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Abstract—In this study, we present a novel machine learning-based
technique to help surgical mentors assess surgical motion trajectories
and corresponding surgical skills levels in surgical training programs.
The proposed method is a variation of sparse coding and dictionary
learning that is straightforward to optimize and produces approximate
trajectory decomposition for structured tasks. Our approach is supe-
rior to existing stochastic or deep learning-based methods in terms
of transparency of the model and interpretability of the results. We
introduce a dual-sparse coding algorithm which encourages the elim-
ination of redundant and unnecessary atoms and targets to reach the
most informative dictionary, representing the most important temporal
variations within a given surgical trajectory. Since surgical tool trajec-
tories are time series signals, we further incorporate the idea of floating
atoms along the temporal axis in trajectory analysis, which improves
the model’s accuracy and prevents information loss in downstream
tasks. Using JIGSAWS data set, we present preliminary results showing
the feasibility of the proposed method for clustering and interpreting
surgical trajectories in terms of user’s skills-related behaviors.

Index Terms—Machine Learning, Dictionary Learning, Sparse Cod-
ing, Surgical Trajectory Decomposition, Surgical Skills Assessment.

I. INTRODUCTION

Modern surgical robots are capable of measuring and recording
surgical activities (e.g., kinematics data, video recordings, eye-gaze
data), which makes them a perfect platform for incorporating
data-driven solutions for procedural understanding and user skills
assessment applications. There are several work that perform the
autonomous robotic surgical skills evaluation using deep learning
(DL) [1]–[5]. Even though these studies have reported relatively
low misclassification rates, they are black-box models in which the
decision-making procedure is not transparent or understandable in
human terms. As a result, there is neither intuitive nor explainable
feedback to the user about his/her surgical performance and
contributing factors to the predicted model outcome (in this paper,
explainability and intuitiveness are referred to as the extent to which
the internal mechanism or outcome of a model can be explained
and are intuitive in human terms, respectively). Moreover, the high
capacity of the mentioned models (i.e., the ability of the model for
accommodating input data variations which mainly depends on the
number of learnable parameters), especially DL models, demands
large training sets to avoid overfitting. Since in the field of robotic
surgery, clean and reliable data sets are very small in size, such
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models usually tend to overfit and fail to generate reliable models
that perform well in novel situations (e.g., aborting and restarting a
task, unwanted mistakes caused by poor depth estimation, etc.) [6].

To provide users with more elaborated targeted feedback about
their skills level and surgical performance (e.g., in which part of the
task the surgeon should improve his/her skills), one can break up
surgical trajectories into pre-defined segments called surgemes [7]
and apply surgical skills assessment methods at the sub-task level.
In this paradigm, rather than having a global performance score, we
will analyze the surgical workflow that results in high-resolution
feedback regarding different aspects and parts of the whole executive
task. There is a rich body of literature trying to perform fine-grained
analysis of surgical activities in an automatic way using DL [8]–
[13], reinforcement learning (RL) [14], and Hidden Markov Models
(HMMs) [15]. These approaches not only have the same problems
raised from being a black-box model but also suffer from over-
segmentation (i.e. predicting numerous insignificant action bound-
aries) and low accuracy rate that prevents them to make certain pre-
dictions, especially for rare or unseen events (e.g., mid-task failures)
[7]. We infer that the over-segmentation problem arises from the fact
that these models pay too much attention to the data local variations
(i.e., microscale details), rather than global context. Moreover, to
evaluate the segmentation accuracy of these methods, they heavily
rely on manually made gesture annotations, which would be very
laborious, time consuming, and prone to inter-annotator variation.
More importantly, the mentioned approaches break up trajectories
into segments without offering any explicit interpretation about the
behaviors and the dexterity of the user in the sub-task level.

Statistical machine learning (ML) techniques, on the other hand,
usually perform better than DL models on small training data sets.
An intuitive and human-inspired ML approach can provide us with a
more transparent and explainable solution for data-scarcity surgical
decomposition task [16]. One intuition about structured tasks such
as suturing trials, human walking cycles, parallel parking, etc., is
that their main variations can be decomposed into finite components
namely general trends and seasonal patterns. This concept is
illustrated in Fig. 1 in which d1 is the average general trend and
other components are the averaged dominant seasonal patterns for
all 6 trials within the training data set. In this kind of decomposition,
each component contains specific and important intra-trial temporal
variations. Moreover, taking Fig. 1 as an example, each trial in
training or test data sets can be individually reconstructed via
a linear combination of components, i.e., Trialk =

∑3
i=1 ckidi

where cki∈R is the weight indicating the contribution strength of
component di in the reconstruction of kth trial. If di are trained
on expert trajectories, gains cki for a given test trial can be used to
determine the fidelity of the participant to the averaged ideal trend
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Figure 1: Approximate trajectory decomposition in structured tasks.

and seasonal patterns and convey important information regarding
the execution quality and dexterity of the user. That is, each trajectory
can be characterized by its coefficient vector ck=[ck1,ck2,ck3]

⊤ in
the embedding space in which hidden behaviors of the user will be
revealed.

Inspired by these intuitions, dictionary learning and sparse
coding [17] can be modified to be applied on structured time
series for meaningful, interpretable, and human-inspired trajectory
decomposition task. Generated components (i.e., dictionary atoms)
and their contribution in reconstruction of each individual trajectory
(i.e., generated code matrix) disclose important information for
several downstream tasks such as skills assessment, skills transfer,
and anomaly detection.

In this research, we will introduce dual-sparse dictionary
learning approach for the approximate trajectory decomposition
of structured tasks in retrospective studies. We will also introduce
our dual-sparse dictionary learning algorithm with a novel absolute
mutual incoherence metric µ+. The idea of floating atoms will be
incorporated in the proposed algorithm to accommodate trajectory
structures with temporal shift. This preserves the relative temporal
structure of the underlying events and prevents information loss
while mapping the data to lower dimensional space (or embedding
space, e.g., three dimensional space which is perceptible for
humans and suitable for data visualization purposes) and makes our
embedding representation more meaningful and realistic. Finally,
we will evaluate our method on basic structured robotic surgery
trajectories in JIGSAWS data set for surgical skills assessment and
anomaly detection tasks. We believe that our novel approach has
a potentially high impact in robotic surgery, where demands for
enhanced safety and explainability are extremely strong.

The paper is organized as follows: In Section II, basic concepts
and motivations that lead us to our contributions will be discussed.
In Section III, algorithm implementation and the idea of floating
atoms will be presented. In Section IV, fundamental features of
our approach and its application on JIGSAWS data set will be
investigated. In Section V, several discussions about the advantages
and practical details of the proposed method will be presented.
Concluding remarks are provided in Section VI.

II. PROBLEM STATEMENT

A. Preliminaries

Sparse coding is a method of representing data vectors as sparse
linear combinations of a set of basis elements called atoms. It is as-

sumed that all atoms together which make dictionary matrix, capture
main directions in the input space and have enough information for
reconstructing input data. Dictionary learning algorithms try to de-
velop a dictionary matrix that efficiently reconstructs each input data
by a linear combination of the generated atoms. In this context, all
generated coefficients of linear combinations are referred to as code.

