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Abstract—Personalization in the myoelectric control of robotic
exoskeletons is crucial to ensuring accurate interpretation and
adaptation to the unique muscle activity patterns and movement
intentions of each user. This approach minimizes the risk of
incorrect or excessive force application, significantly reducing the
likelihood of user discomfort or injury during operation. This
study introduces a model-agnostic meta-learning approach for
personalizing a soft upper-limb exoskeleton in industrial settings.
The framework incorporates an attention-based CNN-LSTM
model that predicts future angular positions of the robot using
EMG and IMU signals. The MAML framework demonstrates
significant adaptability and personalization, efficiently predicting
future angular positions with minimal data, approximately 20-25
seconds per task. This approach effectively reduces the necessity
for extensive retraining with new users or in new environments
by 50%, showcasing real-time task adaptation capabilities. Our
findings confirmed a reduced human effort of nearly 13% in
load-bearing tasks. Also, the results show that the exerted torque
from the exoskeleton was 24% higher while maintaining higher
accuracy. A comparison with other deep learning models further
emphasizes the enhanced adaptability and accuracy offered by
the meta-learning approach.

Index Terms—Personalization, Meta-Learning, Attention, Soft
Exoskeleton, Proportional Myoelectric Control

I. INTRODUCTION

ROBOTIC exoskeletons have emerged as effective tools
for rehabilitation, physical assistance, and improving

human strength. Upper-limb exoskeletons are also valuable in
industrial settings to reduce the risk of injuries and accidents
among workers [1], [2]. Achieving optimal results in tasks that
involve load-bearing and shared control requires compliant
assistance with the intended movements of the user. Efforts
to develop Assist as Needed (AAN) strategies to control
exoskeletons are directed toward accomplishing this objective
[3]–[6].

In recent years, soft upper-limb exoskeleton robots have
gained popularity due to their compatibility with the human
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body, flexibility in joint movement, and reduced weight,
thus requiring less energy and unwanted restrictions [7], [8].
In contrast to lower-limb exoskeletons, accurately modeling
human–robot interaction (HRI) for upper limbs is crucial
owing to the complexity of predicting arm motion [9]. Surface
electromyography (sEMG) has emerged as a suitable method
for assessing HRI, capable of capturing subtle muscle activities
that are closely linked to movement intention [10], [11].
Another benefit of sEMG is its onset prior to movement,
offering potential advantages for predicting future positions
for proportional myoelectric control [12].

Xu et al. [13] introduced an adaptive impedance controller
for a soft exoskeleton using reinforcement learning (RL) that
dynamically adjusts impedance parameters during different
modes. Xiong et al. [14] developed an online learning–based
control via iterative learning and impedance adaptation without
relying on external sensors.

Recent progress in machine-learning (ML) methods has
significantly advanced EMG feature extraction. Although
many studies have applied neural networks to myoelectric
devices, most focus on basic statistical features for discretised
single-joint movements [15], often falling short when inter-
preting continuous motion intention [16]. Recent multimodal
work has demonstrated that transfer-learning pipelines can
generalise EMG–IMU force estimation across users with mini-
mal calibration effort [17], highlighting the need for algorithms
capable of rapid personalisation.

Deep learning (DL) approaches have delivered higher
accuracy for multi-DoF exoskeleton control [18].
Convolutional neural networks (CNNs) capture spatial
EMG/IMU features [19]–[21], while recurrent neural
networks (RNNs)—particularly long short-term memory
(LSTM) networks—exploit temporal dependencies and
mitigate vanishing-gradient issues [22], [23].

Despite advances in efficient LSTMs, sequence-to-sequence
computation remains demanding. Attention mechanisms, in-
troduced to model dependencies irrespective of position, sub-
stantially improve such models [24], [25]. Typically paired
with LSTMs to emphasise salient inputs—particularly when
EMG crosstalk exists—attention has shown promise for move-
ment decoding [26]. In our previous work [27], we generated
CNN feature maps and fed them into an attention-based LSTM
network, boosting sequential accuracy and reducing computa-
tional burden. The attention module also allowed variable input
lengths and robustness to sensor dropout.

Traditional data-driven myoelectric control systems often
struggle to account for individual differences in muscle char-
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acteristics and physiological signals [28], resulting in deficient
performance [29]. Factors such as variations in sensor place-
ment, the introduction of new movements, and the effects of
fatigue present discrepancies that need substantial amounts of
data for training [30]. model-agnostic meta-learning (MAML)
[31], [32] offers a significant advantage in terms of personal-
ization over domain adaptation [33], transfer learning [17], and
RL [34] methods, which often require pre-training on large,
domain-specific datasets. This is due to MAML’s flexibility
and efficiency in quickly adapting to new tasks with minimal
data. MAML’s unique approach enables a model to learn a
generalized representation from various tasks during training,
which can then be rapidly fine-tuned with a small amount of
data for a specific user or task [35].

In this research, we employed a model-agnostic algorithm
for online adaptation to personalize an attention-based CNN-
LSTM network. This network predicts the future angular
positions of a 3-DoF soft upper-limb exoskeleton using EMG
and IMU data. Our system’s architecture features a three-tier
hierarchy: at the top level, the meta learner; in the middle, the
attention model; and at the base, a proportional-derivative (PD)
controller coupled with gravity compensation. We demonstrate
that leveraging MAML enables the model to rapidly adjust
to repeated tasks performed with the exoskeleton, incorporate
movements not present in the initial dataset, accommodate new
users, and adapt to new users executing unfamiliar movements.

