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Absolute Stability
of a Class of Trilateral Haptic Systems
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Abstract—Trilateral haptic systems can be modeled as three-port networks. We present a criterion for absolute stability of
a general class of three-port networks. Traditionally, existing (i.e., Llewellyn’s) criteria have facilitated the stability analysis of
bilateral haptic systems modeled as two-port networks. If the same criteria were to be used for stability analysis of a three-port
network, its third port termination would need to be assumed known for it to reduce to a two-port network. This is restrictive
because, for absolute stability, all three terminations of the three-port network must be allowed to be arbitrary (while passive).
Extending Llewellyn’s criterion, we present closed-form necessary and sufficient conditions for absolute stability of a general class
of three-port networks. We first find a symmetrization condition under which a general asymmetric impedance (or admittance)
matrix Z3×3 has a symmetric equivalent Zeq from a network stability perspective. Then, via the equivalence of passivity and
absolute stability for reciprocal networks, an absolute stability condition for the original nonreciprocal network is derived. To
demonstrate the convenience and utility of using this criterion for both analysis and design, it is applied to the problem of designing
stabilizing controllers for dual-user haptic teleoperation systems, with simulations and experiments validating the criterion.

Index Terms—Three-port network, trilateral haptic system, absolute stability.
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1 INTRODUCTION

A Bilateral master-slave teleoperation system can
be modeled as a two-port network [1]. For cou-

pled stability analysis of such a system, the knowl-
edge of the human operator’s and the environment’s
dynamics is needed in addition to the teleoperation
system’s immittance (z and y) parameters. In prac-
tice, however, the model for the human operator
and the environment can be unknown, uncertain,
and/or time-varying. Thus, absolute or unconditional
stability of a bilateral haptic system based on the
assumption that the human operator and the environ-
ment demonstrate passive behaviors is analyzed via
Llewellyn’s stability criterion for two-port networks
[2], [3], [4]. For brevity, absolute or unconditional
stability is simply referred to as “stability” in the
rest of the paper. “Coupled stability” will refer to
BIBO stability of a network when it is coupled to
terminations at all if its ports.

Recently, new application scenarios have emerged
that involve the collaboration of multiple users in
teleoperation of a robot or in performing a haptic
virtual task. Examples of these new applications are
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tele-rehabilitation [5], surgical training [6], and coop-
erative multi-robot systems [7]. Specifically, dual-user
teleoperation of a robot and triple-user collaborative
haptic virtual environments have given rise to trilat-
eral haptic systems. A difference between a trilateral
and a bilateral haptic system is that they are modeled
as a three-port and a two-port network, respectively.
Thus, conventional theories for stability analysis of
bilateral haptic systems will not be adequate for tri-
lateral haptic systems.

In contrast to the stability criteria for two-port
networks, which have only involved conditions on
the immittance parameters of the two-port network
and are independent of the port terminations, past
research has been struggling to find a similar stability
condition for three-port networks independent of the
port terminations. Instead, in past research [8], [9],
[10], the third port was assumed to be coupled to a
known termination such that the three-port network
reduced to a two-port network, paving the way for
the application of Llewellyn’s criterion. The limiting
factor of this approach is that the resulting stability
condition will inevitably depend on the immittance of
the third port’s termination. This is restrictive because
not allowing all three terminations of the three-port
network to be arbitrary (while passive) contradicts
the very definition of stability (again, throughout this
paper, all references are to absolute or unconditional
stability).

Using the aforementioned approach, namely, reduc-
ing a given three-port network to a two-port network
by assuming a known termination for the third port,
Boehm et al. in [11] established nine conditions for
determining the stability of a three-port network de-
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scribed by its scattering (S) parameters. The approach
in [9] reduced a three-port network to three two-port
networks by terminating each of the three ports, and
managed to reduce the number of conditions from
nine to three. Also, Kuo et al. [8] reduced a three-port
network to a two-port network by coupling the third
port to a known termination and then required the
input reflection coefficients at the first and the second
ports to be less than unity. Unfortunately, in the above
approaches, a degree of freedom is lost when the third
port is coupled to a known termination. Thus, there is
a need for a tool that can directly analyze the stability
of trilateral haptic systems modeled as three-port net-
works without reducing them to two-port networks.
Such a tool, which will guarantee the coupled stability
of the system under all passive but otherwise arbitrary
linear time-invariant (LTI) terminations for all three
ports, is developed in this paper.

Unlike past work, we would like to have a stability
condition directly in the immittance (e.g., impedance
Z) domain and not in the scattering (S) domain. While
the S-parameters are most accurately measured for
higher-frequency systems such as microwave circuits,
Z-parameters can be accurately measured in lower-
frequency systems including robotic systems. In fact,
the measurement of Z-parameters approaches zero
in microwave circuits where the frequencies are very
high (over 1 GHz), making the use of reflection
coefficients and scattering parameters justifiable for
the stability analysis. This explains the abundance of
scattering parameters based stability conditions in the
microwave systems literature (see, for example, [12]).
Conversely, in robotic systems, the measurement of S-
parameters is close to zero in any frequency range of
practical interest and, therefore, it is highly desirable
to have stability conditions that directly depend on
the Z-parameters or other immittance parameters of
the three-port network.

Inspired by Ku [13], who studied N -port network
stability when the impedance matrix of the network
is of a tri-diagonal Jacobian form [13], in this paper
we present a criterion to analyze the stability of a
general class of nonreciprocal three-port networks. As
a case study, we consider a trilateral haptic system for
dual-user collaborative teleoperation [10], [14] and use
the proposed stability criterion to design stabilizing
controllers for the system.

The rest of the paper is organized as follows:
The next section reviews definitions of stability for
general N -port networks and, for the special case
of reciprocal networks, relates them to passivity. In
Section 3, the proposed stability criterion for all nonre-
ciprocal three-port networks that satisfy our so-called
symmetrization condition is derived. Then, as a case
study to show how the resulting stability criterion can
be utilized, in Section 4, a trilateral shared control
architecture for dual-user collaborative teleoperation
systems is considered and the stability conditions in

terms of system parameters including controller gains
are found. Finally, simulations and experiments to
verify the validity of the calculated stability condi-
tions for the position-position dual-user teleoperation
system are presented in Section 5. Section 6 contains
concluding remarks and future work.

