140× SN 200× SN

Table 3.1: Adjustment of tangential and normal impedance models for various
set of parameters.

ensure his/her motivation and participation in task execution. However, the

child’s ability to move along the average trajectory should be taken into con-

sideration. As it is observed in Fig. 3.10, choosing the impedance parameters

by adjusting ST = 1, the child is unable to reach the destination, because of

inadequate assistance in the tangential direction.

Less resistance in the normal direction gives more freedom to the child
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(a)

(b)

(c)

Figure 3.11: Robotic assistance phase (ST = 2): Child (a) deviation tangent to
trajectory (b) deviation normal to the trajectory (c) interaction force in T −N
coordinates.

for deviation in directions orthogonal to the tangential direction. The level of

flexibility in the normal direction is limited by any spatial restriction in the task

environment. In order to minimize this resistance and also, meet the required

accuracy for task accomplishment, this parameter can be set according to the

observed variability of demonstrated data in Fig. 3.8(c).
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Based on the above discussion, in this work, ST = 2 has been selected

for the assistance phase, which the adjusted impedance parameters not only

provided more flexibility in the tangential direction, but also allowsd the child

to have acceptable deviation in normal direction. The corresponding position

deviations from the average trajectory in the T − N coordinates and also the

applied interaction forces by the child in the T − N directions that generate

these deviations, are sketched in Fig.3.11.

3.4.3 Discussion

The proposed framework in this chapter has been experimentally validated by

simulating the child interaction dynamic with a master robot as a spring ar-

ray. As mentioned in Chapter 2, several assist as needed frameworks based on

impedance/admittance controller have been suggested and even evaluated on

actual patients [25] [20]. In this chapter, we extended this strategy by propos-

ing a framework that utilizes LfD together with T −N impedance controller, to

learn the assistance needed and eliminate the need for robot programming and

further intervention by the therapist. The proposed framework is applicable

to provide assistance to children with CP, but clinical evaluation is out of the

scope of this work. Moreover, using a spring array helped to better evaluate

the proposed T −N impedance controller, as it provides the same behavior in

each reproduction trial. Point to point motion has been prevalently considered

in both LfD and AAN literature for development and evaluation of frameworks,

as it is the building block for motions with higher complexity [20, 60]. Thus,

in this chapter, a simple pick and place task was considered to motivate the

development of the robotic AAN framework. The proposed framework is able

to produce complex movement trajectories as time index of position data is

also captured in GMM and used as an independent variable to reproduce the

movement via GMR. Also, the T − N impedance controller imposes a virtual

mass-spring-damper that models the dynamics between child and master robot
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moving along the average trajectory produced by GMR. So, the robotic ma-

nipulator will follow the learned trajectory with adjustable flexibility for the

child to deviate in each of tangential or normal directions.

3.5 Conclusion

In this chapter, a robotic-assistance-as-needed framework was proposed for

children with Cerebral Palsy (CP) to perform a 2D position following task,

by telemanipulating the slave robot in the play environment. In the first step

(demonstration phase), the therapist interacted with the slave robot to as-

sist and correct the simulated child’s movements. A spring array was utilized

to simulate the CP symptoms on the master robot. Using a learning from

demonstration strategy, the Gaussian Mixture Model (GMM) and Gaussian

Mixture Regression (GMR) techniques were utilized to approximate the aver-

age and variability of the demonstrated therapist-child trajectories. Then, in

the robotic assistance phase (without therapist intervention), the impedance

control method was applied such that the master robot provides a desirable flex-

ibility for the child while following the average trajectory. Different impedance

characteristics were defined for the child deviation in normal and tangential di-

rections with respect to the average trajectory. As small as needed impedance

parameters were employed in the tangential direction to provide appropriate

flexibility (assistance) for the child to execute the task. However, by increas-

ing the impedance parameters corresponding to the normal direction, the child

deviation from the desired trajectory decreases. The validity of the proposed

framework was experimentally evaluated by using different sets of impedance

parameters in tangential/normal impedance models. In future works, the pro-

posed strategy will be utilized with real children with CP to improve their

ability and success rate in pick and place tasks in the play environment.
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Chapter 4

Time-indexed Motion Learning

with Tangential-Normal Varying

Impedance Controller (TNVIC)

In this chapter, the therapist and the patient cooperatively perform a given task

on a single robotic manipulator a few times. The therapist provides assistance

such that the patient can complete the task, considering that more variability

will result in less assistance to the patient (i.e., more freedom for the patient

to deviate from the desired trajectory) in the reproduction phase. Then, using

the GMM, the joint time-position data of demonstrated trajectories is cap-

tured statistically. Finally, in the therapist’s absence, the GMR will extract

the demonstrated average trajectory and also its trial-to-trial variability at each

time from the GMM, same as in chapter. 3. However the proposed TNVIC

in this chapter assists the patient to follow the average trajectory while imi-

tating the therapist time-varying assistance based on the acquired variability

(via impedance control) in tangential and normal directions (Fig.4.1). Other

features and novelties of this chapter are:

• Unlike the previous RLfD frameworks for AAN [10, 11], where a vary-

ing PID controller was used to represent the variability observed in the
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Figure 4.1: In the demonstration phase, the therapist and the patient coop-
eratively perform the task for a number of trials. Then, using robot learning
from demonstration, the task is modelled as an average trajectory (centroid of
virtual tunnel) and variations in trajectory (width of the virtual tunnel). The
proposed TNVIC assists the patient by two varying impedance models (spring-
damper) to follow the demonstrated trajectory and remain in the demonstrated
range of variability. This figure shows the TNVIC in two time instances (t1,t2).
The less the variability, the higher (the more stiff) the impedance models in
tangential and normal directions to allow lower deviations by the patient about
the average trajectory.

demonstrations of the task, in the proposed TNVIC we use impedance

controllers that have been widely utilized in human-robot interaction to

regulate the interaction between the patient and the robotic manipulator.

• In TNVIC, the impedance models vary inversely proportional to the

demonstrated trial-to-trial variability with consideration of the maximum

interaction force (by the patient) to accurately assist the patient to re-

main in the demonstrated range of variability. However in [55, 61], linear

and sigmoid functions were used to approximate the inverse relation of

impedance parameters and variability.
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4.1 Cooperative Task Demonstration

Reaching motions are routinely part of rehabilitation exercises. For simplic-

ity, the task is constrained to a 2-dimensional Cartesian space. It is assumed

that the patient is unable to complete a given task, if unassisted. Therefore,

the therapist also interacts with the robotic manipulator held by the patient

in order to assist the patient to carry out the task, considering the patients

constraints and range of motion. A few cooperative task trials are sufficient to

demonstrate to the robotic manipulator the required assistance.

4.1.1 Data Sampling and Arrangement

During the demonstration phase, the 2-dimensional position signal in the Carte-

sian coordinates ξp ∈ R2 and the time variable ξt ∈ R are sampled and jointly

denoted as ξ. Having M task demonstrations (i.e., trials), respectively con-

sisting of {N j, j = 1, · · · ,M} samples, the entire demonstrated data can be

organized as

D =
{
{ξi,j}N

j

i=1

}M
j=1
, ∀ξi,j =

ξi,jp
ξi,jt

 ∈ R3 (4.1)

where ξi,j represents the ith sample of the jth demonstration. The data (D)

consists of
∑M

j=1N
j discrete samples.

4.1.2 Gaussian Mixture Model (GMM)

The GMM statistically models the demonstrated data by a sum of weighted

Gaussians [60]. A Gaussian probability density function (PDF), also known as

the normal distribution, has been widely used to model physical phenomenon

such as human movements. A single Gaussian PDF is unable to capture in-

evitable nonlinearities in the complex trajectory-following tasks. Hence, the

GMM uses a mixture of K individual Gaussians as shown in Fig.4.2 The GMM
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Figure 4.2: An example scenario where a GMM with its 5 clusters (Blue el-
lipsoids) captures the nonlinearities in demonstrated trajectories, as compared
to a Single Gaussian PDF (Red ellipsoid). Note that this figure displays the
reflection of the 3-dimensional trajectories and GMM over the 2-dimensional
spatial axes.

as a PDF operator (f) that models the demonstrated data (D) with its variable

is expressed as

f(ξ; θi) =
K∑
i=1

πiN3(ξ;µi,Σi) (4.2)

0 < πi < 1 &
K∑
i=1

πi = 1 & Σi =

 Σi
P Σi

P,t

Σi
t,P Σi

t

 > 0 (4.3)

where θi = {πi ∈ R3, µi ∈ R3,Σi ∈ R3×3} are made up of parameters of the

GMM, i.e., the prior weight, the mean and the covariance matrix for each of the

K Gaussian components, respectively. Nn denotes the n-dimensional Normal

PDF (Appendix I). The optimum number of components (K) is chosen, using

Bayesian Information Criterion, which penalize the complexity of the GMM

model [62]. The GMM parameters ({θi}Ki=1) are learned, using Expectation

Maximization algorithm [42].