In contrast to current works, this study is the first to
personalize and generalize a deep myoelectric decoder across
users and motions while running in real time on a three-DoF
pneumatic exoskeleton. We achieved (i) a reduction in system
calibration time by 50% from 21 s dataset; (ii) a two-step fine-
tuning schedule that preserves < 10ms inference latency with
52% improved accuracy compared to conventional methods;
(iii) extensive experiments across four challenging scenarios
showing 38 % EMG reduction and 24 % torque gain after
adaptation. These results demonstrate that meta-learning can
bring practical autonomy to hardware where conventional one-
time-trained models fail.

II. METHODS

Our system was structured as a three-level hierarchical
architecture as shown in Fig. 1. We utilized MAML, with
an emphasis on K-shot learning in the top layer to optimize
the initial parameters for the intention detection model in the
middle- level. This optimization ensured that the model could
achieve maximal performance on a diverse array of tasks,
including new movements or users, by allowing for rapid
adaptation after a minimal number of gradient updates. These
updates are computed using a small dataset representative of
the new task. The bottom level housed the robotic hardware
controller coupled with a gravity compensation mechanism
that delivers assistance aligned with the user’s intent.

A. Position Prediction using the Attention Mechanism

We use an early-fusion strategy: all 21 input channels—nine
EMG envelopes, nine IMU gyroscope traces, and three joint
angles—are concatenated before any learnable layer. This

Fig. 1. A three-level hierarchy demonstrating the learning diagram of the
model. As new data is introduced through the attention model, meta learner
performs a gradient update, while updating its model parameters based on
prior knowledge. Then the controller transfers the intended future position
commands to the actuators.

allows the network to capture cross-modal dependencies (e.g.,
deltoid EMG bursts aligned with shoulder flexion) by operat-
ing on a unified N×21 input. Unlike late-fusion methods, this
setup enables the first convolutional layer to learn compact
kernels spanning both muscle activity and kinematics. To
ensure alignment, EMG (1.9 kHz), IMU (148 Hz), and encoder
(500 Hz) signals are filtered (20–450 Hz for EMG; 5 Hz
low-pass for IMU), upsampled to EMG rate, and Z-score
normalized. The synchronized stream fills a circular buffer
of length N = 250ms, from which overlapping windows
are sampled every 30 samples ( 16ms). This enables low-
latency inference (< 10ms) while maintaining dense temporal
coverage.

The attention mechanism within our model served a dual
purpose. Firstly, it improved the specificity of the model’s
predictions by allowing the decoder to selectively focus on
certain features of the input by selecting a subset of all
the feature vectors. The feature selection was particularly
valuable in the context of minimal training data. Secondly, it
ensured that the adaptation process leverages the most relevant
information, thereby enhancing the efficiency of the MAML’s
rapid adjustment capabilities. We proposed a sequence-to-
sequence model that mapped the time series of 9 channels of
EMG, 9 channels of IMU, and 3 channels of angular position
data to the prediction of angular position with a dimension D
of DoF (Eqn. 1) for T samples into the future.

y = {y1, . . . ,yT } ,yi ∈ RD (1)

The model incorporated an encoder with CNN layers shown
in Fig. 2 that were designed to explore temporal correlations
within and between channels, thereby reducing the dimension-
ality of the feature map (Eqn. 2) and the overall complexity
of the model.

a = {a1, . . . ,aK} ,aj ∈ RX (2)

The decoder processes the feature map from the encoder
and the prior hidden and cell states to estimate the future
angular position. It receives an input, denoted as yi′−1, which
could either be the model’s target trajectory or the trajectory
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Fig. 2. The architecture of the attention-based CNN-LSTM network is
designed to handle time series inputs within a 21 × N window, aiming to
estimate angular positions with an output dimension of 3 × T . Initially, the
input is processed through a three-layer CNN, resulting in a feature map. This
feature map is passed to an energy neural network function to compute the
attention scores. The softmax function is applied to these scores to derive the
attention weights. These weights are then multiplied by the feature map to
generate the context vector. Finally, this context vector serves as the input to
the LSTM decoder.

previously generated, based on the teacher-forcing ratio. The
output of the LSTM cells is calculated using Eqn. 3. The last
LSTM cell’s hidden state with a dimension of 1 × 3 is then
passed to the controller as the desired position: yT = hT .

hi = f
(
hi−1,yi′−1, ĉi

)
(3)

The decoder’s input undergoes a linear embedding to match
the feature vectors’ dimensions. The LSTM updates its hidden
state hi at each timestep i using a context vector ĉi (Eqn.
4) which is the weighted sum of the input features and
encapsulates the most relevant information about the multi-
dimensional input.

ĉi =

K∑
j=1

αijaj (4)

The attention mechanism assigns weights αij to each feature
vector based on its relevance for predicting the next embedding
of yi, with ĉi representing the weighted expected energy. The
softmax function calculates these weights, ensuring they are
normalized and non-negative, effectively turning the energy
scores eij into probabilities in Eqn. 5.

