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Abstract—In order to guarantee safe human-robot interac-
tion in single-master/single-slave teleoperation systems, passivity-
based controllers have traditionally been developed for commu-
nication delay compensation in the velocity-force domain with the
assumption of passivity of the human arm. The same controllers
can also make the delayed communication channel passive in
the position-force domain, which provides a convenient position-
drift-free control strategy for more complicated scenarios such
as multi-master/single-slave systems. This would, however, only
work if the operator’s arm also remains passive in the position-
force domain. Whether the arm remains passive in the position-
force domain is a critical question yet to be answered. In this
paper, passivity of the human arm in the position-force domain
is investigated through mathematical analysis, experimentation
and statistical user studies involving 12 subjects and 48 trials.
It is shown that unlike in the velocity-force domain, the human
operator will not remain passive in the position-force domain
for all frequency ranges. This implies the need for appropriate
control strategies to make the human operator termination
passive in the position-force domain. For future design of suit-
able controllers, statistical analyses are performed to investigate
correlations between the levels of position-force domain passivity
of the left and the right arms of the human participants, as well
as the levels of passivity of the subjects’ arms and their physical
characteristics, e.g., weight, height, and body mass index. Possible
control strategies through which the passivity of the operator
termination can be guaranteed are also discussed.

Keywords– Passivity-Based Controller, Position-Force Do-
main Passivity, Arm Passivity, Teleoperation, Telerobotics.

I. INTRODUCTION

Teleoperation extends an operator’s sensing and manipu-
lation capabilities to a remote location. It facilitates off-site
robotic performance of a desired task through a user console,
and ensures cost-effectiveness, safety and accessibility. Tele-
operation systems have been broadly used in a wide range of
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applications from mining to space and underwater exploration
to robotics-assisted minimally invasive surgery [1], [2], robotic
surgical training [3], [4], and robotics-assisted rehabilitation
therapy [5], [6]. A teleoperation system consists of three main
components: 1) A slave robot, performing a desired task on a
designated environment, 2) a master console manipulated by
an operator, remotely controlling the slave console; and 3) a
communication channel to transmit data between the master
and the slave [7]. Fig. 1 shows the overall scheme of a single-
master/single-slave teleoperation system, in which teleoperator
refers to the set of communication channels integrated with
the master and the slave robots. Long-distance communication
can introduce time delays into the system, which can cause
instability [8]. To ensure robust stability of the system against
communication delays in order to guarantee safe human-robot
interaction, passivity-based control methodologies have been
developed building on the following passivity theorems:
Theorem I: A system is passive if it consists solely of passive
elements [9].
Definition I: A general time-varying n-port network with zero
initial energy storage is passive if [10], [11]:

ε(t) =
∫ t

0
UT (τ) . Y (τ) dτ ≥ 0 (1)

where U ∈ Rn and Y ∈ Rn correspond to the input and output
of the network, respectively.

Based on Theorem I and by the assumption of passivity of
the operator and the environment [12], [13], the only element
to make passive is the teleoperator (which is equivalent to
making the communication channel passive), for which several
methodologies have been introduced in the literature. These
approaches can be classified into two main categories: 1) Time
Domain Passivity Controller (TDPC) [14], [15], and 2) Fre-
quency Domain Passivity Controller (FDPC), which includes
Scattering Matrix [16] and Wave Variables [17] approaches.
According to Definition I, passivity of a general system can
be analyzed based on the input and output of the system, re-
gardless of their nature. In the teleoperation systems literature,
all of the existing approaches have addressed the passivity of
the communication channel (and therefore, the passivity of the
teleoperator) by considering the Input-Output (IO) pair to be
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Fig. 1: The overall scheme of a teleoperation system. The
teleoperator includes the communication channel as well as
the master and the slave robots. U = [u1,u2] and Y = [y1,y2]
refer to the input and output of the teleoperator, respectively.
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velocity and force signals. This has imposed the limitation
of having to transmit the velocity signal from the master
side to the slave side, rather than transmitting the position
signal. Transmission of the velocity signal causes position-
error accumulation and position drift, which considerably
degrades the position tracking performance of the system [14].

Several techniques have been proposed in the literature in
order to address the position drift caused by the FDPCs [18],
[19], [20], and a few methods were recently proposed to
compensate for the position drift in TDPC systems [14], [21].
However, these approaches, which mostly modify the conven-
tional passivity controllers, have been mainly developed for
addressing the position drift in bilateral Single-Master/Single-
Slave (SM/SS) teleoperation systems, and are not straight-
forwardly applicable to a Multi-Master/Single-Slave (MM/SS)
framework, due to the topographical complexities of MM/SS
platforms. MM/SS systems have been shown to be useful
in supervised robotics-assisted surgical training [3], [4] and
rehabilitation [22], [23], where an expert surgeon/therapist
can be directly involved in the procedure based on haptic
interaction with a trainee/patient. According to a recent study
[24], haptics-based interaction with a partner when learning
a motor task considerably enhances motor skills compared to
when practicing the task alone for the same duration.