A traditional dictionary learning framework for sparse
representation optimizes the empirical loss function

L(D,C)= min
D,{ci}ni=1

n∑
i=1

[
1

2
||xi−Dci||22+α||ci||0

]
(1)

for the finite set of n data vectors X :=[x1,...,xn]∈Rd×n, aiming
to find an optimal dictionary D :=[d1,...,dp]∈Rd×p such that each
data vector xi can be well-approximated by a linear combination
of dictionary atoms {dj}pj=1. The term ||ci||0 in (1) which is the
number of non-zero elements in vector ci, encourages to minimize
the number of non-zero element in code vectors ci ∈ Rp of the
code matrix C :=[c1,...,cn]∈Rp×n. The sparsity-promoting loss
||ci||0 encourages the coding algorithm to rely on a minimum
number of the generated dictionary atoms for reconstruction which
has the advantage of being simple and easy to decode, either by
machine or human. The loss function (1) simply tries to make
a balance between data reconstruction loss ||xi − Dci||22 and
sparsity-promoting loss ||ci||0 with a regularization parameter α.

The l0 sparsity loss ||ci||0 in (1) makes the optimization an
NP-hard problem with sub-optimal solution [18]. Replacing ||ci||0
with its l1 convex relaxation ||ci||1 yields optimal and sparse
solutions for codes ci [19]. To prove why l1 regularization term
||ci||1 enforces elements of vector ci to be zero (i.e., to be sparse
rather than small), we encourage the reader to see [20].

Due to the bi-linearity between the dictionary D and codes ci,
(1) is still non-convex and cannot be jointly optimized with respect
to dictionary D and code matrix C [21]. Since (1) is convex with
respect to variables D or C when the other one is fixed, a solution
to this problem is to alternate the optimization procedure between
the two variables, i.e., minimizing the loss function with respect
to one parameter while keeping the other one fixed. To prevent
dictionary atoms to get arbitrary large in the optimization process,
we should normalize each atom (i.e., di←di/||di||2, ∀i) after each
dictionary update.

Conventional dictionary learning approach usually generates
more atoms than the number of data samples and creates over-
complete dictionaries (e.g., p≈ 4n in [22]) for the sake of recon-
struction accuracy. Besides the high computational cost and memory
demand of the over-complete dictionary approaches, the redundancy
of the generated dictionary does not necessarily enhance the optimal-
ity and performance of the final solution. One major problem with
over-complete dictionaries is the high correlation between generated
atoms, which degrades the mutual incoherence metric defined as

µ(D)=max
i̸=j

|d⊤
i dj|

||di||2||dj||2
. (2)

It is empirically observed that highly correlated atoms in over-
complete dictionaries or in general, high values forµ(D) (in Section
III-A we will calculate an upper bound for µ) make the sparse



coding stage slow, computationally demanding, and non-optimal
[23]. Tackling this problem, [24] proposes orthogonal dictionary
learning method (we name it Lorth(D,C)) that is the constrained
version of (1) subject to D⊤D=Ip×p where I indicates identity
matrix. [24] argues that this approach yields µ(D) = 0, faster
convergence, and comparable results relative to other sophisticated
over-complete dictionary learning methods such as K-SVD [25].

B. Motivation

Prior work in surgical skills evaluation has shown that a lay
observer is able to discover and rate the skillful behavior of a
surgeon just by looking at his/her pre-recorded translational and/or
rotational hand movement patterns with accuracy comparable to
an expert surgeon [26]. A possible explanation about this interesting
result is that the lay observer does not care about extreme details
and microscale translations/rotations within the surgical trajectory.
He/she just pays attention to the most informative temporal features
within the executive task, i.e., (1) general trend, (2) seasonal
patterns, and (3) unwanted random actions. Although the cognitive
procedure of decision making based on these three factors is
unknown, we are inspired to investigate how much the fidelity to
the general trend, correct execution of each seasonal pattern, and
minimum occurrence of incidental motions play a crucial role in
rating the performance of the user in surgical tasks.

The central idea of this work is to generate an intuitive and
universally understandable representation of surgical trajectories
based on building blocks of surgery that meaningfully describes the
procedural flow and highlights hidden information of a surgical task.
The core intuition is aligned with the motivation of representing data
as a sparse linear combination of specific atoms in sparse coding
problems. In this context, each dictionary atom can be a represen-
tative of the task general trend or a seasonal pattern (i.e., surgeme)
that encapsulates one important local variation of the trajectory.

Unlike prior dictionary learning algorithms that rely on generating
a lot of atoms to take care of details and microscale variations of
data, in this work, we develop an algorithm that selectively removes
unnecessary atoms and focuses on preserving important variations
within the input data to achieve an understandable and interpretable
trajectory decomposition. Apart from neglecting unnecessary details
and the small number of atoms, another feature that makes our
representation meaningful and easy to interpret is the minimum
amount of overlap between two arbitrary atoms. This is meaningful
because we aim to assign each non-overlapping seasonal pattern of
the structured trajectory to one dictionary atom (e.g., 2nd and 3rd

components in Fig. 1). Moreover, a small overlap between dictionary
atoms indicates that the action executed in a particular timestamp
can be purely attributed to one dominant atom and it simplifies
interpretations about the quality of the task done in that timestamp.
Factorizing minimally-overlapping atoms can be thought of per-
forming approximate decomposition for a particular structured task.

Although enforcing atoms to have zero overlap with each other
during the learning process makes them more explainable, it
degrades the signal reconstruction quality with poor non-smooth
results and the interpretability of generated codes. Moreover,
as we will show later, intensively reducing the total number of
active atoms increases their overlap. This is because the algorithm

tries to allocate all variations of the trajectory among currently
existing atoms to minimize the reconstruction loss. There is a
inter-dependency between the number of atoms, their overlap, and
reconstruction loss to generate informative codes for a given set of
trajectories. We call the smallest number of minimally-overlapping
atoms that gives us a relatively good reconstruction the intrinsic
dimensionality of embedding space (δ).

C. Data Set

All analysis in this work are done based on the standard
JIGSAWS data set [27] collected from surgical activities of
eight surgeons in three different levels of expertise (i.e., novice,
intermediate, and expert) performing suturing (SU), knot-tying
(KT), and needle-passing(NP) tasks on the da Vinci Surgical System.
JIGSAWS contains three Cartesian motions along x, y, and z axes
as well as 9 elements of rotational matrix R∈R3×3 for both hands
of the user and also for both patient-side robotic arms. Note that,
all 9 elements of rotational matrix R can be expressed as 3 angles
roll (Φ), pitch (Θ), and yaw (Ψ) as follows

Φ=atan2

(
r21
r11

)
,Θ=atan2

(
−r31√
r232+r233

)
,Ψ=atan2

(
r32
r33

)
where rij is the element in the ith row and jth column of R.

III. METHODOLOGY

A. Dictionary Factorization

We will show that having the minimum overlap between two
atoms is a much stricter condition compared to the orthogonality
condition (i.e., minimum correlation between atoms or small value
for µ(D)) presented in [24]. To have a measure of overlap between
two arbitrary atoms, we introduce the absolute mutual incoherence
metric defined as

µ+(D)=max
i̸=j

|di|⊤|dj|
||di||2||dj||2

. (3)

where |di| denotes the element-wise absolute value of the vector di.
Since |di|⊤|dj|≥ |d⊤

i dj| holds for ∀di,dj ∈Rd, from (2) and (3)
it can be concluded that µ+(D) is an upper bound for µ(D) (i.e.,
µ(D)≤µ+(D)) and minimizing µ+(D) shrinks µ(D). However,
minimizing µ(D) does not necessarily yield reduced µ+(D).