αij =
exp(eij)∑K
k=1 exp(eik)

(5)

The similarity between the inputs around position j and the
output at position i is scored by the energy function eij in Eqn.
6, utilizing the rectified linear unit (ReLU) of a feedforward
neural network, fatt.

eij = fatt (hi−1,aj) (6)

While the inner-loop attention model constitutes a core
component of our system, it’s essential to recognize that
maintaining static parameters for this model is not suitable for
different users or across variations in movements. To accom-
modate a wide range of tasks and user-specific requirements,
it’s imperative that the model’s parameters θ are dynamically
updated. This necessity forms the basis for integrating meta-
learning on top of the attention model.

B. Model-Agnostic Adaptation

EMG signals exhibit unique variations among individuals,
due to the distinct muscle characteristics of each person.
Despite these differences, a level of similarity exists within
the distribution of tasks p(T ) across users or within a single
user across movement variations. This characteristic similarity
renders meta-learning a suitable approach. The objective of
employing few-shot MAML in our study was to enable the
model to adapt to new tasks with minimal data from previously
unseen tasks. Consequently, our focus extended beyond a re-
gression problem, aiming instead for a broader generalization
across diverse tasks.

The dataset used in this study was split into a meta-training
set Dtr and a meta-testing set Dts. In the context of N-way
K-shot learning demonstrated in Algorithm 1, both the meta
train and test datasets were divided into two sets: The support
set Ds

i = {(Xi, Yi)}K×N
i=1 with N indicating the number of

tasks, K the number of examples for each selected task, and
X and Y the source and the target respectively. And the query
set Dq

j = {(Xj , Yj)}Mj=1 with M being the remaining samples
from the same set of selected tasks.

Algorithm 1 MAML: K-Shot Learning
Require: Distribution ρ(T ) over tasks
Require: ψ, β: learning rate hyperparameters
Require: Number of sampled tasks N , dataset D

1: randomly initialize θ
2: while not done do
3: Sample batch of tasks Ti from the ρ(T )
4: for all Ti do
5: Randomly select N tasks
6: Take K examples of each task for the support set
Ds and the rest for Dq

7: Evaluate Li ← L(Ds, θ) in Eqn. (8)
8: Update parameters with gradient descent: ϕi ←
θ − ψ∇θLi(θ,Ds)

9: Evaluate Li ← L(Dq, ϕi) in Eqn. (8)
10: end for
11: Update parameters with gradient descent θ ← θ −

β∇ϕi

∑
Tn ∼ DqLi(ϕi,Dq)

12: end while
13: return model θ

We represented the attention-based CNN-LSTM model by
fθ with the set of parameters θ. By taking one gradient step on
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the support task Ti, the model parameters were updated, where
ψ was the learning rate for the inner-loop attention model.

ϕi = θ − ψ∇θLTi
(fθ) (7)

After adapting the model parameters to ϕi using the support
set, the model’s performance was evaluated on the query set,
and the meta-objective was defined by the loss on the query
set. The loss function in this regression example was a mean-
squared error (MSE). For regression tasks using MSE, the loss
took the form below.

LTi
(fϕ) =

∑
X(j),Y(j)∼Ti

∥∥∥fϕ (X(j)
)
−Y(j)

∥∥∥2
2

(8)

During meta-learning, a single gradient step on each of the
N tasks (N -way) (Eq.(7)) is followed by an outer-loop update
that minimizes the summed loss on the corresponding query
set Dq

i with updated parameters in (Eqn. 7).

θ ← θ − β∇θ

∑
Ti∼p(T )

LTi
(fϕ) (9)

The meta-objective is the expected query-set MSE after one
inner-loop update, and the meta-training process continually
adjusts θ to minimize that error across tasks.

In practice, we interleave this process with brief fine-tuning
phases: after every 100 outer-loop epochs, the current
meta-parameters θ are adapted on a small support set (one
shot per new task) to emulate online personalization. Before
the first inner-loop step all tasks share identical parameters,
whereas after adaptation, each task obtains its own ϕi (using
learning rate β). This intermittent schedule converged faster
than a continuous inner-loop update while remaining fully
compatible with the standard MAML objective.

The prediction of the desired position for each DoF was per-
formed using the updated parameters of the attention model,
while concurrently, the parameters of the meta-learner were
refined. Simultaneously, this computed desired position was
sent to the position controller for tracking.

C. Robot-assisted Control

For the trajectory tracking controller, we aimed to follow the
predicted position, taking into consideration challenges such
as delays and internal friction inherent to the pneumatic cable-
driven upper extremity exoskeleton. Using a PD controller
(Eqn. 10) with proportional KP and derivative KD gains,
the robotic exoskeleton accurately followed the desired joint
angles qdi at each time step. The controller was complemented
by feedforward gravity compensation τGCi that leveraged the
system’s known kinematics for enhanced control performance.
The tracking control law τri was then sent to the pneumatic
actuator of each joint i.