2 DEFINITIONS AND CRITERIA FOR N-PORT
NETWORK STABILITY

Consider an LTI system with impulse response h(t).
The system’s transfer function is the Laplace trans-
form of h(t) defined as

H(s) =

∫ ∞

0

h(t)e−stdt (1)

where s = σ + jω. H(s) is stable if every bounded
input produces a bounded output and this happens
if the poles of H(s) have negative real parts. This
stability definition is equivalent to the absolute con-
vergence of H(s) in the region Re(s) ≥ 0. H(s) is said
to converge absolutely if the integral

∫∞
0

|h(t)e−st|dt
exists. The set of values of s for which H(s) converges
is known as the region of convergence (ROC) and is
of the form Re(s) ≥ a, where a is a real constant.
Importantly, if H(s) converges at s = s0, then it
automatically converges for all s with Re(s) > Re(s0).
The above means that for stability analysis it suffices
to focus on the convergence of H(s) when Re(s) = 0,
i.e., on the jω axis.

An n-port network is called stable if the steady-state
port currents are zero under passive LTI terminations
for all ports [15]. Similarly, an n-port network is called
weakly stable if the steady-state port currents are zero
under strictly passive LTI terminations for all ports.
We know that an LTI termination is passive (strictly
passive) if its impedance is nonnegative (positive) real
[16]. Suppose the n-port network is terminated in ar-
bitrary passive impedances z1(jω), z2(jω), · · · , zn(jω),
and the port currents at the respective ports are de-
noted by I1, I2, · · · , In. Thus, it is immediately under-
stood that a general n-port network with impedance
matrix Zn×n is stable (weakly stable) if and only if,
for s = jω, the equation

(Z(s) + Z0(s))I = 0, Z0(s) = diag[z1, z2, · · · , zn]
(2)

where I = [I1, I2, · · · , In]T has only the trivial solution
I = 0 for every choice of n terminations z1, z2, · · · , zn
that are nonnegative (positive) real. In other words,
the n-port network is stable (weakly stable) if and
only if

det(Z(s) + Z0(s)) ̸= 0 (3)

for s = jω and for any choice of n LTI terminations
with nonnegative (positive) real parts. We remember
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that a nonnegative (positive) real impedance zi(jω)
has a real part with a nonnegative (positive) value1.

There is an alternate definition for n-port net-
work stability. Assume the input impedance (i.e., the
driving-point impedances) at port κ of an n-port
network is Zκ when all other n− 1 ports are coupled
to passive (strictly passive) terminations. Then, the n-
port network is stable (weakly stable) if and only if

Re(Zκ(s)) > 0 (≥ 0), κ = 1, 2, · · · , n (4)

for s = jω and for all passive (strictly passive) z1,
z2, · · · , zn. Equivalently, the n-port network is stable
(weakly stable) if and only if∫ t

0

Vκ(τ)Iκ(τ) dτ > 0 (≥ 0), κ = 1, 2, · · · , n (5)

for all passive (strictly passive) z1, z2, · · · , zn [17]. Con-
ditions (4) or (5) represent an alternate way to examine
the stability of n-port networks. In the following, the
equivalence of (4) and (5) with the stability condition
(3) is shown for n = 3, i.e., a general nonreciprocal
three-port network shown in Figure 1(a) with the
impedance matrix

Z =

 Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

 (6)

For the three-port network (6), the input
impedances at port 1 when ports 2 and 3 are
terminated to z2 and z3, at port 2 when ports 1 and 3
are terminated to z1 and z3, and at port 3 when ports
1 and 2 are terminated to z1 and z2 are, respectively,

Z1 = Z11 −
Z12Z21(Z33 + z3) + Z13Z31(Z22 + z2)−D

(Z22 + z2)(Z33 + z3)− Z23Z32

(7)

Z2 = Z22 −
Z12Z21(Z33 + z3) + Z23Z32(Z11 + z1)−D

(Z11 + z1)(Z33 + z3)− Z13Z31

(8)

Z3 = Z33 −
Z13Z31(Z22 + z2) + Z23Z32(Z11 + z1)−D

(Z11 + z1)(Z22 + z2)− Z12Z21

(9)

where D = Z13Z21Z32 − Z12Z23Z31. According to
(3), for the nonreciprocal three-port network (6) to be
stable (weakly stable), we must have

det(Z(s) + Z0(s)) ̸= 0, Z0(s) = diag[z1, z2, z3] (10)

for s = jω, and for any choice of passive (strictly pas-
sive) impedances z1, z2 and z3. The stability condition
(10) can be rewritten as

(Z11 + z1)(Z22 + z2)(Z33 + z3)− Z13Z21Z32 − Z12Z23Z31

̸= Z23Z32(Z11 + z1) + Z12Z21(Z33 + z3)

+ Z13Z31(Z22 + z2) (11)

1. A rational function F (s) is positive real if and only if, in
addition to being real for real s, F (s) has no RHP poles, any poles
of F (s) on the imaginary axis are simple with real and non-negative
residues, and Re[F (jω)] ≥ 0,∀ω.

Now, if (Z22+ z2)(Z33+ z3)−Z23Z32 ̸= 0, (11) implies
that

−z1 ̸= Z11−
Z12Z21(Z33 + z3) + Z13Z31(Z22 + z2)−D

(Z22 + z2)(Z33 + z3)− Z23Z32
(12)

Likewise, we get similar inequality conditions for −z2
and −z3. So, the stability condition (10) is satisfied if
and only if

−zκ(s) ̸= Zκ(s), κ = 1, 2, 3 (13)

for s = jω. Now, recall that the real part of zκ covers
the closed right half plane (open right half plane)
if it is passive (strictly passive). Thus, the three-port
network is stable (weakly stable) if and only if

Re(Zκ(s)) > 0 (≥ 0), κ = 1, 2, 3 (14)

for all s = jω, and for all passive (strictly passive) z1,
z2 and z3.