Property 1: 0≤µ(D)≤µ+(D)≤1. □
Proof. See Appendix A. ■

We argue that minimizing the total overlap between atoms
promotes the reduction of µ+(D). To formulate overlapping
between atoms, we rewrite the dictionary matrix based on its
rows, D := [d̂

⊤
1 , ... , d̂

⊤
d ]

⊤ where d̂k = [d1(k), ... , dp(k)] is
the kth row of the matrix D and di(k) is the kth element of
atom di. Note, applying l1 regularization on d̂k (i.e., minimizing
||d̂k||1 =

∑p
i=1 |di(k)|) in a quadratic objective function (e.g.,

1
2 ||xi−Dci||22) enforces elements of d̂k (i.e., di(k)) to be zero
which eventually reduces the total overlap between all atoms at
timestamp k. This means setting |di(k)||dj(k)| to zero for as many
as possible 1 ≤ i, j ≤ p, i ≠ j, which ultimately minimizes
µ+(D). Note that since µ+(D) normalizes each atom, reducing
|di(k)||dj(k)| is not enough; it is ideal for it to be zero. It means we



have to havedi(k) equal to zeros for a lot of all possible i for a given
k (i.e., a sparse d̂k for all 1≤k≤d), which conceptually reduces the
overlap between atoms at timestamp k. As a result,µ+(D) is a good
measure of overlap between dictionary atoms which µ+(D)=1 for
a fully-overlapped dictionary and µ+(D)=0 for non-overlapping
dictionary. Later, we will investigate the relationship between
µ+(D) and the total overlap between active dictionary atoms.

1) Objective Function Definition: Now, we define a new cost
function L+(D,C) that tries to jointly generate sparse codes and
dictionaries with minimally-overlapping atoms to reconstruct the
input data X

L+(D,C)= min
D,{ci}ni=1

{
n∑

i=1

[
1

2
||xi−Dci||22+α||ci||1

]

+

d∑
k=1

β||d̂k||1

}
(4)

where β is the regularization factor that determines the relative
importance of total overlap compared to the sparsity of generated
codes and lumped reconstruction error for all data vectors in X.

2) Algorithm Implementation: As explained in Section II-A,
for the sake of convexity we need to alternatively optimize loss
function (4) with respect to one parameter D or C while keeping
the other one fixed. As a result, we have two steps for minimizing
our cost function: C-step and D-step. In C-step we fix matrix D
(coming from initialization or the previous D-step) and do

L+C(D,C)= min
{ci}ni=1

n∑
i=1

[
1

2
||xi−Dci||22+α||ci||1

]
. (5)

This optimization is equivalent to the lasso problem [28] for
which many fast algorithms exist. We assume that the function
sparseCode(X,D,α) gets the dictionary D, data vectors X,
and regularization parameter α and returns code matrix C.

In D-step, we fix matrix C and do

L+D(D,C) = min
D

n∑
i=1

1

2
||xi − Dci||22 +

d∑
k=1

β||d̂k||1. (6)

Due to our l1 condition on the rows of dictionary matrixD, (6) is no
longer a conventional dictionary update problem with closed-form
solution via coordinate descent approach. Moreover, we have two
summations that make the solution formulation hard and long.

We define the reconstruction error vector for each data sample
xi as εi := xi −Dci ∈ Rd and reconstruction error matrix as
E := [ε1,...,εn] =X−DC ∈ Rd×n. According to the norm-2
definition, ||xi −Dci||22 = ||εi||22 =

∑d
j=1 e

2
ji where eji is the

element in the jth row and ith column of matrix E. As a result

n∑
i=1

||xi−Dci||22=
n∑

i=1

 d∑
j=1

e2ji

=

d∑
k=1

n∑
r=1

ê2rk (7)

where êrt is the element in the rth row and kth column of matrix
E⊤. (7) shows the trivial fact that the sum of squares of all
elements in matrix E is equal to that of E⊤. Due to the fact that

Algorithm 1: Dual-sparse coding algorithm.
Input: X, α, and β
Result: Dictionary D with

minimally-overlapping atoms and code matrix C
Call function sparseCode(.,.,.)
Initialize dictionary D
while not converged do

#C-step
C← sparseCode(X,D,α)
#D-step

D←
[
sparseCode(X⊤,C⊤,β)

]⊤
end
#normalizing atoms of dictionary D
for i←1 to p do

if ||di||2≠0 then
di←di/||di||2

else
#removing nullified atoms
Remove di from D

end
end
#generating finalized code matrix
C← sparseCode(X,D,α)
return D and C

E⊤=(X−DC)⊤=X⊤−C⊤D⊤ we have

d∑
k=1

(
n∑

r=1

ê2rk

)
=

d∑
k=1

||x̂k−C⊤d̂k||22 (8)

where d̂k is the kth column of D⊤ (or as previously mentioned
the kth row of D) and x̂k is the kth column of X⊤. Combining
(7) and (8) results

n∑
i=1

||xi−Dci||22=
d∑

k=1

||x̂k−C⊤d̂k||22. (9)

Substituting (9) into (6) yields a more tractable cost function for
our specific dictionary update procedure

L+
D⊤(C

⊤,D⊤)=min
D⊤

d∑
k=1

[
1

2
||x̂k−C⊤d̂k||22+β||d̂k||1

]
. (10)

Interesting point about (10) is that it tries to minimize exactly the
same problem described in (5). In fact, our specialized dictionary
learning problem for a given code matrix C and data set X became
an sparse coding problem for the dictionary C⊤ and data set
X⊤ with regulation parameter β. The algorithm for solving the
dual-sparse coding problem is described in Algorithm 1.

The first point regarding Algorithm 1 is that unlike the traditional
dictionary learning methods, in our method norms of atoms do
not arbitrary get large during the optimization process since the
size of each atom is penalized by minimizing

∑d
k=1 ||d̂k||1 in

(4). As a result, we do not need to normalize dictionary atoms di

after each update. Second, we start the algorithm with initialized
dictionary matrix with the number of atoms higher than the intrinsic



dimensionality of embedding space of that particular task to give
the algorithm the chance of deleting unnecessary atoms in its own
way. In the end, the final code matrix C will be generated based
on the normalized final D.

3) Algorithm Convergence: In each iteration, Algorithm 1 aims
to reduce the total reconstruction loss, code sparsity loss, and dictio-
nary atoms overlapping loss by minimizing convex cost functions
(5) and (10) in C and D steps, respectively. According to [29], [30],
if C∗ and D∗ are optimal solutions for the loss function (4) and the
Algorithm 1 starts fromC0 andD0, for each iteration k≥0we have

E
[
L+(Dk+1,Ck+1)

]
−L+(D∗,C∗) ≤
ξ
(
L+(Dk,Ck)−L+(D∗,C∗)

)
(11)

where 0≤ ξ < 1 is a constant derived from the properties of loss
function (4) (see Appendix B) and E [L+(Dk+1,Ck+1)] is the
expected value of lossL+(D,C) in (k+1)th iteration. (11) implies
that in each iteration, statistically, it is guaranteed that the expected
value of the loss function (4) approaches to its minimum value
L+(D∗,C∗) through the coordinate descent Algorithm 1.