τri = KP (qdi − qi)−KD q̇i + τGCi (10)

The proportional and derivative gains were selected with
a pragmatic, human-in-the-loop procedure that is common in
soft-robot literature [6], [10]. We first bounded the search

range analytically from a linearized single-joint model (mass =
2.3 kg, tubing compliance 0.32 N mm−1) and then performed
small-step manual tuning while the exoskeleton was gravity-
compensated and unloaded, increasing KP until a slight
overshoot appeared and adding KD until the response became
critically damped (¡ 5 % overshoot, ¡ 300 ms settling). The
final gains (KP = 32Nmrad−1, KD = 4.5Nmsrad−1)
produced stable motion across all eight subjects and were kept
constant for every experiment, thereby isolating the effect of
the meta-learned intention decoder.

III. MATERIALS AND EXPERIMENTS

A. Hardware setup

For the exoskeleton setup, we utilized the TrignoTM Re-
search+ system (Delsys Incorporated, MA, USA) which in-
cludes an embedded IMU in the EMG signal acquisition setup.
This setup also leveraged the Trigno Software Development
Kit (SDK), facilitating data transfer from the Trigno System
to Python 3.10. The Trigno Base Station, connected to the
PC, streamed data to Python via TCP/IP, with the EMG and
IMU sampling rates set at 1925.125 Hz and 148.148 Hz,
respectively.

The acquired data were transferred to the Python environ-
ment using the Pyserial library on an Arduino at a 115200
baud rate, ensuring a communication delay below 10 ms.
Encoder data were down-sampled in order to be synchronized
with the EMG signals. Data were processed within a 15 ms
window using a buffer mechanism that continually updated the
attention model input.

In this system, two Arduino boards interfaced with the
exoskeleton: an Arduino Uno 3.0 for controlling pneumatic
actuators and an Arduino Mega for reading encoder data
at a high interrupt frequency of 50 kHz. Both boards were
connected to the local PC via USB 2.0. The exoskeleton with
3D-printed parts was powered by fluidic muscles (DMSP-20-
RM-CM, Festo Corp., Esslingen, Germany) and used electro-
pneumatic transducers (EP211-X120-10V, Omega Engineering
Inc., USA) for actuator pressure regulation. Position mea-
surement employed quadrature optical encoders (HEDM-5500
B12, Broadcom Inc., US) at the shoulder and elbow joints.

B. Data collection

Eight able-bodied individuals (including 2 females), aged
between 24 and 30 years and with varying heights (156-
186 cm) and weights (48-92 kg), participated in the study.
Participants were selected to represent a broad spectrum of
body build. Prior to the experiment, all participants provided
their consent after being briefed about the project’s aims and
instructions. All experiments were conducted in accordance
with protocols approved by the University of Alberta Research
Ethics Boards. Nine key muscles were targeted for EMG and
IMU sensor placement [36], [37]: i) biceps brachii (EMG +
IMU), ii) deltoideus medius (EMG + IMU), iii) deltoideus
anterior (EMG + IMU), iv) brachialis, v) brachioradialis,
vi) pectoralis major (clavicular head), vii) triceps brachii,
viii) deltoideus posterior, ix) trapezius descendens. A visual
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Fig. 3. The experimental configuration features a soft pneumatic cable-driven
upper-limb exoskeleton, with nine EMG sensors positioned on the upper arms
of two participants. On the left, a user is executing a movement while bearing
a 1kg load in a seated posture, whereas the female participant on the right
demonstrates a different movement, without any load, in a standing stance.
During these activities, EMG, IMU, and angular position data are collected
as the robot operates under gravity compensation.

representation of part of the data collection is shown in Fig.
3.

The first three sensors had an activated embedded IMU
with an adjustable range, focusing on the gyroscope with
three axes (+/- 250 dps). These primary sensors were linked
to each main DoF. A brief calibration for two minutes was
conducted to assess the sensor signal-to-noise ratio and the
robot’s operational state. The EMG and IMU signals were
validated through the Delsys software (EMGworks®4.4).

The experiment involved 14 distinct movements while wear-
ing the upper-limb exoskeleton. Half of these movements were
conducted while carrying a 1 kg load, while the others were
performed without any load. The movements ranged from
activating a single joint to simultaneous activation of two or
all three joint movements.

1) Elbow flexion without load
2) Shoulder flexion without load
3) Shoulder abduction without load
4) Elbow flexion + shoulder abduction without load
5) Elbow flexion + shoulder flexion without load
6) Shoulder abduction + shoulder flexion without load
7) All three joint movements without load
8) Elbow flexion with 1 kg load
9) Shoulder flexion with a 1 kg load

10) Shoulder abduction with a 1 kg load
11) Elbow flexion + shoulder abduction with 1 kg load
12) Elbow flexion + Shoulder flexion with 1 kg load
13) Shoulder abduction + shoulder flexion with 1 kg load
14) All three joint movements with 1 kg load

Participants had the autonomy to choose the pace of each
movement and whether to sit or stand while performing the
movements. For movements involving multiple joint activa-
tions, they could opt to rotate the joints simultaneously or in

any preferred sequence. This flexibility in the experiment was
intentional to collect more personalized data, aiming to tailor
predictions to each user’s specific ergonomic requirements.

Each participant repeated each movement five times, and
the data collected included nine EMG signals, three gyroscope
readings (each with three axes), and data from three angular
encoders. Throughout the experiment, the exoskeleton was
maintained in a gravity-compensated state. Each participant
attended four sessions, each taking about 30 minutes on
different days. Between sessions, the participant took breaks as
needed. This would result in fatigue in any random movement
that is performed last. Also, conducting the experiments on
different days resulted in potential variations in EMG electrode
placements (displacement < 10mm). The collected data
were later used as input to the attention model.

