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Abstract— Rehabilitative and assistive practices usually elicit
intense and repetitive exercises. Thus, there has been an in-
creasing interest in robotic systems as they are robust and cost-
effective in comparison to conventional physical motor-therapy
with a therapist. These robots have applications in therapeutic
and in-home environments, where there is a necessity for a user-
friendly procedure to program the robots for a specific task
easily. Our group has suggested robot learning from demon-
stration (LfD) as an intuitive procedure to program robots via
short-term physical interaction in rehabilitation and assistive
applications. In this paper, a therapist assists a patient, and
cooperatively performs a task on a robotic manipulator. Then,
using a non-parametric potential field function, the therapist’s
motion and interaction force (assistance/resistance) is modelled
time-independently via a convex optimization algorithm. Next,
in the therapist’s absence, the robot provides the patient with
the same level of interaction force provided by the therapist
along the trajectory. A velocity field controller is also designed
to compensate and regulate the patient’s deviation from the
velocity observed in the demonstration phase. Finally, the
efficacy, advantages, and stability of the proposed framework
are evaluated in three different experimental scenarios involving
spring arrays and an individual with Cerebral Palsy.

I. INTRODUCTION

Stroke and cerebral palsy are the most common causes of
severe movement disorders in adults and children, respec-
tively [1]. Symptoms associated with these disorders include
loss of motor control, reduced mobility, restricted range
of motion, muscle stiffness, and difficulties in performing
a voluntary movement. It is estimated that about 460,000
Canadians are living with the effects of stroke [2], and more
than 500,000 Americans under the age of 18 have at least
one cerebral palsy symptom that negatively affects their daily
life tasks [3]. Due to the ageing population in Canada and
the growing population in the USA, the need for therapeutic
and rehabilitative services is expected to increase in the near
future [2], [4].

The proposed system in this paper can be useful in various
applications that involves human-robot interaction. However,
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without the loss of generality, this work is focused on
providing arm-reaching motor-therapy to individuals with
an upper-limb disability. There are various approaches to
entirely or partially restore the physical functionality of
stroke patients and ameliorate motor function in individu-
als with CP [5], [6]. However, conventional arm-reaching
practices are labor intensive and constitute a significant load
for therapists as they involve high-dose intensive training and
repetitive practices of specific functional tasks [6], [7]. As
an alternative in recent years, there has been an increasing
interest in bringing robotic systems into the clinical scene to
assist individuals with task executions [5]. This, however,
emphasizes on a critical issue: 1) The field of robotics
is dynamic and evolving, but, there has been no proof
that an intelligent robotic system can prescribe therapeutic
or assisting motions and replicate an expert therapist [7],
2) when interacting with humans, robots must be able to
be robust and deal with uncertainties while performing a
given task and classical robot position control falls short in
addressing this issue since it works time-dependently with
no feedback from the patient.

To control both robot’s motion and dynamics at points
of contact with its surrounding environment, variable
impedance control has been widely used in collaborative
robotics to regulate the interaction between the human and
the robotic manipulator. It allows adaption of robot inter-
action properties, for instance, by making it more or less
compliant in uncertain regions, while cooperatively accom-
plishing a task such as following a given path [8]. Variable
impedance control requires real-time motion generation to
operate jointly with the controller. To this end, robot learning
from demonstration (LfD) can be considered. LfD is a
technique for creating trajectories that rely on demonstrations
of an intended task to a robotic manipulator. LfD algorithms
use a dataset of examples to reproduce the demonstrated
behavior [9].

LfD has initially been developed for industrial settings
(see [10] for a survey). In our previous works, we demon-
strated that LfD could also be efficiently used along with
impedance controllers in the context of rehabilitation to use
the therapist’s demonstrated therapy task to program the
robotic manipulator for repetitive high-intensity reproduction
of the task with the patient [11]–[14]. In this scenario, the
therapist performed the task of moving an initially inert
robotic manipulator from point A to point B for multiple
times. This was referred to as the "demonstration phase."
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Then the system learned the task-specific trajectory provided
by the therapist. Next, in the therapist’s absence, the robot
assisted the patient with following the same trajectory. This
was referred to as the "robot-assistance phase." A virtual
impedance model (a spring-damper pair in parallel) attracted
the robot manipulator to the learned trajectory. Thus, if the
patient deviates from the demonstrated trajectory at a given
time, assistance is provided to prevent further deviation from
the trajectory, at a rate that is proportional to the observed
deviation.

The previous LfD approach in our group used Gaus-
sian mixture models (GMM) to mathematically capture the
trajectory followed by the therapist and patient. Gaussian
mixture regression (GMR) was employed to reproduce the
demonstrated trajectory using robotic assistance.

There are ways to improve upon the previous approach.
First, it should be noted that the assistance provided by
LfD algorithms in the traditional way are time-dependent
[12]. Thus, the patient is required to follow the demonstrated
trajectory from the initial position towards the destination at
a similar velocity as in the demonstration phase. Otherwise,
the patient would experience interaction forces programmed
for other sections of the trajectory (as it is time-indexed) and
the robot increases the applied force uncontrollably to drag
the user’s hand to the desired path, with no feedback from
the patient’s success in following the trajectory. Second, the
demonstration phase did not involve the patient, but only the
therapist is demonstrating the desired position (trajectory)
and allowed deviation to the robot. This approach fails to
capture the required patient-specific interaction force and
velocity. Third, to address the system’s stability and safety
issues of the first two points. In this paper, we further extend
the idea of LfD for robotics-assisted rehabilitation to address
these three points.