Now, all the discrete
∑M

j=1N
j samples, each consisting of a position variable

(ξp ∈ R2) and a time variable (ξt ∈ R), are modeled by the sum of K weighted

Gaussian PDFs which capture the demonstrated trajectories in terms of its

average and its variations in the position-time space.
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4.2 Robotic Semi-Autonomous Assistance

In this section, the aim is to provide a framework to robotically reproduce the

assistance provided by the therapist in order to assist the patient in completing

the task in the therapists absence. For this purpose, at each time, the expected

position captured by GMM is extracted via GMR. Then, using the proposed

TNVIC, the user is assisted to reach this expected (desired) position, mim-

icking the therapist intervention by considering the demonstrated trial-to-trial

variability in tangential and normal directions.

4.2.1 Gaussian Mixture Regression (GMR)

Extracting data from the learned 3-dimensional GMM in Section.4.1.2, and

feeding it to the robot controller in real-time requires a regression technique to

approximate the expected (desired) 2-dimensional position ξp in a given time

ξt = t. In this work, GMR is used as a probabilistic operator that approximates

a single Gaussian PDF of the expected position ( ξp) by calculating a conditional

probability on the learned GMM [9], as (3), in which µ̂p,t ∈ R2 and Σ̂p,t ∈ R2×2

approximate the average and covariance matrices of the demonstrated position

at a given time ξt = t. (Fig.4.3).

f(ξP |ξt = t; θi) ≈ N2(ξP ; µ̂P,t, Σ̂P,t) (4.4)

4.2.2 Tangential-Normal Varying Impedance Controller

(TNVIC)

The TNVIC assists the patient to follow the average demonstrated trajec-

tory µ̂p,t using two time-varying virtual spring-damper impedance models. In

real-time, µ̂p,t acts as a target moving along the average demonstrated tra-

jectory. The impedance models (spring-damper) virtually connect the robot
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end-effector (held by the patient) to the moving target (µ̂p,t), respectively in

tangential and normal coordinate system T −N , as

cT,t
˙̃
ξPT + kT,tξ̃PT = −FPT (4.5)

cN,t
˙̃
ξPN + kN,tξ̃PN = −FPN (4.6)

where {cT,t, kT,t} ∈ R+ and {cN,t, kN,t} ∈ R+ denote the desired time-

varying damping and stiffness in T − N . ξ̃PT and ξ̃PN indicate the deviation

with respect to µ̂p,t, resulting from the patients force exertions in tangential

(FPT ) and normal (FPN ) directions. The direction and magnitude of the two

orthogonal impedance models vary based on the demonstrated average (µ̂P,t)

and variability (Σ̂P,t) as follows.

Direction: The impedance controllers rotate to be tangent/normal to the

average demonstrated trajectory. The T −N at a given time (t) is centered on

the desired trajectory (µ̂P,t) and rotated with respect to an inertial Cartesian

coordinate system X1 −X2 with angle

θR,t = Arctan
((
µ̂PX2

,t − ̂µPX2
,t−T

)/(
µ̂PX1

,t − ̂µPX1
,t−T

))
(4.7)

where µ̂PX2
,t and µ̂PX1

,t represent the projection of µ̂P,t on X1 − X2. T

denotes the sampling period. Therefore the rotation matrix from X1 − X2 to

T −N would be

RR,t =

 cos(θR,t) sin(θR,t)

−sin(θR,t) cos(θR,t)

 (4.8)

Magnitude: The impedance parameters are in inverse proportion relation to

the variability of the demonstrated trajectories. Following Hookes law, with

a constant force exerted by the patient on a spring that connects the robotic

manipulator to the desired trajectory, the resulted deviation is inversely propor-

tional to the spring magnitude (stiffness) as ξ̃PT = Fa/k . Therefore, to mimic

the therapists assistance (i.e., the therapist variable interaction stiffness), the
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Figure 4.3: The calculation of standard deviation in tangential and normal
directions, using (4.10) and (4.11).

Figure 4.4: The inverse proportional relationship between stiffness and stan-
dard deviation in tangential direction when kT,max (kT,t when σT,t = σT,min) is
larger than kmax.

spring magnitudes are selected inversely proportional to the demonstrated vari-

ability (as shown in Fig.4.4) in each of tangential and normal direction so that

the patient do not deviate more than the demonstrated range of variability

{kς,t = FP,max/3σς,t

if(kς,t > kmax)⇒ kς,t = kmax}
(4.9)

where ς = {T,N}, should be substituted with T or N syntaxes to represent

the equation for variable spring value in tangential or normal directions, re-
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spectively. kmax is the maximum stiffness determined by the user for hardware

restriction. σς,t denotes the demonstrated standard deviation along tangential

(σT,t) or normal (σN,t) axis, which are extracted from rotated covariance matrix

(Σ̂PT−N ,t)) at each time, calculated from (4.10) and (4.11). 3σς,t is the distance

to the average in Gaussian PDF that contains %99 of demonstrated trajecto-

ries. FP,max, is the patients maximum force, measured (or tuned) before robotic

assistance.

Σ̂PT−N ,t =

 (σT ′ ,t)
2 ρtσT ′ ,tσN ′ ,t

ρtσT ′ ,tσN ′ ,t (σN ′ ,t)
2

 (4.10)

σς,t =
√

1− ρt2.σς′ ,t (4.11)

In (4.10) and (4.11), σN ′ ,t and σT ′ ,t represent the reflected standard devia-

tion on T −N axes as shown in Fig.4.3, ρt is the correlation factor, which is a

constant value between zero and one.

To set the constant damping ratio (τς) for the transient response of impedance

models dynamics to the patients force input, the variable damper is calculated

as

cς,t = τςkς,t, ς = {T,N} (4.12)

Finally, having the variable impedance models, and interaction force of

patient (FPaT ) ,(FPaN ), the resulting deviation (ξ̃PT ), (ξ̃PN ), can be calculated

from (4.5) and (4.6). The desired position (ξP,des) of the robotic manipulator

followed by the PID position controller is the sum of the average demonstrated

trajectory and patient deviation which are rotated back from T −N to X1−X2

as:

ξPX1
,des

ξPX2
,des

 =

µ̂PX1
,t

µ̂PX2
,t

+ (RR,t)
−1

ξ̃PT
ξ̃PN

 (4.13)
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Figure 4.5: (a) The demonstrated trajectories (black lines) are modeled by a
3-dimensional GMM (ellipsoids) in joint position-time space (Section. 4.1.2).
The planes normal to the time axis (t), represent the Gaussian Mixture Re-
gression. The expected demonstrated position in a given time is calculated by
approximating a single 2-dimensional Gaussian PDF from the intersected mix-
ture models (Section .4.2.1). The times t = 4 and t = 6 are selected randomly
to provide an example of the proposed robotic assist-as-needed framework. (b)
Shows the proposed controller in (t = 4, t = 6).

The proposed TNVIC is shown in Fig. 4.5.

4.3 Experimental Validation and Discussion

The proposed framework is experimentally evaluated using a Quanser rehabil-

itation robot and implemented in QUARC real-time software (Quanser Con-

sulting Inc., Markham, Canada) with a sampling frequency of 1 kHz. Without

loss of generality, an application for assisting children with CP has been consid-

ered in this work. Playing is vital for childrens physical and mental cognitive

development [63]. Nowadays, one of the common activities of children is using
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Figure 4.6: This figure shows the experiment setup in both demonstration
(Left) and robotic assistance (right) phases. Two pairs of transcutaneous elec-
trical nerve stimulation pads were used for simulation of CP symptoms (Sec-
tion.4.3).

apps on smartphones, tablets, and touchscreens.In order to help children with

CP to also have the same experience, the proposed framework can be used to

assist them in tasks, which can be represented by point-to-point motion primi-

tives. A designed 2-dimensional virtual game was projected on an LCD screen

placed under the robotic end effector as shown in Fig.4.6. The user is expected

to move the robotic end-effector (in contact with the LCD) from point A to

point B, through two gaps with different directions and widths, as Fig.4.7.(a).