3 MAIN RESULT: A STABILITY CRITERION
FOR A CLASS OF NONRECIPROCAL THREE-
PORT NETWORKS

The previous stability definitions can hardly be used
as closed-form stability criteria for general nonrecip-
rocal networks. Instead, we will introduce an ap-
proach in this section that utilizes Lemma 1 below for
checking the stability of a reciprocal network, which
has a symmetric impedance matrix. Also, Lemma 2
will be used for finding the symmetric equivalent
of an asymmetric impedance matrix from a network
stability perspective. Lastly, Lemma 3 and Lemma 4
will be required in the proof of Theorem 1.

Lemma 1. [15] Let Z = ZT be the impedance matrix of
a reciprocal n-port network. Then, the network is passive
(strictly passive), i.e., ReZ ≥ 0 (ReZ > 0), if and only if
it is weakly stable (stable). �
Lemma 2. [18] Let Z1 and Z2 be the impedance matrices of
two n-port networks. Then, if Z1 and Z2 possess identical
principal minors of all orders, the two n-port networks are
stable (weakly stable) together. �

In fact, [18] showed that if Z1 and Z2 have identical
principal minors of all orders, then

det(Z1 + Z0) = det(Z2 + Z0) (15)

Therefore, the stability (weak stability) of the two
networks with impedance matrices Z1 and Z2 will
happen at the same time because of (3), which
is to hold for all passive (strictly passive) Z0 =
diag[z1, z2, · · · , zn].

Lemma 3. [19] A symmetric matrix is positive definite
(positive semi-definite) if and only if the determinants of
every principal minor is positive (nonnegative). �
Lemma 4. [20] If the determinant of the real parts of the
elements of a symmetrical non-singular complex matrix
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Z is positive (nonnegative), then the determinant of the
real parts of the elements of the Z−1 is also positive
(nonnegative). �

Now, we propose the following theorem as a com-
pact, straightforward, and easy-to-check condition for
the stability of a general nonreciprocal three-port net-
work.

Theorem 1. The nonreciprocal three-port network with the
impedance matrix Z in (6) satisfying the symmetrization
condition

Z13Z21Z32 − Z12Z23Z31 = 0 (16)

is stable (weakly stable) if and only if

Re(Z11) > 0 (≥ 0), (17a)
Re(Z22) > 0 (≥ 0), (17b)
Re(Z33) > 0 (≥ 0), (17c)

Re(Z11)Re(Z22)−
|Z12Z21|+Re(Z12Z21)

2
> 0 (≥ 0),

(17d)

Re(Z11)Re(Z33)−
|Z13Z31|+Re(Z13Z31)

2
> 0 (≥ 0),

(17e)

Re(Z22)Re(Z33)−
|Z23Z32|+Re(Z23Z32)

2
> 0 (≥ 0),

(17f)
and

Re(Z11)Re(Z22)Re(Z33)

− Re(Z11)
|Z23Z32|+Re(Z23Z32)

2

− Re(Z22)
|Z13Z31|+Re(Z13Z31)

2

− Re(Z33)
|Z12Z21|+Re(Z12Z21)

2

+ 2Re(
√

Z12Z21)Re(
√
Z13Z31)Re(

√
Z23Z32) > 0 (≥ 0)

(17g)

�
Proof: According to Lemma 2, if there exists a

reciprocal three-port network with impedance matrix
Zeq that has the same stability (weak stability) char-
acterization as the nonreciprocal three-port network
with impedance matrix Z, then

det(Zeq + Z0) = det(Z + Z0) (18)

for any passive (strictly passive) Z0 = diag[z1, z2, z3].
Now, if and only if the symmetrization condition (16)
holds, solving (18) for Zeq given Z in (6) gives the
following independent of Z0:

Zeq =

 Z11 γ1
√
Z12Z21 γ2

√
Z13Z31

γ1
√
Z12Z21 Z22 γ3

√
Z23Z32

γ2
√
Z13Z31 γ3

√
Z23Z32 Z33

 (19)

where γi = ±1 for i = 1, 2, 3. We will discuss later
why the stability condition will be the same for any
of these 8 solutions.

According to Lemma 1, the symmetric three-port
network with the impedance matrix Zeq given in (19)
is stable (weakly stable) if and only if it is strictly
passive (passive), i.e.,

Re(Zeq) > 0 (≥ 0) (20)

Consequently, if (16) holds, then the nonreciprocal
three-port network with the impedance matrix Z
given in (6) is stable (weakly stable) if and only if
the matrix Re(Zeq), with Zeq given in (19), is positive
definite (positive semi-definite). After simplifying the
matrix Re(Zeq) by

(Re(
√
ZijZji)) =

√
|ZijZji|+Re(ZijZji)

2
i, j = 1, 2, 3 (21)

and using Lemma 3, we arrive at conditions
(17a)-(17g) for positive definiteness (positive semi-
definiteness) of Re(Zeq). Note that any of the 8 choices
caused by taking γi = ±1, i = 1, 2, 3, in (19) will result
in the same stability conditions (17a)-(17g) due to the
fact that we are calculating the determinants of the
principal minors of Zeq . This concludes the proof.

Remark 1. Note that Theorem 1 holds not only for
the impedance matrix (6) of a general nonreciprocal
network but also for its admittance matrix. The reason
for this is Lemma 3 and Lemma 4. In fact, the positive
definiteness (positive semi-definiteness) of the equiv-
alent reciprocal network is independent of whether an
impedance representation or an admittance represen-
tation is used for it.

Remark 2. For the special case of Z13 = Z23 =
Z31 = Z32 = Z33 = 0, Theorem 1 simplifies to the
stability criterion for nonreciprocal two-port networks
best known as Llewellyn’s criterion [2], [3], [4], [20].
Also, for the special case of Z13 = Z31 = 0, Theorem 1
simplifies to the stability criterion in [13]. Our Theo-
rem 1 is more general as it lifts those constraints and
is applicable to any nonreciprocal three-port network
whose impedance matrix Z satisfies the symmetriza-
tion condition (16). As we will demonstrate in the next
section, the symmetrization condition (16) is a limita-
tion but it is mild and can be fulfilled by appropriate
choice of free parameters in the three-port network
(e.g., controller structure, authority sharing laws, and
gains in the case of trilateral haptic systems).