B. Dictionary Temporal Fine-tuning

Some atoms that are generated by Algorithm 1 are similar to
islands with sharp onsets, short duration, and no overlap with each
other (e.g., green and black atoms in the left column of Fig. 2).
These atoms are the result of averaging a significant variation (i.e.,
surgeme) within trajectories of the training set that the algorithm
perceived they are important in reconstructing the original trajectory.

An issue that may arise with these specific atoms is that they can
be arbitrarily aligned with respect to the structure of a given trajec-
tory within the test set (i.e., they can appear at different temporal
positions with some phase shifts within a given executive task). In
other words, although these atoms are presented in the optimal place
with regards to the trajectories of the training set, their temporal
position might not be optimal for a particular trajectory (either from
the training set or test set). This phenomenon can neglect important
variations within the original trajectory during the reconstruction and
coding stage and as a result, distorts the values of the generated codes
for those atoms. When the high-dimensional data (e.g., trajectory
data vector) is mapped to lower-dimensional embedding space,
unwanted changes in code vectors can be treated as information
loss. Since the hidden behaviors of each user are mapped to the
embedding space, any sort of information loss deteriorates the
accuracy of any interpretation and evaluation of that trajectory.

One possible solution to this problem is to perform a post-
processing step in the training stage and shift the atoms slightly
to the left and right and investigate where this atom fits best (this is
why we call these atoms floating atoms). This type of modeling due
to the extra degree-of-freedom on generating atoms benefits from the
advantages of over-complete dictionaries in terms of having lower
reconstruction and information losses and at the same time, due to
the small number of minimally-overlapping atoms avoids disadvan-
tages of over-complete dictionary learning methods such as the high
correlation between atoms discussed earlier in Section II-A. The
bounded shifting to left and right is meant to secure the floating atom
for intended variation within the trajectory, and to prevent it from

Algorithm 2: Meta-algorithm for calculating optimal shift
φi for floating atoms di.

Input: xj, D, φmax, and γ
Result: φi

Call function sparseCode
φi←−φmax #initializing optimal shift
Cmax←−∞ #initializing optimal cost
for φ←−φmax to φmax do

ci,φ=sparseCode(xj,Dφ,α)
C=xj⋆di,φ−γ||xj−Dφci,φ||2
if C>Cmax then
Cmax←C
φi←φ

end
end
return φi

mixing with other nearby atoms. Later we will explain one heuristic
for calculating the maximum amount of shifting (i.e., φmax).

Without loss of generality, assume that first f atoms of p atoms
meet all conditions of floating atoms (i.e., island-shaped, sharp
onset, low duration, and no overlap with other atoms except general
trend atom). A good metric to find the optimal temporal shift for
a floating atom (i.e., φi for floating atom di where 1≤ i≤ f) is
cross-correlation. Higher cross-correlation between trajectory xj

and floating atom di with specific time shift φi (we define it di,φi
)

means that the trajectory needs the atom to be presented in that
shifted position for the better reconstruction and less information
loss. If the amount of cross-correlation is the same for several shifts
within the domain of φi (i.e., [−φmax,φmax]), low reconstruction
loss for xj based on new dictionary Dφi

(i.e., dictionary D with
di←di,φi

modification) and new generated sparse code ci,φi
will

finalize the optimal value for shifting. The optimal shift φi for
floating atoms di given trajectory xj will be calculated by solving
this optimization problem

φi=argmax
φ

(xj⋆di,φ−γ||xj−Dφci,φ||2) (12)

where ⋆ is cross-correlation operand, γ is the regularization factor,
and φ ∈ [−φmax,φmax]. The meta-algorithm for calculating the
optimal shifting for floating atoms that can be applied to all floating
atoms of a learned dictionary is presented in Algorithm 2. After
applying Algorithm 2 on all floating atoms di with respect to
the test trajectory xj and finding φi for all possible 1 ≤ i ≤ f ,
we will update dictionary D to D†. From now on, the generated
code matrix C†

j =sparseCode(xj,D
†,α)will be used in

downstream applications discussed in the future sections.
Each row of Fig. 2 shows one example of how floating atoms

can be incorporated to reduce the information loss and enhance
the accuracy of the time series mapping for a given structured
task. Dictionary atoms are plotted in the left column of Fig. 2 in
which df

1 is the general trend and green and black diagrams are two
atoms capturing seasonal patterns of the trajectory that satisfy three
conditions of being floating atoms. Fig. 2(b) and Fig. 2(e) show
the reconstruction quality and relative temporal positioning of each



(a)                                    (b)                         (c)

(d)               (e)                                (f)

Figure 2: The effect of temporal fine-tuning of floating atoms of a given structured task on the reconstruction and information losses, max-
imum possible temporal shifts (τi), and optimal temporal shifts (φi). (a) and (d) show dictionary atoms that blue lines are general trend and
green and black lines are two floating atoms for that specific trajectory. (b) and (e) show bad reconstruction and information losses due to the
ill temporal positioning of the floating atoms. (c) and (f) illustrate the optimal positioning of floating atoms with regards to a given trajectory.

floating atom with respect to the original trajectories. As it is clear in
Fig. 2(b), it is better if df

2 and df
3 slightly shift to the right to better

capture the temporal variation that they have to represent. As shown
in Fig. 2(c), optimal shift values are φ2 = φ3 = 2 samples. This
change will result in 18.7% improvement of reconstruction loss
and higher value for the codes assigned to these floating atoms (i.e.,
c2 and c3) that make them more accurate and meaningful in terms
of reflecting skills and hidden behaviors of the user. The effect of
floating atoms on Fig. 2(f) is even more noticeable. By shifting df

2

for φ2=36 to the left and df
4 for φ4=19 to the right (see Fig. 2(f)),

we will achieve 27.4% improvement in reconstruction loss and
considerable changes in the value of codes c2 and c4. For instance,
the temporal position of df

2 with respect to the given trajectory
in Fig. 2(e) was too bad that the sparse coding algorithm decided
to neglect this atom in reconstruction and set c2 to zero. After
fine-tuning df

2 in 2(f), the generated code for df
2 became c2=1.11

which sounds more accurate and realistic in human terms.

An important objective during shifting floating atoms is to avoid
merging these atoms (i.e., they should not overlap after being
placed in their optimal temporal positions). For instance, in Fig.
2(a), we should have φmax≤ τ1/2 to avoid merging two floating
atoms in their extreme shifted states. In Fig. 2(d), df2 and df4 should
not move to right and left, respectively to avoid increasing their
overlap with df3 . These objectives not only preserve the isolated
nature of floating atoms but also reduce the computational cost
of finding optimal values for all possible shifts. If we maintain the
non-overlapping property of floating atoms while shifting them to
find optimal φi, they will remain decoupled. As a result, we can
independently find φi for each valid di instead of jointly optimizing

(12) for all possible floating atoms.
Another upper bound for φmax is the maximum amount

of sliding for each floating atom until they reach left or right
boundaries of the time-series (e.g., τ2 and τ3 for the black and
green atoms respectively in the left column of Fig. 2). A possible
heuristic for finding a good upper bound for φmax based on
explanations above and examples shown in Fig. 2(a) and Fig. 2(d)
are φmax≤min{τ1/2,τ2,τ3} and φmax≤min{τ2,τ3}, respectively.