τς = 0.15sec FP,max Kmax = 1800 N/m

Table 4.1: The selected system parameters

4.3.1 Simulation of Cerebral Palsy (CP) Symptoms in

An Adult Without Disability

The main symptoms of CP as discussed in Section. 2.1.1 are stiffness of muscles,

limited range of motion, poor coordination, difficulties in performing a volun-

tary movement, weakness and tremor. In this experiment, to induce some of

these symptoms the author (called patient later on in this section) was stimu-

lated with transcutaneous electrical nerve stimulation (TENS) and performed
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(a)

(b)

(c)

Figure 4.7: (a) The patient trajectories in 3 consecutive trials. Point B
′

is
projecteod n the LCD monitor instead of the actual destination (point B) to
simulate poor coordination in patients with CP (b) The cooperative demonstra-
tion of therapist and patient for 5 trials. The therapist intentionally demon-
strated more variability in sections where less assistance (accuracy) were re-
quired. Also, as the patient has difficulty to coordinate his movements from
gap D to point B, the therapist provided less variability in this section. (c)
This graphic displays the 3-dimensional GMM with its seven Gaussian mix-
tures (colored ellipsoids) that modeled the position-time joint trajectories of
the therapist demonstration (black lines) with its average and variability.

the experiments. Low-frequency stimulation of upper arm muscles (biceps)

and wrist muscles (Flexor carpi, Palmaris lunges, etc.), was chosen to provide

the maximum correlation with the behavior observed in an actual CP patient

[42]. Also, in order to make the situation more challenging for the system,

point B
′

was projected on the LCD instead of the actual destination (pointB)

to represent inability to accurately reach the destination. The adult user, in

the presence of stimulation (called patient), was asked to perform the designed

task and move from pointA to pointB, while passing through Gaps C and D
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without hitting them. As it is shown in Fig.4.7(a), the user was unable to

correctly accomplish this task independently.

4.3.2 Demonstration

During the demonstration, a research assistant (called therapist for the re-

minder of this section) intervened in the task and provided the minimum re-

quired assistance. Considering the inverse correlation of the TNVIC assistance

with the variability in the demonstrated trajectories, the therapist intention-

ally produced more variability between trials in regions where less assistance

was required and vice versa (Fig.4.8(b)). The cooperative task trajectories (5

trials) were then captured by GMM to statistically model the task with its

features (average and variability) as shown in Fig.4.8(c).

4.3.3 Robotic Assistance

Using the proposed TNVIC, and system parameters in Table. 4.1, the robotic

system imitates the therapists time-varying intervention in the demonstration

phase and assists the patient to complete the task successfully (Fig.4.6). The

desired position data calculated via GMR from GMM, and varying tangential

and normal stiffness (spring parameter magnitude) are shown in Fig.4.8. In

this figure, tC and tD are associated with time instances that the average tra-

jectory is in Gap C and Gap D, respectively. The patient is connected to the

average trajectory with two virtual impedance models that regulate the level

of assistance (stiffness) in each of tangential and normal directions. In Gap C

and Gap D, due to the required accuracy, the therapist demonstrated low vari-

ability across trials. Therefore, it is expected to have a high level of assistance

accordingly. As observed in Fig.4.8(b), at tC and tD, the variability (standard

deviation) in the tangential direction is lower from the adjacent time, therefore

the variable tangential spring is stiffer to provide more assistance. This is due to
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Figure 4.8: (a) This figure demonstrates the expected position probability den-
sity function (PDF) approximated by GMR from the GMM (Fig.4.7(c)) at all
time samples in the robotic assistance. Note that in Fig.4.5(b), the GMR re-
sults have been shown just in two time instances. The dark blue dots and blue
area display the average and variability for 2-dimensional Gaussians PDFs in
all time samples, respectively. (b) At each time, the standard deviation in
tangential (T ) direction (Blue plot) is extracted from the 2 dimensional PDF
approximated by GMR. The tangential variable spring value (Stiffness) changes
with inverse correlation to the standard deviation (8) to assist the patient to
remain in the demonstrated range of variability (3×standard deviation) in each
time sample. (c) Same as (b), but in normal (N) direction.
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Figure 4.9: (a) Displays the patients trajectories in three consecutive task trials,
being assisted by the robotic manipulator. The proposed TNVIC effectively
assisted the patient to complete the task successfully.(The red plot is the aver-
age demonstrated trajectory) (b) Shows the patients interaction force with the
robotic manipulator in normal direction. (c) Demonstrates the patient velocity
in normal direction.

the fact that in demonstration, the therapist intuitively moved slower through

sections where more accuracy was required. The same characteristic can be

observed in the Normal direction as displayed in Fig.4.8(c). In gap C and gap

D, the width of the path is narrower, thus more assistance is required in the

normal direction, accordingly. As Gap D is narrower than gap C, the ther-

apist demonstrated less variability in Gap D. Therefore the normal stiffness

(assistance) is higher in tD than in tC . Using TNVIC, with its time-varying

impedance models, the patient was assisted to perform the demonstrated task
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Figure 4.10: The performance of system when the users maximum force (10 N)
is exerted on the system in 4 directions. {(FPaT ,FPaN )} = ( 7.14, 7.14), (7.14,
-7.14), ( -7.14, 7.14), ( -7.14, -7.14); all in Newton (N) . Note that as tangential
normal directions are orthogonal, the projection of 10 N on each axis through
Pythagorean law is 7.14 N

in contact with the robotic manipulator. Again, the point B
′
, was projected on

the LCD as the destination point, to test if the system can assist the patient

to reach the actual destination (point B). Fig.4.9(a), displays that the patient

successfully completed the task and moved from point A to point B, through

gaps without hitting them. Fig.4.9(b), shows the interaction force of the pa-

tient in the normal direction. After Gap D, towards the destination (Point B),

the patient exerted his maximum force to reach point B
′
(which he thinks is the

destination). The controller successfully restricted the patient movement and

dragged (assisted) his hand to the actual destination (point B). Between tp,C

and tp,D (associated with approximate time instances that the patient passed

through gap C and gap D, respectively), the stiffness parameters were lowest

in both tangential and normal directions (Fig.4.8). Therefore, there was higher

freedom for the patient to deviate. This extra freedom resulted in more in-

tervention from the patient with the robotic manipulator as force exertion is

increased. That is the cause for larger variations observed between tp,C and

tp,D, compared to t < tp,C in Fig.4.9. The advantage of the proposed frame-

work is to provide maximum possible freedom to the patient (assist-as-needed)
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to motivate him/her for participation in task execution.

In TNVIC, the variable impedance parameters were adjusted to restrict

the patient from deviating out of the expected position along tangential and

normal directions, even if he/she exerts his/her maximum interaction force.

Therefore, any force exertion less than the measured (or tuned) maximum

force, will end up in successful task completion, regardless of its direction and

frequency. In Fig.4.10, the robotic system was introduced with the patients

maximum force in 4 different directions (these values are assigned in the real-

time controller) to observe the performance under some worst-case scenarios.

As it is observed, just in one of the trials (FPaT = 7.14N,FPaN = 7.14N) there

was a collision with Gap D. The possible sources of this error are: 1) The

robot position controller (PID) as it has a transient response time to reach

the desired position. 2) The sudden increase in impedance parameters, before

entering the Gap D (Fig.4.8(c)). The impedance model is a dynamic system

with tunable transient damping ratio (τς), so it cannot keep up accurately with

sudden changes in the desired trajectory. These constraints can be considered

by possibly adding a penalty factor to (4.9).

In this experiments, a single trajectory-following task was successfully tested,

however, the proposed framework is able to model complex trajectories as it

uses GMM/GMR technique to model and reproduce tasks through time index-

ing. Also, sequential tasks can be learned and reproduced by several point-to-

point motion primitives. Furthermore, using GMM/GMR, only a few demon-

strations are required to capture the trajectory smoothly and effectively as

opposed to simply averaging the demonstrated trajectories. Also, the GMM

captures the variability of trials and statistical correlation of task variables

which are utilized in this chapter to learn the therapist’s intended interaction

impedance. The interaction impedance is actively controlled in the robotic

assistance phase, inversely proportional to the variability across trials in the

demonstration phase to reproduce the intended time-varying impedance of the
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therapist.

All in all, the proposed framework has merits in rehabilitation and assis-

tive technologies to replicate the therapist’s short intervention in trajectory-

following tasks that have to be repeated several times. However the proposed

system is task-specific and open-loop as the trajectory is generated by time

rather than the current state of the system.