Considering the mathematics behind most of the con-
ventional passivity controllers proposed in the literature for
SM/SS systems, which is fundamentally based on (1), the
same controller that makes the communication channel passive
for the IO pair of force and velocity (i.e., Velocity-force
Domain (VD)) can also make the channel passive for the
IO pair of force and position (i.e., Position-force Domain
(PD)). This immediately addresses the position-drift issue and
may be straightforward to apply not only to SM/SS systems,
but also to more complex frameworks such as MM/SS and
Multi-Master/Multi-Slave (MM/MS) systems. Although using
a PD controller to make the communication channel passive
is possible through the existing passivity-based approaches,
according to Fig. 1, it necessitates the connection terminal of
the operator-teleoperator1 to also remain passive in the PD in
order to comply with Theorem I. For this purpose, passivity of
the operator terminal in the PD, however, is a critical question
to be investigated. In fact, passivity of the operator in the VD
seems to be the main reason behind the development of all
the passivity-based controllers to date in the VD. While there
have been a number of studies on the numerical measurement
of the endpoint impedance of the arm [25], [26], [27], there
are very few studies on PD Passivity (PDP) of the operator.
In [28], PD passivity of the human arm was assessed through
numerical measurement of the endpoint impedance of the arm.
The assessment has been performed over a limited range of
frequency and does not discuss the frequency-dependence of
PD passivity.

Therefore, to facilitate PDP controllers for teleoperation
systems regardless of the complexity of the framework and the
number of master and slave robots involved, the main question

1“Connection terminal of the operator-teleoperator” refers to the terminal
through which the operator is connected to the teleoperator.

to answer is whether the operator is passive in the position-
force domain as well; and if not, what measures should
be taken in order to make the operator termination passive.
Consequently, in this paper, the PDP of the human operator
has been investigated through mathematical and experimental
analyses as well as statistical user studies involving 12 subjects
and 48 trials. It has been shown that, unlike in VD, the operator
will not remain passive in PD for all frequency ranges; This
implies the need for appropriate control strategies to make the
human operator termination passive in PD. For future design
of suitable controllers, statistical analyses are conducted to
investigate the possible correlation between the levels of PD
passivity of the left and right arms of the human participants,
and the levels of passivity of the subjects’ arms and their
physical characteristics, e.g., weight, height, and body mass
index. Possible control strategies through which the passivity
of the operator termination can be ensured are also discussed.

The rest of the paper is organized as follows: Section II ana-
lyzes passivity of the operators in PD, mathematically. Section
III gives experimental results in support of the mathematical
analysis. Section IV discusses the user trials on humans,
and statistically analyzes PD passivity as well as correlations
between the subjects’ physical features and passivity levels
of their arms. Section V suggests possible control approaches
to ensure the PDP of the operator termination. Section VI
provides a case study on implementation of the proposed
control approaches on a bilateral SM/SS teleoperation system
and Section VII concludes the paper.

Remark I: Besides passivity-based controllers (which have
been mostly developed in VD), there also exist other control
methodologies for teleoperation systems. Examples of such
controllers include [29], [30], which have been developed
based on Input-to-Output Stability (IOS) and Input-to-State
Stability (ISS) analyses. Passivity-based vs. ISS/IOS-based
controllers are both valuable methodologies and have their
advantages and disadvantages. The focus of the current paper,
however, is to open up a new perspective to design and
implementation of passivity controllers directly in the position-
force domain, and detailed comparison of passivity controllers
with non-passivity approaches is out the scope of this paper.

II. MATHEMATICAL ANALYSIS

The dynamics of the human arm can be modeled by a
second-order system [31]:

Mhẍh(t)+Bhẋh(t)+Kh(xh(t)− xh0) = fh(t) (2)

Here, fh refers to the force applied to the arm endpoint,
xh is the hand position, and xh0 is the hand equilibrium
position commanded by the Central Nervous System (CNS)2.
In addition, Mh, Bh and Kh denote the constant real-valued
inertia, damping and stiffness of the arm. By the change of
variables x = xh− xh0 , (2) is transformed to:

Mhẍ(t)+Bhẋ(t)+Khx(t) = fh(t) (3)

2Hand equilibrium position can be interpreted as the desired reference for
the human intention, which is gradually shifted by the CNS between the
movement end-points in order to control the arm movement [25], [32].



where x refers to the displacement with respect to the equilib-
rium point xh0 . Taking the Laplace transform of (3) yields

(Mhs2 +Bhs+Kh)X(s) = Fh(s) (4)

where Fh(s) = L { fh(t)} and X(s) = L {x(t)}, in which L
and s indicate the Laplace operator and the Laplace vari-
able, respectively. Continuing the analysis in one Degree-Of-
Freedom (DOF) in the interest of simplicity and without loss of
generality, the admittances of the human arm in the position-
force domain, YP(s), and in the velocity-force domain, YV (s)
can be written as follows:

YP(s) =
X(s)
Fh(s)