Rather than using traditional LfD algorithms, we propose a
framework that uses a modified version of the non-parametric
potential field function introduced in [15] for the context of
robotic rehabilitation. Readers are referred to [15] if they are
interested to know the advantages of this method over other
state-of-the-art LfD techniques in-detail. In our proposed
framework, first, the therapist and patient cooperatively per-
form a task for once. Then, the robot motion and interaction
forces are captured by a non-parametric potential function’s
gradient and curvature, respectively, using a convex opti-
mization algorithm. In this paper, the convex optimization
target has been modified so that the potential field is shaped
based on both tangential and normal (perpendicular to the
trajectory) interaction forces between therapist and patient.
Then, in the therapist’s absence, the robot, controlled by the
learned potential field, provides the patient with an estimated
assistance and interaction behaviour he/she received during
the demonstration phase. Normal gradients keep the patient
around the trajectory, and tangential curvature assists the
patient in moving along the trajectory.

In [15], there was no human-robot interaction in the
reproduction phase. Therefore, a constant dissipating field
was calculated by solving a convex optimization to produce

Fig. 1. Displays the proposed framework for learning the therapist’s
assistance by demonstration. In the demonstration phase (left), the therapist
assists the patient to follow the trajectory for a single trial. Then, in the
robotic assistance phase (right), by using potential field function and velocity
field controller, the demonstrated therapist’s assistance is modelled and
provided to the patient.

motions with the velocity equal to the demonstrated velocity.
However, in this paper, the robot is interacting with a
human in the reproduction phase. Therefore, a performance-
based velocity field controller is proposed to adapt to the
variant user behavior and provide them with assistance/resis-
tance if they are deviating from the demonstrated velocity.
A position-indexed velocity field is produced around the
trajectory based on the demonstrated velocity. Then, the
stable velocity field controller proposed in [16] is used
to regulate the patient’s deviation from the demonstrated
velocity. Finally, the stability of the overall system is proven
in interaction with a passive environment. Fig. 1 displays
the proposed framework. The remainder of this paper is
organized as follows: Section II introduces the cooperative
task demonstration phase, subsequently used in Section III
in order to derive the modified potential field function. In
Section IV, we propose the velocity field controller and prove
the stability of the overall system. Finally in Section V, we
validate the proposed approach in a 2-dimensional Cartesian
space task using a planar rehabilitation robot.

II. TASK DEMONSTRATION

It is assumed that the patient, if unassisted, is unable to
complete a given task. Therefore, the therapist also interacts
with the robotic manipulator held by the patient in order to
assist him/her to carry out a task, considering the patient’s
physical constraints and range of motion. The therapist
provides the minimum required assistance (i.e., assist-as-
needed) to motivate the patient to actively engage in the task
[17], [18]. In this framework, just a single demonstration is
required for the system to learn the therapist’s assistance.

The nonlinear dynamics of a multi degree of freedom
(DOF) rigid robot in the n-dimensional Cartesian coordinates
can then be given by:

M(qr)ẍr +C(qr, q̇r)ẋr +G(qr)+ f (q̇r) = Fin +Fc (1)

where qr ∈ Rn×1 are the joint angles, xr ∈ Rn×1 is the po-
sition of the robot end effector in the Cartesian coordinates,
M(qr) ∈ Rn×n is the inertia matrix, C(qr, q̇r) ∈ Rn×n con-
tains Coriolis and centrifugal terms, G(qr) ∈Rn×1 contains



position-based forces such as gravity and f (q̇r) ∈ Rn×1 is
the friction force. Also, Fin and Fc ∈ Rn×1 are interaction
and control forces, respectively, exerted on the robotic end
effector. Note that as the robotic manipulator interacts with
the task environment, the therapist pulls/pushes the robot to
assist the patient to complete the task. It is assumed that the
slave robot is either inherently back-drivable or is properly
impedance-controlled to follow externally-imposed motions.

With therapist holding the robotic manipulator and end
effector in contact with patient, as they cooperatively perform
a task, let

Fin = Fth +Fpa +Fd

Fc = 0
(2)

in (1), where Fth, Fpa, and Fd ∈ Rn×1 are the placeholders
that represent the force applied by therapist, patient and
disturbance to the robotic manipulator, respectively. Fin is
measured by force sensor in the robotic end effector.

A. Data Sampling and Preprocessing
During the demonstration phase, the n-dimensional posi-

tion xP ∈Rn, velocity ẋp ∈Rn and interaction force between
the therapist and the patient (Fin ∈ Rn) in the Cartesian
coordinates are sampled with a constant sampling time. Since
the position vector samples are not evenly distributed along
the trajectory, as velocity is not constant, the dataset is down-
sampled to M evenly-distributed samples (hereafter called
attracting points) to form the following dataset:

D = {[xi
p; ẋi

p;F i
in ∈Rn] ∈R3n}M

i=1 ∈R3n×M (3)

where the superscript i is for the ith attracting point of the
demonstrated trajectory, which contains M attracting points
in total.

Now, {T −N}i, which is the tangential-normal coordinate
system in the ith attracting point is defined, which is centered
at xi

p with the tangential axis toward the next attracting point
(xi+1

p ). T and N represent the tangential and normal direction
in this Cartesian coordinates, respectively. The rotation ma-
trix between the {T −N}i and inertial Cartesian coordinate
system can be calculated in each attracting point as Ri

p(θ
i
p).