4.4 Conclusion

The framework, with its robot learning from demonstration (RLfD) framework

and tangential-normal varying-impedance controller (TNVIC), were developed

precisely in this chapter for an application in an assist-as-needed robotic sys-

tem. The performance of the system in providing assistance with variable

interaction dynamic (TNVIC) was evaluated in demonstration, RLfD, and

semi-autonomous robotic assistance phases, with an adult induced with CP

symptoms, using transcutaneous electrical nerve stimulation.
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Chapter 5

Position-Indexed Motion

Learning Using Potential Field

Functions with Variable

Dissipative Field

In the previous RLfD approach in chapter 3 and chapter 4 we used Gaussian

Mixture Models (GMM) to mathematically capture the therapist-patient coop-

erative trajectory in the demonstration phase with its average (i.e., trajectory)

and variability. Then Gaussian Mixture Regression (GMR) was performed in

the robotic assistance phase, to reproduce the demonstrated trajectory in time.

There are three ways to improve upon the previous approach. First, it should

be noted that the assistance provided by RLfD algorithms in the traditional

way is time-dependent [9]. This implies that the patient is required to follow

the demonstrated trajectory at a similar velocity as in the demonstration phase.

Otherwise, the robot increases the applied force to drag the user’s hand on the

desired path. Since the robot applies forces that are proportional to the devi-

ation from the desired trajectory, the patient will experience a different level

of assistance (i.e., higher or weaker forces) when interacting solely with the
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robot as compared to with the therapist. The third way to improve upon past

works naturally regards addressing safety issues that the first two points repre-

sent. In this chapter, we further extend the idea of RLfD for robotics-assisted

rehabilitation to address these three points.

To simultaneously capture both the demonstrated trajectory and its impedance

properties learned from therapist demonstrations, we propose a framework that

uses a non-parametric potential field function introduced in [12]. Firstly, robot

motion and impedance are captured by the non-parametric potential function’s

gradient and curvature, respectively, using a convex optimization algorithm.

Then, in the therapist absence, the robot not only provides the patient with

the same assistance he/she received during the task demonstration but also with

a proposed performance-based and stable active variable the dissipative field

that assists/resists the patient if he/she is following the trajectory slower/faster

than the demonstrated velocity. Due to the application of the framework, there

is an interaction between human and robotic manipulator. Patient’s behavior

can be non-consistent and variable, therefore the system requires to address

the variabilities with the proposed velocity field controller. Usually, through

the therapy sessions, the patient may get tired and requir excessive assistance,

or they may exert extra force to the robotic manipulator because of the lack of

coordination and muscle control. Also a perturbation in the task environment

can alter the required assistive force for task accomplishment. To address this

issue and increase the robustness of the model, the velocity field controller is

proposed to regulate the patient’s deviation from the velocity demonstrated by

the therapist.

All in all, the potential field function acts as a valley around the trajec-

tory that dictates the position-based force to the robot, and the velocity field

controller can be represented by a river around the vicinity of the trajectory

that introduces resistive/assistive force if the object (robot) is moving slower/-

faster than the velocity of the river flow. The properties and advantages of the
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proposed framework are:

1. Unlike chapter 3 and chapter 4 [8, 9], where only the position trajectories

in the demonstrations were captured, in this chapter, by using potential

function fields, the optimization goal and controller are modified and

adapted to the context of robotic assistance to generate motions that

also follow the same force profile experienced during the demonstration.

2. The proposed framework is capable of modeling and reproducing not

only the position-following tasks as in chapter 3 and chapter 4, but also

impedance-based tasks which represent most of our everyday activities

(playing, opening a fridge door, cutting, etc).

3. Unlike Chapter 3 and chapter 4, the proposed controller has bounded

force ranges that guarantees the stability and safety of the robot when in

contact with passive environments.

4. As opposed to [12], an active time-variant velocity field controller is also

augmented to regulate the level of patient’s deviation from the velocity

observed in the demonstration phase, using a tunable deviation tolerance

variable that can be set based on the task and the patient’s limitations.

The remainder of this chapter is organized as follows. Section. 5.1 intro-

duces the cooperative task demonstration phase, subsequently used in Section.

5.2 in order to derive the modified potential field function. In Section. 5.3, we

propose the velocity field controller and prove the stability of the overall system.

Finally, in Section. 5.4, we validate the proposed approach in a 2-dimensional

Cartesian space task using a planar rehabilitation robot.

5.1 Cooperative Task Demonstration

It is assumed that the patient is unable to complete a given task, if unassisted.

Therefore, the therapist also interacts with the robotic manipulator held by
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Figure 5.1: Displays the proposed framework for learning the therapist’s as-
sistance by demonstration. In the demonstration phase (Left), the therapist
assists the patient to follow the trajectory for a single time. Then in robotic
assistance phase (Right), by using potential field function and velocity field
controller, the demonstrated therapist assistance is modeled and provided to
the patient.

the patient in order to assist him/her to carry out the task, considering the

patient’s physical constraints and range of motion. The therapist provides the

minimum-required assistance to motivate the patient to actively engage in the

task. In this framework, just a single demonstration is required to learn the

therapist’s task-specific assistance.

The nonlinear dynamics of the multi-degrees of freedom (DOF) rigid robot

in the n-dimensional Cartesian coordinates can then be given by

M(qr)ẍr + C(qr, q̇r)ẋr +G(qr) + f(ẋr) = Fpa + Fext + Fc, (5.1)

where qr ∈ Rn×1 is the joint angles, xr ∈ Rn×1 is the position of the robot

end-effector in the Cartesian coordinates, M(xr) ∈ Rn×n is the inertia matrix,

C(xr, ẋr) ∈ Rn×n contains Coriolis and centrifugal terms, G(xr) ∈ Rn×1 con-

tains position-dependent forces such as gravity, f(ẋr) ∈ Rn×1 is the friction

force. Also, { Fpa, Fext and Fc} ∈ Rn×1 are the patient, the external, and

the control forces, exerted on the robotic end-effector, respectively. Note that

as the robotic manipulator interacts with the task environment, the therapist
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pulls/pushes the robot in order to assist the patient to completing the task.

When the robotic end-effector is in contact with both the patient and ther-

apist, as they are cooperatively performing the task, let

Fext = Fth + Fenv

Fc = 0,
(5.2)

in (5.1), where Fth, and Fenv ∈ Rn×1 are the force applied by therapist and and

task environment to the robotic manipulator, respectively.

5.1.1 Data Sampling and Preprocessing

During the demonstration phase, the n-dimensional position xP ∈ Rn, velocity

ẋp ∈ Rn and interaction force between the therapist and the patient Fin ∈ Rn

in the Cartesian coordinates are sampled with a constant sampling time. Since

the position vector samples are not evenly distributed along the trajectory, as

velocity is not constant, the dataset is down-sampled to M evenly-distributed

samples spatially to form the following dataset

D = {[xip; ẋip;F i
in ∈ Rn] ∈ R3n}Mi=1 ∈ R3n×M , (5.3)

where the superscript i is for the ith sample of the demonstrated trajectory

containing M samples in total.

Now, the tangential-normal coordinate system in the ith sample ({T −N}i)

is defined, which is centered at xip and with the tangential axis toward the

next sample (xi+1
p ). The rotation matrix between the {T − N}i and inertial

Cartesian coordinate system can be calculated via n rotation about inertial

axes by Euler angles as

Ri
p(θ

i
p) = Ri

p(θ
i
p1

)Ri
p(θ

i
p2

) ... Ri
p(θ

i
pn) (5.4)
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Therefor, F i
in and xip can be represented in {T − N}i, with the tangential

{xip,T , F i
in,T ∈ R} and normal {xip,N , F i

in,N ∈ Rn−1} components, through the

rotation matrix Ri
p(θ

i
p) as

[ẋip,T ẋ
i
p,N ]T = Ri

p(θ
i
p)ẋ

i
p

[F i
in,T F

i
in,N ]T = Ri

p(θ
i
p)F

i
in

∀i ∈ {1, 2, ...,M}. (5.5)

5.2 Learning Potential Field Function

This section introduces a framework to robotically reproduce the assistance the

therapist provides in order to assist the patient in completing the task. For

this purpose, potential function learning, which was firstly proposed in [12] is

used. In the reproduction phase, the therapist is not present and the robotic

manipulator provides assistance through the control signal FC , such that in

(5.1) we have

Fext = Fen

Fc = Fpot(xr) + Fvel(xr, ẋr)
(5.6)

in which

Fpot(xr) = −∇U(xr) ∈ Rn (5.7)

is the gradient of the positive scalar potential field at each position (U(xr) ∈

R+). Fvel(xr, ẋr) ∈ Rn denotes the velocity field controller in the task environ-

ment.