=
1

Mhs2 +Bhs+Kh
(5)

YV (s) =
V (s)
Fh(s)

=
s

Mhs2 +Bhs+Kh
(6)

where V (s) = L {v(t)} and v(t) = ẋ(t).
In order for a transfer function G(s) to represent a passive

system, G(s) must be Positive Real (PR) [33]3. Investigate the
positive-realness and therefore the passivity of the human arm
in the velocity-force domain, and considering that Mh, Bh and
Kh have positive values, yields:

YV ( jw)+YV (− jw) =
2Bhw2

(Kh−Mhw2)2 +(Bhw)2 ≥ 0 (7)

which is always true, as Bh refers to a positive-valued damping
term. Therefore, YV (s) satisfies the PR criteria, which implies
the passivity of the human arm with respect to the force-
velocity input-output pair. This is completely in agreement
with the literature, where the human arm has been considered
passive for force-velocity interactions [12].

Investigating the PR criteria condition for YP(s) leads to

YP( jw)+YP(− jw) =
2(Kh−Mhw2)

(Kh−Mhw2)2 +(Bhw)2 ≥ 0 (8)

which is dependent not only on Kh and Mh, but also on the

frequency w, and is not true for w > wn =

√
Kh

Mh
. Therefore,

unlike in the VD, the human arm does not remain passive in
the PD for all frequency ranges.

Remark II: Giving the analysis in one DOF does not affect
generality, as the above serves as a counterexample to show the
non-passivity of the operator in the position-force domain. The
same applies to the posture-independent and time-invariant
second-order model considered for the human arm in (2).
Although this model is a simplified model of the human arm’s
neuro-musculoskeletal structure as detailed in [31], it can still
show the position-force domain non-passivity of the human
arm as opposed to the velocity-force domain, even for the
simplest model. Moreover, in order to analyze the PD passivity
of the human arm without forgoing the analysis accuracy
as a result of unmodelled dynamics and uncertainties, user
trials and statistical analysis involving human operators have

3The definition of a PR transfer function has not been included in the interest
of the space, and can be found in [34].

been also conducted as detailed in Section IV. The analysis
given in Section IV relies on the passivity measure, which
is input/output-dependant, rather than model-dependant, and
addresses concerns with thoroughness of the dynamic model
considered for the arm.”

What can be inferred from (8) is that increased stiffness of
the arm can contribute to the PD passivity of the arm, while
the arm’s inertia has an active effect. Moreover, the higher the
motion frequency, the higher the possibility of non-passivity.
In order to further evaluate these findings, experiments were
conducted as described in the following section.

III. EXPERIMENTAL ANALYSIS

In order to investigate the passivating4 or non-passivating
effect of inertia, stiffness and motion frequency, experiments
were conducted. The experimental setup, shown in Fig. 2,
consists of an adjustable custom-built Mass-Spring Array
(MSA) connected to a 2-DOF planar Quanser rehabilitation
robot (Quanser Consulting Inc., Markham, ON, Canada). The
capstan drive mechanism of the Quanser rehabilitation robot
makes it back-drivable with low friction and inertia. The
robot is capable of exerting forces up to 50 N throughout its
semicircular workspace, and the motors encoders provide a
resolution of better than 0.002 mm in Cartesian space [28].
The modular structure of the MSA allows us to add external
mass and spring elements to examine the effect of various iner-
tia/stiffness values. During the experiments conducted in three
scenarios, the MSA’s end-point was perturbed by the robot
using the following Persistently Exciting (PE) perturbation:

P = 0.0025.∑4
k=1 ∑

3
j=1 sin(

w jt
k

) (9)

where w1 = 1.2π , w2 = 2π , and w3 = 3π
rad

s
. The position of

the MSA’s endpoint, xMSA, and the force applied to the MSA,
fMSA, were measured in 2 Cartesian directions along X and Y
axes. In order to measure fMSA, an ATI Gamma force sensor
(ATI Industrial Automation Inc., Apex, NC, USA) was placed
between the robot’s End-Effector (EE) and the MSA. The force
sensor has a resolution of 0.0125 N and maximum measurable
force of 65 N along X-Y axes. Since the robot’s EE was in
contact with the MSA’s end-point, the position and velocity of
the robot’s EE captured by applying forward kinematics to the
robot’s joint positions reading served as those of the MSA’s
end-point (xMSA and vMSA).

The PD passivity of the MSA system in each experimental
trial was investigated using Definition I with respect to force-
position input-output pair by checking if:

εPD(t) =
∫ t

0
xT

MSA(τ) . fMSA(τ) dτ ≥ 0 (10)

Note that MSA was relaxed at t = 0, so the initial energy was
zero, and therefore the passivity condition given in (10) was
checked with the right-hand side being zero.

Remark III: The experiments were designed in such a
way that each scenario investigates the effect of one single

4The term ”passivate” has been used as a synonym for ”make passive”.



parameter over the PD passivity at a time. This allows to ex-
amine the correlation of the PD passivity with each parameter
independently, without superimposing multiple effects on the
correlation outcome.