By integrating variations across 14 movements and 8 users,
we generated distinct tasks for meta-training purposes. This
strategy yielded a total of 8 × 14 = 112 unique tasks. Given
that each movement was performed 5 times, we obtained 5
examples (shots) per task, thereby limiting the combined size
of the support and query sets to a maximum of 5 examples.
The training was executed across various configurations of
support and query set sizes. These examples were later used
as input for the meta model.

C. Experimental Protocol

We assessed the performance and adaptability of the meta-
attention model through a three-stage approach. Initially, we
conducted a concise performance analysis, compared our
model to other methodologies, and identified the most effective
parameters for the few-shot learning. Subsequently, we eval-
uated the model’s ability to adapt to four different scenarios
explained later utilizing the configurations from the previous
stage. Finally, we demonstrated the application of the adapted
model in real-world scenarios by inferencing it with a robotic
exoskeleton and conducting a series of experiments to validate
its effectiveness and efficiency.

For the initial stage of our experiments, we utilized five
examples per task, assigning between 1 and 4 examples to K
for the support set and the remaining examples to the query
set. Additionally, the model was trained using subsets of 5,
8, and 10 randomly chosen tasks to evaluate its performance
across varying task numbers. Besides the internal attention
mechanism, we also benchmarked our dataset against several
other models. Specifically, we explored the efficacy of four
deep learning architectures: Bi-LSTM, CNN-Bi-LSTM, CNN-
LSTM, and an attention-based CNN-LSTM.

The Bi-LSTM model enhanced the capabilities of the uni-
directional LSTM by simultaneously learning from both for-
ward and backward contextual relationships in the input sEMG
signals. Ma et al. [38] utilized a Bi-LSTM network for pre-
dicting upper limb joint angles, utilizing data from three EMG
sensors. However, a combined framework of CNN and Bi-
LSTM learned not only bi-directional temporal relationships
but also spatial correlations. Karnam et al. [39] adopted this
combined approach in their work on hand gesture recognition,
employing EMG signal classification. The intention-based
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predictive assistance (IBPA) model was a paralleled CNN-
LSTM model before the integration of attention detailed in
our previous work [22].

In the subsequent stage of the experiments, we assessed
the model’s adaptability and compared it with the standalone
attention model across four distinct scenarios: i) encountering
new repetitions of previously seen tasks, ii) experiencing new
movements from previously observed users, iii) introducing
new users to previously seen movements, and iv) observing
new users executing new movements.

For the meta model we used a few-shot learning scheme
where we conducted a fine- tuning step at every 100th epoch,
and for the attention model, we evaluated the loss on the
test set at every 100th epoch. During this phase, we reset
the parameters of the meta and attention models to random
initialization for each scenario. The meta model was trained 5
times with random initialization and random dataset splits for
each scenario to ensure consistency across runs.

In the first scenario, we divided the training and testing
datasets based on the five repetitions (examples), resulting in
a dataset split ratio of 4:1 for train and test. In the second
scenario, we split the dataset based on the type of movements,
allocating the first half of movements (performed without a
load) to the training set and the next half of movements
(performed with a load) to the testing set. Additionally, we
conducted an alternative version of the second scenario where
tasks were randomly selected with a train-test ratio of 11:3
and repeated the training 5 times.

For the third scenario, we isolated the data of two users
for testing purposes which led to a split of 6:2 ratio. In the
final scenario, we concurrently divided the dataset based on
users and movements. This entailed reserving the data from
two random users and exclusively using movements performed
with a load for the test set, while the remaining six users’
movements without a load were allocated to the training set.

In the last stage of the experiments, we initially trained the
meta model using data from six randomly selected participants,
incorporating all 14 movements, both with and without the
1kg load. Subsequently, this trained model was employed to
initialize the meta model for inference purposes in contrast
with the previous stage where we restarted with random
initializations. The two remaining participants were tasked
with executing two new tasks (shown in solid black line
in Fig. 6) while new, continuous data were gathered. Both
participants started with the same pre-trained model. For each
task, participants were guided to follow a displayed trajectory,
along with the real-time position of the robot’s end effector
demonstrated on a computer screen. They were required to
maintain a position within a 2cm radius of the indicated
path, with deviations beyond this boundary considered as task
failures.

The participants each repeated the first task 5 times. The first
repetition of the first task was used in the support set for the
fine-tuning step of the meta-learner. Two gradient steps were
executed to refine and optimize the attention model’s weights
for these new tasks. Each repetition/shot of the first task, on
average, took 21 seconds to complete for each participant. We
ensured that the new task would remain in the support data

set of the fine-tuning step after the 5 repetitions. The second
task involved lifting a 2kg load to place it on a shoulder-level
surface. Both tasks were executed with a speed of 0.13 m/s.

Overall, each stage of the experiment was directly aligned
with our core objectives of demonstrating adaptability and
user-specific customization of the myoelectric control system.
By integrating a diverse range of movements and user inter-
actions, we validated the system’s real-world applicability and
performance.