Finding an appropriate value for φmax is case-dependent and
needs human investigations for getting acceptable results. Since
φmax should be calculated for each floating atom of each component
within all trajectories (e.g., x, y, z, Φ, Θ, and Ψ of left and right
hands), the complexity of the dictionary temporal fine-tuning is
proportional to the complexity of the task (i.e., having numerous
sub-tasks) and the number of components in each trajectory.

IV. APPLICATION TO JIGSAWS DATA SET

Inspired by the fact that decomposing surgical trajectories
into their main variations (i.e., surgemes) reflects skills better
than methods based on execution time or total path length [31],
we resampled all surgical trials within the JIGSAWS data set
to 300 samples and rescaled them between 0 and 1. According
to our investigations, no data variation is removed during the
resampling/rescaling since we have no sudden motion in surgical
tasks. We can investigate task execution time and total path length
as other two factors for our further investigations.

A. Model Training

Results presented here and in the next section are based on atoms
trained over surgical data of an expert user out of 8 subjects in



(a)                                                            (b)                                                           (c)

(d)                                         (e)                                                           (f)

Figure 3: The effect of different initialization of dictionary matrix D in Algorithm 1 convergence. Each column shows the initialized
atoms at the top and their converged final atoms with δ=3 at the bottom. Different initializations converged to almost identical results
(especially in the main variations) which indicates the consistency of the dual-sparse algorithm in finding meaningful atoms.

the JIGSAWS data set. Using expert data for training is due to
the fact that global trends and seasonal patterns with minimum
random movements within a particular task can be found in expert
trajectories. Such a model can be used as a benchmark for other
users to discover their hidden abnormal behaviors. It is worth
mentioning that the processing time for different initializations and
different trajectory components ranges from about 15 to 25 seconds.

B. Convergence Consistency

In a conventional dictionary learning approach the algorithm
converges to very different dictionaries (i.e., non-similar local
optima) for differently initialized atoms. Proper, robust, and
informative initial point as an important factor for the success of the
dictionary learning algorithm is an intensive field of research [32].
Due to our motivation, which is to meaningfully interpret an atom
as a representative of a surgeme or sub-task of a surgical trajectory,
randomly generated atoms are practically unusable even if they give
us a good reconstruction.

In our setting, due to the dual-confined loss function described
in (4), the small number of final atoms, and the structured nature
of input time-series (that are coming from basic structured surgical
tasks), Algorithm 1 tends to generate very similar atoms for different
initial points for the dictionary. As it is clear in Fig. 3, different initial-
izations with the different number of atoms p and different temporal
lengths converged to almost identical atoms (especially in the main
variations) with negligible difference in low amplitude parts. As
we discussed in Appendix B, since (4) is directional component-
wise Lipschitz continuous gradient, D∗ and C∗ in (11) are not
necessarily global optima and hence, the convergence towards local
optima is guaranteed in Algorithm 1. According to Fig. 3, the
consistency of Algorithm 1 in converging to almost identical results
for completely different initializations indicates that local optimum
solutions are very close to the global optimum solution of (4).

The reasoning behind this consistency is that the cost function
(4) nullifies unnecessary atoms (i.e., setting them to a vector of

zeros) while forming residual ones to capture main variations within
the training trajectories that represent surgemes and basic actions
in a particular task. It is observed that Algorithm 1 tries to leave
important variations of the currently nullified atom as inheritances
to its neighboring active atoms to satisfy the reconstruction loss
function. We argue that this behavior is the key element that makes
our approach robust against the effect of dictionary initialization.

C. Reconstruction Quality

Perfect reconstruction (i.e., capturing almost all microscale
details of input) is a major objective in the classic dictionary
learning problem and also one of motivations for incorporating
over-complete dictionaries. In our setting, perfect reconstruction
requires extra atoms to represent unwanted random actions within
structured trajectories which increases the risk of overfitting the
training set and makes it hard to interpret the cause and effect of
generated codes and explain them to a human. Inspired by this fact,
the motivation of our approach is to sacrifice perfect reconstruction
to achieve a small number of minimally-overlapping atoms
that represent prevailed ongoing surgemes within the trajectory.
Following interpretations about the model reconstruction behavior
in Fig. 5 indicate that this sacrifice is not in vain and helps to create
an explainable approach for trajectory assessment.

Both trajectories in Fig. 5 and trajectory shown in Fig. 4(a)
are reconstructed according to the atoms shown in Fig. 3(d) with
hyperparameters α= 1, β = 1.5, and γ = 0.5. The upper plot of
Fig. 5 belongs to an intermediate user performing suturing trial with
the code matrix of cIn=[7.33,4.89,3.13]⊤ which is the same task
performed by the expert user shown in Fig. 4(a) with the code matrix
of cEx=[5.89,−0.57,7.26]⊤. One notable source of difference is
the unusual behavior at the middle part of the intermediate trajectory
that is the sign of happening mid-task failures and restarting while
inserting the suture needle inside the phantom tissue. This common
anomaly in surgical tasks is noticeable via bad reconstruction
and will leave its trace in embedding space by distorting the code



(a)                                                          (b)                                                          (c)

Figure 4: Reconstruction quality of the proposed method for rotational angles of the suturing task in JIGSAWS data set. We aim to preserve
main variations of trajectories while neglecting unnecessary microscale details to create explainable atoms for the decomposition task.

Figure 5: The effect of fault and lack of expertise on reconstruction
quality of two sample trajectories in suturing task in JIGSAWS.

values of its neighbouring atoms. In this particular case, c2 for
instance, should be a low value for normal task execution (e.g.,
c2=−0.57 in cEx), but because of the anomaly, c2 becomes higher
than usual in cIn. This example indicates that although the effect
of random actions is not explicitly a part of problem formulation,
they implicitly leave their interpretable tracks in code space.

The lower plot of Fig. 5 belongs to a novice user with the code
matrix of cNo=[1.92,0.59,2.49]⊤ which is significantly dissimilar
to the expert trial shown in Fig. 4(a) with the code matrix of cEx.
For instance, one important source of the dissimilarity is the low
values of roll rotation at the beginning of the trial that results in low
value for code c1 corresponding to df1 in Fig. 3(d). The low value of
c1 is the sign of a fundamental mistake is suturing task that will be
elaborated in Section IV-D. For the sake of further clarification, a
supplementary video is provided that explains the descriptions above
along with the endoscopic videos of the trials plotted in Fig. 5.

D. Embedding Space Analysis

In a broader sense, the proposed dual-sparse dictionary learning
approach maps the input trajectory into a lower-dimensional space
(i.e., code or embedding space) that reveals the latent temporal
structure of data that can be used for skills assessment, anomaly
detection, and educational purposes. For the sake of clarification,
embedding space of Φ angle for all suturing trials based on atoms
in Fig. 3(d) trained over sample trajectories of the first expert Ex1
is shown in Fig. 6(a) and Fig. 6(d). Similarly, embedding space of
Θ angle for all suturing trials based on atoms in Fig. 2(d) trained

over sample trajectories of Ex1 is shown in Fig. 6(b) and Fig. 6(e).
Finally, embedding space of Ψ angle for all suturing trials based
on dictionaries trained over sample trajectories of Ex1 is shown in
Fig. 6(c) and Fig. 6(f). As it is illustrated in Fig. 6, representations
of different trials of each subject cluster near to each other in the
embedding space. This behavior reflects their surgical style in the
low dimensional space. Moreover, subjects with similar skills levels
usually cluster near each other. This can be useful for investigating
the learning curve of a trainee while his/her latent representation
approaches towards expert clusters after few sessions of training.