A. Experimental Scenario I
The first experiment was conducted for a series of mass val-

ues, namely, m1 =m0, m2 =m0+0.230kg, m3 =m0+0.460kg,
and m4 = m0 +0.690kg by adding masses to the system, with
no springs added; m0 > 0 refers to the mass of the handle
between the force sensor and the MSA before adding any
external mass to the MSA. Fig. 3a shows εPD calculated for
the mass values. As can be seen in this figure, εPD for all
mi (i = 1,2,3,4) has negative and decreasing value for all
t ≥ 0, which indicates non-passivity of the mass. As can also be
seen in this figure, the heavier the mass, the more non-passive
behavior it shows, which is in agreement with the mathematical
analysis discussed in the previous section.

B. Experimental Scenario II
The second experiment investigates the effect of stiffness on

passivity. For this purpose, stiffness elements were added to
the same mass values mi (i = 1,2,3,4) as in previous scenario
by adding a set of springs (k1 = 50, k2 = 175, k3 = 190, k4 =

230
N
m

) to the MSA. Fig. 3b shows εPD calculated for the sets
of mass-spring elements. Comparing Fig. 3b with Fig. 3a, the
passivating effect of stiffness components as opposed to mass
components can be seen. Although mi (i= 1,2,3,4) moves the
system towards non-passivity (as shown in Fig. 3a), adding
stiffness can reverse the trend and make the system passive.
This result is also in agreement with the PD passivity condition
derived in the previous section.

C. Experimental Scenario III
Considering the passivity condition given in (8), in addition

to mass and stiffness, motion frequency can also play an
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Fig. 2: The mass-spring array system connected to the 2-DOF
planar Quanser rehabilitation robot.

essential role in passivity of the arm in PD. Therefore, a
third experiment is designed to examine the effect of the
perturbation’s frequency range. For this purpose, experimental
scenario I has been repeated for the same circumstances,
including the mass values, except for the frequency range of
the perturbation signal. In this experiment, the perturbation
given in (9) has been applied for w1 = 2π , w2 = 6π , and

w3 = 10π
rad

s
. Fig. 3c shows εPD calculated for the mass

elements perturbed at higher frequencies. Comparing Figs.
3a and 3c, it can be seen that, although the mass elements
have shown non-passive behavior in both frequency ranges
(experimental scenario I and III), the rate of non-passivity
was considerably higher for the higher-frequency perturbation
(experimental scenario III). In 60 seconds, εPD has reached
from 0 to -0.045 for the low-frequency perturbation (Fig.
3a), while during the same time εPD for the high-frequency
perturbation has dropped from 0 to -1.54 (Fig. 3a).

The experimental results in this section support the math-
ematical analysis given in Section II. As verified in both
Sections II and III, stiffness can contribute towards passivity
in PD, while mass and increased frequency work against
passivity of the arm in the position-force domain. The analyses
given in Sections II and III build upon the second-order
model approximation for the human arm. Although the model
is very popular in the literature and has been used to a
large extent, there still might be a question of accuracy due
to the unmodeled dynamics. To address concerns about the
thoroughness of the model, a series of user trials has also been
conducted as discussed in the following section.

IV. USER TRIALS AND STATISTICAL ANALYSIS

In order to analyze the PD passivity of the human arm
without forgoing the analysis accuracy as a result of possible
model reduction/uncertainty in the previous section, user trials
were conducted.

A. Subjects
Twelve healthy subjects (5 women, 7 men; mean age,

29 years; age range, 26-40 years) were recruited. Data was
collected for both left and right arms of the subjects, giving
us 24 sets of data. Two participants were left-handed and 10
right-handed, all with no history of motor impairment. All
participants gave written informed consent to participate in the
study. The study was approved by the Research Ethics Board
(REB) at the University of Alberta.

B. Setup and Procedure
As illustrated in Fig. 4, each subject sat in front of a

Quanser rehabilitation robot and grasped the robot’s handle
with their hand. They were asked to relax their arm and avoid
voluntary intervention as the robot applied perturbations to
their arm. All data was collected at test locations in which
the subject’s forearm formed a right angle with their upper-
arm in the interest of consistency. Each trial was repeated four
times for each subject, collecting force and position data on



(a) Effect of inertia on εPD

(b) Effect of stiffness on εPD

(c) Effect of motion frequency on εPD

Fig. 3: Experimental results

both right and left arms with two different frequency ranges
of perturbations applied to each side for two minutes. The
following PE position perturbation signals were applied to the
subject’s hand in X and Y directions:

PX = 0.015.∑4
k=1 ∑

3
j=1 sin(

w jt
k

)sin(θ t)

PY = 0.015.∑4
k=1 ∑

3
j=1 sin(

w jt
k

)cos(θ t)
(11)