D. Meta-Training

A GPU with 32 GB of RAM was used for training the
model, spanning over 4000 epochs for each stage of the
experiment. The training duration ranged from 8 to 15 hours
for each phase of the experiments. An optimal learning
rate of 0.01 was established for the meta-learner, whereas a
rate of 3 × 10−4 proved most effective for the inner loop
optimizations. Experimentation with the number of gradient
steps, ranging from 1 to 5, revealed that 2 steps provided
the best balance between computational efficiency and model
performance, coupled with a manageable batch size of 12. The
model employed the Adam optimizer for both meta-learning
and fine-tuning phases for its proven efficacy in similar deep
learning tasks. Additionally, at every 100-epoch interval, the
model entered a fine-tuning stage, where adjustments were
made to enhance its specificity and performance on new tasks.

IV. RESULTS

A. Performance Analysis

As illustrated in Table I, we evaluated the performance of
four types of deep learning models in training the meta-learner,
varying both the number of tasks selected (ways) and the
number of examples per task (1 to 4) for the support set.
The loss for each model was computed using Equation 8,
normalized by the length of the evaluation set’s dataloader.
Instances marked as N/A in the table indicate attempts to train
the model with those specific configurations; however, due to
computational constraints and limited GPU resources, training
could not be completed successfully.

In conducting a one-way ANOVA test to evaluate the impact
of increasing the number of examples per task on model
loss, we observed a statistically significant effect (F (3, 44) =
10.95, p = 0.042), the post hoc test indicates that models
trained with a greater number of examples exhibited lower loss
values. This result confirmed our hypothesis that additional
data per task enhances model accuracy by providing a more
comprehensive basis for fine-tuning.

Conversely, a post hoc test on the number of ways revealed a
significant decrease in accuracy with an increase in the number
of tasks (F (2, 45) = 20.85, p = 0.028). This suggests that as
the model is required to generalize across a broader set of
tasks, its ability to accurately predict outcomes diminishes.

Conducting a one-way ANOVA test to evaluate the impact
of four types of deep learning models on the loss of the sys-
tem revealed a statistically significant difference (F (3, 44) =
36.13, p < 0.001). The analysis was followed by a post
hoc Tukey HSD test which confirmed our hypothesis that the
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TABLE I
THE FINAL EVALUATION LOSS OF THE META-LEARNING MODEL APPLIED ON FOUR INTERNAL DEEP LEARNING MODELS WITH 5, 8, AND 10-WAY

REGRESSION ACROSS THE INTRODUCTION OF 1 TO 4 TASK EXAMPLES.

5-way 8-way 10-way
Internal models 1-shot 2-shot 3-shot 4-shot 1-shot 2-shot 3-shot 4-shot 1-shot 2-shot 3-shot 4-shot
Bi-LSTM [38] 2.59 2.07 1.87 1.33 2.48 2.35 2.39 2.02 2.57 2.53 2.47 1.80

CNN Bi-LSTM [39] 1.94 1.80 1.68 1.54 2.03 1.93 1.72 1.55 2.54 2.19 1.98 N/A
IBPA (parallel CNN-LSTM) [22] 1.88 1.78 1.79 1.63 2.03 1.84 1.59 N/A 2.56 2.24 N/A N/A

Attention-based CNN-LSTM 0.79 0.65 0.62 0.58 1.10 0.98 0.84 0.64 1.52 1.34 1.08 N/A
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Fig. 4. The sum of all joint torques converted to psi, root-mean-squared over all actuators was averaged across all trainings. After a single fine-tuning session
with the meta-learned controller, all four training scenarios exhibited a systematic increase in exoskeleton torque accompanied by a concomitant drop in EMG
amplitude (not shown). In each subplot, blue bars depict performance of the standalone attention model before adaptation, whereas purple bars show the
after-adaptation performance achieved with MAML.

attention model has a significantly lower loss compared with
other counterparts (p < 0.001) with a 0.98 mean difference
with the IBPA.

B. Intersubject Effort Evaluation

Despite the large biomechanical diversity of the eight vol-
unteers, baseline torque production differed markedly across
participants (e.g., new reps = 68.3 – 85.0 PSI; new moves +
users = 37.1 – 47.3 PSI). A two-tailed paired t-test (α = 0.05,
Bonferroni-corrected) confirmed that torque gains were signif-
icant in every condition, with very-large within-subject effect
sizes (Cohen’s d ≥ 2.7). Complementary analyses on rectified-
and-RMS-filtered EMG showed an average 38±9% reduction
across the same four conditions (all p < 0.005), indicating that
participants achieved the higher torques with substantially less
muscular effort (see Fig. 4).

C. Task Adaptation

The adaptation process involves dynamically updating the
model’s parameters based on the specificity of the new tasks by
employing a fine-tuning approach. To evaluate the adaptability
of the meta model, we subjected it to four distinct scenarios,
introducing new, unseen data in each. In the first scenario,
where the model was trained on repeated instances of the
same tasks, the plots on the far left column of Fig. 5 revealed
that both the attention and MAML models adapted after
2.3k and 1.2k training iterations, respectively. Notably, the
meta-learner achieved a lower loss after 4k training iterations
(loss = 0.51,SD = 0.09) compared to the attention model
(loss = 1.3,SD = 0.16).