Remark 3. For four-port networks, we can use a
similar procedure as that outlined in this section.
We find that a nonreciprocal four-port network with
impedance matrix Z4×4 can be converted to a re-
ciprocal four-port network with the same stability
characteristics if and only if Z23Z34Z42 = Z24Z32Z43,
Z13Z21Z32 = Z12Z23Z31, Z14Z21Z42 = Z12Z24Z41, and
Z14Z31Z43 = Z13Z34Z41. We will not pursue four-port
stability analysis because of the significant complexity
associated with this symmetrization condition set and
because our current focus is trilateral haptic systems.
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Fig. 1. (a) A general three-port network. (b) Dual-user haptic teleoperation. (c) A dual-user haptic teleoperation
system under four-channel control. (d) Reduced two-port network between user 1 and user 2.

4 CASE STUDY: APPLICATION OF THE PRO-
POSED CRITERION TO TRILATERAL HAPTIC
SYSTEMS

In this section, the aim is to apply the proposed
stability criterion, which is general and can be used
for three-port networks in various applications, to a
trilateral haptic system. A trilateral haptic system may
be a collaborative haptic virtual environment with
three users, or a dual-user haptic teleoperation system
with one slave robot. In the following, for brevity, we
only consider the latter and a similar procedure case
may be followed for the former. We begin by review-
ing a four-channel, dual-user teleoperation system
and specifically investigate the stability of position-
position and force-position control schemes.

4.1 A Four-channel Dual-user Shared Control
Teleoperation System
In a dual-user teleoperation control system, the goal
is that two users collaboratively control a robot. Such
a system consists of two master robots as haptic inter-
faces for the two users and one slave robot to perform
a desired task on an environment. This finds applica-
tion in many real-world scenarios such as when the
aim is to train a novice trainee (user 1) to do a task
under haptic guidance from a mentor (user 2). As
elaborated by [6], [10], the reference position and force
for each robot are sums of positions and forces of the
other two robots weighted by a parameter α ∈ [0, 1]
that specifies their relative control authorities – see
Figure 1(b). Therefore, α affects how the trainee and

the mentor collaborate and contribute to the reference
position for the slave and what share of force feedback
each of them receives. For instance, if α = 0, the slave
robot will be completely controlled by the mentor and
the trainee will receive large force feedback urging
him/her to follow the mentor’s motions. On the other
hand, if α = 1, the slave robot is completely controlled
by the trainee, allowing the mentor to assess the skill
level of the trainee by feeling the reflected forces. If
0 < α < 1, the trainee and the mentor collaborate
and each contribute to the slave robot position while
receiving some force feedback.

Consider the dual-user teleoperation system shown
in Figure 1(c). The dynamics of the two masters
and the slave in contact with the two users and the
environment, respectively, are

ZmiVhi = Fhi + Fcmi (22a)
ZsVe = Fe + Fcs (22b)

where i = 1, 2, and Zmi and Zs are the impedances of
the two masters and the slave, respectively. Also, Fhi

denotes the interaction force between each user and
the corresponding master and Fs denotes the inter-
action force between the slave and the environment.
Lastly, Vhi and Ve are the users and the environment
velocities.

The four-channel dual-user shared control laws in
Figure 1(c) are [10], [21], [14]:

Fcmi = −CmiVhi − C4miVhid + C6miFhi − C2miFhid

(23a)
Fcs = −CsVe + C1Ved − C5Fe + C3Fed (23b)
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where Cmi and Cs are local position controllers, C6mi

and C5 are local force controllers, and C1, C2mi,
C3, and C4mi are feedforward and feedback com-
pensators. Also, Vhid and Ved are the reference ve-
locities and Fhid and Fed are the references forces
for the two masters and the slave, where using
the complementary-linear-combination (CLC) laws
for authority sharing are

Vh1d = αVe + (1− α)Vh2 (24a)
Vh2d = (1− α)Ve + αVh1 (24b)
Ved = αVh1 + (1− α)Vh2 (24c)

Fh1d = αFe + (1− α)Fh2 (24d)
Fh2d = (1− α)Fe + αFh1 (24e)
Fed = αFh1 + (1− α)Fh2 (24f)

It is easy to verify that the reference velocities (posi-
tions) and references forces in (24) are consistent with
the trainee/mentor collaboration scenario discussed
above.

By substituting (24) in (23) and then substituting
the result in (22), the impedance matrix representation
of the closed-loop dual-user teleoperation system is
found as Fh1

Fh2

Fe

 =

 Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

 Vh1

Vh2

Ve

 (25)

where Z = A−1B with

A =

 C6m1 + 1 −(1− α)C2m1 −αC2m1

−αC2m2 C6m2 + 1 −(1− α)C2m2

αC3 (1− α)C3 1 + C5



B =

 Cm1 + Zm1 (1− α)C4m1 αC4m1

αC4m2 Cm2 + Zm2 (1− α)C4m2

−αC1 −(1− α)C1 Cs + Zs


In the next subsections, we will consider two spe-
cial cases of the above, namely position-position and
force-position shared control architectures [22] and
analyze their stability.

4.2 Position-Position Dual-user Teleoperation
Position-position control is a special case of four-
channel control in which there is no need for any force
sensor measurements. In this control architecture, we
have C2m1 = C2m2 = C3 = C5 = C6m1 = C6m2 = 0.
For good position tracking, the common choice is
C1 = Cs, C4m1 = −Cm1, and C4m2 = −Cm2. Then, the
impedance matrix of dual-user teleoperation system
can be found from (25) but is not shown here.

In the following two subsections, we will discuss
two methods to design a stable position-position con-
trolled dual-user haptic teleoperation system. The first
method tries to find an equivalent bilateral teleopera-
tion system for the trilateral teleoperation system by
coupling one port to a known termination and then

utilizes Llewellyn’s criterion for finding the stability
conditions. The second method is based on Theorem 1
for direct stability analysis of a three-port network for
three passive but otherwise arbitrary terminations. We
will show that the latter approach is better.