In (11), w1, w2, w3, θ are respectively set to 0, π , 2π and

0.55π
rad

s
for the lower range of perturbation frequencies,

and to 3π , 6π , 12π and 0.35π
rad

s
for the higher range

of perturbation frequencies. The low and high ranges of
perturbation frequencies were selected based on a threshold
calculated according to the natural frequency of a typical

Quanser 
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Fig. 4: The experimental setup used in the user trials.

human arm. For this purpose, a stiffness of Kh = 100
N.s2

m
and a mass of Mh = 1Kg [28] were considered in (2) leading

to a natural frequency as wn =

√
Kh

Mh
= 3.2π

rad
s

. This shows

natural frequency based on the mathematics derived in Section
II, may serve as the passivity/non-passivity threshold of the
arm. The low-frequency signal was generated such that, while
having a rich frequency content, its largest frequency remained

below 3.2π
rad

s
. The high-frequency perturbation signal was

also generated such that it contained higher-than-threshold
frequencies, while having a rich frequency content.

Note that the two-dimensional perturbation would suffice for
the analysis of the relative contributions of the shoulder, elbow,
and biarticular muscles to the overall limb passivity/activity,
without entailing the experimental complexity of a full multi-
dimensional evaluation [28] and [25].

During the trials, the forces applied by the subject’s hand to
the robot’s end-effector was measured using the ATI Gamma
force sensor located at the robot’s EE. The position of the
robot’s EE also served as the position of the subject’s hand
endpoint, as the subjects were grasping the robot’s handle.
PD passivity of the subject’s arm for each experimental trial
was investigated using the general passivity criterion given
in (1) with respect to force-position IO pair by calculating
εPD(t) =

∫ t
0 xT

h (τ) . fh(τ) dτ . It should be noted that using the
general input-output-based criterion to investigate the system
passivity eliminates any necessity for estimation of the human
arm impedance parameters (mass, damping and inertia). Due
to its model-free nature, the IO approach does not suffer from
possible inaccuracies/uncertainties of various arm models.

C. Results
Figs. 5a, 5b, 6a and 6b illustrate εPD calculated for the

subject during the following four sets of trials, respectively;



1) LH-LF: Left Hand, Low-Frequency perturbation; 2) RH-
LF: Right Hand, Low-Frequency perturbation; 3) LH-HF: Left
Hand, High-Frequency perturbation; and 4) RH-HF: Right
Hand, High-Frequency perturbation.

1) Passivity/Non-passivity in Low-Frequency Trials: As it
can be seen in Figs. 5a and 5b, εPD remained positive for both
right and left arms of the subjects during the low-frequency
trials. This indicates passivity of the subjects’ arms during the
low-frequency trials. However, it can also be seen that subject
#10 had a fluctuating εPD with growing oscillations, which
could have caused negative εPD if the trials had lasted longer.
Therefore, despite its positive εPD, we consider the behavior
of subject #10 as non-passive. Oscillations can also be seen
in the εPD calculated for subject #5 in the LH-LF trial and
subjects #7 and #8 in the RH-LF trial. However, the damped
nature of those oscillations eliminates the possibility of εPD
getting non-passive in the long run.

In order to investigate the statistical significance of the
result (passivity of the arm in low-frequency ranges), statistical
analysis was conducted to illustrate that the high number of
passive behaviors during RH-LF and LH-LF did not occur by
chance. In this case, an occurrence possibility of 0.5 indicates
equal chance of passivity/non-passivity for the subjects during
the trials. Based on the high number of passive behaviors
during RH-LF and LH-LF, we hypothesize the following:

Hypothesis: The real probability of passive behavior during
low-frequency perturbations is greater than 0.5.

Based on this alternative hypothesis, the null hypothesis is
defined as follows:

Null hypothesis: The real probability of passive behaviors
in RH-LF and LH-LF trials is not greater than 0.5.

In order to examine this null hypothesis, a binomial test was
carried out. A binomial test statistically compares the number
of successes (the number of passive behaviors during RH-LF
and LH-LF trials, i.e., 22), observed in the total number of
trials, i.e., 24, with a hypothesized probability of success (that
is hypothesized to be greater than 0.5).

Using the binomial test, the null hypothesis is rejected with
p-value = 1.794e− 05, which is well below 0.05, indicat-
ing that the true possibility of passive behavior during low-
frequency perturbation is significantly greater than 0.5 (The
probability of passivity as given by the binomial test is 0.9166).

2) Passivity/Non-passivity in High-Frequency Trials: Figs.
6a and 6b illustrate εPD calculated for left and right arms of
the subjects during the high-frequency trials, i.e., RH and LH,
respectively. As can be seen in these figures, εPD had a negative
decreasing trend during all the high-frequency trials, except for
the right arm of subject #9. This negative εPD along with its
decreasing trend indicates non-passivity of the subjects. This
results is in agreement with the mathematics derived in Section
II, which associates the higher chance of non-passivity to the
higher range of movement frequencies.