Another interesting point about plots in Fig. 6 is that, most
non-expert subjects are pretty similar in deviating from the general
trend df1 (i.e., c1≈0). This behavior results in compact near clusters
along the c1 axis for less-experienced users. However, since each
non-expert user has his/her own way of deviating from the general
trend this coherency does not imply consistency in performing the
task. On the other hand, expert users have higher fidelity to the
general trend by having large codes (e.g., 4<c1<8 in Fig. 6(d)).
However, this variation in c1 cannot be attributed to the lack of
consistency in performing the task. This is because df1 is normalized
to one and has a relatively small maximum value compared to that
of trajectories. As a result, slight shifts or scales in trajectories may
considerably change the value of c1.

The mentioned interpretations can provide surgical mentors with
good clues about the regular mistakes between beginners and help
them to develop their lectures and training flowcharts accordingly.
For instance, almost all novice and intermediate trainees can be
confidently separated from expert ones according to their low value
of c1 in their embedding space shown in all plots of Fig. 6. In
general, the low values of c1 in the rotational data of the suturing task
demonstrates the low angular dancing of the user while inserting the
needle inside the tissue. This means the user mistakenly inserts the
needle with translations rather than properly orienting the tool. This
is mainly due to the bad needle positioning upon the surgical incision
during the suture needle insertion. This is a common mistake in
suturing tasks and this clue can be used as an important topic in
training courses. To have a better understanding, please watch the
supplementary video.

Moreover, bad needle positioning at the beginning of the task
will propagate and lead to an extra Θ twist at the end. High values
of c3 in Fig. 6(e) demonstrates high pitch rotation at the end of
suturing when the needle should come out of the tissue. It is the
sign of inconvenient task completion due to the bad start that can
harm the tissue and wrist of the surgeon.

https://drive.google.com/drive/folders/1T1XCeVBDPl-7t9UxIBTzlphjwoDAdGYw?usp=sharing
https://drive.google.com/drive/folders/1T1XCeVBDPl-7t9UxIBTzlphjwoDAdGYw?usp=sharing


(a)                    (b)           (c)
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Figure 6: Embedding space representation of three different angular rotations (from the left column to right: Φ, Θ, and Ψ) of the suturing
task for two expert users Exi, two intermediate users Ini, and three novice users Noi trained over Ex1 trajectories in JIGSAWS data
set. For better visualization, the second row shows 2D angle of the 3D plot of the same column.

Figure 7: Bi-clustering of x and z trajectories of knot tying task in JIGSAWS data set according to the combined dictionary D=[D1,D2]
where Di is trained over Xi. The generated code matrix C=[C1,C2] for X=[X1,X2] given D is roughly block-diagonal (dashed
green rectangles). We can approximately assign each code vector into four main clusters according to the task (column clustering indicated
by vertical black solid line) and user skills level (row clustering indicated by red rectangles). Red solid rectangles correspond to expert trials.

Additionally, since df
1 in Fig. 2(d) is corresponding to the

general trend in the trajectory, low values of c1 in Fig. 6(e) can
also demonstrate that less-experienced surgeons do not follow the
general trend of the operation and the trajectory is mostly based
on unordered motions.

E. Trajectory Bi-Clustering

Trajectory bi-clustering is another investigation that simultane-
ously reveals the type of the executive trajectory (e.g., x, y, z, Φ,
Θ, and Ψ of suturing, knot tying, and needle passing tasks) and
the skills level of the user. To do so, we concatenate different
input matrices and their dictionaries to create X = [X1,...,Xt]
and D = [D1, ... ,Dt] for t different input types where Di is

trained over data set Xi. Then we let the sparse coding algorithm
to generate code matrix C for X given the combined dictionary D.
Ideally, different trajectories lie in non-overlapping subspaces and
C generates codes for a given trajectory xi based on its specifically
designed trajectory and assigns zero to other non-related atoms.
In other words, codes generated for a particular data type Xi is
Ci=[0⊤1 ,...,0

⊤
i−1,D

⊤
i ,0

⊤
i+1,...,0

⊤
t ]

⊤ where 0l is a zero matrix with
the same size as Dl for all 1≤l≤t, l≠i. In this ideal case, the code
matrix C is block-diagonal. Fig. 7 demonstrates the same concept
for two types of inputs: x and z trajectories of knot tying task, in
which the code matrix C is visualized by the colormap (i.e., warmer
colors indicate higher code values.) The sparse coding algorithm
tends to generate non-zero codes for a trajectory based on its specifi-



Figure 8: Dictionary atoms generated for a given task with p=10 initialized atoms based on (a) standard dictionary learning loss L in
(1), (b) orthogonal dictionary learning loss Lorth [24], and (c) our proposed L+ loss described in (4) (the algorithm nullified 7 atoms and
preserved the most informative 3 atoms). (d) convergence properties ofL+ loss (each y label is associated with the plot with the same color).

cally generated atoms which results in a block-diagonal code matrix
C (dashed green rectangles in Fig. 7). When the first dashed green
block ends and the second one begins, we have a decision boundary
between two clusters of input types (i.e., column clustering).

Moreover, expert users’ trajectories have higher fidelity to their
specific atoms. In other words, they purely belong to the subspace
of their task with minimum overlap with the subspace of other
tasks and almost do not generate codes for irrelevant atoms (i.e.,
their coefficients are zero). As a result, investigating the rows of the
code matrix C (i.e., row clustering) can give us informative clues
about the skills level of the user (e.g., solid red rectangles in Fig.
7 which indicate trials done by expert users). In addition to the lack
of expertise, abnormality is another cause of generating codes based
on other irrelevant atoms which can be considered as random atoms
for that specific trajectory. As it is shown in Fig. 7, 6th and 58th

trials (i.e., c:,6 and c:,58) have small codes for their own atoms and
large codes for other non-relevant atoms. It means for both trials,
something wrong is happening during the execution of that trajectory
that causes these trajectories to lose fidelity to their specifically
generated atoms. Further explanations and the endoscopic videos
of these two trials are provided in the supplementary video.

V. DISCUSSIONS

A. Advantages of L+ Loss

In this section, we will compare final atoms generated by our
method with L+ loss described in (4) with atoms generated by
conventional methods with L and Lorth losses to have a better
understanding about the concepts behind these methods. As shown
in Fig. 8(c), L+ generates optimal atoms compared to L and Lorth
in terms of minimum overlap, reduced µ(D) and µ+(D) metrics,
and good trajectory reconstruction. A result of the conventional
dictionary learning problem is provided in Fig. 8(a). In general,
conventional dictionary learning method with lossL produces atoms
with large overlaps and increased µ+(D) compared to our approach
since it does not have any penalization term for atoms’ overlaps. Fig.
8(b) demonstrates atoms resulting from minimizing Lorth loss in
which any pair of ten atoms have zero correlation (i.e., µ(D)=0
or D⊤D=0), but they have considerable overlap with each other
(i.e., large value for µ+(D)). It means orthogonal atoms generated
by Lorth shown in Fig. 8(b), despite their low reconstruction loss
and zero correlation cannot be used for approximate trajectory
decomposition for structured tasks.