4.2.1 Stability Analysis via Reduction to Two-Port
Networks
To reduce a three-port network to an equivalent two-
port network between the two users (Figure 1(d)),
one can couple the environment port to a known
load termination and then absorb the load termina-
tion into the network. To find the equivalent two-
port impedance matrix, in the simplest case, one can
consider the aforementioned load to be a pure known
stiffness K > 0. Assume α = 1

2 , Zm1 = Mm1s,
Zm2 = Mm2s, Zs = Mss, and let us make the
following choices for the controllers:

Cm1 =
Kpm1 +Kvm1s

s
, Cm2 =

Kpm2 +Kvm2s

s
,

Cs =
Kps +Kvss

s
(26)

Then, using Fe

Ve
= K, the equivalent two-port network

for the dual-user teleoperation control system is given
by [

Fh1

Fh2

]
=

[
Z ′
11 Z ′

12

Z ′
21 Z ′

22

] [
Vh1

Vh2

]
(27)

For brevity, we do not show the elements of the matrix
Z ′(jω).

Now, the stability of the reduced two-port network
(27) must be tested for all possible choices of K and all
frequencies ω. By Llewellyn’s criterion, the stability of
the dual-user teleoperation system is guaranteed if,
for all K and all ω, we have

Kvm1 −
1

4

(KvsKvm1ω
2 −KpsKpm1)(K +Kvs)

(K +Kvs)2ω2 + (Kps −Msω2)2

−1

4

(KvsKpm1 +Kvm1Kps)(Kps −Msω
2))

(K +Kvs)2ω2 + (Kps −Msω2)2
≥ 0 (28a)

1

4

(Kpm2 +Kvm2)(KpsK +KvsMsω
2)

(K +Kvs)2ω2 + (Kps −Msω2)2
≥ 0 (28b)

2Re(Z ′
11)Re(Z

′
22)− Re(Z ′

12Z
′
21)− |Z ′

12Z
′
21| ≥ 0 (28c)

To synthesize controllers based on (28) for all values
of K and ω is a daunting task if not impossible.
This issue is exacerbated once one considers that the
environment port’s load may include damping and
inertia in addition to stiffness, in which case (28)
would have to be satisfied for all values ranging from
0 to ∞ of stiffness, damping, inertia and frequency. As
discussed in [10], the computational burden can be al-
leviated by using the transformation Γ = Ze−1

Ze+1 , where
Ze is the complex impedance of the load termination,
to map the right half of the Ze plane to the inside
of a unit disk in the Γ plane. However, this method
still requires to pick a large number of points in the
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unit disk in the Γ plane, test (28), and then repeat this
process for a large number of frequencies ω before one
can reasonably be sure that Llewellyn’s conditions are
met for a large set of points in the right half of the Ze

plane and for a large set of frequencies.

4.2.2 Direct Stability Analysis of the Three-port Net-
work
By using the proposed stability criterion in Theorem
1, it is possible to design the dual-user teleoperation
system controller quickly and without a need to iter-
atively and numerically test a number of conditions
across the load impedance space and the frequency
range. Let us take the same choices of Zm1, Zm2, Zs,
Cm1, Cm2 and Cs as in subsection 4.2.1. In this case,
it can be shown that the symmetrization condition
(16) will hold only if α = 1

2 , for which we find the
equivalent reciprocal three-port network and replace
s = jω. It is easy to see that the stability (weak
stability) conditions (17a)-(17f) turn out to be

Kvm1 > 0 (≥ 0) (29)
Kvm2 > 0 (≥ 0) (30)
Kvs > 0 (≥ 0) (31)
7

8
Kvm1Kvm2 +

1

8ω2
Kpm1Kpm2 −

Qm1Qm2

8ω2
> 0 (≥ 0)

(32)
7

8
Kvm1Kvs +

1

8ω2
Kpm1Kps −

Qm1Qs

8ω2
> 0 (≥ 0)

(33)
7

8
KvsKvm2 +

1

8ω2
KpsKpm2 −

QsQm2

8ω2
> 0 (≥ 0)

(34)

where Qm1 =
√
K2

vm1ω
2 +K2

pm1, Qm2 =√
K2

vm2ω
2 +K2

pm2, and Qs =
√

K2
vsω

2 +K2
ps.

Now, under (29) and (30), condition (32)-(34) will be
fulfilled for all frequencies ω if the gains of the PD
controllers Cm1, Cm2, and Cs satisfy

Kvm1

Kpm1
=

Kvm2

Kpm2
, 7− 4

√
3 ≤ Kvm1Kps

Kpm1Kvs
≤ 7 + 4

√
3(35)

On the other hand, under (35), condition (17g)
becomes

5Kvm1Kvs +
Kpm1Kps

ω2
− Qm1Qs

ω2
> 0 (≥ 0) (36)

One can see that condition (36) will be fulfilled for all
frequencies ω if the gains of the PD controllers Cm1

and Cs satisfy

5− 2
√
6 ≤ Kvm1Kps

Kpm1Kvs
≤ 5 + 2

√
6 (37)

So, a sufficient, frequency-independent, and compact
condition for stability of the above-described position-
position dual-user teleoperation systems is

Kvm1

Kpm1
=

Kvm2

Kpm2
, 5− 2

√
6 ≤ Kvm1Kps

Kpm1Kvs
≤ 5 + 2

√
6 (38)

where all control gains are nonnegative (note that the
ratios in (38) are merely artifacts of our presentation
of the stability conditions meaning that division by
zero can be avoided).

At the first glance, the constraint α = 1
2 im-

posed by the symmetrization condition (16) seems
very limiting. However, one must note that vari-
ous combinations of authority sharing and teleop-
eration control laws exist and α = 1

2 is only an
artifact of using CLC authority sharing laws in con-
junction with position-position teleoperation control
laws. For instance, by changing the authority shar-
ing laws (24) to the masters-correspondence-with-
environment-transfer (MCET) law proposed in [21],
for the same dynamics for the master and the slave
and the same position-position control laws as in
Section IV.A, the symmetrization condition (16) holds
for any α because Z13Z21Z32 − Z12Z23Z31 is identical
to zero.