The interesting point about the trend of εPD for subject #9 in
the RH trial (Fig. 6b) is that, although it has shown a passive
behavior, the level of passivity has decreased considerably
compared to that in the RL trial (Fig. 5b). This also illustrates
the non-passivating effect of the high-frequency perturbation
on subject #9, although the perturbation frequency range has

TABLE I: Mean-value of the quantified passivity levels

LH-LF RH-LF LH-HF RH-HF
0.0018 0.0017 -0.0040 -0.0039

yet been low enough for his right arm to behave passively.
In order to investigate the statistical significance of the result

(non-passivity of the arm in high-frequency ranges), statistical
analysis was conducted to indicate that the high number of
non-passive behaviors during RH and LH did not occur by
chance. Similar to the previous case, an occurrence possibility
of 0.5 indicates equal chance of passivity/non-passivity for the
subjects, based on which the hypothesis is defined, as follows:

Hypothesis: The real probability of non-passive behavior
during high-frequency perturbations is greater than 0.5.

Based on this alternative hypothesis, the null hypothesis is
defined as follows:

Null hypothesis: The real probability of non-passivity dur-
ing the high-frequency perturbations is not greater than 0.5.

In order to examine this null hypothesis, a binomial test was
carried out. Based on the results in Figs. 6a and 6b, the number
of successes (that is the number of non-passive behaviors, in
this case) was set to 23. The total number of trials was set to
24 and the hypothesized probability of success was set to be
greater than 0.5.

Using the binomial test, the null hypothesis is rejected with
p-value = 1.49e− 06, which is well below 0.05, indicating
that the true possibility of non-passivity during high-frequency
perturbation is significantly greater than 0.5 (The probability
of non-passivity as given by the binomial test is 0.9583).

3) Passivity/Non-passivity Correlation Between Left and
Right Arms: Figs. 7a and 7b compare εPD for left and
right arms of two of the subjects in low-frequency and high-
frequency trials, respectively. In both frequency ranges, corre-
lations can be seen between the level of passivity/non-passivity
of each subject’s left and right arms. The level of correlation
from one person to another could vary based on the mechanical
properties of the person’s arms such as muscle density and
strength. By looking at the results in Figs. 5-6, it can be seen
that not all of the subjects have shown similar passivity/non-
passivity behavior between their left and right arms. In order to
investigate the possible correlation between their left and right
arms, statistical analysis was carried out. For this purpose, the
slope of εPD calculated for the subjects’ arms was used as
a metric to quantify the degree of passivity/non-passivity in
subject’s arms. In order to calculate the average slope of εPD
for each subjects’ arms, the linear least-squares curve-fitting
method was applied. The slope of the fitted straight-line was
recorded for each εPD as a quantified passivity/non-passivity
metric. Fig. 8 illustrates the quantified passivity/non-passivity
degree for the subjects during the four trials.

Fig. 9a shows the distribution of the quantified data for all
the subjects during the four sets of trials (LH-LF, RH-LF, LH-
HF, RH-HF). The mean-value of the quantified passivity/non-
passivity levels for all the trials are given in Table I. Fig.
9b also compares the distributions for the Left Hands (LH)
and Right Hands (RH), disregarding the frequency range of
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(a) εPD for the left hand of all of the subjects recorded during low-
frequency perturbation
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(b) εPD for the right hand of all of the subjects recorded during low-
frequency perturbation

Fig. 5: εPD for all of the subjects recorded during low-
frequency perturbation

the perturbations. Both Figs. 9a and 9b indicate a reasonable
correlation between the passivity/non-passivity level of the
subjects’ left and right arms.

In order to statistically assess the degree of correlation
between the left and right arms, the Pearson product-moment
Correlation Coefficient (PCC) was calculated. The PCC pro-
vides a measure of the linear correlation between two sets
of data, where PCC = 1 refers to a total positive correlation
while PCC = 0 indicates zero correlation between the data
sets. Applying the Pearson test to the data for the subjects’
left and right arms, the PCC was calculated to be 0.8240 with
a p-value equal to 7.4564e− 07 which is well below 0.05,
indicating significantly high levels of correlation between the
subjects’ left and right arms.

Remark IV: The level of correlation possibly associates with
the level of similarities between the mechanical characteristics
of the person’s arms, despite existing muscle-strength variabil-
ity as a result of the person’s handedness. This association
could be helpful in generating a map, based on which the
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Fig. 6: εPD for all of the subjects recorded during high-
frequency perturbation

range of passivity/non-passivity degree for one arm of a person
can be specified based on that of his/her other arm. Such a
correlation map can be specially helpful in designing PDP
controllers for applications involving bi-manual activities,
e.g., in teleoperated robotics surgery. Nevertheless, this would
require data collection from an extensive number of subjects
in order to generate an accurate correlation map between the
left and right arms, which is beyond the scope of this paper
and will be the focus of future work.