Table I: Ablation study on hyperparameters α and β in (4) for ΦR.

α β Reconstruction loss Final number of atoms µ+

0.8 1.4 9.07 6 0.19
0.85 1.4 9.86 5 0.20
0.9 1.4 10.59 4 0.21
1 1.5 11.37 3 0.10
1.7 1.5 13.56 2 0.23

Moreover, the final converged atoms based onL andLorth losses
highly depend on the random state for the initialization. As illustrated
in Section IV, our method is robust against initialization and delivers
quite consistent results.

The effect of optimizing (4) on µ+(D) is also illustrated in
Fig. 8(d). The value of µ+(D) drops when the sparsity promoting
cost for dictionary atoms (i.e.,

∑d
k=1 ||d̂k||1) decreases until the

algorithm nullifies one or several atoms. When a reduction happens
in the total number of active atoms, there is a mild and temporary
increase in µ+(D). This is because the algorithm is forced to
assign data variations to fewer active atoms which increases the
total overlap.

B. Hyperparameter Tuning

Another important feature of our method is that sparsity-
promoting terms for both codes ci and dictionary rows d̂k in L+
loss nullifies unimportant atoms and returns the fewer number of
atoms after the optimization procedure. This fact is illustrated in Fig.
8(d) by showing the total number of active atoms in each iteration
which is reducing when the optimization proceeds. As explained
before, this feature benefits the ease of interpretability of generated
atoms. By changing hyperparameters α and β, the number of final
atoms and the value of their overlap will change. Ablation study
results for right hand’s Φ angle (ΦR) in suturing task in Table I,
indicate that relaxing the sparsity regularization parameters α and/or
β yields an increased number of final atoms and an improvement in
the reconstruction loss. However, arbitrarily increasing the number
of atoms by reducing α and β does not guarantee a considerable
reduction in reconstruction loss for unseen data and may lead the
algorithm to become overfitted on the training set. As another
perspective, trimming factors α and β iteratively reduce the degree-
of-freedom of the algorithm and prevent the model from making
redundant atoms. α and β can be empirically fine-tuned to reach
the ideal number of minimally-overlapping atoms which is equal

https://drive.google.com/drive/folders/1T1XCeVBDPl-7t9UxIBTzlphjwoDAdGYw?usp=sharing


to the intrinsic dimensionality of embedding space (δ). Although
the normal range of hyperparameters α and β heavily depends on
the application, for the examples of this work the empirical range is
0.1 ≤ α, β ≤ 2.5.

The hyperparameter γ regulates the relative importance of cross-
correlation versus reconstruction loss in dictionary temporal fine-
tuning post-training stage. Since capturing exact temporal position
of each floating atom for each test sample has higher priority
than reconstruction loss, empirically observed that γ = 0.5 is an
acceptable choice for our experiments.

C. Final Number of Active Atoms

Determining the value of intrinsic dimensionality of embedding
space (δ) needs field knowledge and depends on the task, the target
variable for the investigation (e.g., translational data of the suturing
task along x axis), and the number of independent sub-tasks within
the given structured task (e.g., number of gestures in surgical trial).
A good heuristic for finding this number is to plot the manifold
of reconstruction error and µ+ versus the number of active atoms
and wherever the reconstruction error and/or µ+ do not reduce
with increasing the number of active atoms (i.e., the elbow of the
manifold) we assign that number of atoms to δ. For instance, in Table
I δ=3 is an ideal final number of atom since δ≥4 suffers from large
overlap between atoms (i.e., high value of µ+) and δ=2 suffers
from both poor reconstruction loss and large overlap between atoms.
This result also makes intuitive sense; ΦR trajectory in suturing task
is composed of three main gestures: passing the needle inside the
tissue, pulling the needle from the tissue, and passing the needle
from one hand to the other one.

D. Rotational Data vs. Translational Data

Our observations suggest that, rotational data offer more interpre-
tation and insight about the quality of executive tasks with sharper
distinction between data clusters in the embedding space. One possi-
ble reason that rotational data are more expressive than translational
data is that rotational patterns are more closely related to the skills
level of the user. This is based on the intuition that humans according
to their advanced motor-control capabilities, can accomplish a lot
of complicated tasks by performing a succession of several motions,
but the quality, dexterity, and efficiency will be determined based on
how well they perform rotations while executing translations. As an
example, bipedal robots exhibit the same problem. Although they
follow human joint trajectories in walking task, the overall behavior
of their walking is different from that of humankind.

Another important reason is the curse of extra details in
translational data, which masks general patterns with unnecessary
microscale motions and prevents meaningful atom generation. The
reason might be due to minor mistakes users unconsciously correct
with simple motions rather than sophisticated rotations. This makes
the subject’s behavior more streamlined in the rotation space and
noisier in translation space. Finally, compared to other types of
surgery, such as eye surgery, minimally invasive surgery offers many
translations, which can increase the effects of random motions as
well.

E. Applications in Bi-manual Tasks

In the proposed method, each trajectory component was inves-
tigated independently to analyze the performance of the executive
task. However, in bimanual tasks (i.e., a class of tasks in which the
brain must simultaneously plan and control the movements of both
hands such as tying shoelaces or basic surgical tasks) what defines a
person as an expert surgeon is not just simply what he/she performs
by each individual hand but what he/she plans for the next step
by executing a complex sequence of coordinated actions between
his/her hands [33]. This concept is equivalent to the notion of hands
coordination which measures the synchronicity and relationship
between different trajectory components of one hand or between two
hands. Incorporating coordination data together with the generated
codes of the proposed method may benefit the quality of the final
representation for downstream tasks such as skills classifier network.
Extracting coordination data is beyond the scope of this paper and
is a promising topic for future work.

VI. CONCLUSIONS

A new technique for visualizing surgical trajectories in the lowest
possible dimensional space was presented in this paper. Representing
trajectories based on a small number of minimally-overlapping
atoms allowed us to meaningfully and intuitively decompose and
investigate each trajectory. Each minimally-overlapping atom can
be considered as a building block of the whole executive task that
meaningfully reflects the style, skills, faults, and hidden behaviors
of the user during performing the task. Incorporating floating atoms
to capture important variations appearing at different temporal
positions within the trajectory, improves model’s accuracy and
prevents information loss during the mapping procedure. All of
these important features are objectivity expressed in terms of
numerical gains in embedding (or code) space as an informative
feature map for educational and examination purposes. According to
our experiments on the JIGSAWS data set, our method is effective,
reliable, and accurate for skills assessment and fault detection. In
future work we plan to incorporate the idea of dynamic time warping
(DTW) into our dual-sparse coding approach. We may find this
helpful given the extra nonlinearity DTW introduces into our model.