Thereby, F i
in and xi

p can be represented in {T −N}i, with
tangential {xi

p,T ,F
i
in,T ∈R} and normal {xi

p,N ,F
i
in,N ∈Rn−1}

components, through the rotation matrix Ri
p(θ

i
p) as:

[ẋi
p,T ẋi

p,N ]
T = Ri

p(θ
i
p)ẋ

i
p

[F i
in,T F i

in,N ]
T = Ri

p(θ
i
p)F

i
in
∀i ∈ {1,2, ...,M} (4)

III. LEARNING THE POTENTIAL FIELD FUNCTION

To robotically reproduce therapist’s assistance, potential
function learning, which was initially proposed in [15] is
used. In the reproduction phase, the therapist is not present
and the robotic manipulator provides assistance through the
control signal Fc ∈Rn×1, such that in (1) we substitute:

Fin = Fpa +Fd

Fc = Fpot(xr)+Fvel(xr, ẋr)
(5)

in which
Fpot(xr) =−∇U(xr) ∈Rn×1 (6)

is the gradient of the positive scalar potential field at each
position (U(xr) ∈ R+) and Fvel(xr, ẋr) ∈ Rn×1 denotes the
velocity field controller in the task environment which both
will be defined hereafter.

To provide identical assistive forces as demonstrated, to
the patient, two fundamental set of forces are required:

1) The attracting force F i
in,N , which is normal to the tra-

jectory, attracts the end effector and resists deviations
from the trajectory.

2) The propelling force F i
in,T , which is tangent to the

trajectory and assists the patient to move along the
trajectory and reach the destination.

To jointly generate both tangential and normal forces that
are applied at a given position, the non-parametric potential
field is created by connecting the current position of the end
effector xr to each attracting point xi

p through a virtual spring
model with stiffness K. The calculated potential energy
stored in each spring is:

ui(xr) = ui
0 +

1
2
(xr− xi

p)
T Ki(xr− xi

p) ∀i ∈ {1,2, ...,M}, (7)

in which ui
0 ∈R+ is the bias potential parameter and Ki ∈Rn

is a diagonal stiffness matrix in the ith attracting point. The
higher the stiffness matrix, the higher the attracting force
Ki(xr− xi

p) will be towards the ith attracting point.
In order to smooth out and localize the accumulated po-

tential field produced by all position samples (i.e., attracting
points), Gaussian kernel regression is employed. The total
potential energy as in [15] through the weighed average will
be:

U(xr) =
M

∑
i=1

ω̃
i(xr)ui(xr) (8)

with

ω̃
i(xr) =

ω i(xr)

∑
M
i=1 ω i(xr)

(9)

and

ω
i(xr) = e

− 1
2σ2

i
(xr−xi

p)
T (xr−xi

p)
(10)

where σ i > 0 is a smoothing parameter with 0 < ω̃ i(xr)<
1, and ∑

M
i=1 ω̃ i = 1. As shown in Fig. 2, ui

0 and Ki determine
the tangential gradient and normal gradient of the potential
field, respectively. In the proposed robotic assistance sce-
nario, the potential field parameters (ui

0 and Ki) are set to
represent the interaction of the therapist with the patient
during the cooperative task demonstration. To replicate the
therapist’s normal force along the trajectory, the stiffness
matrix Ki is set to be diagonal and linearly proportional to the
demonstrated normal interaction force as (11-12). Therefore,
the robotic system will assist (i.e., attract) the patient toward
the trajectory, as needed. The stiffness matrix is then defined
as:

Ki = diag[Ki
T Ki

N1
... Ki

Nn−1
] (11)



(a)

(b)

Fig. 2. (a) Displays a section of a potential field function that models a
trajectory along i, i−1, and i+1 attracting points. As attracting points are
close to each other along the trajectory, the stiffness parameters (Ki−1 , Ki,
Ki+1) have a negligible effect on the tangential gradient, which is mainly
dictated by the difference in bias potentials (ui−1

0 , ui
0, ui+1

0 ). (b) Illustrates
the effect of ui

0 and Ki parameters on the potential field gradient (i.e., force)
in the tangential and normal directions, respectively.

in which:

Ki
N j

=
F i

in,N j
−Fin,N j ,min

Fin,N j ,max−Fin,N j ,min
(KN j ,max−KN j ,min)+KN j ,min

∀ j ∈ {1,2, ...,n−1} (12)

where Fin,N j ,max and Fin,N j ,min are the maximum and mini-
mum normal interaction force observed in jth normal direc-
tion in the demonstration phase. Also, KN j ,max and KN j ,min

are the maximum and minimum stiffness parameters in jth

normal direction (in 2D tasks j = 1) tuned based on the
task-specific requirements and robot physical restrictions
(e.g., actuator torque). In the next step, having the stiffness
parameters in each attracting point, calculated using (12), the
potential field biases (u0) can be calculated based on a convex
optimization method so that the gradient of the potential
field in ith attracting point (−Oui(xi

p,Θ)) gets equal to the
tangential interaction force observed in the demonstration
phase. The optimization minimizes

min
u0

J(Θ) =
n

∑
i=1
‖Oui(xi

p,Θ)+F i
in,T

+‖2 (13)

subject to:

ui+1
0 ≤ ui

0 ∀i ∈ {1,2, ...,M−1}
ui

0 ≥ 0 ∀i = M

∇ui(xi
p,Θ) = 0 ∀i = M

Θ = {ui,ki} ∀i ∈ {1,2, ...,M−1}

(14)

where M corresponds to the last attracting point (destination)
of the demonstrated trajectory. ∇ui(xi

p,Θ) and F i
in,T

+ which
are gradient of potential field and demonstrated tangential
interaction force are also defined as:

∇ui(xi
p,Θ) =−

M

∑
i=1

ω̃ i(xr)

(σ i)2 (u(xi
p)−U(xi

p))+ ..