In order to provide identical assistive forces as demonstrated to the patient

to perform the point-to-point motion learning, two fundamental set of forces

are required;

1. The attracting force F i
in,N , which is normal to the trajectory and attracts

59



the end-effector and prevents the patient from deviating from that tra-

jectory.

2. The propelling force F i
in,T , which is tangent to the trajectory and assists

the patient to go along the trajectory and reach the destination.

To jointly generate both of the tangential and normal forces, the non-

parametric potential field is created by connecting the current position of the

end-effector xr to each sample xip through a virtual spring model with stiffness

K as

ui(xr) = ui0 +
1

2
(xr − xip)TKi(xr − xip) ∀i ∈ {1, 2, ...,M}. (5.8)

Here ui0 ∈ R+ is the bias potential and Ki ∈ Rn is a diagonal stiffness matrix

in the ith position sample. The higher the stiffness matrix, the higher the

attracting force Ki(xr − xip) towards the ith sampled position.

In order to smooth out the accumulated potential field produced by all

of position samples, Gaussian kernel regression is used to produce the total

potential energy as in[12] through the weighed average

U(xr) =
M∑
i=1

ω̃i(xr)u
i(xr) (5.9)

with

ω̃i(xr) =
ωi(xr)∑N
i=1 ω

i(xr)
, (5.10)

and

ωi(xr) = e
− 1

2σ2
i

(xr−xip)T (xr−xip)
(5.11)

where σi > 0 is a smooth parameter, 0 < ω̃i(xr) < 1, and
∑N

i=1 ω̃
i = 1.

As shown in Fig.5.2 , ui0 and Ki determine the tangential gradient and nor-

mal gradient of potential field, respectively. In the proposed robotic assistance

scenario, the potential field parameters (ui0 and Ki) are set to represent the

interaction performance of the therapist during the cooperative task demon-
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(a)

(b)

Figure 5.2: (a) Displays a small section of a potential field function that mod-
eled a trajectory along three samples. The potential energy produced by stiff-
ness parameters (Ki) increases proportionally to the distance from samples
(5.8). Samples are close to each other, thus the stiffness parameter’s effect on
a potential gradient (i.e., force) in the tangential direction is negligible and it
is approximately determined by the difference in bias potentials (ui0). (b) illus-
trate the effect of ui0 and Ki parameters that alter the potential field gradient
(i.e., force) in tangential and normal directions, respectively.

stration with the patient.

To replicate the therapist’s normal force along the trajectory, the stiffness

matrix is set to be diagonal and linearly proportional to the demonstrated

normal interaction force as (5.12). Therefore, the robotic system will assist

61



(i.e., attract) the patient toward the trajectory where it is needed.

Ki =


Ki
T 0

Ki
N1

. . .

0 Ki
Nn−1

 (5.12)

Ki
Nj

=
F i
in,Nj

− Fin,Nj ,min
Fin,Nj ,max − Fin,Nj ,min

(KNj ,max −KNj ,min) +KNj ,min,

∀j ∈ {1, 2, ..., n− 1}. (5.13)

where Fin,Nj ,max and Fin,Nj ,min are the maximum and minimum normal inter-

action force observed in jth normal direction in the demonstration phase. Also,

the KNj ,max and KNj ,min are the maximum and minimum stiffness parameters

in jth normal direction tuned based on the task-specific requirements and robot

physical restrictions (e.g. actuator torque). In the next step, the ui0 are leaned

based on a convex optimization method so that the gradient of the potential

field in tangential direction (i.e., −Oui(xip,Θ)) is equal to the assistive interac-

tion force observed in the demonstration phase by the therapist to the patient

in each sample (i.e., F i
in,T

+
). We use

min J(Θ) =
n∑
i=1

‖Oui(xip,Θ) + F i
in,T

+‖2, (5.14)

subject to

ui+1
0 ≤ ui0, ∀i ∈ {1, 2, ..., T}, i 6= Ω, i+ 1 6= Ω,

ui0 ≥ 0, ∀i ∈ {1, 2, ..., T}, i ∈ Ω,

∇φ(x∗p,Θ) = 0,

(5.15)
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Figure 5.3: Illustrates the proposed Framework for Learning the therapist’s
assistive interaction force from the demonstration, using potential field function
in Section. 5.2. xr, ẋr and Fin are recorded during the therapist’s assistance
demonstration to patient. And then down-sampled and processed (Section.
5.1.1) to be provided to the convex optimization which finds to optimum u0 in
the potential field to replicate the tangential interaction field provided by the
therapist (5.14).

where Ω is a set of indices that correspond to the last point of each demon-

strated trajectory, at the target point x∗p, with Ω = {i|xip = x∗p}. Also, in

(5.14),

∇ui(xip,Θ) = −
M∑
i=1

ω̃i(xr)

(σi)2 (u(xip)− U(xip)) + ..

ω̃i(xr)K
i(xr − xip) (5.16)

and

F i
in,T

+
=

Fin,T if Fin,T >= 0

0 otherwise

(5.17)

The convex optimization in (5.14) finds the optimized bias potential param-

eter (ui0) so the learned potential field dictates a position-related force equal

to the therapist-demonstrated interaction force and exerts it on the patient’s

hand via the robotic end effector.
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Figure 5.4: shows the smooth transition function used in (5.19) to smoothly
decrease the desired velocity field as the distance from the trajectory increases

Figure 5.5: Illustrates the desired velocity field (ẋd) calculated by weighted
average of the demonstrated velocities in data samples(ẋip) as (5.18) in vicinity
of the trajectory. Lim in (5.18) determines the maximum distance in which
desired velocity field can exist

5.3 Velocity Field Controller

The learned non-parametric potential field in Section. 5.2 models the therapist-

demonstrated interaction force but it has no control over the patient’s velocity

in the robotic assistance. Therefore, in this section, a velocity field controller is

defined to adjust the transient response of the system and regulate the patient’s

velocity around the one demonstrated by the therapist. In the first step, the

desired velocity in each position is calculated by the weighted average of the
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demonstrated velocity as

ẋd(xr) = ΠLim
0 (dis(xr, xp))

M∑
i=1

ω̃i(xr)ẋ
i
p (5.18)

where ẋd(xr) ∈ Rn represents the position-based desired velocity. ẋp ∈ Rn

denotes the demonstrated velocity in each sample. and ΠDis
0 ∈ R+ is the

smooth transition function (Fig.5.4) which can be chosen from the sigmoid

function family as

Πb
a(x) =

1

2
− 1

2
tanh(

6(x− a+b
2

)

b− a
) (5.19)

In (18), Lim ∈ R+ denotes the width of the velocity field, and dis(xr, xp) ∈ R+

expresses the minimum distance of xr from the position samples xp. As demon-

strated in Fig.5.4, the smooth transition function is added to limit the width of

the velocity field to the trajectory. The aim is to minimize the interference of

the velocity field with potential field and ensure the asymptotic stability of the

accumulated field. In areas away from the trajectory, the potential field gradi-

ent (i.e., force) is mainly normal to the trajectory. This normal force pushes

the patient towards the trajectory and helps with stability and accuracy of the

patient in trajectory following tasks. Therefore, any added velocity field (which

is aimed to be followed by the patient) will interfere with this normal force and

threat the asymptotic stability toward the destination position. However, in

the vicinity of the trajectory, the potential field gradient is mainly tangential,

and the augmented velocity field would even help the asymptotic stability to-

ward the destination. The potential and velocity fields are jointly sketched in

Fig.5.5.

Now, in order to regulate the robot’s velocity around the desired one, we

use the varying dissipative field controller proposed in [46]. This controller

separately regulates the velocity in the tangential direction and selectively dis-

sipates energy in the direction normal to the desired velocity. This is achieved

by a full ranked variable damping matrix, whose orthogonal eigenvectors ro-
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Figure 5.6: Illustrates the proposed velocity field controller in Section. 5.3.
In each position (xr), the desired velocity is calculated from the demonstrated
velocity (xp, ẋp), then forwarded to the variable dissipative field controller with
the energy tank to be followed passively. Finally, the force produced by the
velocity field controller (Fvel) is added to the force produced by the potential
field function (Fpot) to provide assistance to the patient to accomplish the task
without therapist intervention

tate based on the desired velocity direction (ν̂T = ẋd(xr)
||ẋd(xr)||) and span the desired

velocity tangential-normal space as,

D(xr) = Q(xr) C Q(xr)
T (5.20)

Q(xr) = [ν̂T ν̂N1 ...ν̂Nn ] (5.21)

C =


cT 0

cN1

. . .