APPENDIX

A. Proof of Property 1

According to Hölder’s inequality, for any κ,υ ∈ (1,∞) with
1
κ+

1
υ =1, we have

N∑
k=1

|xkyk|≤

(
N∑

k=1

|xk|κ
) 1

κ
(

N∑
k=1

|yk|υ
) 1

υ

(A.1)

for all x⊤=(x1,...,xN), y⊤=(y1,...,yN)∈RN . Considering the
special case κ= υ=2 in Hölder’s inequality, (A.1) for non-zero
vectors x and y becomes

0≤|x|⊤|y|≤||x||2||y||2
x̸=0
===⇒
y≠0

0≤ |x|⊤|y|
||x||2||y||2

≤1. (A.2)

Applying (A.2) into (3) and considering the fact thatµ(D)≤µ+(D)
yields 0≤µ(D)≤µ+(D)≤1 for any possible dictionary D. ■



B. Convergence of the Coordinate Descent Algorithm 1
Consider the convex optimization problem

min
x∈RN

f(x).

Definition A.1 (η-strongly convex function): The following
statements are all equivalent to the condition that a differentiable
function f is strongly convex with constant η>0

(i) f(δx+(1−δ)y)≤ δf(x)+(1−δ)f(y)− δ(1−δ)η
2 ||x−y||22

for δ∈ [0,1].
(ii) The function f̃(x)=f(x)− η

2 ||x||
2
2 is convex, ∀x. ⋄

Definition A.2: The convex optimization objective function f
has component-wise L-Lipschitz continuous gradient if

|∇if(x+hei)−∇if(x)|≤L|h| (A.3)

where x ∈ RN , h ∈ R, i = 1,...,N , and ei is the standard basis
vector of ith component in x. ⋄

Lemma A.1: The criterion L =
∑n

i=1 ||xi −
∑p

j=1 djcij||22
equals the quadratic function (D−D∗)⊤C⊤C(D−D∗) plus a
constant where D∗ is the optimal solution of D in minimizingL. □
Proof. See [28]. ■

Lemma A.2: The matrix Q=C⊤C defined in Lemma A.1 is
positive definite. □
Proof. At first, we will prove that Q is a positive semidefinite matrix.
According to the definition, the matrix Q is positive semidefinite
matrix if z⊤Qz≥0, ∀z∈RN . We have

z⊤(C⊤C)z=(Cz)⊤(Cz)= ||Cz||22≥0.

Now, to prove that Q is positive definite, we just need to prove that
z⊤Qz ≠ 0, ∀z ≠0. Consider that z⊤Qz=0 for some z ≠0. It
yields that (D−D∗)⊤C⊤C(D−D∗) can be equal to zero for
some D≠D∗. It means, quadratic objective function L has more
that one optimal solution. Contradiction. As a result, Q=C⊤C
is positive definite and λmin(Q)>0 where λmin(Q) is the smallest
eigenvalue of Q. ■

Lemma A.3: The criterion L defined in Lemma A.1 is η-strongly
convex function with η=2λmin(C

⊤C)>0. □
Proof. According to Definition A.1(ii), f̃(x)= f(x)− η

2 ||x||
2
2 is

convex if ∇2f̃(x)=∇2f(x)−ηI ⪰0 where A⪰0 means that
matrix A is positive semidefinite. As a result, a twice continuously
differentiable f is η-strongly convex if ∇2f(x) ⪰ ηI, ∀x
or equivalently, the smallest eigenvalue of ∇2f(x) satisfies
λmin(∇2f(x))≥ η, ∀x. According to the quadratic form of the
criterion L, ∇2f(x) = ∇2L = 2Q. As a result, L is η-strongly
convex function with η = 2λmin(C

⊤C) which according to
Lemma A.2, η>0. ■

Lemma A.4: Let F = f + g where f is η-strongly convex
function and g is a convex function (not necessarily strongly
convex), then F is η-strongly convex function. □
Proof. According to Definition A.1(i)

F(δx+(1−δ)y)=f(δx+(1−δ)y)+g(δx+(1−δ)y)
∗≤δf(x)+(1−δ)f(y)− δ(1−δ)η

2
||x−y||22+g(δx+(1−δ)y)

∗∗≤δF(x)+(1−δ)F(y)− δ(1−δ)η
2

||x−y||22

where inequality ∗ follows from the fact that f is strongly convex
and inequality ∗∗ holds since g is convex. ■

Now, we want to prove the convergence of Algorithm 1 that tries
to minimize (4). Both (5) and (10) are composed of a reconstruction
error that according to Lemma A.1 equals to a strongly convex
quadratic function plus a convex l1 normalization part. As a
result, according to Lemma A.4, (5) and (10) are strongly convex
functions. In C-step, we minimize (5) which according Lemma
A.3 is strongly convex with η1=2λmin(C

⊤C)>0. In D-step we
minimize (10) which according Lemma A.3 is strongly convex with
η2 = 2λmin(DD⊤)> 0. As a result, (4) is strongly convex with
η=min{η1,η2}>0.

Lemma A.5: The cost function (5) is directional component-wise
Lipschitz continuous gradient with L1=maxi{||di||22} in C-step
domain. □
Proof. The gradient of (5) with respect to a parameter cij (i.e., the
jth component of a code vector ci) is

∇cijL+C=d⊤
j (Dci−xi)+α sign(cij). (A.4)

(A.4) is also used as a part of update rule in sparseCode
algorithm to calculate the optimal value of code matrixC. Due to the
limitations rising from the learning rate and approximation nature
of sparseCode algorithm, in cases that cij ≡ 0 the algorithm
fails to land on cij=0 and we have a fluctuation around the origin
since sign(cij) fluctuates between−1 and 1. A common heuristic
applied in this situation is to clamp cij to zero (i.e., manually setting
cij to zero) to prevent such fluctuations. Under these circumstances,
we can assume that sign(cij) does not change and is the same for
∇if(x+ hei) and ∇if(x) in Definition A.2. This assumption
leads us to the directional component-wise L-Lipschitz continuous
gradient in C-step domain. According to (A.3) we should have

|d⊤
j djheij|= |d⊤

j dj||h|= ||dj||22 |h|≤L|h|. (A.5)

We can reach to (A.5) for all components of code matrix C. As
a result, a good choice for L is the length of largest code vector dj

in the dictionary matrix D, or equivalently, L1=maxi{||di||22}. ■
Corollary A.5.1: According to Lemma A.5, the cost function

(10) is directional component-wise Lipschitz continuous gradient
with L2=maxj{||cj||22} in D-step domain.

Corollary A.5.2: According to Lemma A.5 and Corollary A.5.1,
the cost function (4) is directional component-wise Lipschitz
continuous gradient with L = max{L1, L2} in the dual-sparse
coding algorithm domain.

According to [29], [30] and the values of η and L calculated
above, for each iteration k≥ 0 for Algorithm 1 starting from C0

and D0, we have

E
[
L+(Dk+1,Ck+1)

]
−L+(D∗,C∗) ≤(

1− η

2Ldp2n

)[
L+(Dk,Ck)−L+(D∗,C∗)

]
(A.6)

where D∗ and C∗ are local optima of (4) and d, p, and n are
dimensions of matrices D and C defined in (1). Note that, if in
Lemma A.5, our cost function was component-wise Lipschitz
continuous gradient, not directional component-wise Lipschitz
continuous gradient, D∗ and C∗ are global optimum solutions.



2dp2n is the total number of components in D and C which is
the total number of parameters for the optimization problem (4).
Although the values of η and L depend on the matrices D and C
in the previous step, the convergence of expected error to zero (i.e.,
reaching to local or global optima) in each iteration is guaranteed
in (A.6) since the value of 1−η/(2Ldp2n) is always less than 1.
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