ω̃
i(xr)Ki(xr− xi

p) (15)

and

F i
in,T

+
=

{
Fin,T if Fin,T >= 0
0 otherwise

(16)

The convex optimization in (13) finds the optimized bias
potential parameter (ui

0), so the learned potential field dictates
the position-related force, same as the therapist’s demon-
strated interaction force along the trajectory and exerts it on
patient’s hand via the robotic end effector. Fig. 3. displays
the overall framework for learning the potential field.

IV. VELOCITY FIELD CONTROLLER

During the reproduction phase, the robotic manipulator
should follow the trajectory with an acceleration and velocity
identical to the demonstration phase. However, variability
is inevitable in human motions. In this section, a velocity
field controller is defined to adjust the transient response
of the system and regulate the patient’s velocity around the
demonstrated trajectory. In the first step, the desired velocity
in each position is calculated by the weighted average of the
demonstrated velocity as:

ẋd(xr) = Π
L
0(dis(xr,xp))

M

∑
i=1

ω̃
i(xr)ẋi

p (17)

where ẋd(xr) ∈ Rn represents the position-based desired
velocity. ẋi

p ∈Rn denotes the demonstrated velocity in each
sample and Πb

a(x) ∈ R+ is the smooth transition function
that can be chosen from the sigmoid function family as:

Π
b
a(x) =

1
2
− 1

2
tanh

(
6(x− a+b

2 )

b−a

)
(18)

in (17), L ∈R+ denotes the width of the velocity field, and
dis(xr,xp) ∈R+ expresses the minimum distance of robotic
end effector, xr, from the attracting points, xp. The smooth
transition function is multiplied to restrict the width of the
velocity field around the trajectory. The aim is to minimize
the interference of the velocity field with the potential field
for the asymptotic stability of the accumulated field. In
areas away from the trajectory, the potential field gradient
(i.e., force) is mainly normal to the trajectory. This normal
force pulls the patient toward the trajectory and enhances
patient’s accuracy in following the trajectory. Therefore,
any added velocity field (which is aimed to be followed
by the patient) will interfere with this normal force and
compromise the asymptotic stability toward the destination
position. However, in the vicinity of the trajectory, the
potential field gradient is mainly tangential, and the velocity



Fig. 3. Illustrates the proposed framework for learning the therapist’s assistive interaction force from demonstration, using potential field function in
Section III. xr , ẋr , and Fin are recorded during the therapist’s assistance demonstration to the patient. Then down-sampled and processed (Section II-A)
to be provided to the convex optimization which finds the optimum u0 in the potential field to replicate the tangential interaction field provided by the
therapist (13).

field contributes to asymptotic stability. The potential and
velocity field are jointly sketched in Fig. 4.

Now, in order to regulate the robot’s velocity, we will
use a varying dissipative field controller proposed in [16].
This controller separately regulates the velocity in the tan-
gential direction and selectively dissipates energy in the
normal directions to the desired velocity. This is achieved
by a full ranked variable damping matrix, whose orthogonal
eigenvectors rotate based on the desired velocity direction
(ν̂T = ẋd(xr)

||ẋd(xr)|| ) and span the task space as:

D(xr) = Q(xr) C Q(xr)
T (19)

Q(xr) = [ν̂T ν̂N1 ...ν̂Nn ] (20)

C = diag [cT cN1 ...cNn−1 ] (21)

In (19), D(xr) denotes the position-based varying damp-
ing matrix and Q(xr) represents the eigenvector matrix
that transforms diagonal eigenvalue matrix (C) to inertial
Cartesian coordinates. In (20), ν̂T represents the normal-
ized tangential direction vector, and {ν̂N1 , ..., ν̂Nn} are the
normalized arbitrary and orthogonal vectors normal to the
desired velocity. The eigenvalues cT and {cN1 , ...,cNn} in (21)
represent the tunable damping parameters in tangential and
normal directions to the desired velocity, respectively. Having
the variable damping matrix, the velocity field controller in
(5) is:

Fvel(xr, ẋr) =−D(xr)(ẋr− γ(Z,S)ẋd(xr)) =

−D(xr)ẋr + γ(Z,S)cT ẋd(xr) (22)

where ẋd(xr) is an eigenvector of D(xr), with corresponding
eigenvalue cT . Therefore, D(xr)ẋd(xr) = cT ẋd(xr) in (22)
with γ(Z,S) ∈ R+ being the stabilizing energy tank scalar
function which is discussed in the following paragraphs. The
velocity field controller damps the motion normal to the
desired velocity (tuned by {cN1 , ...,cNn}), while regulating
the velocity tangent to the desired velocity ẋd(xr). If the
patient is following the trajectory slower than the desired
velocity, the controller will actively push (assist) the patient

to go faster. On the other hand, if the patient is going faster
than the desired velocity, the controller resists and dissipates
energy. The tangent velocity deviation tolerance can be tuned
by the therapist through tangential damping parameter cT .