For the second and third scenarios, the model underwent
five training sessions on randomly partitioned dataset splits, as

detailed in III-C. Despite the attention model’s loss converging
to zero during training, it underperformed in testing phases, es-
pecially when it was introduced to new users (attention loss =
1.75,SD = 0.14) & (Meta loss = 0.7,SD = 0.1). Within
our application framework, a loss exceeding 2 is considered a
failure.

In the final scenario, testing the model on new users execut-
ing new movements with a training dataset of 42×5 shots and
testing dataset of 14× 5 shots, the standalone attention model
was unsuccessful (loss = 2.5,SD = 0.25) using a combined
training data of 84 minutes. Conversely, employing the meta-
learner enabled the model to adjust rapidly by fine-tuning on
1 shot of new data (loss = 0.84,SD = 0.19) accumulating to
16 minutes of data after 40 iterations, showcasing the meta-
learner’s capability to rapidly adapt to entirely new conditions.

Finally, in evaluating the effect of incorporating meta-
learning into the attention model on the loss in all cases, a
paired samples t-test was performed on the loss values before
and after applying the meta-learning. The analysis revealed a
statistically significant decrease in loss with the meta-learning
application, with mean loss decreasing from (Mbefore = 1.82,
SDbefore = 0.16) to (Mafter = 0.86, SDafter = 0.09),
t(23) = 5.62, p < 0.001. This substantial reduction signifies
the effectiveness of meta-learning in refining the attention
model’s predictive accuracy.

D. Online learning

In our final phase of experiments, designed to assess the
model’s real-time performance, we collected a new dataset
while participants wore the exoskeleton. The initial task, de-
picted in Fig. 6, involved no load and was intended to capture
muscle activity data from new users to update the attention
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Fig. 5. Comparative Training Outcomes Across Four Distinct Scenarios: MAML vs. Attention Model (dashed line in black). The upper row displays training
iterations conducted on the training set, while the lower row illustrates performance on the test set. The MSE loss is averaged over 5 trainings, which were
randomly initialized and demonstrated with shading.

model’s parameters. This was followed by 5 repetitions of the
second task, aimed at evaluating the model’s gradual learning
ability. By updating the model after the first task, and including
it in the support set of the fine-tuning step, we ensured that the
second task would be learned more rapidly. Remarkably, the
model demonstrated rapid adaptation to the second task with
an average duration of 26 seconds per repetition per user.

On average, a notable reduction of 13% in user effort from
task 1 to task 2 was observed, as measured by root mean
square (RMS) EMG values. Additionally, a 24% increase in
the exoskeleton’s torque was noted, indicating enhanced assis-
tance during the performance of the second task. Furthermore,
participants were able to follow the reference trajectory more
accurately, achieving an average MSE of 0.91.

V. DISCUSSION

We previously conducted a comprehensive ablation study,
which established that attention mechanisms outperform other
models in terms of effectiveness [27]. Additionally, we high-
lighted the flexibility of attention mechanisms to accommodate
variations in input length, a critical feature for handling time-
series data using a CNN-LSTM network [22]. Our findings fur-
ther confirmed that attention mechanisms contribute positively
to modularity; that is, they maintain satisfactory performance
even when one or two sensors are compromised or disabled.
Given that the meta-learning approach is model-agnostic, it
can be applied to various internal models beyond the CNN-
LSTM configuration. This versatility significantly enhances
the adaptability of our framework, making it suitable for a
broader range of applications such as rehabilitation [40].

In this study, we leveraged the MAML framework via few-
shot learning to customize the attention model for individual
users. Our task adaptability experiments demonstrated the
system’s effective performance, even under user fatigue, and
its robustness against sensor placement variations and EMG
signal noise.

Our findings indicate that an increase in the number of
examples per task during training, -equating to approximately
20 seconds of data on average and an additional 5 seconds
of training time— enhanced model accuracy. This improve-
ment is attributed to the expansion of the support set, which
provides a more substantial data basis for fine-tuning the
model. Conversely, increasing the number of ways (number of
task subsets) in the K-shot learning scheme tends to diminish
accuracy across all four deep learning models. This suggests
a dilution of focus, as the model must generalize across a
broader set of tasks.

While expanding the support set enhanced model accuracy,
it introduced a trade-off in terms of training duration. In-
creasing the number of examples per task (shots) increased
the training time from 25.4 seconds to 124.4 seconds, on
average. Our analysis revealed that the discrepancy in loss
between utilizing one shot and four shots for the attention
model was minimal, prompting our decision to proceed with
a one-shot approach henceforth. This would also reduced the
computational complexity.

Nonetheless, among the evaluated models, the attention-
based CNN-LSTM model exhibited the lowest loss, validating
our hypothesis that an attention mechanism enhances predic-
tive capability. This model’s superior performance underscores
the effectiveness of attention mechanisms in capturing relevant
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Task 1 2

MSE 1.53 0.91±0.11

EMG 1.20 1.04±0.29

Torque 58 72 ± 6

Fig. 6. Two predefined trajectories, depicted as solid black lines, were executed by two participants. The initial task served to update the meta model, followed
by a test involving the second task, during which participants carried a 2 kg load to a shoulder-level surface. Adjacent to the plots, a table compares the
outcomes in terms of Root Mean Square (RMS) EMG and RMS torque (psi), as well as the average MSE of the trajectory traversed by the participants over
10 repetitions relative to the reference trajectory.

features from the data, thereby improving the accuracy of
predictions. In our comparative analysis, attention mechanisms
demonstrated a 32% higher accuracy in task performance
(Table I), outperforming traditional models by a significant
margin.