4) Correlation Between Passivity/Non-Passivity Levels of
the Arm and Physical Features of the Body: An interesting
question to answer would be whether the passivity level of a
person’s arm can be associated with their physical features, e.g.
weight and height. If so, a correlation map can be possibly gen-
erated, based on which the passivity level of a person’s arm is
estimated according to the person’s physical features. In order
to address this question, statistical analyses were conducted;
and the level of correlation associated with the subjects’
weight, height, arm length, and Body Mass Index (BMI) were



(a) εPD comparison between the left and right hands for subjects #1 and
#5 during the low-frequency perturbation

(b) εPD comparison between the left and right hands for subjects #1
and #5 during the high-frequency perturbation

Fig. 7: εPD comparison between the left and right hands for
subjects #1 and #5

investigated. BMI is a quantified value derived based on one’s

weight and height (BIM =
Weightkg

Height2
m

), indicating the amount

of tissue mass (muscle vs. fat). For this purpose, weight,
height, and arm length of the participants were measured and
recorded. Multiple statistical Pearson correlation tests were
run for the data sets (physical features vs. passivity levels)
to calculate the correlation level between each of the physical
metrics (weight, height, arm length, and BMI) measured for
the participants and the level of passivity of their arms; and the
results are as follows: no significant correlation was observed
between the subjects’ height and the passivity levels of their
arms during the low-frequency trials (p-value= 0.0744). A
significant direct correlation of 0.7393 was, however, observed
between the passivity level of their arms and their body weights
(p-value= 0.0060). A significant direct correlation of 0.7563
was also observed between the subjects’ BMI and the passivity
level of their arms (p-value= 0.0044). This sounds reasonable,
as the amount of tissue mass directly contributes to the mass
and stiffness levels of an individual’s arm.

Another effective factor could be the individual’s arm length,
which can affect the end-point impedance of his/her arm
with respect to his/her arm impedances at the joints level.
Therefore, the combination of the subjects’ arm length (LArm)
and their BMI was also tested (LArm ∗BMI), which resulted in
significant direct correlation level of 0.7920 (p-value= 0.0021).
Among all of the above, the latter metric provides the highest
correlation, which can be used for the purpose of generating
a correlation map that associates the physical features of an

Fig. 8: Passivity/Non-passivity degrees for all the subjects
calculated from the least-squared curves fitted to their εPD.

(a) The distribution of the passivity degrees for all the subjects during
the four trials: LH-LF, RH-LF, LH-HF, RH-HF

(b) The distribution of the passivity degrees for the left hand (LH)
and right hand (RH) of the subjects

Fig. 9: The distribution of the passivity/non-passivity degrees

individual to the passivity range of his/her arm. In order to
generate an accurate association/correlation map, data collec-
tion and analysis should be carried out for a large number of
subjects, which is beyond the scope of the current paper and
will be the focus of our future work.

V. DISCUSSIONS

As elaborated earlier, the passivity of the human arm in the
position-force domain, unlike in the velocity-force domain, is
frequency-dependent and the operator arm may not remain
passive for the high frequency ranges. Therefore, in order
to develop position-force domain passivity controllers for



MM/SS systems, PD passivity of the operator should be also
satisfied in addition to the PD passivity of the communication
channel. PD passivity of the communication channel can be
realized through the conventional passivity controllers in the
literature by some change of variables [35]. The important
issue, however, will be making the operator in the position-
force domain passive for all frequency ranges. Development
of an appropriate PD passivity controller for the operator in
detail will be part of our future work. However, some of the
possible solutions to this problem are briefly discussed below:

1) Filtering out frequencies above the natural frequency of
the operator’s arm. Considering that the frequency range
characteristics of human motion is normally below
their natural frequency, the higher frequency ranges of
the signals flowing into the system may contain no
significant contents. This, though, should be specifically
discussed in the context of the application.

2) Virtually increasing the natural frequency of the opera-
tor’s arm by adding positive stiffness (as a passivating
element) into the system through the controller. This ap-
proach would be the dual of adding a damping term into
the system in the conventional VD passivity controllers.
The injection of the positive stiffness will shift the
εPD to a higher level and, thereby, the combination of
the virtual stiffness and the operator’s arm can tolerate
higher ranges of motion frequencies compared to the
operator’s arm alone. Although this approach can im-
prove the high-frequency passivity of the system, it may
degrade system performance in low-frequency ranges.
Improving the arm PD passivity and, thereby, increasing
the stability margin of a teleoperation system, by adding
virtual stiffness at the operator side is interestingly in
harmony with the stability condition derived in the
literature for teleoperation systems based on the Small
Gain Theorem [36].

3) Canceling out partially the effect of the mass of the
operator’s arm (the non-passivating element) by virtu-
ally injecting a negative mass into the system. This will
decrease the total mass value of the combination of the
operator’s arm and the negative mass, increasing the
natural frequency of the system and therefore shifting
the boundary of passivity to higher frequency ranges.
Unlike the virtual stiffness, the virtual mass will have a
frequency-dependent effect on system performance, and
will have a less degrading impact in the low-frequency
range compared to that in high-frequency range.