4.3 Force-position Dual-user Teleoperation
Force-position control is another special case of four-
channel control that requires a force sensor to measure
the interactions between the slave and its environ-
ment. In this control architecture, we have Cm1 =
Cm2 = C3 = C4m1 = C4m2 = C5 = C6m1 = C6m2 = 0.
Also, for good position and force tracking, we need
C1 = Cs and C2m1 = C2m2 = 1, respectively. Then, the
impedance matrix of dual-user teleoperation system
can be found from (25) but is not shown here.

In this case, the symmetrization condition (16) is
met only if Zm1 = Zm2. Take Zm1 = Zm2 = Mms,
Zs = Mss, and the controller Cs =

Kps+Kvss
s . With

s = jω, the stability (weak stability) conditions (17a)-
(17c) and (17g) turn out to be

− αKvs > 0 (≥ 0) (39)
(α− 1)Kvs > 0 (≥ 0) (40)
Kvs > 0 (≥ 0) (41)

2α2(1− α)Kvs(

√
K2

vs + (
Kps

ω
−Msω)2

√
K2

vs +
K2

ps

ω2

−K2
vs +

K2
ps

ω2
−KpsMs) > 0 (≥ 0) (42)

Also, the left side of (17d)-(17f) becomes identical to
zero. Since 0 ≤ α ≤ 1, the inequality conditions (39)-
(42) will be fulfilled as equalities if and only if

Kvs = 0 (43)

which corresponds to a weakly stable system for
any α in the prescribed range. Again, at the first
glance, the constraint Kvs = 0 seems limiting.
However, this condition is obtained even when us-
ing Llewellyn’s criterion for bilateral teleoperation
systems if force-position teleoperation control laws
are employed [22]. Interestingly, the force-position
controller can be modified to allow for a nonzero
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TABLE 1
The controllers gains used in (A) simulations of the

position-position system, (B) simulations of the
force-position system, and (C) experiments of the

position-position system.

Master #1 Master #2 Slave
(A) Kpm1 630 Kpm2 630 Kps 25200

Kvm1 29.4 or 60 Kvm2 29.4 Kvs 1176
(B) Kpm1 - Kpm2 - Kps 13

Kvm1 - Kvm2 - Kvs 0 or 15
(C) Kpm1 600 Kpm2 800 Kps 1200

Kvm1 300 Kvm2 400 Kvs 600

derivative term while maintaining absolute stability.
In fact, if the proportional-derivative (PD) controller
Fcs =

Kps

s (Vh − Ve) + Kvs(Vh − Ve) for the slave
is modified to the proportional-plus-damping (P+D)
controller Fcs =

Kps

s (Vh − Ve) − KvsVe [23], then
Kvs = 0 is no longer required for absolute stability.
Intuitively, choices made with respect to the teleoper-
ation control laws (e.g., position-position versus force-
position), authority sharing laws (e.g., CLC versus
MCET) and specific controller choices (e.g., PD versus
P+D) influence the absolute stability and the proposed
criterion provides a systematic way to study this.

5 SIMULATIONS AND EXPERIMENTS

In this section, the stability condition has been applied
to assess the stability of the case study trilateral haptic
systems described in Section IV. For brevity, we do not
report here the experiment results of a the exercise for
the force-position system. For checking the stability
of the position-position and force-position dual-user
teleoperation systems, the master #2 and the slave
were connected to passive terminations while the
input energy at the master #1’s port (i.e., the energy
dissipation in the three-port network terminated in
ports 2 and 3) was measured. According to (5), the
system is stable (weakly stable) if and only if, at all
times t > 0, we have

E(t) =

∫ t

0

fh1(τ)Vh1(τ) dτ > 0 (≥ 0) (44)

5.1 Simulations

The position-position and force-position systems have
been simulated in MATLAB/Simulink. There is no
time delay in the communication channel between
the masters and the slave. Three 1-DOF robots as the
two masters and the slave are modeled by masses
Mm1 = 0.7, Mm2 = 0.7, and Ms = 0.5, respectively.
The master #2 and the slave are connected to passive
LTI terminations with transfer functions 1

s+1 , which
are strictly passive as, for s = jω, we have Re( 1

s+1 ) =
1

ω2+1 > 0 when ω > 0. A sine-wave input Fh1 is
applied to the master #1’s port.
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Fig. 2. Input energy at the master #1’s port of a
position-position dual-user teleoperation system. Sim-
ulation parameters are listed in Table 1(A) for the stable
case with Kvm1 = 29.4, and for the potentially unstable
case with Kvm1 = 60.
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Fig. 3. Simulation results for the dual-user teleop-
eration system. The desired and actual positions for
the slave are shown. A sinusoidal force was applied
to the master #1 while the master #2 and the slave
were connected to passive terminations. Simulation
parameters are listed in Table 1(A) for the stable case
with Kvm1 = 29.4.
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Fig. 4. Input energy at the master #1’s port of a force-
position dual-user teleoperation system. Simulation pa-
rameters are listed in Table 1(B) for the stable case
with Kvs = 0, and for the potentially unstable case with
Kvs = 15.
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Fig. 5. Simulation results for the dual-user teleoper-
ation system. The desired and actual forcrs for the
slave are shown. A sinusoidal force was applied to the
master #1 while the master #2 and the slave were con-
nected to passive terminations. Simulation parameters
are listed in Table 1(B) for the stable case with Kvs = 0.
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5.1.1 Position-position trilateral teleoperation system
According to (38), the stability of the position-position
dual-user teleoperation system should depend on the
controllers gains. In the simulations, the controllers
gains Kpm1, Kvm1, Kpm2, Kvm2, Kps, and Kvs were
chosen according to Table 1(A). Also, α = 1

2 . The
input energy (44) profiles are plotted in Figure 2. As
it can be seen, if the controllers gains are selected
according to (38), i.e., as listed in Table 1(A) with
Kvm1 = 29.4, then the input energy at port 1 is
always positive at all times, indicating stability of the
trilateral haptic system. However, when we change
Kvm1 to 60, which violates (38), the input energy
will become negative at least for a period of time,
indicating potential instability of the trilateral system.
We get similar results if we repeat the above simula-
tions after replacing the strictly passive terminations
1

s+1 by the passive terminations 1
s , and do not report

its results for brevity. For the case of kvm1 = 29.4,
Figure 3 depicts the average positions of two masters
versus the slave position. These results agree with the
stability condition (38).