0 cNn−1

 (5.22)

In (5.20), D(xr) denotes the position-based varying damping matrix, Q(xr)

represents the eigenvector matrix that transforms diognal eigenvalue matrix

(C) to inertial Cartesian coordinates. In (5.21), ν̂T represents the normalized

tangential direction vector, and {ν̂N1 , ..., ν̂Nn} are the normalized arbitrary and

orthogonal vectors normal to the desired velocity. The eigenvalues cT and

{cN1 , ..., cNn} in (5.22) represent the tunable damping parameters in tangential
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and normal directions to the desired velocity, respectively. Having the variable

damping matrix, the velocity field controller in (5.6) is

Fvel(xr, ẋr) = −D(xr)(ẋr − γ(Z, S)ẋd(xr)) =

−D(xr)ẋr + γ(Z, S)cT ẋd(xr) (5.23)

ẋd(xr) is an eigenvector of D(xr) with corresponding eigenvalue cT . Therefore,

D(xr)ẋd = cT ẋd(xr) in (5.23). γ(Z, S) ∈ R+ is the stabilizing energy tank

scalar function, which is discussed later below. The velocity field controller

damps the motion normal to the desired velocity (tuned by {cN1 , ..., cNn}) but

regulates the velocity tangent to the desired velocity ẋd(xr). If the patient is

following the trajectory more slowly than the desired velocity, the controller

will actively push (assist) the patient to go faster. If the patient is going faster

than the desired velocity, the controller would resist and dissipate the energy.

The tangent velocity deviation tolerance can be tuned by the therapist through

the tangential damping parameter cT .

The velocity field controller with its variable position-based damping matrix

D(xr) can induce active energy to the system which can threaten the stability of

the system even in interaction with passive environments. As suggested in [46],

energy tank is suggested to tackle the non-passivity of the system. Energy tank

refers to an additional state that stores the dissipative energy of the system

(instead of wasting it) and uses this stored energy to induce it back to the

system when active control action is required. Therefore, the energy tank state

S ∈ R is

Ṡ = α(S)ẋ(xr)D(xr)ẋ(xr)− β(Z, S)cTZ (5.24)
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in which Z = ẋ(xr)
T ẋ(xd) and

α(S) =

1 if S < S

0 otherwise

(5.25)

Also,

β(Z, S) =


0 if S ≤ 0 & Z ≥ 0

0 if S ≥ S & Z ≤ 0

1 otherwise

(5.26)

where the Ṡ represents the rate in which the energy tank is charging (positive

rate) or depleting (negative rate). the ẋ(xr)D(xr)ẋ(xr) ∈ R+ term is always

positive as the damping matrix D(xr) is positive definite. This is the dissi-

pated passive energy that charges the energy tank and is controlled by a scalar

multiplier α(S). α(S) is set to zero if the tank reaches its maximum energy

level (S) as in (5.25). In (5.24), Z = ẋ(xr)
T ẋ(xd) indicates that the velocity

field controller tangential velocity tracker is either active (Z > 0) or passive

(Z < 0). β(Z, S) is the scalar controller that will be zero, if the energy tank

is depleted (S ≤ 0) and the tracker needs more energy from the energy tank

for active control action (Z ≥ 0). Or if the energy tank is full (S ≥ S) and

the tracker is passive and charging the tank with more energy (Z > 0). Now,

the scalar function γ(Z, S) in (5.23) is set to produce controlling action when

energy tank is depleted as

γ(Z, S) =

β(Z, S) if Z ≤ 0

≥ β(Z, S) if Z ≥ 0

(5.27)

now, having both the potential field and velocity field controller with its energy

tank stabilizer, the stability of the proposed framework can be investigated.
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Lets define the candidate Lyapunov function as

ν(xr, ẋr) =
1

2
ẋTrMẋr + U(xr) + S (5.28)

which consists of the kinetic, potential and tank energy in the system. The

proposed energy function ν(xr, ẋr) is a positive definite function based on (5.1),

(5.9) and (5.24). The time derivative of ν(xr, ẋr) is

ν̇(xr, ẋr) = ẋTrMẍr +
1

2
ẋTr Ṁẋr + ẋTr∇U(xr) + Ṡ (5.29)

Mẍr is found by rearrangement of robot dynamic (5.1), replacing the equivalent

control force (FC) from (5.6), (5.7) and (5.23). Also, substituting Ṡ from (5.24)

yields

ν̇(xr, ẋr) = ẋTr [Fpa + Fext −∇U(xr)−D(xr)ẋr

+ γ(Z, S)cT ẋd(xr)− C(xr, ẋr)ẋr −G(xr)− f(ẋr)]

+
1

2
ẋTr Ṁẋr + ẋTr∇U(xr) + α(S)ẋ(xr)D(xr)ẋ(xr)

− β(Z, S)cT ẋ(xr)
T ẋ(xd) (5.30)

Rearranging the terms and considering the skew symmetric property of Ṁ −

2C(xr, ẋr), we have

ν̇(xr, ẋr) = ẋTr [Fpa + Fext]− [1− α(S)]ẋTrD(xr)ẋr

+ [γ(Z, S)− β(Z, S)]cTZ − ẋTr f(ẋr)

= ẋTr [Fpa + Fext]− η(xr, ẋr, Z, S)

≤ ẋTr [Fpa + Fext] (5.31)
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5.4 Experimental Evaluation

The proposed framework is experimentally evaluated using a Quanser rehabil-

itation robot (Quanser Consulting Inc., Markham, Canada). A force sensor

(Gamma SI-32-2.5, from ATI Inc, Goodworth, NC, USA) was connected to

the end-effector in order to measure the interaction force applied by the ther-

apist to the patient as shown in Fig. 5.7. The parameters in Table. 5.1 are

used in the system. Three different scenarios have been considered to evalu-

ate the performance of the proposed potential and velocity field controllers in

point-to-point position and impedance-based motions. Most of the daily tasks

can be decomposed into point-to-point motion or impedance-based primitives.

The main symptoms of cerebral palsy which are stiffness in joints and muscles,

weakness and tremor (Section. 2.1.1) were simulated by spring arrays and tran-

scutaneous electrical nerve stimulation of an adult without disability (author)

to assess the capability of the system.

Kmin = 200 Kmax = 600 σ = 0.02 S = 20 height
lim = 0.03 cN = 20 N.sec/m cT = 20 N.sec/m

Table 5.1: The selected system parameters

5.4.1 Simulation of CP symptoms using spring arrays

Spring arrays were used to roughly simulate the muscle stiffness and incoordi-

nation in patients with CP. This approach eased the evaluation of the proposed

framework and comparison of results with different tuning parameters, consid-

ering the passivity and consistency of the spring array. For the first experiment,

a 2-dimensional point-to-point motion was expected. As shown in Fig. 5.7 The

spring model (which represents a patient with stiff muscles) was expected to

simply move the robotic end-effector from the starting point (A) to the target

point (B) directly. As seen in Fig. 5.7, the spring array equilibrium point was
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Figure 5.7: This figure depicts the experiment setup for experiment 1 in both
demonstration (Left) and robotic assistance (right) phases. Spring array is
used for simulation of spastic symptoms of CP in Section. 5.4.1

close to the point A, therefore it could not complete the task and move toward

point B without assistance. Thus, a therapist (the author in this experiment)

provided assistance and grabbed the robot end effector (connected to the spring

array) and dragged it to the point B. Then, using the system parameters (Ta-

ble. 5.1), the potential and velocity fields were learned as displayed in Fig.

5.8 to replicate the helpers demonstrated trajectory (i.e., position), velocity

and interaction force. Now, using the potential field function gradient (5.7)

and velocity field controller(5.23), the robotic assistance was provided to the

spring array in five trials. In these trials, the robotic manipulator (connected

to the robot end effector) was released in five different locations to highlight

the convergence of the model in the task environment and evaluate the perfor-

mance of the model and controllers to replicate the demonstrated velocity and

interaction force.

As illustrated in Fig. 5.8, in all trials, the learned model successfully at-

tracted the robotic manipulator towards point B. However, as the spring ar-

ray was exerting force in −X1 and X2 directions, it can be observed that the
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Figure 5.8: Illustrates the learned potential field function in Experiment 1 with
blue colors giving the magnitude (the darker the color, the lower the potential
value) and arrows indicating the direction of the force in each position. The red
line is the demonstrated trajectory by the therapist from point A to point B.
The red arrows demonstrate the velocity field along the trajectory. As seen in
this figure, in all five trials, the potential field attracted the robotic manipulator
to the trajectory and then to point B.

robotic manipulator deviation from the demonstrated trajectory in those direc-

tions. The level of deviation from the demonstrated trajectory can be adjusted

by tuning Kmin and Kmax parameters. The higher the stiffness parameters,

the lower the deviation from demonstrated trajectory (i.e. lower freedom and

contribution for the patient in task execution).