The velocity field controller with its variable position-
based damping matrix, D(xr), can insert energy into the
system, thereby compromising stability. As suggested in [16],
the energy tank is employed to ensure the non-passivity of
the system. Energy tank refers to an additive state that stores
the dissipative energy of the system (instead of wasting it),
and uses this stored energy to induce it back to the system
when active control action is required. Therefore, the energy
tank state S ∈R which has a rate of change (Ṡ) defined as:

Ṡ = α(S)ẋ(xr)D(xr)ẋ(xr)−β (Z,S)cT Z (23)

in which Z = ẋ(xr)
T ẋ(xd) and

α(S) =

{
1 if S < S
0 otherwise

(24)

and,

β (Z,S) =


0 if S≤ 0 & Z ≥ 0
0 if S≥ S & Z ≤ 0
1 otherwise

(25)

where the Ṡ represents the rate in which the energy tank
is charging (positive rate) or depleting (negative rate). The
term ẋ(xr)D(xr)ẋ(xr)∈R+ is always positive as the damping
matrix, D(xr), is positive definite. This is the dissipated
passive energy that charges the energy tank and is controlled
by a scalar multiplier α(S). α(S) is set to zero if the tank
reaches its maximum energy level, (S), as in (24). In (23),
Z = ẋ(xr)

T ẋ(xd) indicates the tangential velocity tracking that
is either active (Z > 0) or passive (Z < 0). The β (Z,S) is
a scalar controller that will be zero, if the energy tank is
depleted (S≤ 0) and the tracker needs more energy from the
energy tank for active control action (Z ≥ 0), or if the energy
tank is full (S ≥ S) and the tracker is passive in interaction
and charging the tank with more energy (Z > 0). Now the
scalar function γ(Z,S) in (22) is set to produce controlling



Fig. 4. The proposed velocity field controller. In each position (xr), the desired velocity is calculated from the demonstrated velocity (xp, ẋp), then forwarded
to the variable dissipative field controller with the energy tank to be followed passively. Finally, the force produced by the velocity field controller (Fvel )
is added to the force produced by the potential field function (Fpot ) to provide assistance to the patient to accomplish the task.

action when energy tank is depleted as:

γ(Z,S) =

{
1 if S≥ S & Z ≤ 0
β (Z,S) otherwise

(26)

Note that the parameter γ(Z,S) is different from β (Z,S)
where the tracking action is passive (Z ≤ 0) but the energy
tank is full (S ≥ S) and therefore, additional dissipated
energy is discarded. Fig. 4 displays the overall framework
for reproduction of motion with a velocity field controller.

Having both the potential field and velocity field controller
with its energy tank stabilizer, the stability of the proposed
framework can be investigated. Let us define a candidate
Lyapunov function as:

ν(xr, ẋr) =
1
2

ẋT
r Mẋr +U(xr)+S (27)

which consists of the kinetic, potential, and tank energy in the
system, respectively. The proposed energy function ν(xr, ẋr)
is a positive definite function based on (1), (8), and (23). The
time derivative of ν(xr, ẋr) is:

ν̇(xr, ẋr) = ẋT
r Mẍr +

1
2

ẋT
r Ṁẋr + ẋT

r ∇U(xr)+ Ṡ. (28)

Finding Mẍr by rearrangement of robot dynamic (1), replac-
ing the equivalent control force (FC) from (5), (6), and (22)
and substituting Ṡ from (23), yields:

ν̇(xr, ẋr) = ẋT
r [Fpa +Fd−∇U(xr)−D(xr)ẋr

+ γ(Z,S)cT ẋd(xr)−C(xr, ẋr)ẋr−G(xr)− f (ẋr)]

+
1
2

ẋT
r Ṁẋr + ẋT

r ∇U(xr)+α(S)ẋ(xr)D(xr)ẋ(xr)

−β (Z,S)cT ẋ(xr)
T ẋ(xd). (29)

Rearranging the terms and considering the skew symmet-
ric property of Ṁ − 2C(xr, ẋr), (29) is simplified to (30).
Considering that the scalar functions α , β , and γ satisfy
the conditions (24), (25), and (26), respectively, the term
η(xr, ẋr,Z,S) in (30) is guaranteed to be positive. Based on
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Fig. 5. This figure depicts the experiment setup for experiment 1 in both
(a) demonstration and (b) robotic assistance phases. Spring array is used
for simulation of spastic symptoms of CP.

the passivity criteria defined in [19], with a lower bounded
energy function (27), the rate of change in energy (ν̇) is
smaller than the inserted energy (ẋT

r [Fpa+Fd ]), therefore the
system is passive.

ν̇(xr, ẋr) = ẋT
r [Fpa +Fd ]− [1−α(S)]ẋT

r D(xr)ẋr

+[γ(Z,S)−β (Z,S)]cT Z− ẋT
r f (ẋr)

= ẋT
r [Fpa +Fd ]−η(xr, ẋr,Z,S)

≤ ẋT
r [Fpa +Fd ] (30)

V. EXPERIMENTAL EVALUATION

The proposed framework is experimentally evaluated using
a Quanser rehabilitation robot (Quanser Consulting Inc.,
Markham, Canada). A force sensor (Gamma SI-32-2.5, from
ATI Inc, Goodworth, NC, USA) was connected to the end-
effector in order to measure the interaction force applied
by the therapist to patient’s hand as shown in Fig. 5. The
parameters used in the system are brought in Table I. Three
different scenarios have been considered to evaluate the
performance of the proposed potential and velocity field



controllers in the point-to-point position and impedance-
based motions. Most of the daily tasks can be decomposed
into point-to-point motion or impedance-based primitives.
The main symptoms of cerebral palsy, i.e., stiffness in joints
and muscles and incoordination is first simulated by spring
arrays to assess the capability of the system under passive
interaction condition. Then, the system is evaluated in an
experiment with an individual with CP.