Remark V: The combination of the three suggested con-
trol approaches may be integrated into a PD passivity-
observer/passivity-controller strategy, through which the pas-
sivity of the human arm terminal in position-force domain may
be guaranteed. To what extent these strategies are helpful,
along with other possible control strategies, requires further
investigation and is a part of our future work.

VI. CASE STUDY: PDP-BASED CONTROLLER FOR A
BILATERAL SM/SS TELEOPERATION SYSTEM

As a proof of concept and in order to show the feasibility of
the passivating approaches mentioned in the previous section,

simulations were run in PD for a haptics-enabled bilateral
SM/SS teleoperation system. The dynamics parameters of
the environment were set as Me = 1kg, Be = 5N.s/m and
Ke = 150N/m. The dynamics parameters operator’s hand were
also defined as Mh = 1.5kg, Bh = 5N.s/m and Kh = 100N/m.
The operator’s exogenous force [23] was set as f ∗h (t) = sin(t).
The passivity measure εPD was calculated, indicating a passive
terminal at the operator side. In order to induce non-passivity
at the operator’s arm terminal (to test the proposed passivating
approaches), an additional force component was injected into
the controller loop by augmenting the force generated at the
environment side by sin(5t), before feeding the environment
force back to the operator’s hand. Two of the passivating
control approaches proposed in Section V were implemented,
the results of which are discussed below:

Virtual Stiffness (VS): A virtual stiffness component was
added at the arm terminal as a passivating controller. Three
different values were set for this component and the resultant
passivity measure were calculated at the arm terminal. Fig.
10 shows the resultant passivity measure before adding the
controller (V S = 0), and in the presence of three values
(V S = 30,50,70).•

Virtual Mass (VM): A similar procedure was repeated by
adding negative virtual mass component at the arm terminal.
Three different values were set for the MS control parameter as
(MS =−0.5,−0.7,−0.8) the result of which has been shown
in Fig. 11.•

Fig. 10: Passivity/Non-passivity measure at the arm terminal
in the absence (V S = 0) and in the presence of three various
control parameters (V S = 30,50,70).

Fig. 11: Passivity/Non-passivity measure at the arm terminal
in the absence (V M = 0) and in the presence of three various
control parameters (MS= -0.5, -0.7, -0.8).



Fig. 12: Passivity measure at the arm terminal in the absence
(V S= 0,V M = 0) and in the presence of two various controller
sets (VS=15, VM= -0.3 and VS=20, VM= -0.4).

Combination of Virtual Mass and Virtual Stiffness As the
third scenario, a combination of VS and VM as the passivating
controller was also evaluated. Two various sets of VS-VM was
chosen (V S = 15,V M = −0.3andV S = 20,V M = −0.4). Fig.
12 shows the resultant PD passivity measure with and without
(V S = 0,V M = 0) the controller.•

As can be seen if Figs. 10-12, adding a positive VS
component, or a negative VM component, or the combination
of the two at the arm terminal can ensure PD passivatity of
the operator’s arm in a bilateral teleoperation system.

Fig. 13 compares force-tracking performance at the operator
side in the presence of a VS controller vs. VM controller. To
keep it comparable, the VM and the VS were chosen such
that they have similar effects on the level of PD passivity of
the arm terminal. Based on the results given in Figs 10 and
11, these controller parameters were chosen as V M = −0.7
and V S = 30, respectively. As can be seen in Fig. 13, the
VM controller provided a better force-tracking performance
and thereby, a higher level of transparency to the operator.
To also quantify this, the Root-Mean-Square (RMS) of the
force-tracking error was calculated for both cases, resulting in
RMS error values of 0.0821 and 0.1446 for the VM and VS
controllers, respectively.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, the position-force domain passivity of the hu-
man arm was investigated in order to facilitate the development
of passivity-based controllers in the position-force domain for
teleopetarion systems. It was shown through mathematical
analysis and experimental results that, unlike the velocity-
force domain, the passivity of the human arm in position-
force domain is frequency-dependent, and the operator does
not remain passive in the position-force domain for all ranges
of frequencies. User studies were conducted in support of
the proposed hypothesis (frequency-dependent nature of the
position-force domain passivity of the human arm), for the
purpose of which 12 subjects were recruited. Each subject
participated in four trials; data was collected for their both
left and right arms for two different ranges of perturbation
frequency. Statistical analysis was performed on the data for 48
trials to validate the proposed hypothesis. Statistical analysis
was also conducted to study the correlation between 1) the
levels of passivity of the left and the right arms of the subjects;

Fig. 13: Force-tracking performance in the presence of VM and
VS controllers. Fe: desired force generated at the environment
side; Fh: force applied to the operator’s hand.

and 2) the level of correlation of the passivity of the subjects’
arms and their physical characteristics, e.g., weight, height, and
body mass index. Future work will focus on the development
of correlation maps based on which the passivity level of
an operator’s arms can be specified using his/her physical
characteristics. Integrating the passivity-based controllers in
the literature with position-force domain passivity analysis,
mainly with the focus on MM/SS teleoperation systems, will
also be another aspect of our future work.
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