Fig. 5.9(a) illustrates the velocity in X1 direction in demonstration phase

and five reproduction trials. As the proposed controller is time-independent,

the tracking performance of controllers should be analyzed spatially. In this

experiment, we provided high damping behavior in the environment (Table.

5.1) to further evaluate the performance of the velocity field controller to cope

with force perturbation. This damping behavior in the task environment was

not present in the demonstration phase, therefore the learned interaction force

captured in the potential field falls short to accelerate the robot enough to
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(a)Velocity

(b)Velocity field controller

(c)Potential Field Function Force

Figure 5.9: (a) Depicts the velocity tracking for Experiment 1, with the vertical
and horizontal axis representing the position and velocity in X1 direction. As
observed, the system assisted the spring array to reach the desired velocity in
each position (as demonstrated by red color). (b) Depicts the force produced
by the velocity field controller Fvel. (c) illustrates the interaction force by the
potential field function Fpot in X1 direction. As soon as the robotic manipula-
tor is attracted to the trajectory the potential field function exerted identical
interaction force as seen in the demonstration phase (red plot).
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Figure 5.10: This figure depicts the experiment setup for experiment 2 in both
demonstration (Left) and robotic assistance (right) phases.

reach the desired velocity demonstrated. As sketched in Fig.5.9(a), due to the

dampness (i.e., dissipation) of the environment, static friction of the system and

transient response of the controller, the robot manipulator slowly converged to

the demonstrated velocity and compensated for the force perturbation in the

environment. At the end of the trajectory, the desired velocity field is set to

zero to prevent the shift in the convergence point of the potential field.

The potential field is learned to provide the same interaction force in the

tangential direction as observed in the demonstration phase. Fig.5.9(c) shows

the interaction force exerted by the potential field (Fpot) in X1 direction which

is perfectly identical to the demonstrated interaction force as soon as the robot

is attracted to the vicinity of the trajectory.

The velocity field controller Fvel, as illustrated in Fig.5.9(b), mainly exerted

positive assistive force in the same direction to the motion to compensate the

dampness in the environment. At the beginning and end of the motion, the

velocity field controller made up for the inertia and static friction in the system

and accelerated the robotic manipulator to reach the desired velocity. Also, at
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Figure 5.11: Depicts the velocity field and learned potential field around the
demonstrated trajectory from point A to point B in experiment 2. The system
successfully assisted the spring array to move the loop along the wire from
point A to point B without hitting the wire in all 4 trials with different cT
parameter

the end of the motion, Fvel increased to compensate for the drop in the Fpot.

In experiment 2 with spring models, the aim was to evaluate the perfor-

mance of the velocity field controller and how it can be tuned to adjust the

level of patient’s (simulated by a spring model in this experiment) deviation

from demonstrated velocity. As demonstrated in Fig.5.10, the task was a sim-

ple ”wire in the Loop game”, a loop was connected to the robot’s end effector,

which was going along a wire in the task environment. The game was com-

pleted successfully if the patient can moved the loop from point A to point B,

without any direct contact between the loop and the wire.

The robot equilibrium point was close to point A and it was unable to

accomplish the task without assistance. In the next phase the helper assisted

and grabbed the robot end effector with the attached loop along the wire all

the way to the point B. Then the demonstrated assistance with its position,

velocity and interaction force data was captured by potential and velocity field

as Fig.5.11. Finally, in the robotic assistance phase, the task is performed
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(a)Velocity

(b)Velocity field controller

Figure 5.12: (a) Depicts the observed velocity tracking in X1 direction in all
four trials with different cT in experiment 2. As seen, the velocity tracking
of demonstrated velocity (red plot) got more accurate as the cT parameter
increased . (b) The control signal produced by velocity field controller Fvel in
X1 direction increased as the cT parameter increased

successfully by the robotic assistance (without helpers intervention) in four

trials.

The dampness in the environment in the robotic assistance phase was small

(same as the demonstration phase, Table. 5.1), also due to the deviation of

the spring array from the demonstrated trajectory the interaction force to the

robotic manipulator was more than the one demonstrated and we expected

higher velocities at the end of the trajectory, Fig.5.12(a) and Fig.5.13(a) with

cT = 0. In order to evaluate the performance of velocity field controller in

velocity regulation with its cT parameter in each trial, a different value for
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(a)Velocity

(b)Velocity field controller

Figure 5.13: (a) The observed velocity tracking in X2 direction in all four
trials with different cT in experiment 2. The velocity tracking of demonstrated
velocity (red plot) got more accurate as the cT parameter increased. (b) The
control signal produced by velocity field controller Fvel in X2 direction increased
as the cT parameter increased

cT was assigned. As illustrated in Fig.5.13 and Fig.5.12, the higher the cT

parameter, the higher the control force from the velocity field controller and

the lower the deviation from the demonstrated velocity.

Fig.5.12(a) and Fig.5.13(a) illustrate that in the first phase of the motion,

due to inertia and static friction of the system, the robotic manipulator (con-

nected to the spring array) was going slower than the demonstrated velocity

in both X1 and X2 directions. Therefore, the velocity field controller exerted

an assistive force (in the direction of the motion) as seen in Fig.5.12(b) and

Fig.5.13(b) to accelerate the robotic manipulator to reach the desired velocity.
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Figure 5.14: depicts the experiment setup for experiment 3 in both demonstra-
tion (Left) and robotic assistance (right) phases. Two pairs of transcutaneous
electrical nerve stimulation pads were used for simulation of CP symptoms in
Section. 5.4.2

In the second phase, the velocity becomes more than the demonstrated veloc-

ity in both directions, therefore, the velocity field controller provided resistive

force (in opposite direction to the motion) to decrease the velocity.

5.4.2 Using Transcutaneous Electrical Nerve Stimula-

tion

(TENS)

To simulate incoordination and involuntary motions (that is a common symp-

tom of people with CP) in a person without a disability (author), a transcuta-

neous electrical nerve stimulation (TENS) was utilized. Low-frequency stimu-

lation of upper arm and wrist muscles induced a similar behavior observed in

a patient with CP [18]. In this experiment, the task was the same ”wire in the

Loop” game with connected spring array to the end effector. Then the patient

(author with TENS) was expected to move the loop with the spring array from

point A to point B without hitting the wire. Due to the connected spring

array, the task was ”impedance-based” as the patient should exert a specific

force in each position along the trajectory to reach the same velocity. The aim

of this experiment was to evaluate the system in presence of normal interaction
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forces and observe the energy tank performance to save up the passive dissi-

pative energy and use it for active control action. Fig.5.14 demonstrates the

experimental set-up in the demonstration and robotic assistance phases. In the

demonstration phase, a research assistant (called therapist in the reminder of

this section) provided assistant to the patient in a single task execution. The

task was divided into two sections. In the first section of the trajectory the

TENS unit was on, therefore the user exerted a sinusoidal force (tremor like)

in X2 direction. In the second section of the trajectory, the TENS unit was off

so the user required minimal assistance from the helper to perform the rest of

the task and reach point B.

Fig.5.15(a) and Fig.5.16(a) illustrate the acquired data from the therapist

assistance in cooperative task demonstration. As observed, the patient required

minimal assistance in the second section of the trajectory as the muscle stimu-

lation is off. Thus, the interaction force in the normal and tangential directions

were around zero. In normal direction, the stiffness matrix is linearly mapped

to the demonstrated normal interaction force from the therapist to replicate

the provided assistance in an as needed paradigm, Fig.5.16. Thus, the stiffness

matrix would be around Kmin. In tangential direction (Fig.5.15), the low in-

teraction force results in low tangential gradient (i.e., Force) in the potential

field around the trajectory (5.13).

The velocity field controller with its energy tank mechanism ensured the

stability and passivity of the overall system. In section 1 of the trajectory,

due to muscle stimulation, the patient exerted sinusoidal forces in the normal

direction and deviated the trajectory. The velocity field controller damped the

patient’s energy in the normal direction and saved it up in the energy tank

state S as shown in Fig.5.18.(a) and Fig. 5.18.(b)). Then, uses this energy in

section 2 of the trajectory to actively regulate the deviation of the patient to

the demonstrated velocity along the trajectory.