During the task adaptation experiments, we compared the
adaptability of the attention model before and after the integra-
tion of the meta-learning framework. For the attention model
to be effective on new unseen movements or users, a combined
data of 200 minutes was required along with additional train-
ing iterations. When introduced to new users performing new
movements, the attention model failed even with 200 minutes
of combined data. Conversely, with the incorporation of the
meta-learning approach, the system demonstrated a remarkable
ability to adapt to movements and users utilizing less than 168
minutes of pre-trained data complemented by only 8 minutes
of newly acquired data. In the most demanding scenario
where the attention model failed, alongside 84 minutes of
the pre-trained dataset, a supplementary 16 minutes of new
data proved enough for the model to achieve satisfactory
performance levels. This showed an average reduction of 50%
in training data.

The intersubject findings support three key claims: (i)
inter-subject variability—driven by anthropometry and sensor
placement—creates a wide spread in baseline effort; (ii) meta-
adaptation reliably lowers user effort while boosting mechan-
ical output, independent of the new task or user identity; (iii)
when motion variability rises (new users + new movements),
a standalone attention-based CNN-LSTM fails to maintain
intention-decoding accuracy (29 % drop versus baseline),
whereas the proposed MAML-initialised network preserves
performance through rapid on-line fine-tuning.

In the third part of the experiments, our findings highlighted
the model’s ability to learn new tasks with just a single
example during real-time data collection. The repeatability

of this experiment was further validated by having another
participant repeat the same tasks. The first encounter of the
model with the ”new user performing a new movement“ was
the most strict condition in our experiment. However, not only
did we observe a satisfactory performance during this task, but
also it was observed that updating the parameters using only
one shot of this new task (21 seconds of data and 4 seconds of
training), resulted in a better performance during the second
task with a loss reduction of 40%. This also led to a notable
reduction in human effort during load-bearing tasks compared
to non-load-bearing tasks. In return, the exoskeleton’s torque
output increased, all while achieving higher precision, as
demonstrated in Figure 6. This demonstrated the model’s
escalating adaptability while providing assistance, improving
progressively with each introduction of minimal data.

Given that the model had previously been trained with data
from six individuals, it had already acquired a robust ability
to adjust to new tasks. This foundational learning ensures that
even when presented with data from a new user during the first
task, the model achieved satisfactory results with just a single
instance (21 seconds). This outcome highlights its distinct
advantage over the conventional methods. It’s important to
note that by placing the first new task in the support set,
we effectively treated the second task as a ”new movement“
scenario with updated parameters from the first task. After
five repetitions of the second task, the model’s performance
improved, benefiting from the additional data exposures.

Beyond addressing cross-subject variations, the model
rapidly adjusted to new loads, enhancing user comfort during
subsequent tasks despite increased weight and longer trajec-
tories. Also, we demonstrated that the model was robust to
sensor placement variations introduced in the dataset.

Looking ahead, we plan to introduce multiple new tasks
and move beyond simply using a pre-trained model for initial-
ization. Instead, we aim to incorporate tasks from new users
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directly into the training dataset for subsequent participants.
This approach will allow us to demonstrate incremental learn-
ing across several stages, reinforcing our theory of progressive
learning capability. Additionally, this method will enable us to
conduct comparisons between users. We could also perform
more repetitions of the first task to further see the gradual
improvement of the model.

Although online PD or impedance control [13], [14] can
improve adaptability, our system’s constant PD gains were
sufficient due to the pneumatic exoskeleton’s inherent low
bandwidth and slow dynamics, coupled with effective gravity
compensation that minimized unmodeled disturbances. In fu-
ture work, we plan to integrate an adaptive impedance layer to
fine-tune PD gains in real-time, bridging toward the dynamic
control strategies shown.

We plan to undertake a comprehensive statistical analysis
using methods such as paired t-tests and regression models
to quantitatively assess the improvements brought about by
our model in various operational scenarios. Future work will
also explore the model’s capabilities during online operations
by expanding the variety of new tasks and more diverse user
scenarios such as those with disabilities during inference.
Additionally, we aim to further refine the efficiency of our
system, reducing adaptation times and exploring the potential
for incorporating additional sensory inputs to enrich user
interaction with the exoskeleton.

VI. CONCLUSION

In this study, we represented a meta-learning framework that
is model agnostic for addressing the critical need for adaptable
and personalized myoelectric control systems. We utilized an
attention-based CNN-LSTM model that could decode muscle
activity and map it into future positions. Our goal was to detect
user intention when interacting with an upper-limb exoskeleton
to better assist the user with shared control and load-bearing
tasks to prevent injuries in industrial settings. In our previous
study, we showed the benefits of using attention in our CNN-
LSTM model. However, the most predominant limitation in
our work was the lack of adaptability and personalization when
introduced to new movements or new users unseen by the
model. The main contribution of this work was that by using
the MAML approach, we were able to predict future angular
positions with only a small amount of new data. In addition,
we mitigated the need for new training data for new users or
new environments. We also showed that our model can adapt
to a new task in real-time.
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