TABLE I
THE SELECTED SYSTEM PARAMETERS FOR EXPERIMENTS

Kmin = 200 Minimum stiffness parameter
Kmax = 600 Maximum stiffness parameter
σ = 0.02 m Smoothing parameter

S = 20 J Energy capacity in the tank
L = 0.03 m Width of the velocity field

cN = 20 N.sec/m Normal damping parameter
cT = 20 N.sec/m Tangential damping parameter

cenv,1 = 20 N.sec/m Environment damping
cenv,2 = 0 N.sec/m Environment damping

A. Simulation of CP symptoms using spring arrays

Spring arrays were used as a systematic way to reproduce
same interaction behaviour and evaluate the performance
of the system with different parameters. Also, the spring
array can roughly represent a passive user with disability to
introduce stiffness in interaction dynamics (muscles stiffness)
and in-coordination (equilibrium point can be different with
the destination). For the first experiment, a 2-dimensional
point-to-point motion was used. As shown in Fig. 5, the
springs will represent a patient with stiff muscles. The patient
is expected to move the robotic end effector from the starting
point A to the target point B directly. As seen in Fig. 5,
the spring array equilibrium point was close to point A,
therefore the task could not be completed without robotic
assistance. Thus, a helper (the first author in this work)
demonstrated the desired trajectory between points A and B
by dragging the robot end-effector to point B. Then, using the
system parameters from Table I, the potential and velocity
fields were learned as displayed in Fig. 6 to replicate the
helper’s demonstrated trajectory (i.e., position, velocity, and
interaction force). Note that the demonstrated velocity is set
to zero for attracting points close to the target, point B, to
prevent overshooting the target point and increase the safety
of the system. The same strategy has been executed for all
the experiments hereafter. Next, in the therapist’s absence,
using the potential field function gradient (6) and velocity
field controller (22), the robotic assistance was provided to
the spring array in five trials. In these trials, the robot’s end
effector was released in five different locations to highlight
the convergence of the model and evaluate its performance in
replicating the demonstrated velocity and interaction force.

As illustrated in Fig. 6, in all the trials the model suc-
cessfully attracted the robotic manipulator toward point B.

Fig. 6. The learned potential field function in Experiment 1. The blue scale
gives the magnitude (the darker, the lower the potential). Arrows indicate
the direction of the force in each position. The red line is the demonstrated
trajectory by the therapist. The red arrows (triangles) demonstrate the
velocity field along the trajectory. As seen in this figure, in all five trials,
the potential field attracts the robotic manipulator to the trajectory and then
to point B.

However, since the spring array exerted a force in −X1 and
X2 directions, it can be observed that the robotic manipulator
deviated from the demonstrated trajectory in those directions.
The level of deviation from the demonstrated trajectory could
be controlled by tuning Kmin and Kmax parameters. The higher
these stiffness parameters, the lower the deviation from
demonstrated trajectory (i.e., lower freedom and contribution
from the patient in the task execution).

Fig. 7(a) shows the velocity in X1 direction in demonstra-
tion phase in all the five trials. Since the controller is time-
independent, the tracking performance is analyzed spatially.
In this experiment, we provided high damping behavior in
the environment (Table I) to further evaluate the robustness of
the controller. This damping behavior in the task environment
was not present in the demonstration phase, therefore the
learned interaction force captured in the potential field falls
short to accelerate the robot enough to reach the demon-
strated velocity. As showed in Fig. 7(a), due to the static
friction of the system and transient response of the controller,
the robot slowly converged to the demonstrated velocity
and compensated for force perturbations. At the end of the
trajectory, the desired velocity field was set to zero to prevent
a shift from the convergence point of the potential field.
Therefore, the velocity suddenly decreases to zero (velocity
field works as a brake).

The potential field is learned to provide the same interac-
tion force in the tangential direction as in the demonstration
phase along the trajectory. Fig. 7(c) shows the interaction
force exerted by the potential field (Fpot ) in X1 direction
which is identical to the demonstrated interaction force as
soon as the robot is attracted to the vicinity of the trajectory.

The velocity field controller Fvel , as illustrated in Fig. 7(b),
mainly exerts assistive force in the same direction as of the
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Fig. 7. (a) Depicts the velocity tracking for Experiment 1, with the vertical
and horizontal axis representing the position and velocity in X1 direction. As
observed, the system assists the spring array to reach the desired velocity
in each position (as demonstrated by red colour). (b) Depicts the force
produced by the velocity field controller Fvel . (c) Illustrates the interaction
force by the potential field function Fpot in X1 direction. As soon as the
robotic manipulator is attracted to the trajectory, the potential field function
exerts an interaction force identical to the demonstration phase (red plot).

motion to compensate the damping in the environment. At
points A and B, the velocity field controller compensated for
the inertia and static friction in the system. Also, at the end
of the motion, Fvel increased to compensate for the drop in
the Fpot .