With stiffness mapping to normal interaction force, and modified convex
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(a)Demonstrated tangential interaction force

(b)Learned bias potential parameter

Figure 5.15: (a) Depicts the demonstrated tangential interaction force in X1

direction. (b) The bias potential parameter u0 is learned to replicate the
demonstrated tangential interaction force, using a convex optimization algo-
rithm (5.14)

optimization to adjust the tangent slope (i.e., gradient) of the potential field

based on the demonstrated tangential interaction force. The potential field was

learned Fig.5.17(a). As illustrated, the low stiffness and gradient in section 2 of

the trajectory cause flat potential field around the trajectory. Still, the velocity

field controller regulated the velocity and assist/resist the patient if they were

going under/over the demonstrated velocity in both sections.

In the robotic assistance phase, using the parameters in Table. 5.1, The

robotic system failed to provide the required performance and the deviation

caused by the user in the normal direction in section 1 of the trajectory ex-

ceeded the loop radius (1.5 cm) (Fig.5.17). Tuning the stiffness parameter and

multiplying the Kmin and Kmax by three (3Kmin, 3Kmax), the potential field

slope around the trajectory got steeper, thus patient’s movements got more
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(a)Demonstrated normal interaction force

(b)Stiffness parameter

Figure 5.16: (a) Depicts the demonstrated normal interaction force in X1 di-
rection (b) The stiffness parameter Ki

N which was linearly mapped from the
demonstrated normal interaction force so that the system restrict the user
around the trajectory based on the force observed in demonstration phase.

restricted normal to the trajectory. With the new stiffness parameter, the pa-

tient was assisted to follow the trajectory more accurately and complete the

task successfully.

All in all, the proposed framework with potential field function and velocity

field controller captured simultaneously the trajectory, impedance, interaction

force and velocity of the demonstrated trial by the therapist and effectively

reproduced it passively.

5.5 Conclusion

The proposed learning from demonstration framework for robotic assistance

can have applications in various tasks that involve cooperative human-robot

task execution. However, without the loss of generality, an application for
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(a)

(b)

Figure 5.17: (a) Illustrates the potential and velocity field around the trajec-
tory in experiment 3. As demonstrated with {KN,min = 200andKN,max = 600
(KN) } the user deviation from the trajectory was high and he failed to
complete the task (the loop hits the wire), by tuning the parameters to
{KN,min = 600andKN,max = 1800 (3KN) } the system restricted the user
around the trajectory for accurate task execution. (b) depicts the normal
interaction force of the user.

82



(a)Energy Tank with Kmin = 200 and Kmax = 600

(b)Energy Tank with Kmin = 600 and Kmax = 1800

Figure 5.18: Shows the energy tank state (S) charging up in section 1 of the
trajectory as the user’s energy was damped in normal direction, and discharges
in section 2 of the trajectory as the velocity field controller spent it for active
control action.

assist-as-needed assistance to people with disability has been the main focus

in this paper. The framework, with its potential field function and velocity

field controller, was modified and developed to reproduce the helper’s assis-

tance (i.e., trajectory, impedance, velocity, interaction force) in the robotic

assistance phase. The efficacy and performance of the system were evaluated

in three scenarios involving spring arrays (to simulate muscle stiffness in CP)

and a healthy adult induced with CP symptoms (tremor), using transcutaneous

electrical nerve stimulation.
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Chapter 6

Conclusion & future work

In this thesis, two class of learning from demonstration frameworks for assistive

robotic systems have been proposed and implemented practically: 1) Time-

indexed motion learning 2) Position-indexed motion learning. While these

frameworks can have a plethora of applications in cooperative human-robot

task execution, without the loss of generality, a potential application in assis-

tive robotic systems for children with cerebral palsy (CP) and assist-as-needed

rehabilitation was discussed.

Only a short intervention (demonstration) of a helper was enough to learn

the required task-specific assistance and reproduce it without his/her inter-

vention. Therefore the robotic manipulator saved the helper’s time. These

systems could also provide us with valuable sensory data to evaluate the user’s

performance and learn their unique execution and behavioral characteristic.

Time-indexed motion learning form demonstration was used in Chapter

3 and Chapter 4 to develop the assistive robotic system. In these frame-

works, the Gaussian mixture model was utilized to capture the position-time

data acquired from the therapist-patient cooperative demonstration. Then in

the robotic assistance phase, Gaussian mixture regression extracted the ex-

pected position with its average and variability in each time-index. Also,

a proposed tangential-normal impedance controller was used to regulate the
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human-robot interaction tangent and normal to the demonstrated trajectory

as the robotic manipulator follows the expected trajectory with time. The more

the impedance parameters, the less the patient’s freedom to deviate from the

trajectory.

In Chapter 3 the impedance parameters (in tangential and normal di-

rection) were non-variable and tuned based on the maximum required assis-

tance along the trajectory (i.e., minimum variability between the demonstrated

trajectories). The system was experimentally evaluated performing a simple

pick and place game through a teleoperation system (master-slave) in a 2-

dimensional environment. A spring array was used to represent a child with

CP and model the spastic symptom of CP. In the demonstration phase, the

therapist holding the slave robot (that was in task environment) assisted the

spring array that was in contact with the master robot to go from point A to

point B. Then in the robotic assistance phase, the system provided the learned

assistance to the spring array to perform the task in eight trials with different

values for tangential and normal impedance parameters. Then a set of param-

eters were chosen to provide the minimum assistance required to reach the box

B. However this level of assistance is constant along the trajectory, even though

it is not required in all sections of the trajectory.

In Chapter 4, the controller in Chapter 3 was extended by proposing the

tangential-normal varying impedance controller (TNVIC). In this controller,

the impedance parameters in tangential and normal directions were also chang-

ing in magnitude with an inverse correlation to the variability observed in

demonstrated trajectories. In experimental evaluation, an adult with induced

CP symptoms (using transcutaneous electrical nerve stimulation) was asked

to move the robotic manipulator from point A to point B through two gaps

with different width without hitting them. The task is projected on an LCD

screen placed under the robotic manipulator. The demonstration was done

with both therapist and user (adult with induced CP symptoms) performing
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the point-to-point motion task. Then in the robotic assistance phase, the sys-

tem provided the user with learned assistance in times where it was needed

(i.e., AAN) by regulating the impedance parameters inversely proportional to

the demonstrated variability. Less variability was assumed as the requirement

for more accuracy.

The time-indexed motion learning frameworks in Chapter 3 and Chapter

4 are time-dependent as the name implies. Thus the system works open-loop

in trajectory generation for the interacting user to follow. These systems are

not only prone to temporal perturbation but also can induce a high amount of

force to the user if the distance between the robotic manipulator and robortic

end effector increases (due to the connecting impedance model). To face these

problems in Chapter 5 we proposed position-indexed motion learning using

potential field function and velocity field controller.

In Chapter 5, the non-parametric potential field function and the con-

vex optimization algorithm used for learning the model, were both modified to

simultaneously capture the demonstrated: 1) trajectory; 2) Impedance proper-

ties of therapist-patient interaction and 3) Therapist’s assistive force along the

trajectory. A velocity field controller was also proposed to regulate the damping

(in the normal direction) and velocity (in tangential direction). The velocity

field controller with its virtual energy tank state ensures the passivity of the

overall system in interaction with a passive environment. The energy tank

stores the damped energy and uses it for active control action in the controller.

This time-independent framework was experimentally evaluated in three differ-

ent scenarios involving spring arrays and an adult with transcutaneous electrical

nerve stimulation inducing symptoms of CP. The system efficiently captured

the demonstrated assistance and provided it in the reproduction phase to com-

plete the designed tasks successfully with efficient trajectory, assistive force and

velocity tracking of demonstration data. The system was robust to both spatial

and temporal perturbations and stable because of the energy tank mechanism.

86



In the future, the main focus of our work will be to:

1. Evaluate the performance of the proposed frameworks in studies with

children with CP.

2. Add an adaptive law to the proposed TNVIC in Chapter 4) to adapt

the interaction dynamics to the user’s hand in tangential and normal

directions.

3. Develop reinforcement learning algorithms to update the GMM (for time-

indexed motion learning in Chapter 3 and Chapter 4) and potential

field function (for position-indexed motion learning in Chapter 5) based

on the user’s interactive performance in task execution. Therefore the tra-

jectory and robotic assistance in both tangential and normal directions

can adapt to user’s performance which can be different from the demon-

stration phase (e.g., patient gets tired or enhances his/her performance

by repetition).

4. Find an algorithm to generalize several of the therapist’s demonstrated

assistance in the task environment and learn the required potential and

velocity fields in Chapter 5, for any point to point motion in that envi-

ronment, without the need for any new therapist demonstration.
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