5.1.2 Force-position trilateral teleoperation system
According to (43), the controllers gains Kpm1, Kvm1,
Kpm2, Kvm2, Kps, and Kvs of the force-position dual-
user teleoperation system were chosen as shown in
Table 1(B). Similar to the position-position case, we
choose α = 1

2 . Note that in the force-position scheme,
there is no local position controller for either of the
master robots. According to (43), the stability of the
force-position trilateral teleoperation system is guar-
anteed if Kvs = 0. The input energy (44) profiles are
plotted in Figure 4. As it can be seen, if the controllers
gains are selected according to (43), i.e., as listed in
Table 1(B) with Kvs = 0, then the input energy at port
1 is always positive at all times, indicating stability
of the trilateral haptic system. However, when we
change Kvs to 15, which violates (43), the input energy
will become negative at least for a period of time,
indicating potential instability of the trilateral system.
We get similar results if we repeat the above simula-
tions after replacing the strictly passive terminations
1

s+1 by the passive terminations 1
s , and do not report

its results for brevity. For the case of Kvs = 0,
Figure 5 depicts the average forces of two masters
versus the slave force. These results agree with the
stability condition (43).

5.2 Experiments
We use a dual-user teleoperation system comprising
two Phantom Premium 1.5A robots (Sensable Tech-
nologies/Geomagic, Wilmington, MA) as the master
#1 and as the master #2, and a Phantom Omni robot
as the slave. Out of the three actuated joints of each
robot, the first joint, which rotates about the vertical,
is considered in the experiments while the second and

Master #1 Master #2

Slave

Springs

JR3 force 

sensor
JR3 force 

sensor

User 1 User 2

Fig. 6. Experimental setup where the master #1 and
the master #2 are controlled by human users. The
above shows the case where the slave is connected
via passive spring to stiff wall. Other 2 cases are set
up in a similar way.

the third joints, which form a parallel mechanism, are
locked using high-gain controllers. The master #1 and
the master #2 are equipped with JR3 6-DOF force (JR3,
Inc., Woodland, CA) for measuring the applied forces.

The experimental setup is shown in Figure 6, where
two human users interacts with the master #1’s and
the master #2 while the slave is in free motion, phys-
ically connected via a passive spring to a stiff wall,
or physically clamped to a stiff wall. The position-
position controllers gains are chosen according to
Table 1(C), meeting the theoretical stability condition
(38). The input energy (44) profiles are plotted in
Figure 7 when the slave is connected to different
passive terminations. As it can be seen, for all 3 cases,
the input energies at the master #1’s port and at the
master #2’s port are always positive, which means the
trilateral haptic system is stable. For the case in which
the slave is physically connected via a passive spring
to a stiff wall, Figure 8 depicts the average positions
of two masters versus the slave position. This time
profile of positions further corroborates the stability
of the system. These experimental results agree with
the stability condition (38).

6 CONCLUSIONS AND FUTURE WORKS

We presented a closed-form stability criterion for a
three-port network based on its impedance (admit-
tance) matrix. While the proposed criterion (Theorem
1) can be used for stability analysis of a general class
of three-port networks in a variety of applications,
we elaborated on its application in stability analysis
of trilateral haptic systems. Through simulations and
experiments involving dual-user haptic teleoperation
of one slave robot, the proposed stability criterion was
validated. While equations (17a)-(17g) give necessary
and sufficient conditions for a trilateral haptic sys-
tem’s absolute stability, the symmetrization condition
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Fig. 7. Input energy Et at the master #1’s port and at the master #2’s port of a position-position dual-user
teleoperation system. Experimental parameters are listed in Table 1(C). The master #1 and the master #2 are
held by users. The slave is either in free motion, physically connected via a passive spring to a stiff wall, or
physically clamped.
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Fig. 8. Experimental results for the dual-user teleoper-
ation system. The desired and actual positions for the
slave are shown. The master robot #1 is moved by the
human operator and the master #2 and the slave are
Physically connected via a passive spring to a stiff wall.
Parameters are listed in Table 1(C).

is a limiting factor. However, it is mild and mostly
fulfilled by appropriate choice of free parameters in
the three-port network including the teleoperation
control structure, authority sharing laws, and control
gains. The symmetrization condition involves the ac-
tual values of the teleoperator model parameters. The
robustness of the symmetrization condition against
variations in these parameters varies from case to
case and needs to be investigated before proceeding
to checking the stability conditions (17a)-(17g). In the
future, the proposed stability criterion can be used
to investigate the stability of trilateral haptic systems
that experience time delays in their communication
channels. Extending the proposed stability criterion
to the case of multi-DOF trilateral haptic systems
requires further investigation as well. Also, while we
have focused on the stability analysis, future work

can investigate the stability-transparency trade-offs
for trilateral haptic systems in light of the proposed
stability criterion.

ACKNOWLEDGMENTS

The authors thank Ali Jazayeri for helping with the
experimental setup. This research was supported by
the Natural Sciences and Engineering Research Coun-
cil (NSERC) of Canada, by the Natural Science Foun-
dation of China (NFSC, Grant No. 51277022), and
by the China Scholarship Council (CSC) under grant
[2011]3005.

REFERENCES

[1] B. Hannaford, “A design framework for teleoperators with
kinesthetic feedback,” IEEE Transactions on Robotics and Au-
tomation, vol. 5, pp. 426–434, 1989.

[2] F. Llewellyn, “Some fundamental properties of transmission
systems,” Proceedings of the IRE, vol. 2, no. 1, pp. 271–283, 1952.

[3] W. Ku, “A simple dervation for the stability criterion of linear
active two-port,” Proceedings of the IEEE, pp. 310 – 311, March
1965.

[4] S. Haykin, Active Network Theory. Reading, MA: Addison-
Wesley, 1970.

[5] C. R. Carignan and P. A. Olsson, “Cooperative control of
virtual objects over the internet using force-reflecting master
arms,” in Proc. of IEEE Int. Conf. on Rob. And Auto., vol. 2, pp.
1221–1226, 2004.