In experiment 2, the aim is to demonstrate how the velocity
controller can be tuned to limit patient’s deviation from the
demonstrated velocity. As shown in Fig. 8, the task consisted
of moving a ring attached to the robot’s handle along a
curved wire without touching the latter. The game would
be completed successfully if the patient could move the ring
from point A to point B, without any direct contact between
the ring and the wire.

The robot equilibrium point was close to point A. Since
springs are used to simulate the patient, the task could not be
performed without robotic assistance. Thus, in the demon-
stration phase, the helper grabbed the robot end effector and
moved it to point B, and end effector’s position, velocity
and interaction force data were captured as shown in Fig.

(a) Demonstration phase

 

Ring 

(b) Robotic assistance phase

Fig. 8. This figure depicts the experiment setup for experiment 2 in both
(a) demonstration phase and (b) robotic assistance phase.

Fig. 9. Depicts the velocity field and learned potential field around the
demonstrated trajectory from point A to point B in experiment 2. The system
successfully assisted the spring array to move the ring through the wire from
point A to point B without hitting the wire in all 4 trials with different cT
parameter.

9. Finally, in the robotic assistance phase, the task was
performed successfully with robotic assistance in all four
performed trials. No damping was added to the environment.
Because of the deviation of the spring array from the
demonstrated trajectory, the interaction force to the robotic
manipulator was higher Compared to the demonstrated phase
(The potential field attracts the robot toward trajectory). Also,
higher velocities at the end of the trajectory was observed
as it was expected, Fig. 10(a) with cT = 0. cT parameter
in (19-21) represents the velocity tracking gain in tangential
direction. In order to evaluate the performance of velocity
field controller in velocity regulation with its cT parameter in
each trial, a different value for cT was assigned. As illustrated
in Fig. 10, the higher the cT parameter, the higher the control
force from the velocity field controller and the lower the
deviation from the demonstrated velocity. However, with
higher cT parameter, the more the oscillatory behavior in
the transient response. Therefore, cT should be tuned based
on the specific robotic system and application.

Fig. 10(a) and Fig. 10(b) show that when the robotic ma-
nipulator was going slower than the demonstrated velocity,
the velocity field controller exerted an assistive force in the
direction of the motion. On the other hand, when the robot
was moving faster than the desired velocity, the robot resisted
the motion. In Fig. 11 with cT = 0 (no velocity tracking
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Fig. 10. (a) Depicts the observed velocity tracking in X1 direction in all four
trials with different cT in experiment 2, respectively. As seen, the velocity
tracking of demonstrated velocity (red plot) gets more accurate as the cT
parameter increases . (b) Shows the control signal produced by velocity field
controller Fvel in X1 direction for each trial, respectively. Fvel increases as
the cT parameter increases.
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Fig. 11. This figure shows the demonstrated interaction force (red plot) and
the observed control signal (FC) in X1 direction that is the sum of potential
field (Fpot ) and velocity field (Fvel ) forces. As observed, the velocity field
compensates for the environment disturbance and difference between the
potential field force and the demonstrated (required) interaction force. The
more the cT parameter is, the better the compensation will be (however
oscillatory behaviour increased due to the system dynamics).

in tangential direction) due to the modelling error in the
potential field and robot deviation from the trajectory the
interaction force is slightly different from the demonstrated
interaction force from the therapist. Fig. 11 shows how the
velocity field controller compensates for this difference.

B. Experiment with an individual with CP

A single-case study was conducted with a 51 years old
female individual with quadriplegic CP (called user hereafter
in the experiments). She has a mixed CP condition charac-
terized by high and low muscle tone and high involuntary
movements. Based on the Manual Ability Classification Sys-
tem (MACS), she is at Level III, meaning she has difficulty
handling objects by hand but is able to perform manual tasks
with assistance and/or adaptation of the activity [20].

(a) Demonstration phase (b) Robotic assistance phase

Fig. 12. Depicts the experiment setup for experiment 3 with an individual
with CP (a) demonstration phase. (b) robotic assistance phases.

A designed 2-dimensional virtual game was projected on
an LCD screen, placed in front of the user. The user was
asked to move a cursor on the screen with the robotic
manipulator toward the destination point, point A, by passing
through 2 gaps with different directions without hitting them,
Fig. 13. This experiment was challenging for the user as
it needed high levels of muscle control and coordination.
This experiment aimed to evaluate the system under realistic
condition in interaction with an individual with CP to assess
the overall performance and stability of the system. Fig. 12
illustrates the experimental setup in the demonstration and
robotic assistance phases. Also parameters in table I was used
for this experiments. In the demonstration phase, first the
helper assisted the user in a single task execution to complete
the task successfully. Then, the potential and velocity fields
that were learned from the demonstrated performance were
used to assist the user.

Fig. 13 shows the results for this experiment in three
trials, each column represents results for each trial. First
column shows the result for user trial with no assistance
provided in three tryouts, Fig. 13(a). As illustrated with
the uncoordinated and involuntarily movements, the user
could not control the robotic manipulator and was unable to
complete the task successfully and was not passing exactly
through the gaps on LCD. Then the helper assisted the
user to complete the task successfully, Fig. 12(a). With the
demonstrated performance, the system learned to replicate
the helper’s assistance.