[6] S. Nudehi, R. Mukherjee, and M. Ghodoussi, “A shared-
control approach to haptic interface design for minimally
invasive telesurgical training,” IEEE Transactions on Control
Systems Technology, vol. 13, no. 4, pp. 588–592, July 2005.

[7] W. T. Lo, Y. Liu, I. Elhajj, N. Xi, Y. Wang, and T. Fukuda,
“Cooperative teleoperation of a multirobot system with force
reflection via internet,” IEEE/ASME Transactions on Mechatron-
ics, vol. 9, no. 4, pp. 661 –670, December 2004.



11

[8] R. F. Kuo and T. H. Chu, “Unconditional stability boundaries
of a three-port network,” IEEE Transactions on Microwave The-
ory and Techniques, vol. 58, no. 2, pp. 363–371, December 2010.

[9] E. Tan, “Simplified graphical analysis of linear three-port sta-
bility,” IEE Proceedings on Microwaves, Antennas and Propagation,
vol. 152, no. 4, pp. 209–213, August 2005.

[10] B. Khademian and K. Hashtrudi-Zaad, “Shared control archi-
tectures for haptic training: Performance and coupled stability
analysis,” The International Journal of Robotics Research, vol. 30,
pp. 1627–1642, 2011.

[11] J. Boehm and W. Albright, “Unconditional stability of a three-
port network characterized with s-parameters,” IEEE Transac-
tions on Microwave Theory and Techniques, vol. 35, no. 6, pp. 582
– 586, January 1987.

[12] J. Choma and W. K. Chen, Feedback Networks: Theory and Circuit
Applications. World Scientific Publishing Company, 2007.

[13] W. Ku, “Stability of linear active nonreciprocal n-ports,” J.
Franklin Inst., no. 276, pp. 207 – 224, 1963.

[14] V. Mendez and M. Tavakoli, “A passivity criterion for n-port
multilateral haptic systems,” in 2010 49th IEEE Conference on
Decision and Control (CDC), December 2010, pp. 274 – 279.

[15] D. Youla, “A stability characterization of the reciprocal linear
passive n-port,” Proc. IRE, vol. 47, pp. 1150–1151, 1959.

[16] S. Boyd and O. Chua, “On the passivity criterion for LTI n-
port,” Circuit theory and applications, vol. 10, pp. 323–333, 1982.

[17] H. J. Marquez, Nonlinear Control Systems Analysis and Design.
Wiley, 2003.

[18] D. Youla, “A note on the stability of linear, nonreciprocal n-
port,” Proc. IRE, vol. 48, pp. 121–122, 1960.

[19] H. Anton and C. Rorres, Elementray linear algebra: Applications
version. Wiley, 2005, vol. 9.

[20] C. M. Gewertz, Network Synthesis: Synthesis of a Finite Four-
Terminal Network from Its Prescribed Driving-Point Functions and
Transfer Function. The Williams and Wilkins Company, 1933.

[21] B. Khademian and K. Hashtrudi-Zaad, “Dual-user teleopera-
tion systems: New multilateral shared control architecture and
kinesthetic performance measures,” IEEE/ASME Transactions
on Mechatronics, vol. 17, no. 5, pp. 895–906, October 2012.

[22] M. Tavakoli, A. Aziminejad, R. Patel, and M. Moallem, “High-
fidelity bilateral teleoperation systems and the effect of mul-
timodal haptics,” IEEE Transactions on Systems, Man, and Cy-
bernetics, Part B: Cybernetics, vol. 37, no. 6, pp. 1512 –1528,
December 2007.

[23] B. Willaert, B. Corteville, D. Reynaerts, H. V. Brussel, and
E. B. V. Poorten, “A mechatronic analysis of the classical
position-force controller based on bounded environment pas-
sivity,” The International Journal of Robotics Research, vol. 30, pp.
444–462, 2011.

Jian Li received his B.Sc. and M.Sc. de-
grees in Detection Technology and Automatic
Equipment from the University of Electronic
Science and Technology of China, Sichuan,
China in 2007 and 2010. Currently, he is
a Ph.D. student in the School of Energy
Science and Engineering, University of Elec-
tronic Science and Technology of China and
he has been awarded a scholarship under
the State Scholarship Fund to pursue his
study in the University of Alberta as a Visiting

Doctoral student. His main research interests include haptics and
teleoperation control, optimal control, and power system.

Mahdi Tavakoli received his BSc and MSc
degrees in Electrical Engineering from Fer-
dowsi University and K.N. Toosi University,
Iran, in 1996 and 1999, respectively. He then
received his PhD degree in Electrical and
Computer Engineering from the University of
Western Ontario, London, ON, Canada, in
2005. In 2006, he was a post-doctoral re-
search associate at Canadian Surgical Tech-
nologies and Advanced Robotics (CSTAR),
London, ON, Canada. In 2007-2008, and

prior to joining the Department of Electrical and Computer Engineer-
ing at the University of Alberta, Dr. Tavakoli was an NSERC Post-
Doctoral Fellow with the BioRobotics Laboratory of the School of
Engineering and Applied Sciences at Harvard University, Cambridge,
MA, USA. Dr. Tavakolis research interests broadly involve the areas
of robotics and systems control. Specifically, his research focuses
on haptics and teleoperation control, medical robotics, and image-
guided surgery. Dr. Tavakoli is the first author of the book Haptics for
Teleoperated Surgical Robotic Systems (World Scientific, 2008).

Qi Huang (StM99, M03, SM09) received his
BS degree in Electrical Engineering from
Fuzhou University in 1996, MS degree from
Tsinghua University in 1999, and Ph.D de-
gree from Arizona State University in 2003.
He is currently a professor at University of
Electronic Science and Technology of China
(UESTC) and the Deputy Dean of School of
Energy Science and Engineering, UESTC,
and the Director of Sichuan State Provincial
Lab of Power System Wide-area Measure-

ment and Control. His current research and academic interests
include power system high performance computing, power system
instrumentation, power system monitoring and control, and inte-
gration of distributed generation into the existing power system
infrastructure.