In the second trial (Fig. 13(b)), the user performed the
task again with learned potential field and no velocity field
(cT = 0). The user could successfully complete the task in
three tryouts without hitting any of the gaps. The potential
field was restricting the user motion in normal direction, also
the user was moving consistently toward the destination due
to the tangential force (slope) in the potential field. Even
though the normal force-tracking is close to the demonstrated
normal force by the helper (due to the high K parameter,
K = Kmax), the velocity tracking was poor and variations in
task completion time by user were observed (not consistent
with duration in demonstration phase).

In the third trial (Fig. 13(c)), velocity field was also added
based on the helper’s velocity in demonstration phase and
potential field was tuned to be weaker (K = Kmin). It was



Fig. 13. This figure shows the results from a user with CP completing the task of moving a cursor on LCD screen (controlled with robotic manipulator)
toward a destination point (red star) through gaps A and B (red circles) without hitting them, in three trials . Row one, two and three in the figure depicts
the position (X1 - X2), velocity in X1 direction (X1 - t) and normal interaction force (Fin,N - t) for each trial, respectively. (a) Trial results of the user with
no assistance provided from a helper/robotic manipulator. (b) Trial results with robotic assistance with potential field and no velocity field (K = Kmax and
cT = 0) in three tryouts. (c) Trial results with robotic assistance with velocity field and a lower magnitude potential field (K = Kmin and cT ) in three tryouts.
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Fig. 14. Shows the energy tank state (S) in each of the tryouts in Fig.
13(c). The energy tank is slowly charging up overtime due to the active
interaction with the user in these tryouts.

apparent that we had good velocity tracking and timing but
weaker force tracking in normal direction. In one of the
tryouts (violet trajectory) the user failed to pass through gap
A and B due to the weaker potential field with less assistance
in normal direction.

The velocity field controller with its energy tank mecha-
nism ensured the stability and passivity of the overall system
in third trial, Fig. 13(c). The velocity field controller damped
the patient’s active energy in the normal direction and saved
it up in the energy tank state S as shown in Fig. 14. At the
same time, it used the stored energy to actively regulate the
deviation of the patient based on the demonstrated velocity
along the trajectory.

C. Discussion

The proposed framework has merits in rehabilitation and
assistive technologies to replicate the therapist’s short inter-
vention in point-to-point trajectory-following motion tasks.

Only one demonstration is required, which helps the therapist
to save time and effort. However, the system needs to be
robust to inevitable noise and uncertainty in both the learning
and reproduction phases. The demonstrated data is first
low pass filtered temporally; then, Gaussian kernels smooth
out the generalized fields spatially to prevent sharp bumps
or edges. Also, in the reproduction phase, the proposed
performance-based velocity field controller provides adaptive
assistance to compensate for the variable user performance
and environment distortions. Still, if the patient’s behavior
is highly non-consistent, one can easily average (temporally
or spatially) through multiple demonstrations and then teach
the proposed system based on the averaged demonstration.

The velocity field only exists in the vicinity of the tra-
jectory in the direction toward the destination point and
converges to zero as you get far from it. Therefore, the
proposed velocity field controller damps (resists) motions
that are diverging from both the trajectory and destination
point. Also, having the energy tank mechanism to ensure the
passivity of this active controller makes the system appropri-
ate for the target application in this paper that requires high
safety standards. However, in theory, the joined potential
and velocity fields may not be globally asymptotically stable
around the destination point and there might be local minima
(converging points) usually in areas far from the trajectory
when there is a sharp turn. This can be solved by tuning the
width of the velocity field and setting the desired velocity to
zero close to the target destination to minimize the possible
interference.



Recently, other research groups are getting interested in
applying LfD in rehabilitation and assistive robotics. [21]
has used dynamic motion primitive to adapt and generalize
a trajectory-following motion to the user’s motion style. The
main difference between the proposed system and [21] is that
the potential and velocity fields also explicitly encapsulate
and generalize interaction force, velocity and interaction
impedance (stiffness and damping) of the demonstrated tra-
jectory. This is the contribution of this system which results
in a generalized, natural-looking, and safe reproduction of
therapist assistance. The proposed system, with the use of
energy tank state is also proven to be passive and stable
which is critical in applications involving interaction with
individuals with disability. Furthermore, unless our previous
work [11]–[14], this system is position indexed and general-
izes therapist demonstrated assistance to provide appropriate
force at any point in the workspace towards the destination.
It also accounts for interaction force with both therapist and
patient being involved in the demonstration phase.

However, the proposed system is somewhat task-specific
and requires demonstrations from the therapist if the task
changes in the environment. In the future, the main focus of
our work will be to 1) develop a reinforcement learning algo-
rithm to update the potential field based on user performance
in task execution, 2) develop an algorithm to generalize the
therapist’s demonstrated assistance in the task environment
and learn the required potential and velocity fields for
any point-to-point motion in that environment without the
need for a therapist’s demonstration, and 3) perform more
experiments with more individuals with disability (Stroke,
CP) to clinically analyze the system.

VI. CONCLUSION

The proposed learning from demonstration framework for
robotic assistance can have applications in various tasks
that involve cooperative human-robot task execution. Without
the loss of generality, an application for assist-as-needed
assistance to people with disability was the primary focus of
this paper. The framework, with its potential field function
and velocity field controller, was modified and developed
to reproduce and generalize the helper’s assistance (i.e.,
trajectory, velocity, interaction force) with only a single
demonstration. The efficacy and performance of the system
were evaluated in three scenarios involving spring arrays for
systematic analysis of system performance and an individual
with CP.
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